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Abstract

One of the common tasks in unsupervised learning is dimensionality reduction, where the
goal is to find meaningful low-dimensional structures hidden in high-dimensional data.
Sometimes referred to as manifold learning, this problem is closely related to the problem
of localization, which aims at embedding a weighted graph into a low-dimensional Euclidean
space. Several methods have been proposed for localization, and also manifold learning.
Nonetheless, the robustness property of most of them is little understood. In this paper, we
obtain perturbation bounds for classical scaling and trilateration, which are then applied
to derive performance bounds for Isomap, Landmark Isomap, and Maximum Variance
Unfolding. A new perturbation bound for procrustes analysis plays a key role.

1. Introduction

Multidimensional scaling (MDS) can be defined as the task of embedding an itemset as
points in a (typically) Euclidean space based on some dissimilarity information between the
items in the set. Since its inception, dating back to the early 1950’s if not earlier (Young,
2013), MDS has been one of the main tasks in the general area of multivariate analysis,
a.k.a., unsupervised learning.

One of the main methods for MDS is called classical scaling, which consists in first
double-centering the dissimilarity matrix and then performing an eigen-decomposition of the
obtained matrix. This is arguably still the most popular variant, even today, decades after
its introduction at the dawn of this literature. (For this reason, this method is often referred
to as MDS, and we will do the same on occasion.) Despite its wide use, its perturbative
properties remain little understood. The major contribution on this question dates back
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to the late 1970’s with the work of Sibson (1979), who performs a sensitivity analysis that
resulted in a Taylor development for the classical scaling to the first nontrivial order. Going
beyond Sibson (1979)’s work, our first contribution is to derive a bonafide perturbation
bound for classical scaling (Theorem 1).

Classical scaling amounts to performing an eigen-decomposition of the dissimilarity ma-
trix after double-centering. Only the top d eigenvectors are needed if an embedding in
dimension d is desired. Using iterative methods such as the Lanczos algorithm, classical
scaling can be implemented with a complexity of O(dn2), where n is the number of items
(and therefore also the dimension of the dissimilarity matrix). In applications, particularly
if the intent is visualization, the embedding dimension d tends to be small. Even then,
the resulting complexity is quadratic in the number of items n to be embedded. There
has been some effort in bringing this down to a complexity that is linear in the number
of items. The main proposals (Faloutsos and Lin, 1995; Wang et al., 1999; de Silva and
Tenenbaum, 2004) are discussed by Platt (2005), who explains that all these methods use
a Nyström approximation. The procedure proposed by de Silva and Tenenbaum (2004),
which they called landmark MDS (LMDS) and which according to Platt (2005) is the best
performing methods among these three, works by selecting a small number of items, perhaps
uniformly at random from the itemset, and embedding them via classical scaling. These
items are used as landmark points to enable the embedding of the remaining items. The
second phase consists in performing trilateration, which aims at computing the location of
a point based on its distances to known (landmark) points. Note that this task is closely
related to, but distinct, from triangulation, which is based on angles instead. If ` items
are chosen as landmarks in the first step (out of n items in total), then the procedure has
complexity O(d`2 + d`n). Since ` can in principle be chosen on the order of d, and d ≤ n
always, the complexity is effectively O(d2n), which is linear in the number of items. A good
understanding of the robustness properties of LMDS necessitates a good understanding of
the robustness properties of not only classical scaling (used to embed the landmark items),
but also of trilateration (used to embed the remaining items). Our second contribution is a
perturbation bound for trilateration (Theorem 2). There are several closely related method
for trilateration, and we study on the method proposed by de Silva and Tenenbaum (2004),
which is rather natural. We refer to this method simply as trilateration in the remaining of
the paper.

de Silva and Tenenbaum (2004) build on the pioneering work of Sibson (1979) to derive
a sensitivity analysis of classical scaling. They also derive a sensitivity analysis for their
trilateration method following similar lines. In the present work, we instead obtain bonafide
perturbation bounds, for procrustes analysis (Section 2), for classical scaling (Section 3), and
for the same trilateration method (Section 4). In particular, our perturbation bounds for
procrustes analysis and classical scaling appear to be new, which may be surprising as these
methods have been in wide use for decades. (The main reason for deriving a perturbation
bound for procrustes analysis is its use in deriving a perturbation bound for classical scaling,
which was our main interest.) These results are applied in Section 5 to Isomap, Landmark
Isomap, and also Maximum Variance Unfolding (MVU). These may be the first performance
bounds of any algorithm for manifold learning in its ‘isometric embedding’ variant, even
as various consistency results have been established for Isomap (Zha and Zhang, 2007),
MVU (Arias-Castro and Pelletier, 2013), and a number of other methods (Donoho and
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Grimes, 2003; Ye and Zhi, 2015; Giné and Koltchinskii, 2006; Smith et al., 2008; Belkin
and Niyogi, 2008; von Luxburg et al., 2008; Singer, 2006; Hein et al., 2005; Coifman and
Lafon, 2006). (As discussed in (Goldberg et al., 2008), Local Linear Embedding, Laplacian
Eigenmaps, Hessian Eigenmaps, and Local Tangent Space Alignment, all require some form
of normalization which make them inconsistent for the problem of isometric embedding.)
In Section 7 we discuss the question of optimality in manifold learning and also the choice
of landmarks. The main proofs are gathered in Section 8.

2. A perturbation bound for procrustes

The orthogonal procrustes problem is that of aligning two point sets (of same cardinal-
ity) using an orthogonal transformation. In formula, given two point sets, x1, . . . , xm and
y1, . . . , ym in Rd, the task consists in solving

min
Q∈O(d)

m∑
i=1

‖yi −Qxi‖2, (1)

where O(d) denotes the orthogonal group of Rd. (Here and elsewhere, when applied to a
vector, ‖ · ‖ will denote the Euclidean norm.)

In matrix form, the problem can be posed as follows. Given matrices X and Y in Rm×d,
solve

min
Q∈O(d)

‖Y −XQ‖2, (2)

where ‖ · ‖2 denotes the Frobenius norm (in the appropriate space of matrices). As stated,
the problem is solved by choosing Q = UV >, where U and V are d-by-d orthogonal matrices
obtained by a singular value decomposition of X>Y = UDV >, where D is the diagonal
matrix with the singular values on its diagonal (Seber, 2004, Sec 5.6). Algorithm 1 describes
the procedure.

Algorithm 1 Procrustes (Frobenius norm)

Input: point sets x1, . . . , xm and y1, . . . , ym in Rd
Output: an orthogonal transformation Q of Rd

1: store the point sets in X = [x>1 · · ·x>m] and Y = [y>1 · · · y>m]
2: compute X>Y and its singular value decomposition UDV >

Return: the matrix Q = UV >

In matrix form, the problem can be easily stated using any other matrix norm in place
of the Frobenius norm. There is no closed-form solution in general, even for the operator
norm (as far as we know), although some computational strategies have been proposed for
solving the problem numerically (Watson, 1994). In what follows, we consider an arbitrary
Schatten norm. For a matrix A ∈ Rm×n, let ‖A‖p denote the Schatten p-norm, where
p ∈ [1,∞] is assumed fixed:

‖A‖p ≡
(∑
i≥1

νpi (A)
)1/p

, (3)
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with ν1(A) ≥ ν2(A) ≥ . . . ≥ 0 the singular values of A. Note that ‖ · ‖2 coincides with the
Frobenius norm. We also define ‖A‖∞ to be the usual operator norm, i.e., the maximum
singular value of A. Henceforth, we will also denote the operator norm by ‖ · ‖, on occasion.
We denote by A‡ the pseudo-inverse of A (see Section 8.1). Henceforth, we also use the
notation a ∧ b = min(a, b) for two numbers a, b.

Our first theorem is a perturbation bound for procrustes, where the distance between
two configurations of points X and Y is bounded in terms of the distance between their
Gram matrices XX> and Y Y >.

Theorem 1 Consider two tall matrices X and Y of same size, with X having full rank,
and set ε2 = ‖Y Y > −XX>‖p. Then, we have

min
Q∈O
‖Y −XQ‖p ≤

{
‖X‡‖ε2 +

(
(1− ‖X‡‖2ε2)−1/2‖X‡‖ε2

)
∧ (d1/2pε) , if ‖X‡‖ε < 1 ,

‖X‡‖ε2 + d1/2pε otherwise.

(4)

Consequently, if ‖X‡‖ε ≤ 1√
2
, then

min
Q∈O
‖Y −XQ‖p ≤ (1 +

√
2)‖X‡‖ε2. (5)

The proof is in Section 8.2. Interestingly, to establish the upper bound we use an
orthogonal matrix constructed from the singular value decomposition of X‡Y . This is
true regardless of p, which may be surprising since a solution for the Frobenius norm
(corresponding to the case where p = 2) is based on a singular value decomposition of
X>Y instead.

Also, let us stress that ε in the theorem statement, by definition, depends on the choice
of p-norm.

Example 1 (Orthonormal matrices) The case where X and Y are orthonormal and of
the same size is particularly simple, at least when p = 2 or p =∞, based on what is already
known in the literature. Indeed, from (Stewart and Sun, 1990, Sec II.4) we find that, in
that case,

min
Q∈O
‖Y −XQ‖p = ‖2 sin(12θ(X,Y ))‖p, (6)

where θ(X,Y ) is the diagonal matrix made of the principal angles between the subspaces
defined by X and Y , and for a matrix A, sin(A) is understood entrywise. In addition,

ε2 = ‖Y Y > −XX>‖p = ‖ sin θ(X,Y )‖p. (7)

Using the elementary inequality
√

2 sin(α/2) ≤ sin(α) ≤ 2 sin(α/2), valid for α ∈ [0, π/2],
we get

ε2 ≤ min
Q∈O
‖Y −XQ‖p ≤

√
2ε2. (8)

Note that, in this case, ‖X‖ = ‖X‡‖ = 1, and our bound (5) gives the upper bound (1 +√
2)ε2, which is tight up to a factor of 1 + 1√

2
.
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Example 2 The derived perturbation bound (5) includes the pseudo-inverse of the configu-
ration, ‖X‡‖. Nonetheless, the example of orthogonal matrices does not capture this factor
because ‖X‡‖ = 1 in that case. To build further insight on our result in Theorem 1, we con-
sider another example where X and Y share the same singular vectors. Namely X = UΛV >

and Y = UΘV >, with U ∈ Rm×d, V ∈ Rd×d orthonormal matrices, and Λ = diag({λi})di=1

and Θ = diag({θi})di=1. Consider the case of p = 2, and let X>Y = V (ΛΘ)V > be a singular
value decomposition. Then by Algorithm 1, the optimal rotation is given by Q = I. We
therefore have

min
Q∈O
‖Y −XQ‖2 =

[∑
i∈[n]

(θi − λi)2
]1/2

=
[∑
i∈[n]

(θ2i − λ2i
θi + λi

)2]1/2
(9)

≤ 1

(min
i∈[n]
|λi|)

[∑
i∈[n]

(
θ2i − λ2i

)2]1/2
=

1

(min
i∈[n]
|λi|)
‖Y Y > −XX>‖2

= ‖X‡‖ε2 . (10)

Let us stress that the above derivation applies only to this example, but it showcases the
relevance of ‖X‡‖ in the bound.

We next develop a lower bound for the following specific case. Let D = diag(1, 1, . . . , δ)
for arbitrary but fixed δ ∈ [0, 1] and let Θ = diag(1, 1, . . . ,

√
δ2 + ε2). Then, ‖X‡‖ = 1/δ

and ‖XX> − Y Y >‖2 = ε2. By (9) we have

min
Q∈O
‖Y −XQ‖2 =

[∑
i∈[n]

(θi − λi)2
]1/2

=
√
δ2 + ε2 − δ = δ

(√
1 + ε2

δ2
− 1

)
. (11)

Also, from the condition ‖X‡‖ε ≤ 1√
2

we have ε
δ <

1√
2
. Using

√
1 + x2 − 1 ≥ (

√
6 − 2)x2,

which holds for x < 1√
2

and substituting for δ = 1/‖X‡‖, we obtain

min
Q∈O
‖Y −XQ‖2 ≥ (

√
6− 2)‖X‡‖ε2 (12)

From (10) and (12), we observe that the ‖X‡‖ term appears both in the upper and the lower
bounds of the procrustes error, which confirms its relevance.

Remark 1 We emphasize that the general bound in(4) does not require any restriction on
ε. However, as it turns out, the result in (5) would be already enough for our purposes in
the next sections and deriving our results in the context of manifold learning. Regarding
the procrustes error bound in Theorem 1, we do conjecture that there is a smooth transition
between a bound in ε2 and a bound in ε as ‖X‡‖ increases to infinity (and therefore X
degenerates to a singular matrix). For instance, in Example 2, when δ = ‖X‡‖−1 → 0
faster than ε, the lower bound (11) scales linearly in ε.

It is worth noting that other types of perturbation analysis have been carried out for the
procrustes problem. For example (Söderkvist, 1993) considers the procrustes problem over
the class of rotation matrices, a subset of orthogonal matrices, and study how its solution
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(optimal rotation) would be perturbed if both configurations were perturbed. In (Zha and
Zhang, 2009), the authors study the perturbation of the null space of a similarity matrix from
manifold learning, using the standard perturbation theory for invariant subspaces (Stewart
and Sun, 1990).

3. A perturbation bound for classical scaling

In multidimensional scaling, we are given a matrix, ∆ = (∆ij) ∈ Rm×m, storing the dis-
similarities between a set of m items (which will remain abstract in this paper). A square
matrix ∆ is called dissimilarity matrix if it is symmetric, ∆ii = 0, and ∆ij > 0, for i 6= j.
(∆ij gives the level of dissimilarity between items i, j ∈ [m].) Given a positive integer
d, we seek a configuration, meaning a set of points, y1, · · · , ym ∈ Rd, such that ‖yi − yj‖2
is close to ∆ij over all i, j ∈ [m]. The itemset [m] is thus embedded as y1, . . . , ym in the
d-dimensional Euclidean space Rd.

Algorithm 2 describes classical scaling, the first practical and the most prominent
method for solving this problem. The method is widely attributed to Torgerson (1958)
and Gower (Gower, 1966) and it is also known under the names Torgerson scaling and
Torgerson-Gower scaling.

Algorithm 2 Classical Scaling

Input: dissimilarity matrix ∆ ∈ Rm×m, embedding dimension d
Output: set of points y1, . . . , ym ∈ Rd

1: compute the matrix ∆c = −1
2H∆H

2: let λ1 ≥ λ2 ≥ . . . ≥ λm be the eigenvalues of ∆c, with corresponding eigenvectors
u1, . . . , um
3: compute Y ∈ Rm×d as Y = [

√
λ1,+ u1, . . . ,

√
λd,+ ud]

Return: the row vectors y1, . . . , ym of Y

In the description, H = I − J/m is the centering matrix in dimension m, where I is the
identity matrix and J is the matrix of ones. Further, we use the notation a+ = max(a, 0)
for a scalar a. The basic idea of classical scaling is to assume that the dissimilarities are
Euclidean distances and then find coordinates that explain them.

For a general dissimilarity matrix ∆, the doubly centered matrix ∆c may have negative
eigenvalues and that is why in the construction of Y , we use the positive part of the
eigenvalues. However, if ∆ is an Euclidean dissimilarity matrix, namely ∆ij = ‖xi − xj‖2
for a set points {x1, . . . , xm} in some ambient Euclidean space, then ∆c is a positive semi-
definite matrix. This follows from the following identity relating a configuration X with the
corresponding squared distance matrix ∆:

−1

2
H∆H = HXXTH . (13)

Consider the situation where the dissimilarity matrix ∆ is exactly realizable in dimension
d, meaning that there is a set of points y1, . . . , ym such that ∆ij = ‖yi − yj‖2. It is worth
noting that, in that case, the set of points that perfectly embed ∆ in dimension d are rigid
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transformations of each other. It is well-known that classical scaling provides such a set of
points which happens to be centered at the origin (see Eq. 13).

We perform a perturbation analysis of classical scaling, by studying the effect of perturb-
ing the dissimilarities on the embedding that the algorithm returns. This sort of analysis
helps quantify the degree of robustness of a method to noise, and is particularly important
in applications where the dissimilarities are observed with some degree of inaccuracy, which
is the case in the context of manifold learning (Section 5.1).

Definition 1 We say that ∆ ∈ Rm×m is a d-Euclidean dissimilarity matrix if there exists
a set of points {x1, . . . , xm} ∈ Rd such that ∆ij = ‖xi − xj‖2.

Recall that O denotes the orthogonal group of matrices in the appropriate Euclidean
space (which will be clear from context).

Corollary 1 Let Λ,∆ ∈ Rm×m denote two d-Euclidean dissimilarity matrices, with ∆
corresponding to a centered and full rank configuration Y ∈ Rm×d. Set ε2 = 1

2‖H(Λ −
∆)H‖p. If it holds that ‖Y ‡‖ε ≤ 1√

2
, then classical scaling with input dissimilarity matrix

Λ and dimension d returns a centered configuration Z ∈ Rm×d satisfying

min
Q∈O
‖Z − Y Q‖p ≤ (1 +

√
2)‖Y ‡‖ε2. (14)

We note that ε2 ≤ 1
2d

2/p‖Λ−∆‖p, after using the fact that ‖H‖p = (d− 1)1/p since H
has one zero eigenvalue and d− 1 eigenvalues equal to one.
Proof We have

‖Λc −∆c‖p = 1
2‖H(Λ−∆)H‖p = ε2. (15)

Note that since ∆ and Λ are both d-Euclidean dissimilarity matrices, using identity (13),
the doubly centered matrices ∆c and Λc are both positive semi-definite and of rank at most
d. Indeed, since Y is full rank (rank d) and centered, then (13) implies that ∆c is of rank d.
Therefore, for the underlying configuration Y and the configuration Z, returned by classical
scaling, we have ∆c = Y Y > and Λc = ZZ>. We next simply apply Theorem 1, which we
can do since Y has full rank by assumption, to conclude.

Remark 2 The perturbation bound (14) is optimal in how it depends on ε. Indeed, suppose
without loss of generality that p = 2. (All the Schatten norms are equivalent modulo con-
stants that depend on d and p.) Consider a configuration Y with squared distance matrix
∆ as in the statement, and define Λ = (1 + a)2∆, with 0 ≤ a ≤ 1, as a perturbation of
∆. Then, it is easy to see that classical scaling with input dissimilarity matrix Λ returns
Z = (1 + a)Y . On the one hand, we have (Seber, 2004, Sec 5.6)

min
Q∈O
‖Z − Y Q‖2 = ‖Z − Y ‖2 = a‖Y ‖2 . (16)

On the other hand,

ε2 =
1

2
‖H(Λ−∆)H‖p =

1

2
((1 + a)2 − 1)‖H∆H‖p = ((1 + a)2 − 1)‖Y Y >‖2 . (17)
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Therefore, the right-hand side in (14) can be bounded by 3(1 +
√

2)a‖Y ‡‖‖Y Y >‖2, using
that a ∈ [0, 1]. We therefore conclude that the ratio of the left-hand side to the right-hand
side in (14) is at least

a‖Y ‖2
3(1 +

√
2)a‖Y ‡‖‖Y Y >‖2

≥ 1

3(1 +
√

2)
(‖Y ‖‖Y ‡‖)−1, (18)

using the fact that ‖Y Y >‖2 ≤ ‖Y ‖‖Y ‖2. Therefore, our bound (14) is tight up to a
multiplicative factor depending on the condition number of the configuration Y .

Remark 3 Condition ‖Y ‡‖ε ≤ 1√
2

in Corollary 1 is of crucial importance in that without

it the dissimilarity matrix Λ may have rank less than d. In this case, the classical scaling
(Algorithm 2) with input Λ, returns a configuration Z which contains zero columns and
hence suffers a large procrustes error.

We now translate this result in terms of point sets instead of matrices. For a centered
point set y1, . . . , ym ∈ Rd, stored in the matrix Y = [y1 · · · ym]> ∈ Rm×d, define its radius
as the largest standard deviation along any direction in space (therefore corresponding to
the square root of the top eigenvalue of the covariance matrix). We denote this by ρ(Y )
and note that

ρ(Y ) = ‖Y ‖/
√
m. (19)

We define its half-width as the smallest standard deviation along any direction in space
(therefore corresponding to the square root of the bottom eigenvalue of the covariance
matrix). We denote this by ω(Y ) and note that it is strictly positive if and only if the point
set {y1, . . . , ym} spans the whole space Rd; in other words, the matrix Y = [y1 · · · ym]> ∈
Rm×d is of rank d. In this case

ω(Y ) = ‖Y ‡‖−1/
√
m. (20)

It is well-known that the half-width quantifies the best affine approximation to the point
set, in the sense that

ω(Y )2 = min
L

1

m

∑
i∈[m]

‖yi − PLyi‖2, (21)

where the minimum is over all affine hyperplanes L, and for a subspace L, PL denotes the
orthogonal projection onto L. We note that ρ(Y )/ω(Y ) = ‖Y ‖‖Y ‡‖ is the aspect ratio of
the point set.

Corollary 2 Consider a centered point set y1, . . . , ym ∈ Rd with radius ρ, and with half-
width ω, and with pairwise dissimilarities δij = ‖yi−yj‖2. Consider another arbitrary set of
numbers {λij}, for 1 ≤ i, j ≤ m and set η4 = 1

m2

∑
i,j(λij − δij)2. If η/ω ≤ 1√

2
,then classical

scaling with input dissimilarities {λij} and dimension d returns a point set z1 · · · zm ∈ Rd
satisfying

min
Q∈O

(
1

m

∑
i∈[m]

‖zi −Qyi‖2
)1/2

≤
√
d(ρ/ω + 2)

ω
η2 ≤ 3

√
dρ η2

ω2
. (22)
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This corollary follows from Theorem 1. We refer to Section 8.4 for its proof.

Remark 4 In some applications, one might be interested in an approximate embedding,
where the goal is to embed a large fraction (but not necessarily all) of the points with high
accuracy. Note that bound (22) provides a non-trivial bound for this objective. Indeed, for
any optimal Q for the left-hand side of (22), and an arbitrary fixed δ > 0, let N(δ) ≡ |{i ∈
[m] : ‖zi − Qyi‖ > δ}| be the number of points that are not embedded within accuracy δ.
Then, (22) implies that

N(δ)δ2 ≤
∑
i∈[m]

‖zi −Qyi‖2 ≤ m

(
3
√
dρ η2

ω2

)2

,

and hence

N(δ) ≤ m

(
3
√
dρ η2

δω2

)2

. (23)

4. A perturbation bound for trilateration

The problem of trilateration is that of positioning a point, or set of points, based on its
(or their) distances to a set of points, which in this context serve as landmarks. In detail,
given a set of landmark points y1, . . . , ym ∈ Rd and a set of dissimilarities δ̃1, . . . , δ̃m, the
goal is to find ỹ ∈ Rd such that ‖ỹ − yi‖2 is close to δ̃i over all i ∈ [m]. Algorithm 3
describes the trilateration method of de Silva and Tenenbaum (2004) simultaneously applied
to multiple points to be located. The procedure is shown in (de Silva and Tenenbaum, 2004)
to recover the position of points ỹ1, . . . , ỹn exactly, when it is given the squared distances
δ̃ij = ‖ỹi − yj‖2 as input and the landmark point set {y1, . . . , ym} spans Rd. We provide a
more succinct proof of this in the Section A.1.

Algorithm 3 Trilateration

Input: centered point set y1, . . . , ym ∈ Rd, dissimilarities ∆̃ = (δ̃ij) ∈ Rn×m
Output: points ỹ1, . . . , ỹn ∈ Rd

1: compute ā = 1
m

∑m
i=1 ai, where ai = (‖ỹi − y1‖2, . . . , ‖ỹi − ym‖2)

2: compute the pseudo-inverse Y ‡ of Y = [y1 · · · ym]>

3: compute Ỹ > = 1
2Y
‡(ā1> −∆>)

Return: the row vectors of Ỹ , denoted ỹ1, . . . , ỹn ∈ Rd

We perturb both the dissimilarities and the landmark points, and qualitatively charac-
terize how it will affect the returned positions by trilateration. (In principle, the perturbed
point set need not have the same mean as the original point set, but we assume this is the
case, for simplicity and because it suffices for our application of this result in Section 5.)
For a configuration Y = [y1 · · · ym]>, define its max-radius as

ρ∞(Y ) = max
i∈[m]

‖yi‖, (24)
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and note that ρ(Y ) ≤ ρ∞(Y ). We content ourselves with a bound in Frobenius norm.1

Theorem 2 Consider a centered configuration Y ∈ Rm×d that spans the whole space Rd,
and for a given configuration Ỹ ∈ Rn×d, let ∆̃ ∈ Rn×m denote the matrix of dissimilarities
between Ỹ and Y , namely ∆̃ij = ‖ỹi−yj‖2. Let Z ∈ Rm×d be another centered configuration
that spans the whole space, and let Λ̃ ∈ Rn×m be an arbitrary matrix. Then, trilateration
with inputs Z and Λ̃ returns Z̃ ∈ Rn×d satisfying

‖Z̃ − Ỹ ‖2 ≤ 1
2‖Z

‡‖‖Λ̃− ∆̃‖2 + 2‖Ỹ ‖‖Z‡‖‖Z − Y ‖2
+ 3
√
m(ρ∞(Y ) + ρ∞(Z))‖Z‡‖‖Z − Y ‖2 + ‖Y ‖‖Ỹ ‖‖Z‡ − Y ‡‖2 . (25)

In the bound (25), we see that the first term captures the effect of the error in the
dissimilar matrix, i.e., ‖∆̃− Λ̃‖, while the other three terms reflect the impact of the error
in the landmark positions, i.e, ‖Z−Y ‖. As we expect, we have a more accurate embedding
as these two terms get smaller, and in particular, when ∆̃ = Λ̃ and Y = Z (no error in the
inputs), we have exact recovery, which corroborates our derivation in Section A.1.

Remark 5 For a bound not involving the pseudo-inverse of Z – which may be difficult to
interpret – we can upper bound the right-hand side of (25) using

ρ∞(Z) ≤ ρ∞(Y ) + ρ∞(Z − Y ), ‖Z‡‖ ≤ ‖Y ‡‖+ ‖Z‡ − Y ‡‖, (26)

and

‖Z‡ − Y ‡‖p ≤
√

2‖Y ‡‖2‖Z − Y ‖p
(1− ‖Y ‡‖‖Z − Y ‖)2+

, p ∈ {2,∞}, (27)

as per Lemma 2. Also, a simple application of Mirsky’s inequality (50) implies that, when
Y spans the whole space then so does Z whenever ‖Y ‡‖‖Z − Y ‖ < 1.

The proof is in Section 8.3. We now derive from this result another one in terms of
point sets instead of matrices.

Corollary 3 Consider a centered point set y1, . . . , ym ∈ Rd with radius ρ, max-radius ρ∞,
and half-width ω > 0. For a point set ỹ1, . . . , ỹn ∈ Rd with radius ζ, set δ̃ij = ‖ỹi − yj‖2.
Also, let z1, . . . , zm ∈ Rd denote another centered point set, and let (λ̃ij) denote another
arbitrary set of numbers for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Set ε = maxi∈[m] ‖zi − yi‖ and

η4 = 1
nm

∑
ij(λ̃ij − δ̃ij)2. If ε ≤ ω/2, trilateration with inputs z1, . . . , zm and (λ̃ij) returns

z̃1, . . . , z̃n ∈ Rd satisfying(
1

n

∑
i∈[n]

‖z̃i − ỹi‖2
)1/2

≤ C0

(
η2

ω
+

[
ρζ

ω2
+

√
mρ∞√
nω

]
ε

)
, (28)

where C0 is a universal constant.

Corollary 3 follows from Theorem 2 and its proof is given in Section 8.5.

1. All Schatten norms are equivalent here up to a multiplicative constant that depends on d, since the
matrices that we consider have rank of order d.

10
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Remark 6 In the bound (28), the terms ε and η respectively quantify the errors in the
positions of landmarks and the error in the dissimilarities that are fed to the trilateration
procedure. As we expect, smaller values of ε and η lead to a more accurate embedding of the
points, and in the extreme situation where ε = 0 and η = 0, we can infer the positions of the
points ỹi exactly. Also, the bound is reciprocal in the half-width of the landmark set, ω. This
is also expected because a small ω means that the landmarks have small dispersion along
some direction in Rd and hence the positions of other points cannot be well approximated
along that direction. This can also be seen from Step 3 of the trilateration procedure. The
quantity ‖Y ‡‖ measures the sensitivity of X to the dissimilarities ∆. Invoking (20), ω =
‖Y ‡‖−1/m, and hence a small ω corresponds to large sensitivity, meaning that a small
perturbation in ∆ can lead to large errors in X. This is consistent with our bound as the
error in ∆, i.e., η2 appears by the scaling factor 1/ω.

5. Applications to manifold learning

Consider a set of points in a possibly high-dimensional Euclidean space, that lie on a
smooth Riemannian manifold. Isometric manifold learning (or embedding) is the problem of
embedding these points into a lower-dimensional Euclidean space, and do as while preserving
as much as possible the Riemannian metric. There are several variants of the problem under
other names, such as nonlinear dimensionality reduction.

Remark 7 Manifold learning is intimately related to the problem of embedding items with
only partial dissimilarity information, which practically speaking means that some of the
dissimilarities are missing. We refer to this problem as graph embedding below, although
it is known under different names such as graph realization, graph drawing, and sensor
localization. This connection is due to the fact that, in manifold learning, the short distances
are nearly Euclidean, while the long distances are typically not. In fact, the two methods for
manifold learning that we consider below can also be used for graph embedding. The first
one, Isomap (Tenenbaum et al., 2000), coincides with MDS-MAP (Shang et al., 2003) (see
also (Niculescu and Nath, 2003)), although the same method was suggested much earlier by
Kruskal and Seery (1980); the second one, Maximum Variance Unfolding, was proposed as
a method for graph embedding by the same authors (Weinberger et al., 2006), and is closely
related to other graph embedding methods (Biswas et al., 2006; Javanmard and Montanari,
2013; So and Ye, 2007).

5.1. A performance bound for (Landmark) Isomap

Isomap is a well-known method for manifold learning, suggested by Tenenbaum, de Silva,
and Langford (2000). Algorithm 4 describes the method. (There, we use the notation A◦2

to denote the matrix with entries A2
ij .)

There are two main components to Isomap: 1) Form the r-ball neighborhood graph
based on the data points and compute the shortest-path distances; 2) Pass the obtained
distance matrix to classical scaling (together with the desired embedding dimension) to
obtain an embedding. The algorithm is known to work well when the underlying manifold
is isometric to a convex domain in Rd. Indeed, assuming an infinite sample size, so that the

11
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Algorithm 4 Isomap

Input: data points x1, . . . , xn ∈ RD, embedding dimension d, neighborhood radius r
Output: embedding points z1, . . . , zn ∈ Rd

1: construct the graph on [n] with edge weights wij = ‖xi − xj‖ I{‖xi − xj‖ ≤ r}
2: compute the shortest-path distances in that graph Γ = (γij)
3: apply classical scaling with inputs Γ◦2 and d, resulting in points z1, . . . , zn ∈ Rd
Return: the points z1, . . . , zn

data points are in fact all the points of the manifold, as r → 0, the shortest-path distances
will converge to the geodesic distances on the manifold, and thus, in that asymptote (infinite
sample size and infinitesimal radius), an isometric embedding in Rd is possible under the
stated condition. We will assume that this condition, that the manifold is isometric to a
convex subset of Rd, holds.

In an effort to understand the performance of Isomap, Bernstein et al. (2000) study how
well the shortest-path distances in the r-ball neighborhood graph approximate the actual
geodesic distances. Before stating their result we need to state a definition.

Definition 2 The reach of a subset A in some Euclidean space is the supremum over t ≥ 0
such that, for any point x at distance at most t from A, there is a unique point among those
belonging to A that is closest to x. When A is a C2 submanifold, its reach is known to
bound its radius of curvature from below (Federer, 1959).

Assume that the manifold M has reach at least τ > 0, and the data points are sufficiently
dense in that

min
i∈[n]

gM(x, xi) ≤ a, ∀x ∈M, (29)

where gM denote the metric on M (induced by the surrounding Euclidean metric). If r is
sufficiently small in that r < τ , then Bernstein et al. (2000) show that

1− c0(r/τ)2 ≤ γij
gij
≤ 1 + c0(a/r), ∀i, j ∈ [n], (30)

where γij is the graph distance, gij is the geodesic distance between xi and xj , and c0 ≥ 1
is a universal constant. (In fact, Bernstein et al. (2000) derive such a bound under the
additional condition that M is geodesically convex, although the result can be generalized
without much effort (Arias-Castro and Gouic, 2017).)

We are able to improve the upper bound in the restricted setting considered here, where
the underlying manifold is assumed to be isometric to a convex domain.

Proposition 1 In the present situation, there is a universal constant c1 ≥ 1 such that, if
a/r ≤ 1/

√
c1,

γij
gij
≤ 1 + c1(a/r)

2, ∀i, j ∈ [n]. (31)

Thus, if we set

ξ = c0(r/τ)2 ∨ c1(a/r)2 , (32)

12
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using the notation a ∨ b = max(a, b), and it happens that ξ < 1, we have

1− ξ ≤ γij
gij
≤ 1 + ξ, ∀i, j ∈ [n]. (33)

Armed with our perturbation bound for classical scaling, we are able to complete the
analysis of Isomap, obtaining the following performance bound.

Corollary 4 In the present context, let y1, . . . , yn ∈ Rd denote a possible (exact and cen-
tered) embedding of the data points x1, . . . , xn ∈M, and let ρ and ω denote the max-radius
and half-width of the embedded points, respectively. Let ξ be defined by Equation (32). If
ξ ≤ 1

24(ρ/ω)−2, then Isomap returns z1, . . . , zn ∈ Rd satisfying

min
Q∈O

(
1

n

∑
i∈[n]

‖zi −Qyi‖2
)1/2

≤ 36
√
dρ3

ω2
ξ. (34)

Remark 8 As we can see, the performance of Isomap degrades as ω gets smaller, which
we already justified in Remark 6. Also the performance improves for smaller values of ξ.
Recalling the definition of ξ in (32), fixing r, a smaller ξ corresponds to a denser set of
points on the manifold, i.e., a smaller a, and also a smaller reach, i.e., a smaller τ , which
leads the graph distances to better approximate the geodesic distances.

Proof Before we provide the proof, we refer to Figure 1 for a schematic representation of
exact locations yi ∈ Rd, data points xi ∈M, returned locations by Isomap zi ∈ Rd, as well
as graph distances γij and geodesic distances gij .

The proof itself is a simple consequence of Corollary 2. Indeed, with (33) it is straight-
forward to obtain (with η defined in Corollary 2 and γij and gij as above),

η2 ≤ max
i,j∈[n]

|γ2ij − g2ij | ≤ max
i,j∈[n]

(2ξ + ξ2)g2ij ≤ (2ξ + ξ2)(2ρ)2 ≤ 12ρ2ξ, (35)

where in the last step we used the fact that ξ < 1 because ξ ≤ 1
24(ρ/ω)−2 by our as-

sumption and ω ≤ ρ, by definition. In particular, η fulfills the conditions of Corollary 2
under the stated bound ξ, so we may conclude by applying that corollary and simplifying.

If D is a domain in Rd that is isometric to M, then the radius of the embedded points
(ρ above) can be bounded from above by the radius of D, and under mild assumptions
on the sampling, the half-width of the embedded points (ω above) can be bounded from
below by a constant times the half-width of D, in which case ρ and ω should be regarded as
fixed. Similarly, τ should be considered as fixed, so that the bound is of order O(r2∨(a/r)2),
optimized at r � a1/2. If the points are well spread-out, for example if the points are sampled
iid from the uniform distribution on the manifold, then a is on the order of (log(n)/n)1/d,
and the bound (with optimal choice of radius) is O((log(n)/n)1/d).

13



Castro, Javanmard and Pelletier

(a) Data points xi ∈ M and the r-ball neigh-
borhood graph

(b) Exact embedding onto the low-
dimensional space

(c) Returned locations by Isomap

Figure 1: Schematic representation of exact locations yi ∈ Rd, data points xi ∈M, returned
locations by Isomap zi ∈ Rd. Note that gij = ‖yi − yj‖ is the geodesic distance between
xi and xj because {yi}ni=1 is an exact isometric embedding of data points {xi}ni=1. Also
the distances γij are computed as shortest path distances between xi and xj on the r-ball
neighborhood graph.

Landmark Isomap Because of the relatively high computational complexity of Isomap,
and also of classical scaling, de Silva and Tenenbaum (2004, 2003) proposed a Nyström
approximation (as explained in (Platt, 2005)). Seen as a method for MDS, it starts by
embedding a small number of items, which effectively play the role of landmarks, and
then embedding the remaining items by trilateration based on these landmarks. Seen as a
method for manifold learning, the items are the points in space, and the dissimilarities are
the squared graph distances, which are not provided and need to be computed. Algorithm 5
details the method in this context. The landmarks may be chosen at random from the data
points, although other options are available, and we discuss some of them in Section 7.2.

With our work, we are able to provide a performance bound for Landmark Isomap.

Corollary 5 Consider n data points x1, . . . , xn ∈ M, which has a possible (exact and
centered) embedding in Rd. Let L be a subset of the points (|L| = `) with exact embedding
{y1, . . . , y`} and denote the embedding of the other points by ỹ1, . . . , ỹn−`. Assume that
{y1, . . . , ym} has half-width ω∗ > 0, the exact embedding {y1, . . . , y`} ∪ {ỹ1, . . . , ỹn−`} has
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Algorithm 5 Landmark Isomap

Input: data points x1, . . . , xn ∈ RD, embedding dimension d, neighborhood radius r,
number of landmarks `
Output: embedding points {zi : i ∈ L} ∪ {z̃i : i /∈ L} ⊆ Rd for a choice of |L| = `
landmarks

1: construct the graph on [n] with edge weights wij = ‖xi − xj‖ I{‖xi − xj‖ ≤ r}
2: select L ⊂ [n] of size ` according to one of the methods in Section 7.2
3: compute the shortest-path distances in that graph Γ = (γij) for (i, j) ∈ [n]× L
4: apply classical scaling with inputs Γ◦2L×L and d, resulting in (landmark) points zi, i ∈ L
in Rd
5: for each i /∈ L, apply trilateration based on {zj : j ∈ L} and Γ◦2i×L to obtaining z̃i ∈ Rd

Return: the points {zi : i ∈ L} ∪ {z̃i : i /∈ L}.

maximum-radius ρ, and ` ≤ (n/2) ∧ [(72
√
dξ)−2(ρ/ω∗)

−6]. Then the Landmark Isomap,
with the choice of L as landmarks, returns {z1, . . . , z`} ∪ {z̃1, . . . , z̃n−`} ⊆ Rd satisfying

min
Q∈O

(
1

n

∑
i∈[`]

‖zi −Qyi‖2 +
1

n

∑
i∈[n−`]

‖z̃i −Qỹi‖2
)1/2

≤ C1
ρ2

ω∗
, (36)

where C1 is a universal constant.

The result is a direct consequence of applying Corollary 4, which allows us to control the
accuracy of embedding the landmarks using classical scaling, followed by applying Corol-
lary 3, which allows us to control the accuracy of embedding using trilateration. The proof
is given in Section 8.6. As we see our bound (36) on the embedding error improves when
the half-width of the landmarks, ω∗, increases. We justified this observation in Remark 6:
a higher half-width of the landmarks yields a better performance of the trilateration proce-
dure. In Section 7.2, we use this observation to provide guidelines for choosing landmarks.

We note that for the set of (embedded) landmarks to have positive half-width, it is
necessary that they span the whole space, which compels ` ≥ d+ 1. In Section 7.2 we show
that choosing the landmarks at random performs reasonably well in that, with probability
approaching 1 very quickly as ` increases, their (embedded) half-width is at least half that
of the entire (embedded) point set.

5.2. A performance bound for Maximum Variance Unfolding

Maximum Variance Unfolding is another well-known method for manifold learning, pro-
posed by Weinberger and Saul (2006a,b). Algorithm 6 describes the method, which relies
on solving a semidefinite relaxation. There is also an interpretation of MVU as a regularized
shortest path solution (Paprotny and Garcke, 2012, Theorem 2).

Although MVU is broadly regarded to be more stable than Isomap, Arias-Castro and
Pelletier (2013) show that it works as intended under the same conditions required by
Isomap, namely, that the underlying manifold is geodesically convex. Under these con-
ditions, in fact, under the same conditions as in Corollary 4, where in particular (33) is
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Algorithm 6 Variance Unfolding (MVU)

Input: data points x1, . . . , xn ∈ RD, embedding dimension d, neighborhood radius r
Output: embedded points z1, . . . , zn ∈ Rd

1: set γij = ‖xi − xj‖ if ‖xi − xj‖ ≤ r, and γij =∞ otherwise
2: solve the following semidefinite program

maximize
∑
i,j∈[n]

‖pi − pj‖2 over p1, . . . , pn ∈ RD, subject to ‖pi − pj‖ ≤ γij

3: center a solution set and embed it into Rd using principal component analysis
Return: the embedded point set, denoted by z1, . . . , zn

assumed to hold with ξ sufficiently small, Paprotny and Garcke (2012) show that MVU re-
turns an embedding, z1, . . . , zn ∈ Rd, with dissimilarity matrix Λ = (λij), λij = ‖zi − zj‖2,
satisfying

|Λ−∆|1 ≤ 9ρ2n2ξ, (37)

where ∆ = (δij), δij = ‖yi − yj‖2 (the correct underlying distances), and for a matrix
A = (aij), |A|pp =

∑
i,j |aij |p. Based on that, and on our work in Section 3, we are able

to provide the following performance bound for MVU, which is similar to the bound we
obtained for Isomap.

Corollary 6 Let y1, . . . , yn ∈ Rd denote a possible (exact and centered) embedding of the
data points x1, . . . , xn ∈ M, and let ρ and ω denote the max-radius and half-width of the
embedded points, respectively. Suppose that the neighborhood radius r is chosen so that
the corresponding neighborhood graph on points {xi}i∈[n] is connected. Let ξ be defined

by Equation (32). If ξ ≤ (12
√

3)−1(ρ/ω)−2, then Maximum Variance Unfolding returns
z1, . . . , zn ∈ Rd satisfying

min
Q∈O

(
1

n

∑
i∈[n]

‖zi −Qyi‖2
)1/2

≤ 18
√

3dρ3

ω2
ξ. (38)

Proof As in (35), we have

|Λ−∆|∞ = max
i,j∈[n]

|γ2ij − g2ij | ≤ 12ρ2ξ, (39)

so that, in combination with (37), we have

‖Λ−∆‖2 ≤ |Λ−∆|1/2∞ |Λ−∆|1/21 ≤ 6
√

3nρ2ξ. (40)

In particular, the conditions of Corollary 2 are met under the stated bound on ξ. Therefore,
we may apply that corollary to conclude.
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6. Numerical Experiments

Procrustes problem. We let n = 100, d = 10 and generate X ∈ Rn×d as X = UDV >,
where U, V ∈ Rn×d are two random orthonormal matrices drawn independently from the
Haar measure and D is a diagonal matrix of size d, with its diagonal entries chosen uniformly
at random from [0, 10δ]. We also generate Z ∈ Rn×d via the same generative model as X
and let Y = aX+ (1−a)Z for a changing values from zero to one. As a varies, we compute
ε2 = ‖Y Y >−XX>‖2 and then solve for the procrustes problem minQ∈O ‖Y −XQ‖2 using
Algorithm 1. Figure 2 plots ‖Y −XQ‖2 versus ε in the log-log scale, for different values of
δ = 1, 2, . . . , 5, 10.

Firstly, we observe that the slope of the best fitted line to each curve is very close
to 2, indicating that ‖Y − XQ‖2 scales as ε2. Secondly, since the singular values of X
(there are d = 10 of them) are drawn uniformly at random from [0, 10δ], we have that
‖X‡‖ changes as 1/δ. As we observe from the plot, for fixed ε, the term ‖Y − XQ‖2 is
monotone in ‖X‡‖ ∼ δ−1. These observations are in good match with our theoretical bound
in Theorem 1.

We next compare the procrustes error ‖Y −XQ‖2 with the proposed upper bounds (4)
and (5) in Theorem 1. Recall that the upper bound (4) reads as

min
Q∈O
‖Y −XQ‖p ≤

{
‖X‡‖ε2 +

(
(1− ‖X‡‖2ε2)−1/2‖X‡‖ε2

)
∧ (d1/4ε) , if ε‖X‡‖ < 1 ,

‖X‡‖ε2 + d1/4ε otherwise.

Under the same generative model for configurations X and Y ∈ Rn×d, with δ = 0.1,
Figure 3(a) plots the procrustes error along with the above upper bound in the log-log
scale. The solid part of the red curve corresponds to the regime where ε‖X‡‖ < 1 and the
dashed part refers to the regime where ε‖X‡‖ > 1. Likewise, we plot the upper bound (5)
in black, which assumes ε‖X‡‖ < 1√

2
. The part of this upper bound where this assumption

is violated is plotted in dashed form. Figure 3(b) depicts the same curves in the regular
(non-logarithmic) scale. In Figure 3(c), we show the ratio of the upper bounds over the
computed procrustes error from the simulation.

Manifold learning algorithms. To evaluate the error rates obtained for manifold learn-
ing algorithms in Section 5, we carry out two numerical experiments.

For the first experiment, we consider the ‘bending map’ B : [−0.5, 0.5]d 7→ Rd+1, defined
as

B(t1, t2, . . . , td) = [R sin(t1/R), t2, . . . , td, R(1− cos(t1/R))] .

This map bends the d-dimensional hypercube in the (d + 1)-dimensional space and the
parameter R controls the degree of bending (with a large R corresponding to a small amount
of bending), and thus controls the reach of the resulting submanifold of Rd+1. See Figure 4a
for an illustration.

We setR = 0.2 and generate n points y1, . . . , yn uniformly at random in the d-dimensional
hypercube. The samples on the manifold are then given by xi = B(yi), for i = 1, . . . , n. Since
the points are well spread out on the manifold, the quantity a given by (29) is O(log(n)/n)1/d

and following our discussion after the proof of Corollary 4, our bound (34) is optimized at
r � a1/2. With this choice of a, our bound (34) becomes of order O((log(n)/n)1/d). Follow-
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Figure 2: Procrustes error minQ∈O ‖Y − XQ‖2 versus ε, in log-log scale and for different
values of δ (i.e., different values of ‖X‡‖).

ing this guideline, we let r = 2(log(n)/n)1/(2d) and run Isomap (Algorithm 4) for d = 2, 8, 15
and n = 100, 200, . . . , 1000.

Denoting by z1, . . . , zn ∈ Rd the output of Isomap in Rd, and Z = [z1, . . . , zn]> ∈ Rn×d,
Y = [y1, . . . , yn]> ∈ Rn×d, we compute the mismatch between the inferred locations Z and
the original ones Y via our metric

d(Y,Z) =
1√
n

min
Q∈O
‖Z − Y Q‖2 = min

Q∈O

(
1

n

∑
i∈[n]

‖zi −Qyi‖2
)1/2

.

For each n, we run the experiment for 50 different realizations of the points in the
hypercube and compute the average and the 95% confidence region of the the error d(Y,Z).
Figure 4b reports the results for Isomap in a log-log scale, along with the best linear fits to
the data points. The slopes of the best fitted lines are −0.50,−0.14,−0.08, for d = 2, 8, 15,
which are close to the corresponding exponent −1

d implied by our Corollary 4, namely, -0.50,
-0.125, -0.067 (ignoring logarithmic factors).

Likewise, Figure 4c shows the error for Maximum Variance Unfolding (MVU) in the
same experiment. As we see, MVU is achieving lower error rates than Isomap. Also the
slopes of the best fitted lines are −0.47,−0.12,−0.04, for d = 2, 8, 15, which are in good
agreement with our error rate (O(

√
dn−1/d)) in Corollary 6.

In the second experiment, we consider the Swiss Roll manifold, which is a prototypi-
cal example in manifold learning. Specifically we consider the mapping T : [−9π

2 ,
15π
2 ] ×

[−40, 40] 7→ R3, given by

T (t1, t2) = [t1 cos(t1), t2, t1 sin(t1)] . (41)

The range of this mapping is a Swiss Roll manifold (see Figure 5a for an illustration.)
For this experiment, we consider non-uniform samples from the manifold as follows. For
each n, we keep drawing points with first coordinate ∼ N(1, σ2) and the second coordinate
∼ N(0, (10σ)2), for a pre-determined value of σ. If the generated point falls in the rectangle
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Figure 3: Comparison between the procrustes error ‖Y −XQ‖2 with the upper bound (4)
and upper bound (5) for the described generative model for configurations X,Y with δ = 0.1;
(a) is in log-log scale, (b) is in regular scale; (c) plots the ratio of the upper bounds over
the procrustes error. For the red curve (upper bound (4)) the solid part corresponds to the
regime ε‖X‡‖ < 1. For the black curve (upper bound (5)) the solid part corresponds to the
regime where the assumption in deriving this bound, namely ε‖X‡‖ < 1√

2
, holds.

[−9π
2 ,

15π
2 ] × [−40, 40], we keep that otherwise reject it. We continue this procedure until

we generate n points y1, . . . , yn. The samples on the manifold are given by xi = T (yi). The
parameter σ controls the dispersion of the samples on the manifold.

We run Isomap and MVU to infer the underlying positions yi from the samples xi on
the manifold. For each σ = 0.5, 1, 2 and n = 100, 200, . . . , 1000, we run the experiment 50
times and compute the average error d(Y, Z) and the 95% confidence region. The results
are reported in Figure 5 in a log-log scale. As we see the error curves for both algorithms
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Figure 4: Performance of Isomap and MVU on the data points sampled from the bended
hypercube of dimension d. Different curves correspond to different values of d. Each curve
is plotted along with the corresponding best fitted line and the 95% confidence region.

scales as ∼ n−1/2 for various choice of σ, which again supports our theoretical error rates
stated in Section 5.

7. Discussion

7.1. Optimality considerations

The performance bounds that we derive for Isomap and Maximum Variance Unfolding are
the same up to a universal multiplicative constant. This may not be surprising as they
are known to be closely related, since the work of Paprotny and Garcke (2012). Based
on our analysis of classical scaling, we believe that the bound for Isomap is sharp up to a

20



Perturbation Bounds for Procrustes, Classical Scaling, and Trilateration

(a) Swiss roll manifold
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Figure 5: Performance of Isomap and MVU on the data points sampled non-uniformly from
the Swiss Roll manifold. Different curves correspond to different values of σ, which controls
the dispersion of the sampled points. Each curve is plotted along with the corresponding
best fitted line and the 95% confidence region.

multiplicative constant. But one may wonder if Maximum Variance Unfolding, or a totally
different method, can do strictly better.

This optimality problem can be formalized as follows:
Consider the class of isometries ϕ : D → M ⊂ RD, one-to-one, such that its domain

D is a convex subset of Rd with max-radius at most ρ0 and half-width at least ω0 > 0,
and its range M is a submanifold with reach at least τ0 > 0. To each such isometry ϕ, we
associate the uniform distribution on its range M, denoted by Pϕ. We then assume that
we are provided with iid samples of size n from Pϕ, for some unknown isometry ϕ in that
class. If the sample is denoted by x1, . . . , xn ∈ M, with xi = ϕ(yi) for some yi ∈ D, the
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goal is to recover y1, . . . , yn up to a rigid transformation, and the performance is measured
in average squared error. Then, what is the optimal achievable performance?

Despite some closely related work on manifold estimation, in particular work of Genovese
et al. (2012) and of Kim and Zhou (2015), we believe the problem remains open. Indeed,
while in the setting in dimension d = 1 the two problems are particularly close, in dimension
d ≥ 2 the situation here appears more delicate here, as it relies on a good understanding of
the interpolation of points by isometries.

7.2. Choosing landmarks

In this subsection we discuss the choice of landmarks. We consider the two methods origi-
nally proposed by de Silva and Tenenbaum (2004):

• Random. The landmarks are chosen uniformly at random from the data points.

• MaxMin. After choosing the first landmark uniformly at random from the data points,
each new landmark is iteratively chosen from the data points to maximize the mini-
mum distance to the existing landmarks.

(For both methods, de Silva and Tenenbaum (2004) recommend using different initializa-
tions.)

The first method is obviously less computationally intensive compared to the second
method, but the hope in the more careful (and also more costly) selection of landmarks in
the second method is that it would require fewer landmarks to be selected. In any case,
de Silva and Tenenbaum (2004) observe that the random selection is typically good enough
in practice, so we content ourselves with analyzing this method.

In view of our findings (Corollary 3, 4, 5, and 6), a good choice of landmarks is one
that has large (embedded) half-width, ideally comparable to, or even larger than that of the
entire dataset. In that light, the problem of selecting good landmarks is closely related, if not
identical, to problem of selecting rows of a tall matrix in a way that leads to a submatrix
with good condition number. In particular, several papers have established bounds for
various ways of selecting the rows, some of them listed in (Holodnak and Ipsen, 2015, Tab
2). Here the situation is a little different in that the dissimilarity matrix is not directly
available, but rather, rows (corresponding to landmarks) are revealed as they are selected.

The Random method, nonetheless, has been studied in the literature. Rather than fetch
existing results, we provide a proof for the sake of completeness. As everyone else, we use
random matrix concentration (Tropp, 2012). We establish a bound for a slightly different
variant where the landmarks are selected with replacement, as it simplifies the analysis.
Related work is summarized in (Holodnak and Ipsen, 2015, Tab 3), although for the special
case where the data matrix (denoted Y earlier) has orthonormal columns (an example of
paper working in this setting is (Ipsen and Wentworth, 2014)).

Proposition 2 Suppose we select ` landmarks among n points in dimension d, with half-
width ω and max-radius ρ∞, according to the Random method, but with replacement. Then
with probability at least 1−2(d+1) exp[−`ω2/9ρ2∞], the half-width of the selected landmarks
is at least ω/2.
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The proof of Proposition 2 is given in Section A.3. Thus, if ` ≥ 9(ρ∞/ω)2 log(2(d +
1)/δ), then with probability at least 1 − δ the landmark set has half-width at least ω/2.
Consequently, if the dataset is relatively well-conditioned in that its aspect ratio, ρ∞/ω,
is relatively small, then Random (with replacement) only requires the selection of a few
landmarks in order to output a well-conditioned subset (with high probability).

8. Proofs

8.1. Preliminaries

We start by stating a number of lemmas pertaining to linear algebra and end the section
with a result for a form of procrustes analysis, a well-known method for matching two sets
of points in a Euclidean space.

Schatten norms For a matrix2 A, we let ν1(A) ≥ ν2(A) ≥ · · · denote its singular values.
Let ‖ · ‖p denote the following Schatten quasi-norm,

‖A‖p ≡
(
ν1(A)p + · · ·+ νd(A)p)1/p, (42)

which is a true norm when p ∈ [1,∞]. When p = 2 it corresponds to the Frobenius norm
(which will also be denoted by ‖ · ‖2) and when p =∞ it corresponds to the usual operator
norm (which will also be denoted by ‖ · ‖). We mention that each Schatten quasi-norm is
unitary invariant, and satisfies

‖AB‖p ≤ ‖A‖∞‖B‖p, (43)

for any matrices of compatible sizes, and it is sub-multiplicative if it is a norm (p ≥ 1). In

addition, ‖A‖p = ‖A>‖p and ‖A‖p = ‖A>A‖1/2p/2 = ‖AA>‖1/2p/2, due to the fact that

‖A‖pp =
∑
j

νj(A)p =
∑
j

νj(A
>A)p/2 = ‖A>A‖p/2p/2 . (44)

and if A and B are positive semidefinite satisfying A � B, where � denotes the Loewner
order, then ‖A‖p ≤ ‖B‖p. To see this, note that by definition A � B means 0 � B − A,
and so 0 ≤ v>(B − A)v for any vector v. Therefore, by using the variational principle of
eigenvalues (min-max Courant-Fischer theorem) we have

νj(A) = min
V,dim(V )=n−j+1

max
v∈V,‖v‖=1

v>Av

≤ min
V,dim(V )=n−j+1

max
v∈V,‖v‖=1

v>Bv = νj(B) ,

for all j. As a result, ‖A‖p ≤ ‖B‖p. We refer the reader to (Bhatia, 2013) for more details
on the Schatten norms and the Loewner ordering on positive semidefinite matrices.

Unless otherwise specified, p will be fixed in [1,∞]. Note that, for any fixed matrix A,
‖A‖p ≤ ‖A‖q whenever q ≤ p, and

‖A‖p → ‖A‖∞, p→∞. (45)

2. All the matrices and vectors we consider are real, unless otherwise specified.
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Moore-Penrose pseudo-inverse The Moore-Penrose pseudo-inverse of a matrix is de-
fined as follows (Stewart and Sun, 1990, Thm III.1). Let A be a m-by-k matrix, where
m ≥ k, with singular value decomposition A = UDV >, where U is m-by-k orthogonal,
V is k-by-k orthogonal, and D is k-by-k diagonal with diagonal entries ν1 ≥ · · · ≥ νl >
0 = · · · = 0, so that the νj ’s are the nonzero singular values of A and A has rank l. The
pseudo-inverse of A is defined as A‡ = V D‡U>, where D‡ = diag(ν−11 , . . . , ν−1l , 0, . . . , 0).
If the matrix A is tall and full rank, then A‡ = (A>A)−1A>. In particular, if a matrix is
square and non-singular, its pseudo-inverse coincides with its inverse.

Lemma 1 Suppose that A is a tall matrix with full rank. Then A‡ is non-singular, and for
any other matrix B of compatible size,

‖B‖p ≤ ‖A‡‖∞‖AB‖p. (46)

Proof This simply comes from the fact that A‡A = I (since A is tall and full rank), so
that

‖B‖p = ‖A‡AB‖p ≤ ‖A‡‖∞‖AB‖p, (47)

by (43).

Lemma 2 Let A and B be matrices of same size. Then, for p ∈ {2,∞},

‖B‡ −A‡‖p ≤
√

2‖A‡‖2‖B −A‖p
(1− ‖A‡‖‖B −A‖)2+

. (48)

Proof A result of Wedin (Stewart and Sun, 1990, Thm III.3.8) gives 3

‖B‡ −A‡‖p ≤
√

2 (‖B‡‖ ∨ ‖A‡‖)2 ‖B −A‖p, p ∈ {2,∞}. (49)

Assuming B has exactly k nonzero singular values, using Mirsky’s inequality (Stewart and
Sun, 1990, Thm IV.4.11), namely

max
j
|νj(B)− νj(A)| ≤ ‖B −A‖, (50)

we have

‖B‡‖−1 = νk(B) ≥ (νk(A)− ‖B −A‖)+ ≥ (‖A‡‖−1 − ‖B −A‖)+. (51)

By combining Equations (49) and (51), we get

‖B‡ −A‡‖p ≤
√

2

(
‖A‡‖ ∨ 1

(‖A‡‖−1 − ‖B −A‖)+

)2

‖B −A‖p , (52)

from which the result follows.

3. For p = ∞, the factor
√

2 in (49) can be removed, giving a tighter bound in this case.
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Some elementary matrix inequalities The following lemmas are elementary inequal-
ities involving Schatten norms.

Lemma 3 For any two matrices A and B of same size such that A>B = 0 or AB> = 0,

‖A+B‖p ≥ ‖A‖p ∨ ‖B‖p. (53)

Proof Assume without loss of generality that A>B = 0. In that case, (A+B)>(A+B) =
A>A+B>B, which is not smaller than A>A or B>B in the Loewner order. Therefore,

‖A‖p = ‖A>A‖1/2p/2 ≤ ‖A
>A+B>B‖1/2p/2 (54)

= ‖(A+B)>(A+B)‖1/2p/2 = ‖A+B‖p, (55)

applying several of the properties listed above for Schatten (quasi)norms.

Lemma 4 For any matrix A and any positive semidefinite matrix B, we have

‖A‖p ≤ ‖A(B + I)‖p, (56)

where I denotes the identity matrix, with the same dimension as B .

Proof We write

A(B + I)(B + I)>A> = A(B2 + 2B + I)A> = AA> +A(B2 + 2B)A>,

with A(B2 + 2B)A> � 0. Therefore, for all k,

νk(A(B + I)(B + I)>A>) ≥ νk(AA>),

which then implies that νk(A(B+ I)) ≥ νk(A) for all k, which finally yields the result from
the mere definition of the p-Schatten norm.

8.2. Proof of Theorem 1

Suppose X,Y ∈ Rn×d and let P ∈ Rn×n be the orthogonal projection onto the column
space of X, which can be expressed as P = XX‡. Define Y1 = PY and Y2 = (I −P )Y , and
note that Y = Y1 + Y2 with Y >2 Y1 = 0, and also Y >2 X = 0.

Define M = X‡Y ∈ Rd×d, and apply a singular value decomposition to obtain M =
UDV >, where U and V are orthogonal matrices of size d, andD is diagonal with nonnegative
entries. Indeed columns of U span the row space of X and columns of V span the row space
of Y . Then define Q = UV >, which is orthogonal. We show that the bound (5) holds for
this orthogonal matrix.

We start with the triangle inequality,

‖Y −XQ‖p = ‖Y1 −XQ+ Y2‖p ≤ ‖Y1 −XQ‖p + ‖Y2‖p. (57)
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Noting that Y1 = XX‡Y = XM , we have

‖Y1 −XQ‖p = ‖XM −XQ‖p = ‖XUDV > −XUV >‖p
= ‖XU(D − I)V >‖p ≤ ‖XU(D − I)‖p. (58)

Now by Lemma 4, we have

‖XU(D − I)‖p ≤ ‖XU(D − I)(D + I)‖p = ‖XU(D2 − I)‖p . (59)

Now by unitary invariance, we have

‖XU(D2 − I)‖p = ‖XU(D2 − I)U>‖p = ‖XUD2U> −XUU>‖p = ‖XUD2U> −X‖p ,
(60)

where in the last step we used the fact that columns of U span the row space of X and
hence UU>X> = X>. Combining (58), (59) and (60), we obtain

‖Y1 −XQ‖p ≤ ‖XUD2U> −X‖p (61)

= ‖(XMM> −X)(X‡X)>‖p (62)

≤ ‖X‡‖‖XMM>X> −XX>‖p (63)

= ‖X‡‖‖Y1Y >1 −XX>‖p, (64)

where the first equality holds since X‡X = I, given that X has full column rank.
Coming from the other end, so to speak, we have

ε2 = ‖Y Y > −XX>‖p = ‖Y1Y >1 −XX> + Y1Y
>
2 + Y2Y

>
1 + Y2Y

>
2 ‖p (65)

≥ ‖Y1Y >1 −XX> + Y1Y
>
2 ‖ ∨ ‖Y2Y >1 + Y2Y

>
2 ‖p (66)

≥ ‖Y1Y >1 −XX>‖p ∨ ‖Y1Y >2 ‖p ∨ ‖Y2Y >1 ‖p ∨ ‖Y2Y >2 ‖p, (67)

using Lemma 3 thrice, once based on the fact that

(Y1Y
>
1 −XX> + Y1Y

>
2 )>(Y2Y

>
1 + Y2Y

>
2 ) = (Y1Y

>
1 −XX> + Y2Y

>
1 )Y2︸ ︷︷ ︸

=0

(Y >1 + Y >2 ) = 0,

and then based on the fact that

(Y1Y
>
1 −XX>)(Y1Y

>
2 )> = (Y1Y

>
1 −XX>)Y2︸ ︷︷ ︸

=0

Y >1 = 0,

and
(Y2Y

>
1 )(Y2Y

>
2 )> = Y2 Y

>
1 Y2︸ ︷︷ ︸
=0

Y >2 .

From (67), we extract the bound ‖Y1Y >1 −XX>‖p ≤ ε2, from which we get (based on
the derivations above)

‖Y1 −XQ‖p ≤ ‖X‡‖ε2. (68)
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Recalling the inequality (57), we proceed to bound ‖Y2‖p. From (67), we extract the
bound ‖Y2Y >2 ‖p ≤ ε2, and combine it with

‖Y2Y >2 ‖p = ‖Y2‖22p ≥ d−1/p‖Y2‖2p ,

where d is the number of columns and the inequality is Cauchy-Schwarz’s, to get

‖Y2‖p ≤ d1/2pε .

We next derive another upper bound for ‖Y2‖p, for the case that ‖X‡‖ε < 1. Denote
by λ1 ≥ . . . ≥ λd be the singular values of X and by ν1 ≥ . . . ≥ νd the singular values of
Y1. Given that X has full column rank we have λd > 0 and so ‖X‡‖ = 1/λd. Further, by
an application of Mirsky’s inequality (Stewart and Sun, 1990, Thm IV.4.11), we have

max
i
|ν2i − λ2i | ≤ ‖Y1Y >1 −XX>‖ ≤ ‖Y1Y >1 −XX>‖p ≤ ε2,

using Equation (67). Therefore ν2d > λ2d−ε2 > 0 by our assumption that ‖X‡‖ε2 < 1, which
implies that Y1 has full column rank. Now, by an application of Lemma 1, we obtain

‖Y2‖p = ‖Y >2 ‖p ≤ ‖Y
‡
1 ‖‖Y1Y

>
2 ‖p ≤ ε2‖Y

‡
1 ‖ , (69)

where we used (67) in the last step. Also,

‖Y ‡1 ‖ =
1

νd
≤ 1

(λ2d − ε2)1/2
=

λ−1d
(1− ε2λ−2d )1/2

= ‖X‡‖(1− ε2‖X‡‖2)−1/2 . (70)

Combining (70) and (69) we obtain

‖Y2‖p ≤ ε2‖X‡‖(1− ε2‖X‡‖2)−1/2 , if ‖X‡‖ε < 1 . (71)

Combining the the bounds (69) with (71) and (68) in the inequality (57), we get (4).
The bound (5) follows readily from (4).

8.3. Proof of Theorem 2

Let ā denote the average dissimilarity vector defined in Algorithm 3 based on Y , and define
b̄ similarly based on Z. Let Θ denote the matrix of dissimilarities between Ỹ and Z, and
let Ŷ denote the result of Algorithm 3 with inputs Z and Θ. From Algorithm 3, we have

Ỹ > =
1

2
Y ‡(ā1> − ∆̃>), Ŷ > =

1

2
Z‡(b̄1> −Θ>), Z̃> =

1

2
Z‡(b̄1> − Λ̃>), (72)

due to the fact that the algorithm is exact.
We have

‖Z̃ − Ỹ ‖2 ≤ ‖Z̃ − Ŷ ‖2 + ‖Ŷ − Ỹ ‖2. (73)

On the one hand,

2‖Z̃ − Ŷ ‖2 ≤ ‖Z‡‖‖Λ̃−Θ‖2 ≤ ‖Z‡‖(‖Λ̃− ∆̃‖2 + ‖∆̃−Θ‖2). (74)
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On the other hand, starting with the triangle inequality,

2‖Ŷ − Ỹ ‖2 = ‖Z‡(b̄1> −Θ>)− Y ‡(ā1> − ∆̃>)‖2
≤ ‖Z‡(b̄1> −Θ>)− Z‡(ā1> − ∆̃>)‖2 + ‖Z‡(ā1> − ∆̃>)− Y ‡(ā1> − ∆̃>)‖2
≤ ‖Z‡‖(‖b̄1> − ā1>‖2 + ‖Θ− ∆̃‖2) + ‖ā1> − ∆̃>‖‖Z‡ − Y ‡‖2.

Together, we find that

2‖Z̃ − Ỹ ‖2 ≤ ‖Z‡‖(‖Λ̃− ∆̃‖2 + 2‖Θ− ∆̃‖2 +
√
m‖b̄− ā‖) + ‖ā1> − ∆̃>‖‖Z‡ − Y ‡‖2. (75)

In the following, we bound the terms ‖ā1> − ∆̃>‖, ‖Θ− ∆̃‖2 and ‖b̄− ā‖, separately.
First, using Lemma 1 and the fact that (Y ‡)‡ = Y has full rank,

‖Ỹ ‖ =
1

2
‖Y ‡(ā1> − ∆̃>)‖ ≥ 1

2
‖Y ‖−1‖ā1> − ∆̃>‖ . (76)

Therefore,
‖ā1> − ∆̃>‖ ≤ 2‖Y ‖‖Ỹ ‖. (77)

Next, set Y = [y1, · · · , ym]> and Z = [z1, · · · , zm]>, as well as Ỹ = [ỹ1, · · · , ỹn]>. Since

(Θ− ∆̃)ij = 2ỹ>i (yj − zj) + ‖zj‖2 − ‖yj‖2, (78)

we have

‖Θ− ∆̃‖2 = ‖2Ỹ (Y > − Z>) + 1c>‖2 ≤ 2‖Ỹ ‖‖Y − Z‖2 +
√
m‖c‖, (79)

with c = (c1, . . . , cm) and cj = ‖zj‖2 − ‖yj‖2. Note that

‖c‖2 =
∑
j∈[m]

(‖zj‖2 − ‖yj‖2)2

≤
∑
j∈[m]

‖zj − yj‖2(‖zj‖+ ‖yj‖)2

≤ (ρ∞(Y ) + ρ∞(Z))2‖Z − Y ‖22,

so that
‖Θ− ∆̃‖2 ≤ 2‖Ỹ ‖‖Y − Z‖2 +

√
m(ρ∞(Y ) + ρ∞(Z))‖Z − Y ‖2. (80)

Finally, recall that ā and b̄ are respectively the average of the columns of the dissimilarity
matrix for the landmark Y and the landmark Z. Using the fact that the y’s are centered
and that the z’s are also centered, we get

b̄− ā = c+ cavg1, (81)

where cavg = 1
m

∑
j∈[m] cj , and therefore

‖b̄− ā‖2 ≤
∑
j∈[m]

(cj + cavg)2 = ‖c‖2 + 3mc2avg ≤ 4‖c‖2 , (82)

using the Cauchy-Schawrz inequality at the last step.
Combining all these bounds, we obtain the bound stated in (25). The last part comes

from the triangle inequality and an application of Lemma 2.
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8.4. Proof of Corollary 2

If the half-width ω = 0, the claim becomes trivial. Hence, we assume ω > 0, which implies
that Y = [y1 . . . ym]> ∈ Rm×d is of rank d. Recall that νd(Y ) denotes the d-th largest
singular value of Y . By characterization (20) and since Y has full column rank, we have
νd(Y ) =

√
mω.

We denote by Λ = (λij) ∈ Rm×m and ∆ = (δij) ∈ Rm×m and represent the centering
matrix of size m, by H. Using (43) and the fact that ‖H‖∞ = 1 (since H is an orthogonal
projection), we have

ε20 ≡ 1
2‖H(Λ−∆)H‖ ≤ ‖Λ−∆‖ ≤ ‖Λ−∆‖2 = mη2 . (83)

By our assumption η
ω ≤

1√
2
< 1, which along with (83) yields

ε20 < mω2 = ν2d(Y ) . (84)

In addition, by (13) and since Y 1 = 0 (data points are centered), we have Y Y > =
HY Y >H = −1

2H∆H, and as a result νd(−1
2H∆H) = ν2d(Y ). By using the Weyl’s in-

equality, we have

νd(−
1

2
HΛH) ≥ νd(−

1

2
H∆H)− ε20 = ν2d(Y )− ε20 > 0 ,

where the last step holds by (84). In words, the first top d eigenvalues of (−1/2)HΛH
are positive. Therefore, if Z = [z1, . . . , zm]> ∈ Rm×d is the output of the classical scaling
with input Λ, we have that ZZ> is indeed the best rank d- approximation of (−1/2)HΛH.
Given that (−1/2)H∆H is of rank d, this implies that

‖ZZ> + 1
2HΛH‖2 ≤ ‖12H(Λ−∆)H‖2 . (85)

Thus, by triangle inequality

ε2 ≡ ‖ZZ> − Y Y >‖ ≤ ‖ZZ> + 1
2HΛH‖+ ‖12H(Λ−∆)H‖

≤ ‖ZZ> + 1
2HΛH‖2 + ‖12H(Λ−∆)H‖2

≤ ‖H(Λ−∆)H‖2
≤ ‖Λ−∆‖2
≤ mη2 ≤ mω2/2 . (86)

where in the penultimate line we used (43) and the fact that ‖H‖∞ = 1. The last line
follows from the definition of η and our assumption on η, given in the theorem statement.

We next apply Theorem 1 with p =∞. Note that by invoking Equations (19) and (20),
we get

‖Y ‡‖ε =
ε√
mω
≤ 1√

2
, (87)
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Hence, by using Theorem 1 we have

min
Q∈O

(
1

m

∑
i∈[m]

‖zi −Qyi‖2
)1/2

≤
√
d

m
min
Q∈O
‖Z − Y Q‖

≤
√
d

m
(ρ/ω + 2)

ε2√
mω

≤
√
d(ρ/ω + 2)

η2

ω
≤ 3
√
dρη2

ω2
, (88)

where the last line follows from (86) and the fact that ω ≤ ρ.

8.5. Proof of Corollary 3

We apply Theorem 2 to Ỹ = [ỹ1, · · · , ỹn]>, Y = [y1, · · · , ym]>, and Z = [z1, · · · , zm]>.
To be in the same setting, we need Z to have full rank. As we point out in Remark 5,
this is the case as soon as ‖Y ‡‖‖Z − Y ‖ < 1. Since ‖Y ‡‖ = (

√
mω)−1 and ‖Z − Y ‖ ≤√

mmaxi∈[m] ‖zi − yi‖ ≤
√
mε, the condition is equivalent to ε < ω, which is fulfilled by

assumption. Continuing, we have

‖Z − Y ‖2 ≤
√
mmax

i∈[m]
‖zi − yi‖ ≤

√
mε. (89)

Hence, by (27),

‖Z‡ − Y ‡‖2 ≤
2

mω2

√
mε

(1− 1√
mω

√
mε)2+

≤ 8ε√
mω2

≤ 4√
mω

, (90)

using the fact that ε/ω ≤ 1/2. Hence,

‖Z‡‖ ≤ ‖Y ‡‖+ ‖Z‡ − Y ‡‖ ≤ 5√
mω

, (91)

Further, ‖∆̃− Λ̃‖2 =
√
mnη2. In addition, ‖Ỹ ‖ ≤

√
nζ. Likewise, ‖Y ‖ ≤

√
mρ. Therefore,

by applying Theorem 2, we get

‖Z̃ − Ỹ ‖2 ≤
5√
mω

[1

2

√
nmη2 + 2

√
nmζε+ 2

√
m(2ρ∞ + ε)

√
mε
]

+ (
√
mρ)(

√
nζ)

8ε√
mω2

≤ 20

(√
nη2

ω
+

√
nζε

ω
+
ρ∞ + ε

ω

√
mε+

√
nρζε

ω2

)
, (92)

from which we get the stated bound, using the fact that ε ≤ ω ≤ ρ ≤ ρ∞.

8.6. Proof of Corollary 5

Without loss of generality, suppose the chosen landmark points are x1, . . . , x`. Using {γij :
i, j ∈ [`]}, we embed them using classical scaling, obtaining a centered point set z1, . . . , z` ∈
Rd. Note that by our assumption on the number of landmarks ` ≥ 1, we have

ξ < (72
√
d)−1(ρ/ω∗)

−3 <
1

24
(ρ/ω∗)

−2 ,
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since ω∗ ≤ ρ. Hence the assumption on ξ in Corollary 4 holds and by applying this corollary,
we have

min
Q∈O

(
1

`

∑
i∈[`]

‖zi −Qyi‖2
)1/2

≤ 36
√
dρ3∗

ω2
∗

ξ, (93)

where ρ∗ and ω∗ are the max-radius and half-width of {y1, . . . , y`}. We may assume that
the minimum above is attained at Q = I without loss of generality, in which case we have

ε ≡ max
i∈[`]
‖zi − yi‖ ≤

36
√
d`ρ3

ω2
∗

ξ, (94)

using the fact that ρ∗ ≤ ρ.
The next step consists in trilaterizing the remaining points based on the embedded

landmarks. With η as in (35), and noting that ε/ω∗ ≤ 1/2 by our assumption on ξ, we may
apply Corollary 3 (with the constant C0 defined there) to obtain

1

C0

(
1

n− `

n∑
i=`+1

‖z̃i − ỹi‖2
)1/2

≤ η2

ω∗
+

[
ρ∗ρ

ω2
∗

+

√
`ρ∗√

n− ` ω∗

]
ε (95)

≤ η2

ω∗
+

2ρ2ε

ω2
∗

(96)

� ρ2ξ

ω∗
+
ρ2

ω2
∗

√
d`ρ3ξ

ω2
∗

(97)

�
√
dρ5

ω4
∗

√
` ξ , (98)

using the fact that ω∗ ≤ ρ∗.
With this and the fact that (

1

`

∑̀
i=1

‖zi − yi‖2
)1/2

≤ ε, (99)

along with the bound on ε, we have

min
Q∈O

(
1

n

∑
i∈[`]

‖zi −Qyi‖2 +
1

n

∑
i∈[n−`]

‖z̃i −Qỹi‖2
)1/2

.

√
dρ5

ω4
∗

√
` ξ � ρ2

ω∗
,

using our assumption on the number of landmarks.

Appendix

A.1. A succinct proof that Algorithm 3 is correct

To prove that Algorithm 3 is exact, it suffices to do so for the case where we want to
position one point, i.e., when n = 1, and we denote that point by ỹ. In that case, ∆̃ is in
fact a (row) vector, which we denote by δ̃>. We have ‖ỹ − yi‖2 = ‖ỹ‖2 + ‖yi‖2 − 2y>i ỹ,
so that δ = ‖ỹ‖21 + ζ − 2Y ỹ, where ζ = (‖y1‖2, . . . , ‖ym‖2)>. We also have ‖yj − yi‖2 =
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‖yj‖2 + ‖yi‖2− 2y>j yi, so that ā = b1 + ζ, where b = 1
m(‖y1‖2 + · · ·+ ‖ym‖2), using the fact

that 1
m

∑m
i=1 yi = 0. Hence, ā− δ̃ = (b− ‖ỹ‖2)1 + 2Y ỹ, and therefore,

1

2
Y ‡(ā− δ̃) =

1

2
(b− ‖ỹ‖2)Y ‡1 + Y ‡Y ỹ. (100)

We now use the fact that Y ‡ = (Y >Y )−1Y >. On the one hand, Y ‡1 = (Y >Y )−1Y >1 = 0
since Y >1 = 0 (because the point set is centered). On the other hand, Y ‡Y = (Y >Y )−1Y >Y =
I. We conclude that 1

2Y
‡(ā− δ̃) = ỹ, which is what we needed to prove.

A.2. Proof of Proposition 1

The data points are denoted x1, . . . , xn ∈M, and by assumption we assume that xi = ϕ(yi),
where ϕ : D → M is a one-to-one isometry, with D being a convex subset of Rd. Fix
i, j ∈ [n], and note that gij = gM(xi, xj) = ‖yi − yj‖.

If gij ≤ r, then ‖xi − xj‖ ≤ gij ≤ r, so that i and j are neighbors in the graph, and in
particular γij = ‖xi − xj‖. We may thus conclude that, in this situation, γij ≤ gij , which
implies the stated bound.

Henceforth, we assume that gij > r. Consider zk = yi + (k/m)(yj − yi), where m =
d2gij/re ≥ 2. Note that z0 = yi and zm = yj . Let yik be the closest point to zk among
{y1, . . . , yn}, with i0 = i and im = j. By the triangle inequality, we have

‖yik+1
− yik‖ ≤ ‖zk+1 − zk‖+ ‖yik+1

− zk+1‖+ ‖yik − zk‖ (101)

≤ 1

m
gij + 2a ≤ r/2 + 2a ≤ r, (102)

if a/r ≤ 1/4. Therefore,

‖xik+1
− xik‖ ≤ gM(xik+1

, xik) = ‖yik+1
− yik‖ ≤ r, (103)

implying that (ik : k = 0, . . . ,m) forms a path in the graph.
So far, the arguments are the same as in the proof of (Bernstein et al., 2000, Thm 2).

What makes our arguments sharper is the use of the Pythagoras theorem below. To make
use of that theorem, we need to construct a different sequence of points on the line segment.
Let z̃k denote the orthogonal projection of yik onto the line (denoted L) defined by yi and
yj . See Figure 6 for an illustration.

In particular the vector z̃k − yik is orthogonal to L, and

‖z̃k − yik‖ = min
z∈L
‖z − yik‖ ≤ ‖zk − yik‖ ≤ a. (104)

It is not hard to see that z̃k is in fact on the line segment defined by yi and yj . Moreover,
they are located sequentially on that segment. Indeed, using the triangle inequality,

‖z̃k − yi‖ ≤ ‖zk − yi‖+ ‖zk − z̃k‖ (105)

≤ ‖zk − yi‖+ ‖zk − yik‖+ ‖yik − z̃k‖ (106)

≤ ‖zk − yi‖+ 2a (107)

=
k

m
gij + 2a, (108)
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Figure 6: illustration for the proof of Proposition 1

while, similarly,

‖z̃k+1 − yi‖ ≥ ‖zk+1 − yi‖ − 2a =
k + 1

m
gij − 2a, (109)

so that ‖z̃k − yi‖ < ‖z̃k+1 − yi‖ as soon as gij/m > 4a. Noting that gij > (m − 1)r/2,
this condition is met when a/r ≤ (m − 1)/8m. Recalling that m ≥ 2, it is enough that
a/r ≤ 1/16. From the same derivations, we also get

‖z̃k+1 − z̃k‖ ≥
1

m
gij − 4a ≥ (m− 1)r

2m
− 4a ≥ r/8, (110)

if a/r ≤ 1/32.
Since (ik : k = 0, . . . ,m) forms a path in the graph, we have

γij ≤
m−1∑
k=0

‖xik+1
− xik‖ ≤

m−1∑
k=0

‖yik+1
− yik‖. (111)

By the Pythagoras theorem, we then have

‖yik+1
− yik‖

2 = ‖z̃k+1 − z̃k‖2 + ‖yik+1
− z̃k+1 + z̃k − yik‖

2 (112)

≤ ‖z̃k+1 − z̃k‖2 + (2a)2, (113)

so that, using (110),

‖yik+1
− yik‖ ≤ (1 + (2a)2/(r/8)2)1/2‖z̃k+1 − z̃k‖ = (1 + C(a/r)2)‖z̃k+1 − z̃k‖, (114)

where C ≤ 128, yielding

γij ≤ (1 + C(a/r)2)

m−1∑
k=0

‖z̃k+1 − z̃k‖ = (1 + C(a/r)2)gij . (115)

A.3. Proof of Proposition 2

We use concentration bounds for random matrices developed by Tropp (2012). Consider a
point set Y = {y1, . . . , yn}, assumed centered without loss of generality. We apply Random to
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select a subset of ` points chosen uniformly at random with replacement from Y. We denote
the resulting (random) point set by Z = {z1, . . . , z`}. Let Y = [y1 · · · yn] and Z = [z1 · · · z`].
We have that Y has squared half-width equal to ω2 ≡ νd(Y

>Y )/n, and similarly, Z has
squared half-width equal to ω2

Z = νd(Z
>Z − ` z̄z̄>)/`, where z̄ = (z1 + · · · + z`)/`. Note

that, by (50),

ω2
Z ≥ νd(Z>Z)/`− ν1(z̄z̄>) = νd(Z

>Z)/`− ν1(z̄)2 = νd(Z
>Z)/`− ‖z̄‖2. (116)

We bound the two terms on the right-hand side separately.
First, we note that Z>Z =

∑
j zjz

>
j , with z1z

>
1 , . . . , z`z

>
` sampled independently and

uniformly from {y1y>1 , . . . , yny>n }. These matrices are positive semidefinite, with expecta-
tion Y >Y/n, and have operator norm bounded by maxi ‖yiy>i ‖ = maxi ‖yi‖2 = ρ2∞. We are
thus in a position to apply (Tropp, 2012, Thm 1.1, Rem 5.3), which gives that

P
(
νd(Z

>Z)/` ≤ 1
2ω

2
)
≤ d exp

[
− 1

8`ω
2/ρ2∞

]
. (117)

Next, we note that `z̄ =
∑

j zj , with z1, . . . , zn being iid uniform in {y1, . . . , yn}. These
are here seen as rectangular d× 1 matrices, with expectation 0 (since the y’s are centered),
and operator norm bounded by maxi ‖yi‖ = ρ∞. We are thus in a position to apply (Tropp,
2012, Thm 1.6), which gives that, for all t ≥ 0,

P (‖z̄‖ ≥ t/`) ≤ (d+ 1) exp
[
− t2/(2σ2 + 1

3ρ∞t)
]
, (118)

where
σ2 = (`/n)

(
‖Y >Y ‖ ∨

∑
i‖yi‖

2
)

= (`/n)
∑

i‖yi‖
2 ≤ `ρ2∞. (119)

In particular,

P
(
‖z̄‖ ≥ 1

4ω
2
)
≤ (d+ 1) exp

[
− 1

4ω
2`2/(2ρ∞`+ 1

3ρ∞
1
2ω`)

]
(120)

≤ (d+ 1) exp
[
− 1

9`ω
2/ρ2∞

]
, (121)

using in the last line the fact that ω ≤ ρ∞.
Combining these inequalities using the union bound, we conclude that

P
(
ωZ ≤ 1

2ω
)
≤ d exp

[
− 1

8`ω
2/ρ2∞

]
+ (d+ 1) exp

[
− 1

9`ω
2/ρ2∞

]
, (122)

from which the stated result follows.
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