Faster Width-dependent Algorithm for Mixed
Packing and Covering LPs

Digvijay Boob Saurabh Sawlani Di Wang*
Georgia Tech Georgia Tech Google Al
Atlanta, GA Atlanta, GA Atlanta, GA
digvijaybb40@gatech.edu sawlani@gatech.edu wadi@google.com
Abstract

In this paper, we give a faster width-dependent algorithm for mixed packing-
covering LPs. Mixed packing-covering LPs are fundamental to combinatorial
optimization in computer science and operations research. Our algorithm finds
a 1 + ¢ approximate solution in time O(Nw/c), where N is number of nonzero
entries in the constraint matrix, and w is the maximum number of nonzeros in any
constraint. This algorithm is faster than Nesterov’s smoothing algorithm which
requires O(Ny/nw/e) time, where n is the dimension of the problem. Our work
utilizes the framework of area convexity introduced in [Sherman-FOCS’17] to ob-
tain the best dependence on € while breaking the infamous ¢, barrier to eliminate
the factor of 4/n. The current best width-independent algorithm for this problem
runs in time O(N /2) [Young-arXiv-14] and hence has worse running time depen-
dence on . Many real life instances of mixed packing-covering problems exhibit
small width and for such cases, our algorithm can report higher precision results
when compared to width-independent algorithms. As a special case of our result,
we report a 1 + € approximation algorithm for the densest subgraph problem which
runs in time O(md/c), where m is the number of edges in the graph and d is the
maximum graph degree.

1 Introduction

Mixed packing and covering linear programs (LPs) are a natural class of LPs where coefficients,
variables, and constraints are non-negative. They model a wide range of important problems in
combinatorial optimization and operations research. In general, they model any problem which
contains a limited set of available resources (packing constraints) and a set of demands to fulfill
(covering constraints).

Two special cases of the problem have been widely studied in literature: pure packing, formulated as
max, {bTz | Pz < p}; and pure covering, formulated as min, {b"z | Cz > ¢} where P,p,C,c,b
are all non-negative. These are known to model fundamental problems such as maximum bipartite
graph matching, minimum set cover, etc. [LN93]. Algorithms to solve packing and covering LPs have
also been applied to great effect in designing flow control systems [BBR04], scheduling problems
[PST95], zero-sum matrix games [Nes05] and in mechanism design [ZNO1]. In this paper, we study
the mixed packing and covering (MPC) problem, formulated as checking the feasibility of the set:
{z | Pz < p,Cx = c}, where P, C, p, c are non-negative. We say that z is an e-approximate solution
to MPC if it belongs to the relaxed set {x | Px < (1 +¢)p,Cz = (1 —¢)c}. MPC is a generalization
of pure packing and pure covering, hence it is applicable to a wider range of problems such as
multi-commodity flow on graphs [YouO1, Shel7], non-negative linear systems and X-ray tomography
[YouOl1].

*Work done when author was at Georgia Tech.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

General LP solving techniques such as the interior point method can approximate solutions to MPC in
as few as O(log(1/¢<)) iterations - however, they incur a large per-iteration cost. In contrast, iterative
approximation algorithms based on first-order optimization methods require poly(1/¢) iterations, but
the iterations are fast and in most cases are conducive to efficient parallelization. This property is of
utmost importance in the context of ever-growing datasets and the availability of powerful parallel
computers, resulting in much faster algorithms in relatively low-precision regimes.

1.1 Previous work

In literature, algorithms for the MPC problem can be grouped into two broad categories: width-
dependent and width-independent. Here, width is an intrinsic property of a linear program which
typically depends on the dimensions and the largest entry of the constraint matrix, and is an indication
of the range of values any constraint can take. In the context of this paper and the MPC problem, we
define wp and we as the maximum number of non-zeros in any constraint in P and C' respectively.

We define the width of the LP as w max(wp, we).

One of the first approaches used to solve LPs was Langrangian-relaxation: replacing hard constraints
with loss functions which enforce the same constraints indirectly. Using this approach, Plotkin,
Schmoys and Tardos [PST95], and Grigoriadis and Khachiyan [GK96] obtained width-dependent
polynomial-time approximation algorithms for MPC. Luby and Nisan [LN93] gave the first width-

dependent parallelizable algorithm for pure packing and pure covering, which ran in 5(8’4) parallel

time, and 5(1\7 5*4) total work. Here, parallel time (sometimes termed as depth) refers to the longest
chain of dependent operations, and work refers to the total number of operations in the algorithm.

Young [YouO1] extended this technique to give the first width-independent parallel algorithm for MPC

in O(c=4) parallel time, and O(mds~2) total work?. Young [You14] later improved his algorithm
to run using total work O(Ne~2). Mahoney et al. [MRWZ16] later gave an algorithm with a faster

parallel run-time of O(e3).

The other most prominent approach in literature towards solving an LP is by converting it into a
smooth function [Nes05], and then applying general first-order optimization techniques [Nes03,
Nes12]. Although the dependence on ¢ from using first-order techniques is much improved, it
usually comes at the cost of sub-optimal dependence on the input size and width. For the MPC
problem, Nesterov’s accelerated method [Nes12], as well as Bienstock and Iyengar’s adaptation
[BIO6] of Nesterov’s smoothing [Nes05], give rise to algorithms with runtime linearly depending
on £~ !, but with far from optimal dependence on input size and width. For pure packing and pure
covering problems, however, Allen-Zhu and Orrechia [AO19] were the first to incorporate Nesterov-
like acceleration while still being able to obtain near-linear width-independent runtimes, giving a

5(]\7 £~1) time algorithm for the packing problem. For the covering problem, they gave a 5(N e~ 19)

time algorithm, which was then improved to G(N e~1) by [WRM16]. Importantly, however, the
above algorithms do not generalize to MPC.

1.2 Our contributions

We give the best parallel width-dependent algorithm for MPC, while only incurring a linear depen-
dence on £~ in the parallel runtime and total work. Additionally, the total work has near-linear
dependence on the input-size. Formally, we state our main theorem as follows.

Theorem 1.1. There exists a parallel e-approximation algorithm for the mixed packing covering

problem, which runs in (3(11} - e~ 1) parallel time, while performing 5(11) - N -7 1) total work, where
N is the total number of non-zeros in the constraint matrices, and w is the width of the given LP.

Table 1 compares the running time of our algorithm to previous works solving this problem.

Sacrificing width independence for faster convergence with respect to precision proves to be a
valuable trade-off for several combinatorial optimization problems which naturally have a low width.
Prominent examples of such problems which are not pure packing or covering problems include
multicommodity flow and densest subgraph, where the width is bounded by the degree of a vertex.
In a large number of real-world graphs, the maximum vertex degree is usually small, hence our

2d here is the maximum number of constraints that any variable appears in.

Table 1: Comparison of runtimes of e-approximation algorithms for the mixed packing covering

problem.
| Parallel Runtime | Total Work | Comments

Young [YouO1] O(e4) O(mds2) d is column-width
Bienstock and Iyengar [BI0O6] O(n25wkPwe=1) | width-dependent
Nesterov [Nes12] O(w/net) O(w - Ny/me™') | width-dependent

Young [Youl4] O(e™) O(Ne™2)

Mahoney et al. [MRWZ16] O(e3) O(Ne™3)
This paper O(we™1) O(wNe™1) width-dependent

algorithm proves to be much faster when we want high-precision solutions. We explicitly show that
this result directly gives the fastest algorithm for the densest subgraph problem on low-degree graphs
in Appendix C.

2 Notation and Definitions

For any integer g, we represent using ||-||, the g-norm of any vector. We represent the infinity-norm as

[Illoo- We denote the infinity-norm ball (sometimes called the ¢, ball) as the set BY (r) def {xeR™:

2]l < 7}. The nonnegative part of this ball is denoted as B (1) = {zx € R" : & > 0y, [|z|ls <

r}. For radius 7 = 1, we drop the radius specification and use the short notation B7, and B’} . We

denote the extended simplex of dimension k as A;" def {reRF: Zle x; < 1}. For any y > Ok,

proja+ (y) = y/llyll1 if ||y||1 = 1. Further, for any set /K, we represent its interior, relative interior
k

and closure as int(K), relint(K) and cl(K), respectively. The function exp is applied to a vector
element wise. The division of two vectors of same dimension is also performed element wise.

For any matrix A, we use nnz(A) to denote the number of nonzero entries in it. We use A, . and A. ;
to refer to the ith row and jth column of A respectively. We use notation A;; (or A; ; alternatively)
to denote an element in the i-th row and j-th column of matrix A. || A||, denotes the operator norm

def
| Allcomoo = SUp, o ”@aﬁ[j . For a symmetric matrix A and an antisymmetric matrix B, we define
A —-Bj|. . . .
an operator >; as A >; B < [B Al positive semi-definite.

We formally define an e-approximate solution to the mixed packing-covering (MPC) problem as
follows.

Definition 2.1. We say that x is an e-approximate solution of the mixed packing-covering problem
if z satisfies v € BY ,, Pr < (1+¢)1,and Cz > (1 —¢)1..

Here, 1 denotes a vectors of 1’s of dimension k for any integer k.

The saddle point problem on two sets z € X and y € Y can be defined as follows:

i 1
gggr;lea‘;(ﬁ(ﬂay), (D

where L(x, y) is some bilinear form between x and y. For this problem, we define the primal-dual
gap function as sup; yyex xy L£(z,y) — L(Z,y). This gap function can be used as measure of
accuracy of the above saddle point solution.

Definition 2.2. We say that (z,y) € X xY is an e-optimal solution for (1) if sup; ge x xv £(,) —
L(z,y) <e.

3 Technical overview

The mixed packing-covering (MPC) problem is formally defined as follows.

Given two nonnegative matrices P € RP*"™, C' € R°*", find an x € R",z > 0, ||z||, < 1 such that
Pz <1, and Cx > 1. if it exists, otherwise report infeasibility.

Note that the vector of 1’s on the right hand side of the packing and covering constraints can be
obtained by simply scaling each constraint appropriately. We also assume that each entry in the
matrices P and C'is at most 1. This assumption, and subsequently the £, constraints on z also cause
no loss of generality?.

We reformulate MPC as a saddle point problem, as defined in Section 2;

AF et i max L(z,y,2),)

n ¥ +
zeBY yeAl, zeA]

where L(z,y, z) := [yT ZT] [PC _11p
C

in Section 4. For the rest of the paper, we focus on the saddle point formulation (2).

] [1] . The relation between the two formulations is shown

def
n(x) = MaX, A+ ent L(z,y, z) is a piecewise linear convex function. Assuming oracle access
yeAT zeA]

to this “inner" maximization problem, the “outer" problem of minimizing 7(z) can be performed
using first order methods like mirror descent, which are suitable when the underlying problem space
is the unit /., ball. One drawback of this class of methods is that their rate of convergence, which is
standard for non-accelerated first order methods on non-differentiable objectives, is O(E%) to obtain
an g-approximate minimizer x of) which satisfies 7(x) < n* + ¢, where n* is the optimal value.
This means that the algorithm needs to access the inner maximization oracle O(E%) times, which can
become prohibitively large in the high precision regime.

Note that even though 7 is a piecewise linear non-differentiable function, it is not a black box function,
but a maximization linear functions in . This structure can be exploited using Nesterov’s smoothing
technique [Nes05]. In particular, (z) can be approximated by choosing a strongly convex® function
¢ : AF x AF — R and considering

ix) = max L(z,y,2) = 6(y, 2)-

yeAZ’ ,ZGA;

This strongly convex regularization yields that 7 is a Lipschitz-smooth* convex function. If L is the
constant of Lipschitz smoothness of 7] then application of any of the accelerated gradient methods
in literature will converge in O(\/Ts) iterations. Moreover, it can also be shown that in order to
construct a smooth e-approximation 77 of 7, the Lipschitz smoothness constant L can be chosen to
be of the order O(/¢), which in turn implies an overall convergence rate of O(1/¢). In particular,
Nesterov’s smoothing achieves an oracle complexity of O((||P||o + ||C||e0) Dy max{D,,, D, }e1),
where where D, D, and D, denote the sizes of the ranges of their respective regularizers which
are strongly convex functions. D, and D can be made of the order of log p and log c, respectively.
However, D, can be problematic since = belongs to an ¢, ball. More on this will soon follow.

Nesterov’s dual extrapolation algorithm[Nes07] gives a very similar complexity but is a different
algorithm in that it directly addresses the saddle point formulation (2) rather than viewing the problem
as optimizing a non-smooth function 7. The final convergence for the dual extrapolation algorithm
is given in terms of the primal-dual gap function of the saddle point problem (2). This algorithms
views the saddle point problem as solving variational inequality for an appropriate monotone operator
in joint domain (z, y, z). Moreover, as opposed to smoothing techniques which only regularize the
dual, this algorithm regularizes both primal and dual parts (joint regularization), hence is a different
scheme altogether.

Note that for both schemes mentioned above, the maximization oracle itself has an analytical
expression which involves matrix-vector multiplication. Hence each call to the oracle incurs a
sequential run-time of nnz(P) + nnz(C). Then, overall complexity for both schemes is of order
O((mnz(P) + nnz(C) (| Plloo + [|Clleo) Dy max{Dy, D}).

3This transformation can be achieved by adapting techniques from [WRM16] while increasing dimension of
the problem up to a logarithmic factor. Details of this fact are in Appendix B in the full version of this paper. For
the purpose of the main text, we work with this assumption.

“Definitions of Lipschitz-smoothness and strong convexity can be found in many texts in nonlinear program-
ming and machine learning. e.g. [Bub14]. Intuitively, f is Lipschitz-smooth if the rate of change of V f can be
bounded by a quantity known as the “constant of Lipschitz smoothness”.

The /., barrier

Note that the first method, i.e., Nesterov’s smoothing technique has known lower bounds due to
[GN15] (see Corollary 1 in their paper). According to their result, the framework of Nesterov’s
smoothing has a known limitation since it only regularizes the dual variables. As opposed to this,
Nesterov’s dual extrapolation regularizes both primal and dual variables, and has potential to skip the
earlier mentioned lower bounds of [GN15]. However, the complexity result of this method involves a
D, term, which denotes the range of a convex function over the domain of x. The following lemma
states a lower bound for this range in case of ¢, balls.

Lemma 3.1. Any strongly convex function has a range of at least Q(/n) on any {4 ball.

Since D, = Q(4/n) for each member function of this wide class, there is no hope of eliminating this
/n factor using techniques involving explicit use of strong convexity.

So, the goal now is to find a joint regularization function with a small range over /., balls, but still
act as good enough regularizers to enable accelerated convergence of the descent algorithm. In
pursuit of breaking this /., barrier, we draw inspiration from the notion of area convexity introduced
by Sherman [Shel7]. Area convexity is a weaker notion than strong convexity, however, it is still
strong enough to ensure that accelerated first order methods still go through when using area convex
regularizers. Since this is a weaker notion than strong convexity, we can construct area convex

functions which have range of O(n°(!)) on £, ball.

First, we define area convexity, and then go on to mention its relevance to the saddle point problem
2).

Area convexity is a notion defined in context of a matrix A € R**? and a convex set K < R**?, Let

def Ob><b —AT
Ma = [A Opa|

Definition 3.2 ([She17]). A function ¢ is area convex with respect to a matrix A on a convex set K iff
t 1 1
) < 3600+ 0() + 6(0) — om0 =) Mau 1),

To understand the definition above, let us first look at the notion of strong convexity. ¢ is said to
be strongly convex if for any two points ¢,u, (¢(t) + ¢(u)) exceeds ¢(5(t + u)) by an amount
proportional to ||t — u||3. Definition 3.2 generalizes this notion in context of matrix A for any three
points z, y, z. ¢ is area-convex on set K if for any three points ¢, u, v € K, we have £ (¢(t) + ¢(u) +
¢(v)) exceeds ¢((t + u + v)) by an amount proportional to the area of the triangle defined by the
convex hull of ¢, u, v.

for any ¢, u,v € K, ¢ satisfies (;5(

Consider the case that points ¢, u, v are collinear. For this case, the area term (i.e., the term involving
M) in Definition 3.2 is 0 since matrix M 4 is antisymmetric. In this sense, area convexity is even
weaker than strict convexity. Moreover, the notion of area is parameterized by matrix A. To see

a specific example of this notion of area, consider A = [(1) _01] and t,u,v € R2. Then, for all

possible permutations of ¢, u, v, the area term takes a value equal to +(t1(ug — v2) + ug(ve —
t2) 4+ v1(t2 — u2)). Since the condition holds irrespective of the permutation so we must have that

¢(t+1§+v) < %((b(t) + ¢(’LL) + (b(v)) — 37\1/5“1(,“2 — 7)2) + UI(UQ — t2) + ’Ul(tg — ’U,Q)| But note

that area of triangle formed by points ¢, u, v is equal to %|t1 (ug — v2) + up(ve — ta) + v1(ta — u2)|.
Hence the area term is just a high dimensional matrix based generalization of the area of a triangle.

Coming back to the saddle point problem (2), we need to pick a suitable area convex function ¢
on the set BY ,, x A; x AT. Since ¢ is defined on the joint space, it has the property of joint
regularization vis a vis (2). However, we need an additional parameter: a suitable matrix M 4. The
choice of this matrix is related to the bilinear form of the primal-dual gap function of (2). We delve
into the technical details of this in Section 4, however, we state that the matrix is composed of P, C
and some additional constants. The algorithm we state exactly follows Nesterov’s dual extrapolation
method described earlier. One notable difference is that in [Nes07], they consider joint regularization
by a strongly convex function which does not depend on the problem matrices P, C' but only on the
constraint set Bi’w X A; X Aj. Our area convex regularizer, on the other hand, is tailor made for
the particular problem matrices P, C' as well as the constraint set.

4 Area Convexity for Mixed Packing Covering LPs

In this section, we present our technical results and algorithm for the MPC problem, with the end goal
of proving Theorem 1.1. First, we relate an (1 + ¢)-approximate solution to the saddle point problem
to an e-approximate solution to MPC. Next, we present some theoretical background towards the
goal of choosing and analyzing an appropriate area-convex regularizer in the context of the saddle
point formulation, where the key requirement of the area convex function is to obtain a provable and
efficient convergence result. Finally, we explicitly show an area convex function which is generated
using a simple “gadget" function. We show that this area convex function satisfies all key requirements
and hence achieves the desired accelerated rate of convergence. This section closely follows [Shel7],
in which the author chooses an area convex function specific to the undirected multicommodity flow
problem. Due to space constraints, we relegate almost all proofs to Appendix A (in the full version)
and simply include pointers to proofs in [Shel7] when it is directly applicable.

4.1 Saddle Point Formulation for MPC

Consider the saddle point formulation in (2) for MPC. Given a feasible primal-dual feasible solution
pair (x,y, z) and (, 5, z) for (2), we denote w = (x,u,y, z) and w = (T, u, y, z) where u,u € R.
Then, we define a function Q : R?T1HP+e x ReHl+pte L, R as

_\ def r_7 _ P -1 x P -1 T
aw.o = 1| T[] e | [
Note that if w = u© = 1, then

sup Q(w,U_J) = sup L(l‘,g, 2) _L(f7y7'z)

WEW zeB? . geA] zeA

is precisely the primal-dual gap function defined in Section 2. Notice that if (z*, y*, 2*) is a saddle
point of (2), then we have

L(z*,y, 2) < L(z*,y*,2%) < L(z,y", %)

forallz € B} ,,y € Af,ze Af. From above equation, it is clear that Q(w, w*) = 0 for all w € W

f
where W BY o x {1} x Af x A¥ and w* = (z*,1,y*, 2*) € W. Moreover, Q(w*, w*) = 0.
This motivates the following accuracy measure of the candidate approximate solution w.

Definition 4.1. We say that w € WV is an e-optimal solution of (2) iff

sup Q(w,w) < e.
weWw

Remark 4.2. Recall the definition of M 4 for a matrix A in Section 3. We can rewrite Q(w,w) =
0T Jw where J = My and

Onxn 0n><1 _PT CT

H:[P 1p] = g |0 0 RSV
P =1, Opxp Opxc
-C]—c chp 0c><c

Thus, the gap function in Definition 4.1 can be written in the bilinear form sup ey w’ Jw.
Lemma 4.3 relates the c-optimal solution of (2) to the e-approximate solution to MPC.

Lemma 4.3. Let (z,y, z) satisfy SUD(z 5 2)eBr | x A <AL L(z,y,%z) — L(Z,y, z) < e. Then either
1. x is an e-approximate solution of MPC, or

2.y, z satisfy y* (P — 1) + 27 (=Cz + 1.) > 0 forall T € B! .

This lemma states that in order to find an e-approximate solution of MPC, it suffices to find e-optimal
solution of (2). Henceforth, we will focus on e-optimality of the saddle point formulation (2).

4.2 Area Convexity with Saddle Point Framework

Here we state some useful lemmas which help in determining whether a differentiable function is
area convex. We start with the following remark which follows from the definition of area convexity
(Definition 3.2).

Remark 4.4. If ¢ is area convex with respect to A on a convex set K, and K K is a convex set,
then ¢ is area convex with respect to A on K.

The following two lemmas from [Shel7] provide the key characterization of area convexity.

0
1

Lemma 4.6. Let ¢ be twice differentiable on the interior of convex set K, i.e., int(K).

Lemma 4.5. Let A € R?*2 symmetric matrix. A >; [01] < A > 0anddet(A) = 1.

1. If ¢ is area convex with respect to A on int(K), then d>¢(x) >; M for all z € int(K).

2. If d*¢(x) >; Ma for all x € int(K), then ¢ is area convex with respect to A on int(K).
Moreover, if ¢ is continuous on cl(K), then ¢ is area convex with respect to %A on cl(K).

In order to handle the operator >; (recall from Section 2), we state some basic but important properties
of this operator, which will come in handy in later proofs.

Remark 4.7. For symmetric matrices A and C and antisymmetric matrices B and D,
1. If A>; B then A >;(—B).
2. If A= Band)\ = 0 then N\A >; \B.
3. IfA>Band C >; D then A+ C >;{(B + D).

Having laid a basic foundation for area convexity, we now focus on its relevance to solving the saddle
point problem (2). Considering Remark 4.2, we can write the gap function criterion of optimality
in terms of bilinear form of the matrix .J. Suppose we have a function ¢ which is area convex with
respect to H on set V. Then, consider the following jointly-regularized version of the bilinear form:

(w) := sup @’ Jw — ¢(w). 3)
wewW

Similar to Nesterov’s dual extrapolation, one can attain O(1/¢) convergence of accelerated gradient
descent for function 7j(w) in (3) over variable w. In order to obtain gradients of 7j(w), we need access
to argmax .y, . Jw — ¢(w). However, it may not be possible to find an exact maximizer in all
cases. Again, one can get around this difficulty by instead using an approximate optimization oracle
of the problem in (3).

Definition 4.8. A ¢-optimal solution oracle (OSO) for ¢ : W — R takes input a and outputs w € W
such that

aTw — ¢p(w) = sup a’w — ¢(w) — 6.
weW

Given ® as a §-OSO for a function ¢, consider the following algorithm (Algorithm 4.2):

Algorithm 1 Area Convex Mixed Packing Covering (AC-MPC)
Initialize wo = (0,1, 0p4c)
fort =0,...,7T do
Wiyl < W + (I)(J’wt + 2J<I)(Jwt))
end for

For Algorithm 4.2, [She17] shows the following:

Lemma 4.9. Let ¢ : W — [—p,0]. Suppose ¢ is area convex with respect to 2¢/3H on W. Then
Sfor J = My and for allt = 1 we have wy/t € W and,

sup wJ %t <5+ 2.
wew

In particular, in £ iterations, Algorithm 4.2 obtain (0 + €)-solution of the saddle point problem (2).

The analysis of this lemma closely follows the analysis of Nesterov’s dual extrapolation.

Note that, each iteration consists of O(1) matrix-vector multiplications, O(1) vector additions, and
O(1) calls to the approximate oracle. Since the former two are parallelizable to O(logn) depth,
the same remains to be shown for the oracle computation to complete the proof of the run-time in
Theorem 1.1.

Recall from the discussion in Section 3 that the critical bottleneck of Nesterov’s method is that
diameter of the o, ball is Q(4/n), which is achieved even in the Euclidean ¢ norm. This makes p in
Lemma 4.9 to also be £2(4/n), which can be a major bottleneck for high dimensional LPs, which are
commonplace among real-world applications.

Although, on the face of it, area convexity applied to the saddle point formulation (2) has a similar
framework to Nesterov’s dual extrapolation, the challenge is to construct a ¢ for which we can
overcome the above bottleneck. Particularly, there are three key challenges to tackle:

1. We need to show that existence of a function ¢ that is area convex with respect to 4 on W.

2. ¢ : W — [—p, 0] should be such that p is not too large.

3. There should exist an efficient 6-OSO for ¢.

In the next subsection, we focus on these three aspects in order to complete our analysis.

4.3 Choosing an area convex function

First, we consider a simple 2-D gadget function and prove a “nice" property of this gadget. Using
this gadget, we construct a function which can be shown to be area convex using the aforementioned
property of the gadget.

Let v5 : R2 — R be a function parameterized by 3 defined as

vs(a,b) = baloga + Bblogb.

Lemma 4.10. Suppose 3 > 2. Then d*>y3(a,b) > [(1) 01] forallae (0,1] and b > 0.

Now, using the function g, we construct a function ¢ and use the sufficiency criterion provided in
Lemma 4.6 to show that ¢ is area convex with respect to JJ on V. Note that our set of interest W is
not full-dimensional, whereas Lemma (4.6) is only stated for int and not for relint. To get around
this difficulty, we consider a larger set V¥ © W such that WV is full dimensional and ¢ is area convex
on W. Then we use Remark 4.4 to obtain the final result, i.e., area convexity of ¢.

Theorem 4.11. Let w = (z,u,y, z) and define

def & &2 d S c
(15(11)) = 421 ‘Zl Pij’qu‘, (:Ejayi) + 'Zl 72(71” yi) + 'Zl Zl Cijfyci (xj’ Zl) + 421 72(11'7 Zi)7
i=17j= 1= 1=17= =

| Pl

where p; = 2 *
pi 2

_ IC1l . . 1| P-1,
and c; = 2 eI then ¢ is area convex with respect to 3 —c 1, |

set W := B’froé(l) x AF x Af. In particular, it also implies 6+/3¢ is area convex with respect to

24/3 [_PC _111’] on set W.

Theorem 4.11 addresses the first part of the key three challenges. Next, Lemma 4.12 shows an upper
bound on the range of ¢.

Lemma 4.12. Function ¢ : W — [—p, 0] then p = O(]| P||oo logp + ||C]|o log).

Finally, we need an efficient §-OSO. Consider the following alternating minimization algorithm.

Algorithm 2 §-OSO for ¢

Input a € R**1 a' e RP, a2 e R%, 6 > 0
Initialize (2°,u®) € B! ,, x {1} arbitrarily.
fork=1,...,K do
(yk7 Zk) < argmax yTal + zla? — (b(‘rk_la uk_la Y, Z)
yeAg', ZGA;
(2% u*) « argmax [27 ula — ¢(z, u, y*, 2*)
(at,u)EBi‘oox{l}

end for

[Bec15] shows the following convergence result.
Lemma 4.13. For 6 > 0, Algorithm 2 is a 6-OSO for ¢ which converges in O(log %) iterations.

We show that for our chosen ¢, we can perform the two argmax computations in each iteration of
Algorithm 2 analytically in time O(nnz(P) + nnz(C)), and hence we obtain a §-OSO which takes
O((nnz(P) + nnz(C) log $) total work. Parallelizing matrix-vector multiplications eliminates the
dependence on nnz(P) and nnz(C'), at the cost of another log(N) term.

Lemma 4.14. Each argmax in Algorithm 2 can be computed as follows:

% = min{exp(pryrierzr — 1), 1n} forall j € [n].
yk = prOjA; (exp{m(al _ Pl,kfl log ’kal)})
2* = proj ¢ (exp{ a5y (0 — C2*~logz*~1)})

In particular, we can compute x* y*, z* in O(nnz(P) + nnz(C)) work and O(log N) parallel time.

Acknowledgements

We thank Richard Peng for many important pointers and discussions.

References

[AO19] Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly linear-time packing and covering
LP solvers - achieving width-independence and -convergence. Math. Program., 175(1-
2):307-353, 2019.

[BBRO4] Yair Bartal, John W. Byers, and Danny Raz. Fast, distributed approximation algorithms
for positive linear programming with applications to flow control. SIAM J. Comput.,
33(6):1261-1279, 2004.

[Becl5] Amir Beck. On the convergence of alternating minimization for convex programming
with applications to iteratively reweighted least squares and decomposition schemes.
SIAM Journal on Optimization, 25(1):185-209, 2015.

[BGM14] Bahman Bahmani, Ashish Goel, and Kamesh Munagala. Efficient primal-dual graph
algorithms for mapreduce. In Algorithms and Models for the Web Graph - 11th Inter-
national Workshop, WAW 2014, Beijing, China, December 17-18, 2014, Proceedings,
pages 59-78, 2014.

[BIO6] Daniel Bienstock and Garud Iyengar. Approximating fractional packings and coverings
in o(1/epsilon) iterations. SIAM J. Comput., 35(4):825-854, 2006.
[Bub14] Sébastien Bubeck. Theory of convex optimization for machine learning. arXiv preprint
arXiv:1405.4980, 15, 2014.

[Cha00] Moses Charikar. Greedy approximation algorithms for finding dense components in a
graph. In Proceedings of the Third International Workshop on Approximation Algorithms
for Combinatorial Optimization, APPROX *00, pages 84-95, Berlin, Heidelberg, 2000.

[GK96] Michael D. Grigoriadis and Leonid G. Khachiyan. Approximate minimum-cost multi-
commodity flows in G(epsilon'zknm) time. Math. Program., 75:477-482, 1996.

[GN15] Cristébal Guzman and Arkadi Nemirovski. On lower complexity bounds for large-scale
smooth convex optimization. Journal of Complexity, 31(1):1 — 14, 2015.

[LN93]

[MRWZ16]

[Nes05]

[Nes07]

[Nes12]

[PSTI5]

[Shel7]

[WRMI6]

[YouO1]

[Youl4]

[ZNO1]

Michael Luby and Noam Nisan. A parallel approximation algorithm for positive linear
programming. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory
of Computing, May 16-18, 1993, San Diego, CA, USA, pages 448—457, 1993.

Michael W. Mahoney, Satish Rao, Di Wang, and Peng Zhang. Approximating the
solution to mixed packing and covering lIps in parallel o(epsilon™{-3}) time. In 43rd
International Colloquium on Automata, Languages, and Programming, ICALP 2016,
July 11-15, 2016, Rome, Italy, pages 52:1-52:14, 2016.

Yurii Nesterov. Smooth minimization of non-smooth functions. Math. Program.,
103(1):127-152, 2005.

Yurii Nesterov. Dual extrapolation and its applications to solving variational inequalities
and related problems. Math. Program., 109(2-3):319-344, 2007.

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization, 22(2):341-362, 2012.

Serge A. Plotkin, David B. Shmoys, and Eva Tardos. Fast approximation algorithms for
fractional packing and covering problems. Math. Oper. Res., 20(2):257-301, 1995.

Jonah Sherman. Area-convexity, lop regularization, and undirected multicommodity
flow. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 452-460,
2017.

Di Wang, Satish Rao, and Michael W. Mahoney. Unified acceleration method for packing
and covering problems via diameter reduction. In 43rd International Colloquium on
Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy,
pages 50:1-50:13, 2016.

Neal E. Young. Sequential and parallel algorithms for mixed packing and covering.
In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17
October 2001, Las Vegas, Nevada, USA, pages 538-546, 2001.

Neal E. Young. Nearly linear-time approximation schemes for mixed packing/covering
and facility-location linear programs. CoRR, abs/1407.3015, 2014.

Edo Zurel and Noam Nisan. An efficient approximate allocation algorithm for com-
binatorial auctions. In Proceedings 3rd ACM Conference on Electronic Commerce
(EC-2001), Tampa, Florida, USA, October 14-17, 2001, pages 125-136, 2001.

10

