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Such transformations may consist of small rotations, hor-

izontal flips, brightness or contrast changes (Krizhevsky

et al., 2012; Yaeger et al., 1996), or small ℓp perturbations

in vision (Szegedy et al., 2014; Goodfellow et al., 2015) or

word synonym replacements in NLP (Jia & Liang, 2017;

Alzantot et al., 2018).

Noiseless linear regression. In section 3, we analyze

noiseless linear regression on inputs x with targets y =
x⊤θ⋆ with true parameter θ⋆ ∈ R

k.1 For linear regres-

sion, ℓ is the squared loss which leads to the standard error

(Equation 1) taking the form

Lstd(θ) = EPx
[(x⊤θ−x⊤θ⋆)2] = (θ−θ⋆)⊤Σ(θ−θ⋆), (4)

where Σ = EPx
[xx⊤] is the population covariance.

Minimum norm estimators. In this work, we focus on

interpolating estimators in highly overparameterized mod-

els, motivated by modern machine learning models that

achieve near zero training loss (on both standard and extra

data). Interpolating estimators for linear regression have

been studied in many recent works such as (Ma et al., 2018;

Belkin et al., 2018; Hastie et al., 2019; Liang & Rakhlin,

2018; Bartlett et al., 2019). We present our results for in-

terpolating estimators with minimum Euclidean norm, but

our analysis directly applies to more general Mahalanobis

norms via suitable reparameterization (see Appendix A).

We consider robust training approaches that augment the

standard training data Xstd, ystd ∈ R
n×d × R with some

extra training data Xext, yext ∈ R
m×d × R where the rows

of Xext consist of vectors in the set {xext : xext ∈ T (x), x ∈
Xstd}.

2 We call the standard data together with the extra

data as augmented data. We compare the following min-

norm estimators: (i) the standard estimator θ̂std interpolating

[Xstd, ystd] and (ii) the augmented estimator θ̂aug interpolat-

ing X = [Xstd;Xext], Y = [ystd; yext]:

θ̂std = argmin
θ

{

‖θ‖2 : Xstdθ = ystd

}

θ̂aug = argmin
θ

{

‖θ‖2 : Xstdθ = ystd, Xextθ = yext

}

. (5)

Notation. For any vector z ∈ R
n, we use zi to denote the

ith coordinate of z.

3. Analysis in the linear regression setting

In this section, we compare the standard errors of the stan-

dard estimator and the augmented estimator in noiseless

1Our analysis extends naturally to arbitrary feature maps φ(x).
2In practice, Xext is typically generated via iterative optimiza-

tion such as in adversarial training (Madry et al., 2018), or by
random sampling as in data augmentation (Krizhevsky et al., 2012;
Yaeger et al., 1996).

linear regression. We begin with a simple toy example that

describes the intuition behind our results (Section 3.1) and

provide a more complete characterization in Section 3.2.

This section focuses only on the standard error of both esti-

mators; we revisit the robust error together with the standard

error in Section 4.

3.1. Simple illustrative problem

We consider a simple example in 3D where θ⋆ ∈ R
3 is

the true parameter. Let e1 = [1, 0, 0]; e2 = [0, 1, 0]; e3 =
[0, 0, 1] denote the standard basis vectors in R

3. Suppose we

have one point in the standard training data Xstd = [0, 0, 1].

By definition (5), θ̂std satisfies Xstdθ̂std = ystd and hence

(θ̂std)3 = θ⋆3 . However, θ̂std is unconstrained on the subspace

spanned by e1, e2 (the nullspace Null(Xstd)). The min-norm

objective chooses the solution with (θ̂std)1 = (θ̂std)2 = 0.

Figure 3 visualizes the projection of various quantities on

Null(Xstd). For simplicity of presentation, we omit the

projection operator in the figure. The projection of θ̂std onto

Null(Xstd) is the blue dot at the origin, and the parameter

error θ⋆ − θ̂std is the projection of θ⋆ onto Null(Xstd).

Effect of augmentation on parameter error. Suppose

we augment with an extra data point Xext = [1, 1, 0] =
e1 + e2 which lies in Null(Xstd) (black dashed line in Fig-

ure 3). The augmented estimator θ̂aug still fits the standard

data Xstd and thus (θ̂aug)3 = θ⋆3 = (θ̂std)3. Due to fitting

the extra data Xext, θ̂aug (orange vector in Figure 3) must

also satisfy an additional constraint Xextθ̂aug = Xextθ
⋆. The

crucial observation is that additional constraints along one

direction (e1 + e2 in this case) could actually increase pa-

rameter error along other directions. For example, let’s

consider the direction e2 in Figure 3. Note that fitting Xext

makes θ̂aug have a large component along e2. Now if θ⋆2 is

small (precisely, θ⋆2 < θ⋆1/3), θ̂aug has a larger parameter

error along e2 than θ̂std, which was simply zero (Figure 3

(a)). Conversely, if the true component θ⋆2 is large enough

(precisely, θ⋆2 > θ⋆1/3), the parameter error of θ̂aug along e2
is smaller than that of θ̂std.

Effect of parameter error on standard error. The con-

tribution of different components of the parameter error to

the standard error is scaled by the population covariance Σ
(see Equation 4). For simplicity, let Σ = diag([λ1, λ2, λ3]).
In our example, the parameter error along e3 is zero

since both estimators interpolate the standard training point

Xstd = e1 = 3. Then, the ratio between λ1 and λ2 deter-

mines which component of the parameter error contributes

more to the standard error.

When is Lstd(θ̂aug) > Lstd(θ̂std)? Putting the two effects

together, we see that when θ⋆2 is small as in Fig 3(a), θ̂aug
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Method Robust

Test Acc.

Standard

Test Acc.

Standard Training 0.8% 95.2%






Vanilla
SupervisedPG-AT (Madry et al., 2018) 45.8% 87.3%

TRADES (Zhang et al.,

2019)

55.4% 84.0%

Standard Self-Training 0.3% 96.4%






















Semisupervised
with same

unlabeled data

Robust Consistency Training

(Carmon et al., 2019)

56.5% 83.2%

RST + PG-AT (this paper) 58.5% 91.8%

RST + TRADES (this

paper)

(Carmon et al., 2019)

63.1% 89.7%

Interpolated AT

(Lamb et al., 2019)3

45.1% 93.6%














Modified
supervisedNeural Arch. Search

(Cubuk et al., 2017)

50.1% 93.2%

Method Robust

Test Acc.

Standard

Test Acc.

Standard Training 0.2% 94.6%






Vanilla
SupervisedWorst-of-10 73.9% 95.0%

Random 67.7% 95.1%

RST + Worst-of-10 (this

paper)

75.1% 95.8%
}

Semisupervised

RST + Random (this

paper)

70.9% 95.8%

Worst-of-10

(Engstrom et al., 2019)4

69.2% 91.3%






Existing baselines
(smaller model)

Random (Yang et al., 2019)5 58.3% 91.8%

Table 1. Performance of robust self-training (RST) applied to different perturbations and adversarial training algorithms. (Left) CIFAR-

10 standard and robust test accuracy against ℓ∞ perturbations of size ǫ = 8/255. All methods use ǫ = 8/255 while training and use

the WRN-28-10 model. Robust accuracies are against a PG based attack with 20 steps. (Right) CIFAR-10 standard and robust test

accuracy against a grid attack of rotations up to 30 degrees and translations up to ∼ 10% of the image size, following (Engstrom et al.,

2019). All adversarial and random methods use the same parameters during training and use the WRN-40-2 model. For both tables,

shaded rows make use of 500K unlabeled images from 80M Tiny Images sourced in (Carmon et al., 2019). RST improves both the

standard and robust accuracy over the vanilla counterparts for different algorithms (AT and TRADES) and different perturbations (ℓ∞ and

rotation/translations).

TRADES (Zhang et al., 2019) as the robust loss in the gen-

eral RST formulation (10); we additionally evaluate RST

with Projected Gradient Adversarial Training (AT) (Madry

et al., 2018) as the robust loss. Carmon et al. (2019) con-

sidered ℓ∞ and ℓ2 perturbations. We study rotations and

translations in addition to ℓ∞ perturbations, and also study

the effect of labeled training set size on standard and robust

error. Table 1 presents the main results. More experiment

details appear in Appendix D.3.

Both RST+AT and RST+TRADES have lower robust and

standard error than their supervised counterparts AT and

TRADES across all perturbation types. This mirrors the

theoretical analysis of RST in linear regression (Theorem 2)

where the RST estimator has small robust error while prov-

ably not sacrificing standard error, and never obtaining

larger standard error than the standard estimator.

Effect of labeled sample size. Recall that our work mo-

tivates studying the tradeoff between robust and standard

error while taking generalization from finite data into ac-

count. We showed that the gap in the standard error of a

standard estimator and that of a robust estimator is large for

small training set sizes and decreases as the labeled dataset

is larger (Figure 1). We now study the effect of RST as we

vary the training set size in Figure 6. We find that RST+AT

has lower standard error than standard training across all

sample sizes for small ǫ, while simultaneously achieving

lower robust error than AT (see Appendix E.2.1). In the

small data regime where vanilla adversarial training hurts

the standard error the most, we find that RST+AT gives

about 3x more absolute improvement than in the large data

regime. We note that this set of experiments are comple-

mentary to the experiments in (Schmidt et al., 2018) which

study the effect of the training set size only on robust error.

Effect on transformations that do not hurt standard er-

ror. We also test the effect of RST on perturbations where

robust training slightly improves standard error rather than

hurting it. Since RST regularizes towards the standard esti-

mator, one might suspect that the improvements from robust

training disappear with RST. In particular, we consider spa-

tial transformations T (x) that consist of simultaneous rota-

tions and translations. We use two common forms of robust

training for spatial perturbations, where we approximately

maximize over T (x) with either adversarial (worst-of-10) or

random augmentations (Yang et al., 2019; Engstrom et al.,

2019). Table 1 (right) presents the results. In the regime

where vanilla robust training does not hurt standard error,

RST in fact further improves the standard error by almost

1% and the robust error by 2-3% over the standard and

robust estimators for both forms of robust training. Thus

in settings where vanilla robust training improves standard

error, RST seems to further amplify the gains while in set-

tings where vanilla robust training hurts standard error, RST

mitigates the harmful effect.

Comparison to other semi-supervised approaches.

The RST estimator minimizes both a robust loss and a stan-

dard loss on the unlabeled data with pseudo-labels (bottom
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row, Figure 5). Both of these losses are necessary to simul-

taneously the standard and robust error over vanilla super-

vised robust training. Standard self-training, which only

uses standard loss on unlabeled data, has very high robust

error (≈ 100%). Similarly, Robust Consistency Training,

an extension of Virtual Adversarial Training (Miyato et al.,

2018) that only minimizes a robust self-consistency loss on

unlabeled data, marginally improves the robust error but

actually hurts standard error (Table 1).

5. Related Work

Existence of a tradeoff. Several works have attempted to

explain the tradeoff between standard and robust error by

studying simple models. These explanations are based on

an inherent tradeoff that persists even in the infinite data

limit. In Tsipras et al. (2019); Zhang et al. (2019); Fawzi

et al. (2018), standard and robust error are fundamentally

at odds, meaning no classifier is both accurate and robust.

In Nakkiran (2019), the tradeoff is due to the hypothesis

class not being expressive enough to contain an accurate

and robust classifier even if it exists. In contrast, we explain

the tradeoff in a more realistic setting with label-preserving

consistent perturbations (like imperceptible ℓ∞ perturba-

tions or small rotations) in a well-specified setting (to mirror

expressive neural networks) where there is no tradeoff with

infinite data. In particular, our work takes into account

generalization from finite data to explain the tradeoff.

In concurrent and independent work, Min et al. (2020) also

study the effect of dataset size on the tradeoff. They prove

that in a “strong adversary” regime, there is a tradeoff even

with infinite data, as the perturbations are large enough to

change the ground truth target. They also identify a “weak

adversary” regime (smaller perturbations) where the gap

in standard error between robust and standard estimators

first increases and then decreases, with no tradeoff in the

infinite data limit. Similar to our work, this provides an

example of a tradeoff due to generalization from finite data.

However, their experimental validation of the tradeoff trends

is restricted to simulated settings and they do not study how

to mitigate the tradeoff.

Mitigating the tradeoff. To the best of our knowledge,

ours is the first work that theoretically studies how to

mitigate the tradeoff between standard and robust error.

While robust self-training (RST) was proposed in recent

works (Carmon et al., 2019; Najafi et al., 2019; Uesato et al.,

2019) as a way to improve robust error, we prove that RST

eliminates the tradeoff between standard and robust error

in noiseless linear regression and systematically study the

effect on RST on the tradeoff with several different pertur-

bations and adversarial training algorithms on CIFAR-10.

Interpolated Adversarial Training (IAT) (Lamb et al., 2019)

and Neural Architecture Search (NAS) (Cubuk et al., 2017)

were proposed to mitigate the tradeoff bbetween standard

and robust error empirically. IAS considers a different train-

ing algorithm based on Mixup, NAS (Cubuk et al., 2017)

uses RL to search for more robust architectures. In Ta-

ble 1, we also report the standard and robust errors of these

methods. RST, IAT and NAS are incomparable as they find

different tradeoffs between standard and robust error. Re-

cently, Xie et al. (2020) showed that adversarial training

with appropriate batch normalization (AdvProp) with small

perturbations can actually improve standard error. However,

since they only aim to improve and evaluate the standard er-

ror, it is unclear if the robust error improves. We believe that

since RST provides a complementary statistical perspective

on the tradeoff, it can be combined with methods like IAT,

NAS or AdvProp to see further gains in standard and robust

errors. We leave this to future work.

6. Conclusion

We study the commonly observed increase in standard error

upon adversarial training due to generalization from finite

data in a well-specified setting with consistent perturbations.

Surprisingly, we show that methods that augment the train-

ing data with consistent perturbations, such as adversarial

training, can increase the standard error even in the simple

setting of noiseless linear regression where the true linear

function has zero standard and robust error. Our analysis

reveals that the mismatch between the inductive bias of

models and the underlying distribution of the inputs causes

the standard error to increase even when the augmented

data is perfectly labeled. This insight motivates a method

that provably eliminates the tradeoff in linear regression

by incorporating an appropriate regularizer that utilizes the

distribution of the inputs. While not immediately apparent,

we show that this is a special case of the recently proposed

robust self-training (RST) procedure that uses additional

unlabeled data to estimate the distribution of the inputs. Pre-

vious works view RST as a method to improve the robust

error by increasing the sample size. Our work provides

some theoretical justification for why RST improves both

the standard and robust error, thereby mitigating the trade-

off between accuracy and robustness. How to best utilize

unlabeled data, and whether sufficient unlabeled data can

completely eliminate the tradeoff remain open questions.
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A. Transformations to handle arbitrary matrix norms

Consider a more general minimum norm estimator of the following form. Given inputs X and corresponding targets y as

training data, we study the interpolation estimator,

θ̂ = argmin
θ

{

θ⊤Mθ : Xθ = y
}

, (12)

where M is a positive definite (PD) matrix that incorporates prior knowledge about the true model. For simplicity, we

present our results in terms of the ℓ2 norm (ridgeless regression) as defined in Equation 12. However, all our results hold for

arbitrary M–norms via appropriate rotations. Given an arbitrary PD matrix M , the rotated covariates x←M−1/2x and

rotated parameters θ ←M1/2θ maintain y = Xθ and the M -norm of parameters simplifies to ‖θ‖2.

B. Standard error of minimum norm interpolants

B.1. Projection operators

The projection operators Π⊥
std and Π⊥

aug are formally defined as follows.

Σstd = X⊤
stdXstd, Π⊥

std = I − Σ+
stdΣstd (13)

Σaug = X⊤
stdXstd +X⊤

extXext, Π⊥
aug = I − Σ+

augΣaug. (14)

B.2. Invariant transformations may have arbitrary nullspace components

We show that the transformations which satisfy the invariance condition (x̃−x)⊤θ⋆ = 0 where x̃ ∈ T (x) is a transformation

of x may have arbitrary nullspace components for general transfomation mappings T . Let Πstd and Π⊥
std be the column space

and nullspace projections for the original data Xstd. The invariance condition is equivalent to

(x̃− x)⊤θ⋆ = (Πstd(x̃− x) + Π⊥
std(x̃− x))⊤θ⋆ = 0 (15)

which implies that as long as Π⊥
stdθ

⋆ 6= 0, then for any choice of nullspace component Π⊥
std(x̃) ∈ Null(X⊤

stdXstd), there is a

choice of Πstdx̃ which satisfies the condition. Thus, we consider augmented points Xext with arbitrary components in the

nullspace of Xstd.

B.3. Proof of Theorem 1

Inequality (8) follows from

Lstd(θ̂aug)− Lstd(θ̂std) = (θ⋆ − θ̂aug)
⊤Σ(θ⋆ − θ̂aug)− (θ⋆ − θ̂std)

⊤Σ(θ⋆ − θ̂std)

= (Π⊥
augθ

⋆)⊤ΣΠ⊥
augθ

⋆ − (Π⊥
stdθ

⋆)⊤ΣΠ⊥
stdθ

⋆

= w⊤Σw − (w + v)⊤Σ(w + v)

= −2w⊤Σv − v⊤Σv (16)

by decomposition of Π⊥
stdθ

⋆ = v + w where v = Π⊥
stdΠaugθ

⋆ and w = Π⊥
stdΠ

⊥
augθ

⋆. Note that the error difference does scale

with ‖θ⋆‖2, although the sign of the difference does not.

B.4. Proof of Corollary 1

Corollary 1 presents three sufficient conditions under which the standard error of the augmented estimator Lstd(θ̂aug) is never

larger than the standard error of the standard estimator Lstd(θ̂std).

1. When the population covariance Σ = I , from Theorem 1, we see that

Lstd(θ̂std)− Lstd(θ̂aug) = v⊤v + 2w⊤v = v⊤v ≥ 0, (17)

since v = Π⊥
stdΠaugθ

⋆ and w = Π⊥
augθ

⋆ are orthogonal.
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2. When Π⊥
aug = 0, the vector w in Theorem 1 is 0, and hence we get

Lstd(θ̂std)− Lstd(θ̂aug) = v⊤v ≥ 0. (18)

3. We prove the eigenvector condition in Section B.7 which studies the effect of augmenting with a single extra point in

general.

B.5. Proof of Proposition 1

The proof of Proposition 1 is based on the following two lemmas that are also useful for characterization purposes in

Corollary 2.

Lemma 1. If a PSD matrix Σ has non-equal eigenvalues, one can find two unit vectors w, v for which the following holds

w⊤v = 0 and w⊤Σv 6= 0 (19)

Hence, there exists a combination of original and augmentation dataset Xstd, Xext such that condition (19) holds for two

directions v ∈ Col(Π⊥
stdΠaug) and w ∈ Col(Π⊥

stdΠ
⊥
aug) = Col(Π⊥

aug).

Note that neither w nor v can be eigenvectors of Σ in order for both conditions in equation (19) to hold. Given a population

covariance, fixed original and augmentation data for which condition (19) holds, we can now explicitly construct θ⋆ for

which augmentation increases standard error.

Lemma 2. Assume Σ, Xstd, Xext are fixed. Then condition (19) holds for two directions v ∈ Col(Π⊥
stdΠaug) and w ∈

Col(Π⊥
stdΠ

⊥
aug) iff there exists a θ⋆ such that Lstd(θ̂aug) − Lstd(θ̂std) ≥ c for some c > 0. Furthermore, the ℓ2 norm of θ⋆

needs to satisfy the following lower bounds with c1 := ‖θ̂aug‖
2 − ‖θ̂std‖

2

‖θ⋆‖2 − ‖θ̂aug‖
2 ≥ β1c1 + β2

c2

c1

‖θ⋆‖2 − ‖θ̂std‖
2 ≥ (β1 + 1)c1 + β2

c2

c1
(20)

where βi are constants that depend on Xstd, Xext,Σ.

Proposition 1 follows directly from the second statement of Lemma 2 by minimizing the bound (20) with respect to c1
which is a free parameter to be chosen during construction of θ⋆ (see proof of Lemma (2). The minimum is attained for

c1 = 2
√

(β1 + 1)(β2c2). We hence conclude that θ⋆ needs to be sufficiently more complex than a good standard solution,

i.e. ‖θ⋆‖22 − ‖θ̂std‖
2
2 > γc where γ > 0 is a constant that depends on the Xstd, Xext.

B.6. Proof of technical lemmas

In this section we prove the technical lemmas that are used to prove Theorem 1.

B.6.1. PROOF OF LEMMA 2

Any vector Π⊥
stdθ ∈ Null(Σstd) can be decomposed into orthogonal components Π⊥

stdθ = Π⊥
stdΠ

⊥
augθ + Π⊥

stdΠaugθ. Using

the minimum-norm property, we can then always decompose the (rotated) augmented estimator θ̂aug ∈ Col(Π⊥
aug) =

Col(Π⊥
stdΠ

⊥
aug) and true parameter θ⋆ by

θ̂aug = θ̂std +
∑

vi∈ext

ζivi

θ⋆ = θ̂aug +
∑

wj∈rest

ξjwj ,
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where we define “ext” as the set of basis vectors which span Col(Π⊥
stdΠaug) and respectively “rest” for Null(Σaug). Requiring

the standard error increase to be some constant c > 0 can be rewritten using identity (16) as follows

Lstd(θ̂aug)− Lstd(θ̂std) = c

⇐⇒ (
∑

vi∈ext

ζivi)
⊤Σ(

∑

vi∈ext

ζivi) + c = −2(
∑

wj∈rest

ξjwj)Σ(
∑

vi∈ext

ζivi)

⇐⇒ (
∑

vi∈ext

ζivi)
⊤Σ(

∑

vi∈ext

ζivi) + c = −2
∑

wj∈rest,vi∈ext

ξjζiw
⊤
j Σvi (21)

The left hand side of equation (21) is always positive, hence it is necessary for this equality to hold with any c > 0, that

there exists at least one pair i, j such that w⊤
j Σvi 6= 0 and one direction of the iff statement is proved.

For the other direction, we show that if there exist v ∈ Col(Π⊥
stdΠaug) and w ∈ Col(Π⊥

stdΠ
⊥
aug) for which condition (19) holds

(wlog we assume that the w⊤Σv < 0) we can construct a θ⋆ for which the inequality (8) in Theorem 1 holds as follows:

It is then necessary by our assumption that ξjζiw
⊤
j Σvi > 0 for at least some i, j. We can then set ζi > 0 such that

‖θ̂aug − θ̂std‖
2 = ‖ζ‖2 = c1 > 0, i.e. that the augmented estimator is not equal to the standard estimator (else obviously

there can be no difference in error and equality (21) cannot be satisfied for any desired error increase c > 0).

The choice of ξ minimizing ‖θ⋆ − θ̂aug‖
2 =

∑

j ξ
2
j that also satisfies equation (21) is an appropriately scaled vector in the

direction of x = W⊤ΣV ζ where we define W := [w1, . . . , w|rest|] and V := [v1, . . . , v|ext|]. Defining c0 = ζ⊤V ⊤ΣV ζ for

convenience and then setting

ξ = −
c0 + c

2‖x‖22
x (22)

which is well-defined since x 6= 0, yields a θ⋆ such that augmentation increases standard error. It is thus necessary for

Lstd(θ̂aug)− Lstd(θ̂std) = c that

∑

j

ξ2j =
(c0 + c)2

4‖W⊤ΣV ζ‖2
=

(ζ⊤V ⊤ΣV ζ + c)2

4ζ⊤V ⊤ΣWW⊤ΣV ζ

≥
(ζ⊤V ⊤ΣV ζ)2

4ζ⊤V ⊤ΣWW⊤ΣV ζ
+

c2

4ζ⊤V ⊤ΣWW⊤ΣV ζ

≥
c1
4

λ2
min(V

⊤ΣV )

λ2
max(W

⊤ΣV )
+

c2

4c1λ2
max(W

⊤ΣV )
.

By assuming existence of i, j such that ξjζiw
⊤
j Σvi 6= 0, we are guaranteed that λ2

max(W
⊤ΣV ) > 0.

Note due to construction we have ‖θ⋆‖22 = ‖θ̂std‖
2
2 +

∑

i ζ
2
i +

∑

j ξ
2
j and plugging in the choice of ξj in equation (22) we

have

‖θ⋆‖22 − ‖θ̂std‖
2
2 ≥ c1

[

1 +
λ2
min(V

⊤ΣV )

4λ2
max(W

⊤ΣV )

]

+
c2

4λ2
max(W

⊤ΣV )

1

c1
.

Setting β1 =
[

1 +
λ2

min
(V ⊤ΣV )

4λ2
max

(W⊤ΣV )

]

, β2 = 1
4λ2

max
(W⊤ΣV )

yields the result.

B.6.2. PROOF OF LEMMA 1

Let λ1, . . . , λm be the m non-zero eigenvalues of Σ and ui be the corresponding eigenvectors. Then choose v to be any

combination of the eigenvectors v = Uβ where U = [u1, . . . , um] where at least βi, βj 6= 0 for λi 6= λj . We next construct

w = Uα by choosing α as follows such that the inequality in (19) holds:

αi =
βj

β2
i + β2

j

αj =
−βi

β2
i + β2

j
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and αk = 0 for k 6= i, j. Then we have that α⊤β = 0 and hence w⊤v = 0. Simultaneously

w⊤Σv = λiβiαi + λjβjαj

= (λi − λj)
βiβj

β2
i + β2

j

6= 0

which concludes the proof of the first statement.

We now prove the second statement by constructing Σstd = X⊤
stdXstd,Σext = X⊤

extXext using w, v. We can then obtain

Xstd, Xext using any standard decomposition method to obtain Xstd, Xext. We construct Σstd,Σext using w, v. Without loss

of generality, we can make them simultaneously diagonalizable. We construct a set of eigenvectors that is the same for

both matrices paired with different eigenvalues. Let the shared eigenvectors include w, v. Then if we set the corresponding

eigenvalues λw(Σext) = 0, λv(Σext) > 0 and λw(Σstd) = 0, λv(Σstd) = 0, then λw(Σaug) = 0 such that w ∈ Col(Π⊥
stdΠ

⊥
aug)

and v ∈ Col(Π⊥
stdΠaug). This shows the second statement. With this, we can design a θ⋆ for which augmentation increases

standard error as in Lemma 2.

B.7. Characterization Corollary 2

A simpler case to analyze is when we only augment with one extra data point. The following corollary characterizes which

single augmentation directions lead to higher prediction error for the augmented estimator.

Corollary 2. The following characterizations hold for augmentation directions that do not cause the standard error of the

augmented estimator to be higher than the original estimator.

(a) (in terms of ratios of inner products) For a given θ⋆, data augmentation does not increase the standard error of the

augmented estimator for a single augmentation direction xext if

x⊤
extΠ

⊥
stdΣΠ

⊥
stdxext

x⊤
extΠ

⊥
stdxext

− 2
(Π⊥

stdxext)
⊤ΣΠ⊥

stdθ
⋆

x⊤
extΠ

⊥
stdθ

⋆
≤ 0 (23)

(b) (in terms of eigenvectors) Data augmentation does not increase standard error for any θ⋆ if Π⊥
stdxext is an eigenvector

of Σ. However if one augments in the direction of a mixture of eigenvectors of Σ with different eigenvalues, there exists

θ⋆ such that augmentation increases standard error.

(c) (depending on well-conditioning of Σ) If
λmax(Σ)
λmin(Σ) ≤ 2 and Π⊥

stdθ
⋆ is an eigenvector of Σ, then no augmentations xext

increase standard error.

The form in Equation (23) compares ratios of inner products of Π⊥
stdxext and Π⊥

stdθ
⋆ in two spaces: the one in the numerator is

weighted by Σ whereas the denominator is the standard inner product. Thus, if Σ scales and rotates rather inhomogeneously,

then augmenting with xext may hurt standard error. Here again, if Σ = γI for γ > 0, then the condition must hold.

B.7.1. PROOF OF COROLLARY 2 (A)

Note that for a single augmentation point Xext = x⊤
ext, the orthogonal decomposition of Π⊥

stdθ
⋆ into Col(Π⊥

aug) and

Col(Π⊥
stdΠaug) is defined by v =

Π⊥

stdxext
⊤
θ⋆

‖Π⊥

std
xext‖2

Π⊥
stdxext and w = Π⊥

stdθ
⋆ − v respectively. Plugging back into into identity (16)

then yields the following condition for safe augmentations:

2(v −Π⊥
stdθ

⋆)⊤Σv − v⊤Σv ≤ 0 (24)

v⊤Σv − 2(Π⊥
stdθ

⋆)⊤Σv ≤ 0

⇐⇒ Π⊥
stdxext

⊤
ΣΠ⊥

stdxext ≤ 2(Π⊥
stdθ

⋆)⊤ΣΠ⊥
stdxext ·

‖Π⊥
stdxext‖

2

Π⊥
stdxext

⊤
θ⋆

Rearranging the terms yields inequality (23).

Safe augmentation directions for specific choices of θ⋆ and Σ are illustrated in Figure 3.
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B.7.2. PROOF OF COROLLARY 2 (B)

Assume that Π⊥
stdxext is an eigevector of Σ with eigenvalue λ > 0. We have

x⊤
extΠ

⊥
stdΣΠ

⊥
stdxext

x⊤
extΠ

⊥
stdxext

− 2
(Π⊥

stdxext)
⊤ΣΠ⊥

stdθ
⋆

x⊤
extΠ

⊥
stdθ

⋆
= −λ < 0

for any θ⋆. Hence by Corollary 2 (a), the standard error doesn’t increase by augmenting with eigenvectors of Σ for any θ⋆.

When the single augmentation direction v is not an eigenvector of Σ, by Lemma 1 one can find w such that w⊤Σv 6= 0. The

proof in Lemma 1 gives an explicit construction for w such that condition (19) holds and the result then follows directly by

Lemma 2.

B.7.3. PROOF OF COROLLARY 2 (C)

Suppose ΣΠ⊥
stdθ

⋆ = λΠ⊥
stdθ

⋆ for some λmin(Σ) ≤ λ ≤ λmax(Σ). Then starting with the expression (23),

x⊤
extΠ

⊥
stdΣΠ

⊥
stdxext

x⊤
extΠ

⊥
stdxext

− 2
(Π⊥

stdxext)
⊤ΣΠ⊥

stdθ
⋆

x⊤
extΠ

⊥
stdθ

⋆
=

x⊤
extΠ

⊥
stdΣΠ

⊥
stdxext

x⊤
extΠ

⊥
stdxext

− 2λ

≤ λmax(Σ)− 2λ < 0

by applying
λmax(Σ)
λmin(Σ) ≤ 2. Thus when Π⊥

stdθ
⋆ is an eigenvector of Σ, there are no augmentations xext that increase the

standard error.

C. Details for spline staircase

We describe the data distribution, augmentations, and model details for the spline experiment in Figure 1 and toy scenario in

Figure 2. Finally, we show that we can construct a simplified family of spline problems where the ratio between standard

errors of the augmented and standard estimators increases unboundedly as the number of stairs.

C.1. True model

We consider a finite input domain

T = {0, ǫ, 1, 1 + ǫ, . . . , s− 1, s− 1 + ǫ} (25)

for some integer s corresponding to the total number of “stairs” in the staircase problem. Let Tline ⊂ T = {0, 1, . . . , s− 1}.
We define the underlying function f⋆ : R 7→ R as f⋆(t) = ⌊t⌋. This function takes a staircase shape, and is linear when

restricted to Tline.

Sampling training data Xstd We describe the data distribution in terms of the one-dimensional input t, and by the

one-to-one correspondence with spline basis features x = X(t), this also defines the distribution of spline features x ∈ X .

Let w ∈ ∆s define a distribution over Tline where ∆s is the probability simplex of dimension s. We define the data

distribution with the following generative process for one sample t. First, sample a point i from Tline according to the

categorical distribution described by w, such that i ∼ Categorical(w). Second, sample t by perturbing i with probability δ
such that

t =

{

i w.p. 1− δ

i+ ǫ w.p. δ.

The sampled t is in Tline with probability 1− δ and T c
line with probability δ, where we choose δ to be small.

Sampling augmented points Xext For each element ti in the training set, we augment with T̃i = [u
u.a.r
∼ B(ti)], an input

chosen uniformly at random from B(ti) = {⌊ti⌋, ⌊ti⌋+ ǫ}. Recall that in our work, we consider data augmentation where

the targets associated with the augmented points are from the ground truth oracle. Notice that by definition, f⋆(t̃i) = f⋆(ti)
for all t̃ ∈ B(ti), and thus we can set the augmented targets to be ỹi = yi. This is similar to random data augmentation in

images (Yaeger et al., 1996; Krizhevsky et al., 2012), where inputs are perturbed in a way that preserves the label.
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Augmenting with an interval. Consider a modified augmented estimator for the splines problem, where for each point ti
we augment with the entire interval [⌊ti⌋, ⌊ti⌋+ǫ] with ǫ ∈ [0, 1/2) and the estimator is enforced to output fθ̂(x) = yi = ⌊ti⌋
for all x in the interval [⌊ti⌋, ⌊ti⌋+ ǫ]. Additionally, suppose that the ratio s/n = O(1) between the number of stairs s and

the number of samples n is constant.

In this simplified setting, we can show that the standard error of the augmented estimator grows while the standard error of

the standard estimator decays to 0.

Theorem 3. Let the setting be defined as above. Then with the choice of δ = log(s7)−log(s7−1)
s and γ = c/s for a constant

c ∈ [0, 1), the ratio between standard errors is lower bounded as

R(θ̂aug)

R(θ̂std)
= Ω(s2) (29)

which goes to infinity as s→∞. Furthermore, R(θ̂std)→ 0 as s→∞.

Proof. We first lower bound the standard error of the augmented estimator. Define E1 as the event that only the lower

half of the stairs is sampled, i.e. {t : t < s/2}, which occurs with probability (1− γ)n. Let t⋆ = maxi⌊ti⌋ be the largest

“stair” value seen in the training set. Note that the min-norm augmented estimator will extrapolate with zero derivative for

t ≥ maxi⌊ti⌋. This is because on the interval [t⋆, t⋆ + ǫ], the augmented estimator is forced to have zero derivative, and the

solution minimizing the second derivative of the prediction continues with zero derivative for all t ≥ t⋆. In the event E1,

t⋆ ≤ s/2− 1, where t∗ = s/2− 1 achieves the lowest error in this event. As a result, on the points in the second half of the

staircase, i.e. t = {t ∈ T : t > s
2 − 1}, the augmented estimator incurs large error:

R(θ̂aug | E1) ≥

s
∑

t=s/2

(t− (s/2− 1))2 ·
γ

s/2

=

s/2
∑

t=1

t2 ·
γ

s/2
=

γ

6
(s2 + 2s+ 1).

Therefore the standard error of the augmented estimator is bounded by

R(θ̂aug) ≥ R(θ̂aug | E1)P (E1) =
γ

6
(s2 + 2s+ 1)(1− γ)n

≥
1

6
γ(1− γn)(s2 + 2s+ 1)

= Ω(
c− c2

s
(s2 + 2s+ 1)) = Ω(s)

where in the first line, we note that the error on each interval is the same and the probability of each interval is (1− δ) γ
s/2 +

ǫ δǫ ·
γ

s/2 = γ
s/2 .

Next we upper bound the standard error of the standard estimator. Define E2 to be the event where all points are sampled

from Tline, which occurs with probability (1− δ)n. In this case, the standard estimator is linear and fits the points on Tline

with zero error, while incurring error for all points not in Tline. Note that the probability density of sampling a point not in

Tline is either δ
ǫ ·

1−γ
s/2 or δ

ǫ ·
γ

s/2 , which we upper bound as δ
ǫ ·

1
s/2 .

R(θ̂std | E2) =
s−1
∑

t=1

δ

ǫ
·

1

s/2

∫ ǫ

0

u2du =
δ

ǫ
·

1

s/2
O(sǫ3)

= O(δ)
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Therefore for event E2, the standard error is bounded as

R(θ̂std | E2)P (E2) = O(δ)(1− δ)n

= O(δ)e−δn

= O(δ ·
s7 − 1

s7
)

= O(δ) = O(
log(s7)− log(s7 − 1)

s
) = O(1/s)

since log(s7)− log(s7 − 1) ≤ 1 for s ≥ 2. For the complementary event Ec
2, note that cubic spline predictors can grow

only as O(t3), with error at most O(t6). Therefore the standard error for case Ec
2 is bounded as

R(θ̂std | E
c
2)P (Ec

2) ≤ O(t6)(1− e−δn)

= O(t6)O(
1

s7
) = O(1/s)

Putting the parts together yields

R(θ̂std) = R(θ̂std | E2)P (E2) +R(θ̂std | E
c
2)P (Ec

2)

≤ O(1/s) +O(1/s) = O(1/s).

Thus overall, R(θ̂std) = O(1/s) and combining the bounds yields the result.

D. Robust Self-Training

We define the linear robust self-training estimator from Equation (11) and expand all the terms.

θ̂rst ∈ argmin
θ

{

EPx
[(x⊤θint-std − x⊤θ)2] :

Xstdθ = ystd, max
xadv∈T (x)

(x⊤
advθ − y)2 = 0 ∀x, y ∈ Xstd, ystd,

EPx
[ max
xadv∈T (x)

(x⊤
advθ − x⊤θ)2] = 0

}

. (30)

Notice that for unlabeled components of the estimator, we assume access to the data distribution Px and thus optimize the

population quantities.

As we show in the next subsection, we can rewrite the robust self-training estimator into the following reduced form, more

directly connecting to the general analysis of adding extra data Xext in min-norm linear regression.

θ̂rst ∈ argmin
θ

{

(θ − θint-std)
⊤Σ(θ − θint-std) : Xstdθ = ystd, Xextθ = 0

}

(31)

for the appropriate choice of Xext, as shown in Section D.1. Here, we can interpret Xext as the difference between the

perturbed inputs and original inputs. These are perturbations which we want the model to be invariant to, and hence output

zero.

D.1. Robust self-training algorithm in linear regression

We give an algorithm for constructing Xext which enforces the population robustness constraints. Suppose we are given Σ,

the population covariance of Px. In robust self-training, we enforce that the model is consistent over perturbations of the

labeled data Xstd and (infinite) unlabeled data. To do this, we add linear constraints of the form x⊤
advθ − x⊤θ = 0, where

xadv ∈ T (x) for all x. We can view these linear constraints as augmenting the dataset with input-target pairs (xext, 0) where

xext = xadv − x. By assumption, x⊤
extθ

⋆ = 0 so these augmentations fit into our data augmentation framework.

However, when we enforce these constraints over the entire population Px or when there are an infinite number of

transformations in T (x), a naive implementation requires augmenting with infinitely many points. Noting that the space of
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augmentations xext satisfying x⊤
extθ

⋆ = 0 is a linear subspace, we can instead summarize the augmentations with a basis

that spans the transformations. Let the space of perturbations be T = ∪x∈supp(Px),xadv∈T (x)xadv − x. Note that this space of

perturbations also contains perturbations of the original data Xstd if Xstd is in the support of Px. If Xstd is not in the support

of Px, the behavior of the estimator on these points do not affect standard or robust error. Assuming that we can efficiently

optimize over T , we construct the basis by an iterative procedure reminiscent of adversarial training.

1. Set t = 0. Initialize θt = θint-std and (Xext)0 as an empty matrix.

2. At iteration t, solve for xt
ext = argmaxxext∈T (x

⊤
extθ

t)2. If the objective is unbounded, choose any xt
ext such that

x⊤
extθ

t 6= 0.

3. If θt
⊤
xt

ext = 0, stop and return (Xext)t.

4. Otherwise, add xt
ext as a row in (Xext)t. Increment t and let θt solve (31) with Xext = (Xext)t.

5. Return to step 2.

In each iteration, we search for a perturbation that the current θt is not invariant to. If we can find such a perturbation, we

add it to the constraint set in (Xext)t. We stop when we cannot find such a perturbation, implying that the rows of (Xext)t
and Xstd span T . The final RST estimator solves (31) using Xext returned from this procedure.

This procedure terminates within O(d) iterations. To see this, note that θt is orthogonal to all rows of (Xext)t. Any vector

in the span of (Xext)t is orthogonal to θt. Thus, if θt
⊤
xt

ext 6= 0, then xt
ext must not be in the span of (Xext)t. At most

d− rank(Xstd) such new directions can be added until (Xext)t is full rank. When (Xext)t is full rank, θt
⊤
xt

ext = 0 must hold

and the algorithm terminates.

D.2. Proof of Theorem 2

In this section, we prove Theorem 2, which we reproduce here.

Theorem 2. Assume the noiseless linear model y = x⊤θ⋆. Let θint-std be an arbitrary interpolant of the standard data, i.e.

Xstdθint-std = ystd. Then

Lstd

(

θ̂rst) ≤ Lstd(θint-std).

Simultaneously, Lrob(θ̂rst) = Lstd(θ̂rst).

Proof. We work with the RST estimator in the form from Equation (31). We note that our result applies generally to any

extra data Xext, yext. We define Σstd = X⊤
stdXstd. Let {ui} be an orthonormal basis of the kernel Null(Σstd +X⊤

extXext) and

{vi} be an orthonormal basis for Null(Σstd) \ span({ui}). Let U and V be the linear operators defined by Uw =
∑

i uiwi

and V w =
∑

i viwi, respectively, noting that U⊤V = 0. Defining Π⊥
std := (I − Σ†

stdΣstd) to be the projection onto the null

space of Xstd, we see that there are unique vectors ρ, α such that

θ⋆ = (I −Π⊥
std)θ

⋆ + Uρ+ V α. (32a)

As θint-std interpolates the standard data, we also have

θint-std = (I −Π⊥
std)θ

⋆ + Uw + V z, (32b)

as XstdUw = XstdV z = 0, and finally,

θ̂rst = (I −Π⊥
std)θ

⋆ + Uρ+ V λ (32c)

where we note the common ρ between Eqs. (32a) and (32c).

Using the representations (32) we may provide an alternative formulation for the augmented estimator (30), using this to

prove the theorem. Indeed, writing θint-std − θ̂rst = U(w − ρ) + V (z − λ), we immediately have that the estimator has the

form (32c), with the choice

λ = argmin
λ

{

(U(w − ρ) + V (z − λ))⊤Σ(U(w − ρ) + V (z − λ))
}

.
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The optimality conditions for this quadratic imply that

V ⊤ΣV (λ− z) = V ⊤ΣU(w − ρ). (33)

Now, recall that the standard error of a vector θ is R(θ) = (θ − θ⋆)⊤Σ(θ − θ⋆) = ‖θ − θ⋆‖
2
Σ, using Mahalanobis norm

notation. In particular, a few quadratic expansions yield

R(θint-std)−R(θ̂rst)

= ‖U(w − ρ) + V (z − α)‖
2
Σ − ‖V (λ− α)‖

2
Σ

= ‖U(w − ρ) + V z‖
2
Σ + ‖V α‖

2
Σ − 2(U(w − ρ) + V z)⊤ΣV α− ‖V λ‖

2
Σ − ‖V α‖

2
Σ + 2(V λ)⊤ΣV α

(i)
= ‖U(w − ρ) + V z‖

2
Σ − 2(V λ)⊤ΣV α− ‖V λ‖

2
Σ + 2(V λ)⊤V α

= ‖U(w − ρ) + V z‖
2
Σ − ‖V λ‖

2
Σ , (34)

where step (i) used that (U(w − ρ))⊤ΣV = (V (λ− z))⊤ΣV from the optimality conditions (33).

Finally, we consider the rightmost term in equality (34). Again using the optimality conditions (33), we have

‖V λ‖
2
Σ = λ⊤V ⊤Σ1/2Σ1/2(U(w − ρ) + V z) ≤ ‖V λ‖Σ ‖U(w − ρ) + V z‖Σ

by Cauchy-Schwarz. Revisiting equality (34), we obtain

R(θint-std)−R(θ̂rst) = ‖U(w − ρ) + V z‖
2
Σ −
‖V λ‖

4
Σ

‖V λ‖
2
Σ

≥ ‖U(w − ρ) + V z‖
2
Σ −
‖V λ‖

2
Σ ‖U(w − ρ) + V z‖

2
Σ

‖V λ‖
2
Σ

= 0,

as desired.

Finally, we show that Lstd(θ̂rst) = Lrob(θ̂rst). Here, choose Xext to contain at most d basis vectors which span {xadv : xadv ∈

T (x), ∀x ∈ supp(Px)}. Thus, the robustness constraint EPx
[maxxadv∈T (x)(x

⊤
advθ̂rst − x⊤θ̂rst)] = 0 is satisfied by fitting Xext.

By fitting Xext, we thus have x⊤
advθ̂rst − x⊤θ̂rst = 0 for all xadv ∈ T (x), x ∈ supp(Px) up to a measure zero set of x. Thus,

the robust error is

Lrob(θ̂rst) = EPx
[ max
xadv∈T (x)

(x⊤
advθ̂rst − x⊤

advθ
⋆)2] = EPx

[(x⊤θ̂rst − x⊤θ)] = Lstd(θ̂rst)

where we used that x⊤
advθ

⋆ = x⊤θ⋆ by assumption. Since Lrob(θ̂rst) ≥ Lstd(θ̂rst), θ̂rst has perfect consistency, achieving the

lowest possible robust error (matching the standard error).

D.3. Different instantiations of the general RST procedure

The general RST estimator (Equation 10) is simply a weighted combination of some standard loss and some robust loss

on the labeled and unlabeled data. Throughout, we assume the same notation as that used in the definition of the general

estimator. Xstd, ystd denote the standard training set and we have access to m unlabeled points x̃i, i = 1, . . .m.

D.3.1. PROJECTED GRADIENT ADVERSARIAL TRAINING

In the first variant, RST + PG-AT, we use multiclass logistic loss (cross-entropy) as the standard loss. The robust loss is the

maximum cross-entropy loss between any perturbed input (within the set of tranformations T (·)) and the label (pseudo-label

in the case of unlabeled data). We set the weights such that the estimator can be written as follows.

θ̂rst+pg-at := argmin
θ

{

1− λ

n

∑

(x,y)∈[Xstd,ystd]

(1− β)ℓ(fθ(x), y) + β ℓ(fθ(xadv), y)

+
λ

m

m
∑

i=1

(1− β)ℓ(fθ(x̃i), fθ̂std
(x̃i)) + β ℓ(fθ(x̃advi), fθ̂std

(x̃i))

}

, (35)

In practice, xadv is found by performing a few steps of projected gradient method on ℓ(fθ(x), y), and similarly x̃adv by

performing a few steps of projected gradient method on ℓ(fθ(x̃), fθ̂std
(x̃)).
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D.3.2. TRADES

TRADES (Zhang et al., 2019) was proposed as a modification of the projected gradient adversarial training algorithm

of (Madry et al., 2018). The robust loss is defined slightly differently–it -operates on the normalized logits, which can be

thought of as probabilities of different labels. The TRADES loss minimizes the maximum KL divergence between the

probability over labels for input x and a perturbaed input x̃ ∈ T (x). Setting the weights of the different loss of the general

RST estimator (10) similar to RST+PG-AT above gives the following estimator.

θ̂rst+trades := argmin
θ

{

(1− λ)

n

∑

(x,y)∈[Xstd,ystd]

ℓ(fθ(x), y) + β KL(pθ(xadv)||pθ(x))

+
λ

m

m
∑

i=1

ℓ(fθ(x̃i), fθ̂std
(x̃i)) + β KL(pθ(x̃advi)||pθ̂std

(x̃i))

}

. (36)

In practice, xadv and x̃adv are obtained by performing a few steps of projected gradient method on the respective KL

divergence terms.

E. Experimental Details

E.1. Spline simulations

For spline simulations in Figure 2 and Figure 1, we implement the optimization of the standard and robust objectives

using the basis described in (Friedman et al., 2001). The penalty matrix M computes second-order finite differences of the

parameters θ. We solve the min-norm objective directly using CVXPY (Diamond & Boyd, 2016). Each point in Figure 1(a)

represents the average standard error over 25 trials of randomly sampled training datasets between 22 and 1000 samples.

Shaded regions represent 1 standard deviation.

E.2. RST experiments

We evaluate the performance of RST applied to ℓ∞ adversarial perturbations, adversarial rotations, and random rotations.

E.2.1. SUBSAMPLING CIFAR-10

We augment with ℓ∞ adversarial perturbations of various sizes. In each epoch, we find the augmented examples via

Projected Gradient Ascent on the multiclass logistic loss (cross-entropy loss) of the incorrect class. Training the augmented

estimator in this setup uses essentially the adversarial training procedure of (Madry et al., 2018), with equal weight on both

the ”clean” and adversarial examples during training.

We compare the standard error of the augmented estimator with an estimator trained using RST. We apply RST to adversarial

training algorithms in CIFAR-10 using 500k unlabeled examples sourced from Tiny Images, as in (Carmon et al., 2019).

We use Wide ResNet 40-2 models (Zagoruyko & Komodakis, 2016) while varying the number of samples in CIFAR-10.

We sub-sample CIFAR-10 by factors of {1, 2, 5, 8, 10, 20, 40} in Figure 1(a) and {1, 2, 5, 8, 10} in Figure 1(b). We report

results averaged from 2 trials for each sub-sample factor. All models are trained for 200 epochs with respect to the size of

the labeled training dataset and all achieve almost 100% standard and robust training accuracy.

We evaluate the robustness of models to the strong PGD-attack with 40 steps and 5 restarts. In Figure 1(b), we used a simple

heuristic to set the regularization strength on unlabeled data λ in Equation (35) to be λ = min(0.9, p) where p ∈ [0, 1] is the

fraction of the original CIFAR-10 dataset sampled. We set β = 0.5. Intuitively, we give more weight to the unlabeled data

when the original dataset is larger, meaning that the standard estimator produces more accurate pseudo-labels.

Figure 9 shows that the robust accuracy of the RST model improves about 5-15% percentage points above the robust model

(trained using PGD adversarial training) for all subsamples, including the full dataset (Tables 2,3).

We use a smaller model due to computational constraints enforced by adversarial training. Since the model is small, we

could only fit adversarially augmented examples with small ǫ = 2/255, while existing baselines use ǫ = 8/255. Note that

even for ǫ = 2/255, adversarial data augmentation leads to an increase in standard error. We show that RST can fix this.

While ensuring models are robust is an important goal in itself, in this work, we view adversarial training through the lens of

covariate-shifted data augmentation and study how to use augmented data without increasing standard error. We show that
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Standard AT RST+AT

Standard Acc 94.63% 92.69% 95.15%

Robust Acc (ǫ = 2/255) - 77.87% 83.50%

Table 3. Test accuracies for the standard, vanilla adversarial training (AT), and AT with RST for ǫ = 2/255 on the full CIFAR-10 dataset.

Accuracies are averaged over two trials. The robust test accuracy of the standard model is near 0%.

self-training would just use all labeled data to generate pseudo-labels. However, since some augmentations cause a

drop in standard accuracy, and hence this would generate worse pseudo-labels than RST.

2. Robust consistency training: Another popular semi-supervised learning strategy is based on enforcing consistency in a

model’s predictions across various perturbations of the unlabeled data (Miyato et al., 2018; Xie et al., 2019; Sajjadi

et al., 2016; Laine & Aila, 2017)). RST is similar in spirit, but has an additional crucial component. We generate

pseudo-labels first by performing standard training, and rather than enforcing simply consistency across perturbations,

RST enforces that the unlabeled data and perturbations are matched with the pseudo-labels generated.

G. Minimum ℓ1-norm problem where data augmentation hurts standard error

We present a problem where data augmentation increases standard error for minimum ℓ1-norm estimators, showing that the

phenomenon is not special to minimum Mahalanobis norm estimators.

G.1. Setup in 3 dimensions

Define the minimum ℓ1-norm estimators

θ̂std = argmin
θ

{

‖θ‖1 : Xstdθ = ystd

}

θ̂aug = argmin
θ

{

‖θ‖1 : Xstdθ = ystd, Xextθ = yext

}

.

We begin with a 3-dimensional construction and then increase the number of dimensions. Let the domain of possible values

be X = {x1,x2,x3} where

x1 = [1 + δ, 1, 0], x2 = [0, 1, 1 + δ], x3 = [1 + δ, 0, 1].

Define the data distribution through the generative process for the random feature vector x

x =











x1 w.p. 1− p

x2 w.p. ǫ

x3 w.p. p− ǫ

where 0 < δ < 1 and ǫ > 0. Define the optimal linear predictor θ⋆ = 1 to be the all-ones vector, such that in all cases,

x
⊤θ⋆ = 2 + δ. We define the consistent perturbations as

T (x) =

{

{x1,x2} x ∈ {x1,x2}

{x3} o.w.

The augmented estimator will add all possible consistent perturbations of the training set as extra data Xext. For example, if

x1 is in the training set, then the augmented estimator will add x2 as extra data since x2 ∈ T (x1). The standard error is

measured by mean squared error.

We give some intuition for how augmentation can hurt standard error in this 3-dimensional example. Define E1 to be the

event that we draw n samples with value x1. Given E1, the standard and augmented estimators are

θ̂std =

[

2 + δ

1 + δ
, 0, 0

]

, θ̂aug = [0, 2 + δ, 0]. (37)
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Note that the θ̂aug has slightly higher norm (‖θ̂aug‖1 = 2+ δ > 2+δ
1+δ = ‖θ̂std‖1). Since x3

⊤θ̂aug = 0 in this case, the squared

error of θ̂aug wrt to x3 is (x3
⊤θ̂aug − 2 + δ)2 = (2 + δ)2. The standard estimator fits x3 perfectly, but has high error on

x2. If the probability of E1 occurring is high and the probability of x3 is higher relative to x2, then the θ̂aug will have high

standard error relative to θ̂std. Here, due to the inductive bias that minimizes the ℓ1 norm, certain augmentations can cause

large changes in the sparsity pattern of the solution, drastically affecting the error. Furthermore, the optimal solution θ⋆

is quite large with respect to the ℓ1 norm, satisfying the conditions of Proposition 1 in spirit and suggesting that the ℓ1
inductive bias (promoting sparsity) is mismatched with the problem.

G.2. Construction for general d

We construct the example by sampling x in 3 dimensions and then repeating the vector d times. In particular, the samples

are realizations of the random vector [x;x;x; . . . ;x] which have dimension 3d and every block of 3 coordinates have the

same values. Under this setup, we can show that there is a family of problems such that the difference between standard

errors of the augmented and standard estimators grows to infinity as d, n→∞.

Theorem 4. Let the setting be defined as above, where the dimension d and number of samples n are such that n/d→ γ
approaches a constant. Let p = 1/d2, ǫ = 1/d3, and δ be a constant. Then the ratio between standard errors of the

augmented and standard estimators grows as

Lstd(θ̂aug)

Lstd(θ̂std)
= Ω(d) (38)

as d, n→∞.

Proof. We define an event where the augmented estimator has high error relative to the standard estimator and bound the

ratio between the standard errors of the standard and augmented estimators given this event. Define E1 as the event that

we have n samples where all samples are [x1;x1; . . . ;x1]. The standard and augmented estimators are the corresponding

repeated versions

θ̂std =

[

2 + δ

1 + δ
, 0, 0, . . . ,

2 + δ

1 + δ
, 0, 0

]

, θ̂aug = [0, 2 + δ, 0, . . . , 0, 2 + δ, 0]. (39)

The event E1 occurs with probability (1− p)n + (p− ǫ)n. It is straightforward to verify that the respective standard errors

are

Lstd(θ̂std | E1) = ǫd2(2 + δ)2, Lstd(θ̂aug | E1) = (p− ǫ)d2(2 + δ)2

and that the ratio between standard errors is

Lstd(θ̂aug | E1)

Lstd(θ̂std | E1)
=

p− ǫ

ǫ
.

The ratio between standard errors is bounded by

Lstd(θ̂aug)

Lstd(θ̂std)
=

∑

E∈{E1,Ec
1
}

P (E)
Lstd(θ̂aug | E)

Lstd(θ̂std | E)

> P (E1)
Lstd(θ̂aug | E1)

Lstd(θ̂std | E1)

= ((1− p)n + (p− ǫ)n)(
p− ǫ

ǫ
)

> (1− p)n(d− 1)

≥ (1−
n

d3
)(d− 1)

= d−
n

d2
− 1 +

n

d3
= Ω(d)

as n, d→∞, where we used Bernoulli’s inequality in the second to last step.


