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Abstract

Adversarial training augments the training set
with perturbations to improve the robust error
(over worst-case perturbations), but it often leads
to an increase in the standard error (on unper-
turbed test inputs). Previous explanations for this
tradeoff rely on the assumption that no predic-
tor in the hypothesis class has low standard and
robust error. In this work, we precisely charac-
terize the effect of augmentation on the standard
error in linear regression when the optimal linear
predictor has zero standard and robust error. In
particular, we show that the standard error could
increase even when the augmented perturbations
have noiseless observations from the optimal lin-
ear predictor. We then prove that the recently
proposed robust self-training (RST) estimator im-
proves robust error without sacrificing standard
error for noiseless linear regression. Empirically,
for neural networks, we find that RST with dif-
ferent adversarial training methods improves both
standard and robust error for random and adver-
sarial rotations and adversarial /., perturbations
in CIFAR-10.

1. Introduction

Adversarial training methods (Goodfellow et al., 2015;
Madry et al., 2017) attempt to improve the robustness of neu-
ral networks against adversarial examples (Szegedy et al.,
2014) by augmenting the training set (on-the-fly) with per-
turbed examples that preserve the label but that fool the
current model. While such methods decrease the robust er-
ror, the error on worst-case perturbed inputs, they have been
observed to cause an undesirable increase in the standard
error, the error on unperturbed inputs (Madry et al., 2018;
Zhang et al., 2019; Tsipras et al., 2019).

Previous works attempt to explain the tradeoff between stan-
dard error and robust error in two settings: when no accurate
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Figure 1. Gap between the stan-
dard error of adversarial train-
ning (Madry et al., 2018) with /o
perturbations, and standard training.
The gap decreases with increase in
training set size, suggesting that the
tradeoff between standard and ro-
bust error should disappear with in-
finite data.
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classifier is consistent with the perturbed data (Tsipras et al.,
2019; Zhang et al., 2019; Fawzi et al., 2018), and when
the hypothesis class is not expressive enough to contain the
true classifier (Nakkiran, 2019). In both cases, the tradeoff
persists even with infinite data. However, adversarial pertur-
bations in practice are typically defined to be imperceptible
to humans (e.g. small ¢, perturbations in vision). Hence
by definition, there exists a classifier (the human) that is
both robust and accurate with no tradeoff in the infinite data
limit. Furthermore, since deep neural networks are expres-
sive enough to fit not only adversarial but also randomly
labeled data perfectly (Zhang et al., 2017), the explanation
of a restricted hypothesis class does not perfectly capture
empirical observations either. Empirically on CIFAR-10, we
find that the gap between the standard error of adversarial
training and standard training decreases as we increase the
labeled data size, thereby also suggesting the tradeoff could
disappear with infinite data (See Figure 1).

In this work, we provide a different explanation for the
tradeoff between standard and robust error that takes gen-
eralization from finite data into account. We first consider
a linear model where the true linear function has zero stan-
dard and robust error. Adversarial training augments the
original training set with extra data, consisting of sam-
ples (Zext, y) where the perturbations xex are consistent,
meaning that the conditional distribution stays constant
P,(- | ext) = P,(- | ). We show that even in this simple
setting, the augmented estimator, i.e. the minimum norm
interpolant of the augmented data (standard + extra data),
could have a larger standard error than that of the standard
estimator, which is the minimum norm interpolant of the
standard data alone. We found this surprising given that
adding consistent perturbations enforces the predictor to
satisfy invariances that the true model exhibits. One might
think adding this information would only restrict the hypoth-
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Figure 2. We consider function interpolation via cubic splines. (Left) The underlying distribution P denoted by sizes of the circles. The
true function is a staircase. (Middle) With a small number of standard training samples (purple circles), an augmented estimator that fits
local perturbations (green crosses) has a large error. In constrast, the standard estimator that does not fit perturbations is a simple straight
line and has small error. (Right) Robust self-training (RST) regularizes the predictions of an augmented estimator towards the predictions
of the standard estimator thereby obtaining both small error on test points and their perturbations.

esis class and thus enable better generalization, not worse.

We show that this tradeoff stems from overparameterization.
If the restricted hypothesis class (by enforcing invariances)
is still overparameterized, the inductive bias of the estima-
tion procedure (e.g., the norm being minimized) plays a key
role in determining the generalization of a model.

Figure 2 shows an illustrative example of this phenomenon
with cubic smoothing splines. The predictor obtained via
standard training (dashed blue) is a line that captures the
global structure and obtains low error. Training on aug-
mented data with locally consistent perturbations of the
training data (crosses) restricts the hypothesis class by en-
couraging the predictor to fit the local structure of the high
density points. Within this set, the cubic splines predic-
tor (solid orange) minimizes the second derivative on the
augmented data, compromising the global structure and per-
forming badly on the tails (Figure 2(b)). More generally,
as we characterize in Section 3, the tradeoff stems from
the inductive bias of the minimum norm interpolant, which
minimizes a fixed norm independent of the data, while the
standard error depends on the geometry of the covariates.

Recent works (Carmon et al., 2019; Najafi et al., 2019; Ue-
sato et al., 2019) introduced robust self-training (RST), a
robust variant of self-training that overcomes the sample
complexity barrier of learning a model with low robust error
by leveraging extra unlabeled data. In this paper, our theo-
retical understanding of the tradeoff between standard and
robust error in linear regression motivates RST as a method
to improve robust error without sacrificing standard error.
In Section 4.2, we prove that RST eliminates the tradeoff
for linear regression—RST does not increase standard error
compared to the standard estimator while simultaneously
achieving the best possible robust error, matching the stan-
dard error (see Figure 2(c) for the effect of RST on the spline
problem). Intuitively, RST regularizes the predictions of the
robust estimator towards that of the standard estimator on
the unlabeled data thereby eliminating the tradeoff.

As previous works only focus on the empirical evaluation
of the gains in robustness via RST, we systematically evalu-
ate the effect of RST on both the standard and robust error
on CIFAR-10 when using unlabeled data from Tiny Images
as sourced in Carmon et al. (2019). We expand upon em-
pirical results in two ways. First, we study the effect of the
labeled training set sizes and and find that the RST improves
both robust and standard error over vanilla adversarial train-
ing across all sample sizes. RST offers maximum gains
at smaller sample sizes where vanilla adversarial training
increases the standard error the most. Second, we consider
an additional family of perturbations over random and ad-
versarial rotation/translations and find that RST offers gains
in both robust and standard error.

2. Setup

We consider the problem of learning a mapping from an
input z € X C R to a target y € ). For our theoreti-
cal analysis, we focus on regression where ) = R while
our empirical studies consider general ). Let P, be the
underlying distribution, P, the marginal on the inputs and
P,(- | x) the conditional distribution of the targets given
inputs. Given n training pairs (z;, y;) ~ Pxy, We use Xq to
denote the measurement matrix [z, zo,. ..z, € R"*¢
and ygq to denote the target vector [y1, Yo, . - . yn}T € R™.
Our goal is to learn a predictor fy : X — ) that (i) has
low standard error on inputs x and (ii) low robust error
with respect to a set of perturbations 7'(x). Formally, the
error metrics for a predictor fy and a loss function ¢ are the
standard error

Lstd(e) = ]Eny [ﬁ(fQ (7")7 y)] (D
and the robust error
Lrob(e) = ]pry [mefé%“)({w) g(f9 (l'ext); y)]v (2)

for consistent perturbations T'(x) that satisfy

P(- | #ext) = Py(- | ), Vaex € T'(2). 3)
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Such transformations may consist of small rotations, hor-
izontal flips, brightness or contrast changes (Krizhevsky
et al., 2012; Yaeger et al., 1996), or small ¢,, perturbations
in vision (Szegedy et al., 2014; Goodfellow et al., 2015) or
word synonym replacements in NLP (Jia & Liang, 2017;
Alzantot et al., 2018).

Noiseless linear regression. In section 3, we analyze
noiseless linear regression on inputs = with targets y =
2 T6* with true parameter §* € RF.! For linear regres-
sion, / is the squared loss which leads to the standard error
(Equation 1) taking the form

Lea(0) =Ep [(zT0—2"6%)2] = (6—0")T2(0—6%), (4)
where ¥ = Ep [z "] is the population covariance.
Minimum norm estimators. In this work, we focus on
interpolating estimators in highly overparameterized mod-
els, motivated by modern machine learning models that
achieve near zero training loss (on both standard and extra
data). Interpolating estimators for linear regression have
been studied in many recent works such as (Ma et al., 2018;
Belkin et al., 2018; Hastie et al., 2019; Liang & Rakhlin,
2018; Bartlett et al., 2019). We present our results for in-
terpolating estimators with minimum Euclidean norm, but
our analysis directly applies to more general Mahalanobis
norms via suitable reparameterization (see Appendix A).

We consider robust training approaches that augment the
standard training data X4, ygea € R™*¢ x R with some
extra training data Xy, Yot € R™*? x R where the rows
of Xex consist of vectors in the set {Zey : Text € T'(2), 2 €
Xstd}.2 We call the standard data together with the extra
data as augmented data. We compare the following min-
norm estimators: (i) the standard estimator és[g interpolating
[ X4, Ysta] and (ii) the augmented estimator 6y, interpolat-
ing X = [Xstd; Xext]a Y = [ystd; yext}:

Osa = argnbin {||9H2 : Xgat = ysld}

oaUg = argmgin {HQHQ : Xstdl = Ysid, Xextl = yext}- (5)

Notation. For any vector z € R™, we use z; to denote the
i coordinate of z.

3. Analysis in the linear regression setting

In this section, we compare the standard errors of the stan-
dard estimator and the augmented estimator in noiseless

'Our analysis extends naturally to arbitrary feature maps ¢(zx).

*In practice, Xex is typically generated via iterative optimiza-
tion such as in adversarial training (Madry et al., 2018), or by
random sampling as in data augmentation (Krizhevsky et al., 2012;
Yaeger et al., 1996).

linear regression. We begin with a simple toy example that
describes the intuition behind our results (Section 3.1) and
provide a more complete characterization in Section 3.2.
This section focuses only on the standard error of both esti-
mators; we revisit the robust error together with the standard
error in Section 4.

3.1. Simple illustrative problem

We consider a simple example in 3D where 6* € R? is
the true parameter. Let e; = [1,0,0];e2 = [0,1,0];e5 =
[0, 0, 1] denote the standard basis vectors in R®. Suppose we
have one point in the standard training data X4 = [0, 0, 1].
By definition (5), éstd satisfies Xsldéstd = Y and hence
(émd) 3 = 03. However, éstd is unconstrained on the subspace
spanned by e, e5 (the nullspace Null( Xy )). The min-norm
objective chooses the solution with (t%d)l = (9std)2 = 0.
Figure 3 visualizes the projection of various quantities on
Null(Xq). For simplicity of presentation, we omit the
projection operator in the figure. The projection of O onto
Null(Xq) is the blue dot at the origin, and the parameter

error 6* — Oyyq is the projection of 8* onto Null(Xyq).

Effect of augmentation on parameter error. Suppose
we augment with an extra data point X = [1,1,0] =
e1 + es which lies in Null(Xq) (black dashed line in Fig-

ure 3). The augmented estimator 0y, still fits the standard

data Xq and thus (faug)s = 05 = (ga)3. Due to fitting
the extra data X, éaug (orange vector in Figure 3) must
also satisfy an additional constraint Xextéaug = Xexit0*. The
crucial observation is that additional constraints along one
direction (e; + e in this case) could actually increase pa-
rameter error along other directions. For example, let’s
consider the direction e5 in Figure 3. Note that fitting Xy,
makes éaug have a large component along es. Now if 63 is
small (precisely, 65 < 67/3), éaug has a larger parameter
error along ey than 0qa, which was simply zero (Figure 3
(a)). Conversely, if the true component 65 is large enough
(precisely, 05 > 67/3), the parameter error of éaug along e

is smaller than that of éstd-

Effect of parameter error on standard error. The con-
tribution of different components of the parameter error to
the standard error is scaled by the population covariance X
(see Equation 4). For simplicity, let ¥ = diag([A1, A2, A3]).
In our example, the parameter error along es is zero
since both estimators interpolate the standard training point
Xsa = e1 = 3. Then, the ratio between \; and A\, deter-
mines which component of the parameter error contributes
more to the standard error.

When is Lstd(Qaug) > Lstd(GStd)?
together, we see that when 63 is small as in Fig 3(a), éaug

Putting the two effects
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Figure 3. Illustration of the 3-D example described in Sec. 3.1. (a)-
(b) Effect of augmentation on parameter error for different 6*.
We show the projections of the standard estimator fya (blue circle),
augmented estimator éaug (orange arrow), and true parameters 6*
(black arrow) on Null(Xa), spanned by e; and e. For simplicity
of presentation, we omit the projection operator in the figure labels.
Depending on 6*, the parameter error of éaug along es could be
larger or smaller than the parameter error of Bga along e2. (¢)—(d)
Dependence of space of safe augmentations on X. Visualization
of the space of extra data points z.x (orange), that do not cause an
increase in the standard error for the illustrated 6* (black vector),
as result of Theorem 1.

has larger parameter error than 9std in the direction ey. If
Ag > Aq, error in es is weighted much more heavily in the
standard error and consequently éaug would have a larger
standard error. Precisely, we have

Lstd(éaug) > led(éstd) — )\2(0{ - 365) > )‘1(301( - 95)

We present a formal characterization of this tradeoff in gen-
eral in the next section.

3.2. General characterizations

In this section, we precisely characterize when the aug-
mented estimator éaug that fits extra training data points Xy
in addition to the standard points Xq4 has higher standard
error than the standard estimator éstd that only fits Xq. In
particular, this enables us to understand when there is a
“tradeoft” where the augmented estimator éaug has lower
robust error than fygq by virtue of fitting perturbations, but
has higher standard erTor. In Section 3.1, we illu§trated how
the parameter error of f,,, could be larger than 4 in some
directions, and if these directions are weighted heavily in the
population covariance ., the standard error of éaug would
be larger.

def 7
Formally, let us define the parameter errors Agy = Ogq—0*

def
and Agye = Oaug — 0*. Recall that the standard errors are

Lstd(éstd) = A;trdZAstda Lstd(éaug) = AT EAaugy

aug

(6)

where ¥ is the population covariance of the underlying
inputs drawn from P.

To characterize the effect of the inductive bias of mini-
mum norm interpolation on the standard errors, we de-
fine the following projection operators: Hsltd, the projec-
tion matrix onto Null(Xq) and Hj;lg, the projection ma-
trix onto Null([Xexe; Xsa]) (see formal definition in Ap-
pendix B). Since éaug and éstd are minimum norm inter-

polants, IT} 04 = 0 and Hjugéaug = 0. Further, in noiseless
linear regression, éstd and éaug have no error in the span of
Xa and [Xga; Xexe) respectively. Hence,

Agg = Tgyb*, Agye =T, 0" (7

Our main result relies on the key observation that for any
vector u, I u can be decomposed into a sum of two or-
thogonal components v and w such that I yu = v + w
with w = TI,u and v = TIgIleu. This is because
Null ([ Xsta; Xext]) € Null(Xgq) and thus Hsltdﬂjug = H;ﬁg-
Now setting u = 6* and using the error expressions in Equa-
tion 6 and Equation 7 gives a precise characterization of the

difference in the standard errors of Osq and .

Theorem 1. The difference in the standard errors of the
standard estimator Oyq and augmented estimator 0,4, can
be written as follows.

Lstd(éstd) - Lstd( Aaug) = UTEU + QWTE’% ®)

where v = Hﬁ;dﬂaugﬁ* and w = Hj;gé’*.

The proof of Theorem 1 is in Appendix B.3. The increase in
standard error of the augmented estimator can be understood
in terms of the vectors w and v defined in Theorem 1. The
first term v | v is always positive, and corresponds to the
decrease in the standard error of the augmented estimator
Oaug by virtue of fitting extra training points in some direc-
tions. However, the second term 2w ' Yv can be negative
and intuitively measures the cost of a possible increase in
the parameter error along other directions (similar to the in-
crease along es in the simple setting of Figure 3(a)). When
the cost outweighs the benefit, the standard error of éaug is
larger. Note that both the cost and benefit is determined
by ¥ which governs how the parameter error affects the
standard error.

We can use the above expression (Theorem 1) for the dif-
ference in standard errors of 9aug and 9std to characterize
different “safe” conditions under which augmentation with
extra data does not increase the standard error. See Ap-
pendix B.7 for a proof.
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Corollary 1. The following conditions are sufficient for

La(8aug) < Lga(Oga), i.e. the standard error does not
increase when fitting augmented data.

1. The population covariance 3 is identity.

2. The augmented data [ X gq; X .| spans the entire space,
or equivalently Hulug =0

3. The extra data x.; € R® is a single point such that
Ty IS an eigenvector of 3.

Matching inductive bias. We would like to draw special
attention to the first condition. When > = I, notice that the
norm that governs the standard error (Equation 6) matches
the norm that is minimized by the interpolants (Equation 5).
Intuitively, the estimators have the “right” inductive bias;
under this condition, the augmented estimator éaug does not
have higher standard error. In other words, the observed
increase in the standard error of éaug can be attributed to
the “wrong” inductive bias. In Section 4, we will use this
understanding to propose a method of robust training which
does not increase standard error over standard training.

Safe extra points. We use Theorem 1 to plot the safe
extra points Texy € R¢ that do not lead to an increase in
standard error for any 6* in the simple 3D setting described
in Section 3.1 for two different X (Figure 3 (c), (d)). The
safe points lie in cones which contain the eigenvectors of X
(as expected from Corollary 1). The width and alignment
of the cones depends on the alignment between 6* and
the eigenvectors of 3. As the eigenvalues of ¥ become
less skewed, the space of safe points expands, eventually
covering the entire space when 3 = [ (see Corollary 1).

Local versus global structure. We now tie our analysis
back to the cubic splines interpolation problem from Fig-
ure 2. The inputs can be appropriately rotated and scaled
such that the cubic spline interpolant is the minimum Eu-
clidean norm interpolant (as in Equation 5). Under this
transformation, the different eigenvectors of the nullspace
of the training data Null(Xq4) represent the “local” high
frequency components with small eigenvalues or “global”
low frequency components with large eigenvalues (see Fig-
ure 4). An augmentation that encourages the fitting local
components in Null(Xq) could potentially increase the er-
ror along other global components (like the increase in error
along e, in Figure 3(a)). Such an increase, coupled with
the fact that global components have larger eigenvalue in
>3, results in the standard error of éaug being larger than that
of fgq. See Figure 8 and Appendix C.3.1 for more details.
This is similar to the recent observation that adversarial
training with ¢, perturbations encourages neural networks
to fit the high frequency components of the signal while
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Figure 4. Top 4 eigenvectors of X in the splines problem (from
Figure 2), representing wave functions in the input space. The
“global” eigenfunctions, varying less over the domain, correspond
to larger eigenvalues, making errors in global dimensions costly in
terms of test error.

compromising on the low-frequency components (Yin et al.,
2019).

Model complexity. Finally, we relate the magnitude of
increase in standard error of the augmented estimator to the
complexity of the true model.

Proposition 1. For a given X, Xew, 25,
Lud(Oaug) — Lya(Osua) > ¢ = [10*]|3 = [10sall3 > e
for some scalar v > 0 that depends on X, X oy, 2.

In other words, for a large increase in standard error upon
augmentation, the true parameter 6* needs to be sufficiently
more complex (in the /5 norm) than the standard estimator
éstd. For example, the construction of the cubic splines in-
terpolation problem relies on the underlying function (stair-
case) being more complex with additional local structure
than the standard estimator—a linear function that fits most
points and can be learned with few samples. Proposition 1
states that this requirement holds more generally. The proof
of Proposition 1 appears in Appendix B.5. A similar intu-
ition can be used to construct an example where augmen-
tation can increase standard error for minimum #¢;-norm
interpolants when 6* is dense (Appendix G).

4. Robust self-training

We now use insights from Section 3 to construct estimators
with low robust error without increasing the standard error.
While Section 3 characterized the effect of adding extra data
Xext in general, in this section we consider robust training
which augments the dataset with extra data Xy that are
consistent perturbations of the standard training data Xq.

Since the standard estimator has small standard error, a
natural strategy to mitigate the tradeoff is to regularize the
augmented estimator to be closer to the standard estimator.
The choice of distance between the estimators we regularize
is very important. Recall from Section 3.1 that the pop-
ulation covariance X determines how the parameter error
affects the standard error. This suggests using a regularizer
that incorporates information about ..

We first revisit the recently proposed robust self-training
(RST) (Carmon et al., 2019; Najafi et al., 2019; Uesato
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et al., 2019) that incorporates additional unlabeled data via
pseudo-labels from a standard estimator. Previous work only
focused on the effectiveness of RST in improving the robust
error. In Section 4.2, we prove that in linear regression, RST
eliminates the tradeoff between standard and robust error
(Theorem 2). The proof hinges on the connection between
RST and the idea of regularizing towards the standard es-
timator discussed above. In particular, we show that the
RST objective can be rewritten as minimizing a suitable
Y-induced distance to the standard estimator.

In Section 4.3, we expand upon previous empirical RST
results for CIFAR-10 across various training set sizes and
perturbations (rotations/translations in addition to ¢,). We
observe that across all settings, RST substantially improves
the standard error while also improving the robust error over
the vanilla supervised robust training counterparts.

4.1. General formulation of RST

We first describe the general two-step robust self-training
(RST) procedure (Carmon et al., 2019; Uesato et al., 2019)
for a parameteric model fy:

1. Perform standard training on labeled data { (z;, y;) } 7
N n
to obtain fyg = argming » E(fg(l)i), Yi)-
i=1

2. Perform robust training on both the labeled data and
unlabeled inputs {z;}, with pseudo-labels y; =
fésm (Z;) generated from the standard estimator gq.

The second stage typically involves a combination of the
standard loss ¢ and a robust 1loss /,,,. The robust loss en-
courages invariance of the model over perturbations 7'(x),
and is generally defined as

grob(f&(xi)vyi) = max K(fe(wadv)ayi)- &)

Tav €T (25)

It is convenient to summarize the robust self-training esti-
mator ém as the minimizer of a weighted combination of
four separate losses as follows. We define the losses on the
labeled dataset {(z;,y;)}", as

Faara®) = 5 37 o), i),
i=1

Lrob-lab(e) = % Z&ob(f@(xi)v yt)
i=1

Standard Robust

_ . Tp)2 max (z'6— ), 0)>

Labeled (y—z0) . aavf)
Noiseless targets Consistent perturbations
=T =T )2

" AT m2 max (Z2'60—2,.,.0

Unlabeled (G—20) a2X ) aav?)
Imperfect pseudo-labels | Consistent perturbations

Figure 5. Illustration shows the four components of the RST loss
(Equation (10)) in the special case of linear regression (Eq. (11)).
Green cells contain hard constraints where the optimal §* obtains
zero loss. The orange cell contains the soft constraint that is
minimized while satisfying hard constraints to obtain the final
linear RST estimator.

The losses on the unlabeled samples {Z;}"; which are
psuedo-labeled by the standard estimator are

. . 1 & ~ ~

Lq-untab (0; 0s1a) = - > U fo(@). £, (E:)),
i=1

. . 1 & ~ ~

Lrob-unlab(0§ Gstd) = E Z Erob(fﬁ ('ri)a fésm (l‘z))
=1

Putting it all together, we have

O = argmin (@ Lasan(0) + Lo (6) (10)
+ A/i/std—unlab((g; éstd) + Af/rob—unlab((g; éstd)) 5
for fixed scalars v, 8, v, A > 0.

4.2. Robust self-training for linear regression

We now return to the noiseless linear regression as described
in Section 2 and specialize the general RST estimator de-
scribed in Equation (10) to this setting. We prove that RST
eliminates the decrease in standard error in this setting while
achieving low robust error by showing that RST appropri-
ately regularizes the augmented estimator towards the stan-
dard estimator.

Our theoretical results hold for RST procedures where the
pseudo-labels can be generated from any interpolating esti-
mator Gy gq satisfying XqOinesua = ysia- This includes but
is not restricted to the mininum-norm standard estimator éstd
defined in (5). We use the squared loss as the loss function /.
For consistent perturbations 7'(-), we analyze the following
RST estimator for linear regression

Ort = arg;nin{Lstd—unlab(HQ eint—std) . Lrob—unlab(e) =0,
Lg1ar(0) = 0, Ligb1a(0) = 0}, (11)

Figure 5 shows the four losses of RST in this special case
of linear regression.
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Obtaining this specialized estimator from the general RST
estimator in Equation (10) involves the following steps.
First, for convenience of analysis, we assume access to
the population covariance X via infinite unlabeled data
and thus replace the finite sample losses on the unlabeled
data ﬁstd,unlab(éi),ﬁrob,un]ab(ﬁ) by their population losses
Lgtd-untan (0), Leob-untab(6). Second, the general RST objec-
tive minimizes some weighted combination of four losses.
When specializing to the case of noiseless linear regression,
since ﬁstd, 1ab(0*) = 0, rather than minimizing aﬁstd_]ab(ﬁ*),
we set the coefficients on the losses such that the estima-
tor satisfies a hard constraint Estd,lab(e*) = 0. This con-
straint which enforces interpolation on the labeled dataset
yi = ;0 Vi = 1,...n allows us to rewrite the robust
loss (Equation 9) on the labeled examples equivalently as a
self-consistency loss defined independent of labels.

. 1 n
Lyop1an () = -~ ax
i—1 Tadv T

max (z; 0 — x.},0)>.

Since 0* is invariant on perturbations 7'(x) by definition,
we have Lop1an(0*) = 0 and thus we introduce a constraint

Liob1an(0) = 0 in the estimator.

For the losses on the unlabeled data, since the pseudo-labels
are not perfect, we minimize Lgyq yniap in the objective in-
stead of enforcing a hard constraint on L ynian. However,
similarly to the robust loss on labeled data, we can re-
formulate the robust loss on unlabeled samples Lyop unlab
as a self-consistency loss that does not use pseudo-labels.
By definition, Lobyniab(6*) = 0 and thus we enforce
Liob-uniab (@) = 0 in the specialized estimator.

We now study the standard and robust error of the linear
regression RST estimator defined above in Equation (11).

Theorem 2. Assume the noiseless linear model y = = " 6*.
Let Oin.qa be an arbitrary interpolant of the standard data,

i.e. Xgalintstd = Ysia- Then
Lst[l (érst) S thd(eint-std)~
Simultaneously, L,.gb(ém) = Ls,d(ém).

See Appendix D for a full proof.

The crux of the proof is that the optimization objective of
RST is an inductive bias that regularizes the estimator to
be close to the standard estimator, weighing directions by
their contribution to the standard error via 2. To see this,
we rewrite

Lstd—unlab(e; 0int»std) = EPX [(:%Teint»std - jT0)2]
= (eimfstd - Q)Tz(eint—std - 0)

By incorporating an appropriate >-induced regularizer
while satisfying constraints on the robust losses, RST en-
sures that the standard error of the estimator never exceeds
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Figure 6. Effect of data augmentation on test error as we vary the
number of training samples. (a)-(b) We plot the difference in er-
rors of the augmented estimator and standard estimator. In both
the spline staircase simulations and data augmentation with adver-
sarial £~ perturbations via adversarial training (AT) on CIFAR-10,
the increase in test error decreases as the training sample size in-
creases. In (b), robust self-training (RST+AT) not only mitigates
the increase in test error from AT but even improves test error
beyond that of the standard estimator.

the standard error of éstd. The robust error of any estimator
is lower bounded by its standard error, and this gap can be
arbitrarily large for the standard estimator. However, the
robust error of the RST estimator matches the lower bound
of its standard error which in turn is bounded by the stan-
dard error of the standard estimator and hence is small. To
provide some graphical intuition for the result, see Figure 2
that visualizes the RST estimator on the cubic splines inter-
polation problem that exemplifies the increase in standard
error upon augmentation. RST captures the global structure
and obtains low standard error by matching Oa (straight
line) on unlabeled inputs. Simultaneously, RST enforces
invariance on local transformations on both labeled and un-
labeled inputs, and obtains low robust error by capturing the
local structure across the domain.

Implementation of linear RST. The constraint on the
standard loss on labeled data simply corresponds to interpo-
lation on the standard labeled data. The constraints on the
robust self-consistency losses involve a maximization over
a set of transformations. In the case of linear regression,
such constraints can be equivalently represented by a set of
at most d linear constraints, where d is the dimension of the
covariates. Further, with this finite set of constraints, we
only require access to the covariance Y in order to constrain
the population robust loss. Appendix D gives a practical
iterative algorithm that computes the RST estimator for
linear regression reminiscent of adversarial training in the
semi-supervised setting.

4.3. Empirical evaluation of RST

Carmon et al. (2019) empirically evaluate RST with a fo-
cus on studying gains in the robust error. In this work, we
focus on both the standard and robust error and expand
upon results from previous work. Carmon et al. (2019) used
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Method Robust Standard

Test Acc. Test Acc.
Standard Training 0.8% 95.2% )
PG-AT (Madry et al., 2018) | 45.8% 87.3% }Su\[;ael;vilged
TRADES (Zhang et al., 55.4% 84.0%
2019)
Standard Self-Training 0.3% 96.4%
Robust Consistency Training | 56.5% 83.2% Semis ised

CMISUPETVISE!

(Carmon et al., 2019) with same
RST + PG-AT (this paper) | 58.5% 91.89, | unlabeled daa
RST + TRADES (this 63.1% 89.7%
paper)
(Carmon et al., 2019)
Interpolated AT 45.1% 93.6%
(Lamb et al., 2019)? Modified
Neural Arch. Search 50.1% 93.29 ( supervised
(Cubuk et al., 2017)

Method Robust Standard

Test Acc. Test Acc.
Standard Training 0.2% 94.6% )
Worst-of-10 73.9% 95.0% }SLX,‘;‘;‘J};‘w
Random 67.7% 95.1%
RST + Worst-of-10 (this 75.1% 95.8% . )

Semisupervised

paper)
RST + Random (this 70.9 % 95.8%
paper)
Worst-of-10 69.2% 91.3% o )
(Engstrom et al., 2019)* }‘iﬁ‘,;‘;}‘ﬁ,";ﬁ:é‘gﬁs
Random (Yang et al., 2019)° | 58.3% 91.8%

Table 1. Performance of robust self-training (RST) applied to different perturbations and adversarial training algorithms. (Left) CIFAR-
10 standard and robust test accuracy against £ perturbations of size e = 8/255. All methods use ¢ = 8/255 while training and use
the WRN-28-10 model. Robust accuracies are against a PG based attack with 20 steps. (Right) CIFAR-10 standard and robust test
accuracy against a grid attack of rotations up to 30 degrees and translations up to ~ 10% of the image size, following (Engstrom et al.,
2019). All adversarial and random methods use the same parameters during training and use the WRN-40-2 model. For both tables,
shaded rows make use of 500K unlabeled images from 80M Tiny Images sourced in (Carmon et al., 2019). RST improves both the
standard and robust accuracy over the vanilla counterparts for different algorithms (AT and TRADES) and different perturbations (¢, and

rotation/translations).

TRADES (Zhang et al., 2019) as the robust loss in the gen-
eral RST formulation (10); we additionally evaluate RST
with Projected Gradient Adversarial Training (AT) (Madry
et al., 2018) as the robust loss. Carmon et al. (2019) con-
sidered /., and {2 perturbations. We study rotations and
translations in addition to ¢, perturbations, and also study
the effect of labeled training set size on standard and robust
error. Table 1 presents the main results. More experiment
details appear in Appendix D.3.

Both RST+AT and RST+TRADES have lower robust and
standard error than their supervised counterparts AT and
TRADES across all perturbation types. This mirrors the
theoretical analysis of RST in linear regression (Theorem 2)
where the RST estimator has small robust error while prov-
ably not sacrificing standard error, and never obtaining
larger standard error than the standard estimator.

Effect of labeled sample size. Recall that our work mo-
tivates studying the tradeoff between robust and standard
error while taking generalization from finite data into ac-
count. We showed that the gap in the standard error of a
standard estimator and that of a robust estimator is large for
small training set sizes and decreases as the labeled dataset
is larger (Figure 1). We now study the effect of RST as we
vary the training set size in Figure 6. We find that RST+AT
has lower standard error than standard training across all
sample sizes for small €, while simultaneously achieving
lower robust error than AT (see Appendix E.2.1). In the
small data regime where vanilla adversarial training hurts

the standard error the most, we find that RST+AT gives
about 3x more absolute improvement than in the large data
regime. We note that this set of experiments are comple-
mentary to the experiments in (Schmidt et al., 2018) which
study the effect of the training set size only on robust error.

Effect on transformations that do not hurt standard er-
ror. We also test the effect of RST on perturbations where
robust training slightly improves standard error rather than
hurting it. Since RST regularizes towards the standard esti-
mator, one might suspect that the improvements from robust
training disappear with RST. In particular, we consider spa-
tial transformations 7'(z) that consist of simultaneous rota-
tions and translations. We use two common forms of robust
training for spatial perturbations, where we approximately
maximize over T'(x) with either adversarial (worst-of-10) or
random augmentations (Yang et al., 2019; Engstrom et al.,
2019). Table 1 (right) presents the results. In the regime
where vanilla robust training does not hurt standard error,
RST in fact further improves the standard error by almost
1% and the robust error by 2-3% over the standard and
robust estimators for both forms of robust training. Thus
in settings where vanilla robust training improves standard
error, RST seems to further amplify the gains while in set-
tings where vanilla robust training hurts standard error, RST
mitigates the harmful effect.

Comparison to other semi-supervised approaches.
The RST estimator minimizes both a robust loss and a stan-
dard loss on the unlabeled data with pseudo-labels (bottom
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row, Figure 5). Both of these losses are necessary to simul-
taneously the standard and robust error over vanilla super-
vised robust training. Standard self-training, which only
uses standard loss on unlabeled data, has very high robust
error (= 100%). Similarly, Robust Consistency Training,
an extension of Virtual Adversarial Training (Miyato et al.,
2018) that only minimizes a robust self-consistency loss on
unlabeled data, marginally improves the robust error but
actually hurts standard error (Table 1).

5. Related Work

Existence of a tradeoff. Several works have attempted to
explain the tradeoff between standard and robust error by
studying simple models. These explanations are based on
an inherent tradeoff that persists even in the infinite data
limit. In Tsipras et al. (2019); Zhang et al. (2019); Fawzi
et al. (2018), standard and robust error are fundamentally
at odds, meaning no classifier is both accurate and robust.
In Nakkiran (2019), the tradeoff is due to the hypothesis
class not being expressive enough to contain an accurate
and robust classifier even if it exists. In contrast, we explain
the tradeoff in a more realistic setting with label-preserving
consistent perturbations (like imperceptible ¢, perturba-
tions or small rotations) in a well-specified setting (to mirror
expressive neural networks) where there is no tradeoff with
infinite data. In particular, our work takes into account
generalization from finite data to explain the tradeoff.

In concurrent and independent work, Min et al. (2020) also
study the effect of dataset size on the tradeoff. They prove
that in a “strong adversary” regime, there is a tradeoff even
with infinite data, as the perturbations are large enough to
change the ground truth target. They also identify a “weak
adversary” regime (smaller perturbations) where the gap
in standard error between robust and standard estimators
first increases and then decreases, with no tradeoff in the
infinite data limit. Similar to our work, this provides an
example of a tradeoff due to generalization from finite data.
However, their experimental validation of the tradeoff trends
is restricted to simulated settings and they do not study how
to mitigate the tradeoff.

Mitigating the tradeoff. To the best of our knowledge,
ours is the first work that theoretically studies how to
mitigate the tradeoff between standard and robust error.
While robust self-training (RST) was proposed in recent
works (Carmon et al., 2019; Najafi et al., 2019; Uesato et al.,
2019) as a way to improve robust error, we prove that RST
eliminates the tradeoff between standard and robust error
in noiseless linear regression and systematically study the
effect on RST on the tradeoff with several different pertur-
bations and adversarial training algorithms on CIFAR-10.

Interpolated Adversarial Training (IAT) (Lamb et al., 2019)

and Neural Architecture Search (NAS) (Cubuk et al., 2017)
were proposed to mitigate the tradeoff bbetween standard
and robust error empirically. IAS considers a different train-
ing algorithm based on Mixup, NAS (Cubuk et al., 2017)
uses RL to search for more robust architectures. In Ta-
ble 1, we also report the standard and robust errors of these
methods. RST, IAT and NAS are incomparable as they find
different tradeoffs between standard and robust error. Re-
cently, Xie et al. (2020) showed that adversarial training
with appropriate batch normalization (AdvProp) with small
perturbations can actually improve standard error. However,
since they only aim to improve and evaluate the standard er-
ror, it is unclear if the robust error improves. We believe that
since RST provides a complementary statistical perspective
on the tradeoff, it can be combined with methods like AT,
NAS or AdvProp to see further gains in standard and robust
errors. We leave this to future work.

6. Conclusion

We study the commonly observed increase in standard error
upon adversarial training due to generalization from finite
data in a well-specified setting with consistent perturbations.
Surprisingly, we show that methods that augment the train-
ing data with consistent perturbations, such as adversarial
training, can increase the standard error even in the simple
setting of noiseless linear regression where the true linear
function has zero standard and robust error. Our analysis
reveals that the mismatch between the inductive bias of
models and the underlying distribution of the inputs causes
the standard error to increase even when the augmented
data is perfectly labeled. This insight motivates a method
that provably eliminates the tradeoff in linear regression
by incorporating an appropriate regularizer that utilizes the
distribution of the inputs. While not immediately apparent,
we show that this is a special case of the recently proposed
robust self-training (RST) procedure that uses additional
unlabeled data to estimate the distribution of the inputs. Pre-
vious works view RST as a method to improve the robust
error by increasing the sample size. Our work provides
some theoretical justification for why RST improves both
the standard and robust error, thereby mitigating the trade-
off between accuracy and robustness. How to best utilize
unlabeled data, and whether sufficient unlabeled data can
completely eliminate the tradeoff remain open questions.
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A. Transformations to handle arbitrary matrix norms

Consider a more general minimum norm estimator of the following form. Given inputs X and corresponding targets y as
training data, we study the interpolation estimator,

é:argmein{é)TMG:Xé):y}, (12)

where M is a positive definite (PD) matrix that incorporates prior knowledge about the true model. For simplicity, we
present our results in terms of the /5 norm (ridgeless regression) as defined in Equation 12. However, all our results hold for

arbitrary M—norms via appropriate rotations. Given an arbitrary PD matrix M, the rotated covariates 2 < M ~/2z and
rotated parameters # <— M'/20 maintain y = X6 and the M-norm of parameters simplifies to [|0]|o.
B. Standard error of minimum norm interpolants
B.1. Projection operators
The projection operators Hj{d and Hjﬁg are formally defined as follows.
Saa = Xa X, Mo = 1 = 35S (13)
Savg = XaXswd + XewXexts Hagg =1 — Sy Saug- (14)

B.2. Invariant transformations may have arbitrary nullspace components

We show that the transformations which satisfy the invariance condition (# —z) " §* = 0 where # € T'(z) is a transformation
of x may have arbitrary nullspace components for general transfomation mappings 7. Let 154 and Herd be the column space
and nullspace projections for the original data X 4. The invariance condition is equivalent to

(& — )" 0% = (Nga(% — ) + T3 —2)T6* =0 (15)

which implies that as long as IT,6* # 0, then for any choice of nullspace component I12 (%) € Null(X; Xqq), there is a
choice of 1I4Z which satisfies the condition. Thus, we consider augmented points Xy with arbitrary components in the
nullspace of Xy.

B.3. Proof of Theorem 1
Inequality (8) follows from
Lstd(éaug) - Lstd(éstd) = (9* - éaug)—rz(e* - éaug) - (9* - éstd)—rz(e* - éstd)
= (My,0%) TSI, 0% — (H6*) T Sl 0"
=w'Yw— (w4 ) Z(w+ )
=—2w'Sv—v Y (16)
by decomposition of ITgy6* = v + w where v = I3 IT,,0* and w = IIg,IT;; 0*. Note that the error difference does scale
with [|6*]|2, although the sign of the difference does not.

B.4. Proof of Corollary 1

Corollary 1 presents three sufficient conditions under which the standard error of the augmented estimator Lstd(éaug) is never

larger than the standard error of the standard estimator Lgq(6a)-

1. When the population covariance > = I, from Theorem 1, we see that
Lya(fsa) — Loa(Basg) = v v+ 20" v =v"v >0, (17)

: —_ 17l * —_ 17l p*
since v = 15,11y 0* and w = IT;;,0* are orthogonal.
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2. When Hjﬁg = 0, the vector w in Theorem 1 is 0, and hence we get

La(fsa) — Loa(Baug) = v v > 0. (18)

3. We prove the eigenvector condition in Section B.7 which studies the effect of augmenting with a single extra point in
general.

B.5. Proof of Proposition 1

The proof of Proposition 1 is based on the following two lemmas that are also useful for characterization purposes in
Corollary 2.

Lemma 1. If a PSD matrix 3 has non-equal eigenvalues, one can find two unit vectors w, v for which the following holds
w'v=0 and w' v #0 (19)

Hence, there exists a combination of original and augmentation dataset X g4, X such that condition (19) holds for two
directions v € Col(Il;;Ig) and w € Col(II;;,IT,,,) = Col(II,).

Note that neither w nor v can be eigenvectors of X in order for both conditions in equation (19) to hold. Given a population
covariance, fixed original and augmentation data for which condition (19) holds, we can now explicitly construct 8* for
which augmentation increases standard error.

Lemma 2. Assume X, X4, X are fixed. Then condition (19) holds for two directions v € Col(Hfthuug) and w €

Col(TIL ITL ) iff there exists a 0% such that Lyq(Oaug) — La(b5ia) > ¢ for some ¢ > 0. Furthermore, the {5 norm of 6*

aug

needs to satisfy the following lower bounds with c¢1 := Héa,,gH2 — ||0ssal 2

2

N c
||9*||2 - ||90ug||2 > pier + 62;
1

. 2
16* 1% = 10sall? > (81 + Dex +52§—1 (20)

where [3; are constants that depend on X g, Xoxr, 2.

Proposition 1 follows directly from the second statement of Lemma 2 by minimizing the bound (20) with respect to c;
which is a free parameter to be chosen during construction of §* (see proof of Lemma (2). The minimum is attained for
¢1 = 24/(P1 + 1)(B2¢?). We hence conclude that 8* needs to be sufficiently more complex than a good standard solution,

i.e. |02 — ||fgal|2 > e where > 0 is a constant that depends on the X4, Xex.

B.6. Proof of technical lemmas

In this section we prove the technical lemmas that are used to prove Theorem 1.

B.6.1. PROOF OF LEMMA 2

Any vector I11,0 € Null(X4q4) can be decomposed into orthogonal components 115,60 = ITL I 6 + T2, 11,,.0. Using

aug
the minimum-norm property, we can then always decompose the (rotated) augmented estimator 0, € Col(HaLug) =

Col (TT, 1T, ) and true parameter 0* by

aug

éaug = ésld + Z Givi

v; €ext

éaug + Z fjwj»

w; €rest

9*
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where we define “ext” as the set of basis vectors which span Col(Hj;dHaug) and respectively “rest” for Null(X,,s). Requiring
the standard error increase to be some constant ¢ > 0 can be rewritten using identity (16) as follows

Lstd<éaug) - Lstd(éstd) =c
= () ) BY] G te=-20 ) Gu)S( ) Gw)

v; €ext v; €ext w; erest v; €ext
T T
= (D)) Gu)te=-2 Y &G/ S 1)
v; €ext v; €ext w €rest,v; €ext

The left hand side of equation (21) is always positive, hence it is necessary for this equality to hold with any ¢ > 0, that
there exists at least one pair 7, j such that wJT Yv; # 0 and one direction of the iff statement is proved.

For the other direction, we show that if there exist v € Col (I3 T,ye) and w € Col(II, I ) for which condition (19) holds

aug
(wlog we assume that the w " Yo < 0) we can construct a #* for which the inequality (8) in Theorem 1 holds as follows:

It is then necessary by our assumption that Ejgw;eri > 0 for at least some 7, 7. We can then set ; > 0 such that

Héaug —0gq]l? = |IC|I> = ¢1 > 0, i.e. that the augmented estimator is not equal to the standard estimator (else obviously
there can be no difference in error and equality (21) cannot be satisfied for any desired error increase ¢ > 0).

The choice of £ minimizing ||6* — éaug 2= ; &7 that also satisfies equation (21) is an appropriately scaled vector in the
direction of x = W T XV ( where we define W := [wy, ... s Wires)) and V' := [v1, . .., Vjexy]- Defining ¢o = TV TRV( for
convenience and then setting
€= co + Cx
2|13
which is well-defined since = # 0, yields a 8* such that augmentation increases standard error. It is thus necessary for

Lstd(aaug) - Lstd(astd) = cthat

(22)

Zfz (e +¢)? B CTVTRV(+c)?
- I WTEV2 ACTVTIESWWTEV(

(CTVTEVC)Q c?
TACTVTIEWW TRV - ACTVTIEWW TEV(
s a Ain(VTEV) i c?

AN, (WTSV) 4, (WTSV)

max

By assuming existence of ¢, j such that §jCiij Yw; # 0, we are guaranteed that A2 (W TXV) > 0.

max

Note due to construction we have ||6* 13 = ||6uall3 + 32, ¢? + >~ & and plugging in the choice of &; in equation (22) we
have

; X2 (VTSY) & 1
0* 2 _ 0 2 > 1 min -
107112 — 10sall2 = 1 [ =+ e _(WTsV) + D2 WSV &
i — )‘?nin(VTEV) — 1 :
Settlng ﬁl = |1+ W 5 /82 = W ylelds the result.

B.6.2. PROOF OF LEMMA 1

Let A1,..., A, be the m non-zero eigenvalues of ¥ and u; be the corresponding eigenvectors. Then choose v to be any
combination of the eigenvectors v = U where U = [uq, ..., u,,] where at least §;, 5; # 0 for \; # \;. We next construct
w = Ua by choosing « as follows such that the inequality in (19) holds:
o = _bi
tOB+ B
_ B
0 = ———s

B; + B2
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and ay, = 0 for k # 4, j. Then we have that o' 3 = 0 and hence w " v = 0. Simultaneously

w' Yv = AiBio; + )\Jﬂjaj
BB
- =) £0

which concludes the proof of the first statement.

We now prove the second statement by constructing g = th—dXsrd, Pext = XextXext using w,v. We can then obtain
Xstd, Xext Using any standard decomposition method to obtain X, Xex;. We construct Ygq, Xex¢ Using w, v. Without loss
of generality, we can make them simultaneously diagonalizable. We construct a set of eigenvectors that is the same for
both matrices paired with different eigenvalues. Let the shared eigenvectors include w, v. Then if we set the corresponding
eigenvalues Ay, (Zext) = 0, Ay (Zext) > 0 and Ay (Ega) = 0, Ay (Esia) = 0, then Ay, (Xayg) = 0 such that w € Col(Hsthj;lg)
and v € Col(IIyI1,y,). This shows the second statement. With this, we can design a 0* for which augmentation increases

standard error as in Lemma 2.

B.7. Characterization Corollary 2

A simpler case to analyze is when we only augment with one extra data point. The following corollary characterizes which
single augmentation directions lead to higher prediction error for the augmented estimator.

Corollary 2. The following characterizations hold for augmentation directions that do not cause the standard error of the
augmented estimator to be higher than the original estimator.

(a) (in terms of ratios of inner products) For a given 0*, data augmentation does not increase the standard error of the
augmented estimator for a single augmentation direction .y if

), HstdEHstdxe’“ _9 (Hstdmfm) ZHslfde*

EX[
T T 1 px -
exthjxeM extnsrde

<0 (23)

(b) (in terms of eigenvectors) Data augmentation does not increase standard error for any 0* if Hﬁ;dxm is an eigenvector
of 3. However if one augments in the direction of a mixture of eigenvectors of 3. with different eigenvalues, there exists
0* such that augmentation increases standard error.

(c) (depending on well-conditioning of X) If “"“"(Z)) < 2 and 11:,0% is an eigenvector of 3, then no augmentations ..

increase standard error.

The form in Equation (23) compares ratios of inner products of I ey and IT,0* in two spaces: the one in the numerator is
weighted by > whereas the denominator is the standard inner product. Thus, if ¥ scales and rotates rather inhomogeneously,
then augmenting with ze may hurt standard error. Here again, if ¥ = I for v > 0, then the condition must hold.

B.7.1. PROOF OF COROLLARY 2 (A)

Note that for a single augmentation point X = z/

o> the orthogonal decomposition of IIL,6* into Col(II,) and

aug

T *

Col(I1 1L, is defined by v = %Hsﬁxw and w = I11,0* — v respectively. Plugging back into into identity (16)
slda:

then yields the following condition for safe augmentations:
2(v — HL0") "o — 0 S0 <0 (24)
v Yo — 250" ) T2 <0

|y exe 12

T

T
— HsldxCXt ZHsldxCXt < 2(Hsld9*) ZHsldxCXt
Hstdxext 0*

Rearranging the terms yields inequality (23).

Safe augmentation directions for specific choices of §* and ¥ are illustrated in Figure 3.
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B.7.2. PROOF OF COROLLARY 2 (B)

Assume that Hﬁ;d;vexl is an eigevector of X with eigenvalue A > 0. We have

T 17l 1 s T 1 pg*
xextHstdEHstdxeXl . (Hstdxe’(t) EHstdo ——-\<0
T TTL - T 17l -
Iextnstdxext xelestda*

for any 6*. Hence by Corollary 2 (a), the standard error doesn’t increase by augmenting with eigenvectors of X for any 6*.

When the single augmentation direction v is not an eigenvector of ¥, by Lemma 1 one can find w such that w " Xv # 0. The
proof in Lemma 1 gives an explicit construction for w such that condition (19) holds and the result then follows directly by
Lemma 2.

B.7.3. PROOF OF COROLLARY 2 (C)

Suppose EHidG* = )\Hsfdﬁ* for some Apin (X)) < A < Apax(2). Then starting with the expression (23),

T 11l iR 1 T 1 px T 171l 1
xextHstdZHstdxeXt _ (Hstdxext> ZHstd‘9 _ wextHstdZHsldxeXl — 92\
g I+ o xd I+ 6% ozl It
ext™std-ext extstd ext-std-vext

< Amax(X) =22 <0

by applying ;\\ai*g)) < 2. Thus when II,0* is an eigenvector of 3, there are no augmentations Zey that increase the

standard error.

C. Details for spline staircase

We describe the data distribution, augmentations, and model details for the spline experiment in Figure 1 and toy scenario in
Figure 2. Finally, we show that we can construct a simplified family of spline problems where the ratio between standard
errors of the augmented and standard estimators increases unboundedly as the number of stairs.

C.1. True model
We consider a finite input domain

T={0,6,1,1+¢,...,5—1,s—1+¢€} (25)
for some integer s corresponding to the total number of “stairs” in the staircase problem. Let Tpne C 7 = {0,1,...,5 — 1}.

We define the underlying function f* : R — R as f*(¢) = |t]. This function takes a staircase shape, and is linear when
restricted to Tiipe.

Sampling training data X9 We describe the data distribution in terms of the one-dimensional input ¢, and by the
one-to-one correspondence with spline basis features @ = X (), this also defines the distribution of spline features z € X.
Let w € Ag define a distribution over T, where A, is the probability simplex of dimension s. We define the data
distribution with the following generative process for one sample ¢. First, sample a point ¢ from 7y, according to the
categorical distribution described by w, such that i ~ Categorical(w). Second, sample ¢ by perturbing ¢ with probability &

such that
‘ i wp.1-6
“li+e wp. 4

The sampled ¢ is in Ty, With probability 1 — § and with probability §, where we choose § to be small.

C
line
Sampling augmented points X, For each element ¢; in the training set, we augment with T; = [u'~" B(t;)], an input
chosen uniformly at random from B(t;) = {|¢:], |t:] + €}. Recall that in our work, we consider data augmentation where
the targets associated with the augmented points are from the ground truth oracle. Notice that by definition, f*(£;) = f*(t;)
for all £ € B(t;), and thus we can set the augmented targets to be §; = ;. This is similar to random data augmentation in
images (Yaeger et al., 1996; Krizhevsky et al., 2012), where inputs are perturbed in a way that preserves the label.
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Figure 7. Visualization of the effect of single augmentation points in the noiseless spline problem given an initial dataset Xqq = {®(%) :
t €4{0,1,2,3,4}}. The standard estimator defined by Xq is linear. (a) Plot of the difference term in Corollary 2 (a), is positive when
augmenting a single point causes higher test error. Augmenting with points on Xji,. does not affect the bias, but augmenting with any
element of {X (t) : t € {2.5,3.5,4.5}} hurts the bias of the augmented estimator dramatically. (b), (¢) Augmenting with X (3.5) or
X (4.5) hurts the bias by changing the direction of extrapolation.

C.2. Spline model

We parameterize the spline predictors as fg(t) = 67 X (t) where X : R — R is the cubic B-spline feature mapping (Fried-
man et al., 2001) and the norm of fj(#) can be expressed as 6 T M for a matrix M that penalizes a large second derivative
norm where [M];; = [ X, (u) X ;-l (u)du. Notice that the splines problem is a linear regression problem from R? to R in the
feature domain X (t), allowing direct application of Theorem 1. As a linear regression problem, we define the finite domain
as X = {X(t) : t € T} containing 2s elements in R?. There is a one-to-one correspondence between ¢ and X (t), such that
X ~1is well-defined. We define the features that correspond to inputs in Ty as Xjine = {2 : X ~*(2) € Tiine }. Using this
feature mapping, there exists a 6* such that fp« (t) = f*(¢) fort € T.

Our hypothesis class is the family of cubic B-splines as defined in (Friedman et al., 2001). Cubic B-splines are piecewise
cubic functions, where the endpoints of each cubic function are called the knots. In our example, we fix the knots to be
[0,¢,1,...,5s — 1,5 — 1 + €], which places a knot on every point in 7. This ensures that the function class contains an
interpolating function on all ¢t € T, i.e. for some 0*,

for (8) = 0" T X (1) = f*(8) = [1).

We solve the minimum norm problem

Ogq = arg min{@T.MO : Xadl = Ysa} (26)
0
for the standard estimator and the corresponding augmented problem to obtain the augmented estimator.

C.3. Evaluating Corollary 2 (a) for splines

We now illustrate the characterization for the effect of augmentation with different single points in Theorem 2 (a) on
the splines problem. We assume the domain to 7 as defined in equation 25 with s = 10 and our training data to be
Xga = {X(t): t € {0,1,2,3,4}}. Let local perturbations be spline features for ¢ ¢ Tjine Where £ =t + € is € away from
some ¢ € {0, 1,2, 3,4} from the training set. We examine all possible single augmentation points in Figure 7 (a) and plot
the calculated standard error difference as defined in equation (24). Figure 7 shows that augmenting with an additional point
from {X (¢) : t € Tine} does not affect the bias, but adding any perturbation point in { X () : t € {2.5,3.5,4.5}} where
t ¢ Tine increases the error significantly by changing the direction in which the estimator extrapolates. Particularly, local
augmentations near the boundary of the original dataset hurt the most while other augmentations do not significantly affect
the bias of the augmented estimator.

C.3.1. LOCAL AND GLOBAL STRUCTURE IN THE SPLINE STAIRCASE

In the spline staircase, the local perturbations can be thought of as fitting high frequency noise in the function space, where
fitting them causes a global change in the function.



Understanding and Mitigating the Tradeoff Between Robustness and Accuracy

Global (g3)

I, X (5)

»—  Local (g2s)
0" — Ogta

Figure 8. Nullspace projections onto global direction gs and local direction gas in Null(X) via I, representing global and local
eigenvectors respectively. The local perturbation 11, ®(1.5) has both local and global components, creating a high-error component in the
global direction.

To see this, we transform the problem to minimum £, norm linear interpolation using features X /() = X ()M '/ so
that the results from Section 3.2 apply directly. Let 3 be the population covariance of X, for a uniform distribution over
the discrete domain consisting of s stairs and their perturbations (Figure 2). Let QQ = [¢;]7%, be the eigenvectors of ¥ in
decreasing order of their corresponding eigenvalues. The visualization in Figure 4 shows that ¢; are wave functions in the
original input space; the “frequency” of the wave increases as ¢ increases.

Suppose the original training set consists of two points, Xy = [X7(0), Xs(1)] 7. We study the effect of augmenting
point ey in terms of ¢; above. First, we find that the first two eigenvectors corresponding to linear functions satisfy
g1 = Hgo = 0. Intuitively, this is because the standard estimator is linear. For ease of visualization, we consider the
2D space in Null(X) spanned by IT:,¢3 (global direction, low frequency) and IT2,qa (local direction, high frequency). The
matrix [T, = [TI2,q3, i g2s] T projects onto this space. Note that the same results hold when projecting onto all IT,¢; in
Null(%).

In terms of the simple 3-D example in Section 3.1, the global direction corresponds to the costly direction with large
eigenvalue, as changes in global structure heavily affect the standard error. Figure 8 plots the projections II;o6* and IIjg Xex
for different Xex. When 6* has high frequency variations and is complex, ITj,60* = (6* — O4q) is aligned with the local
dimension. For z.y immediately local to training points, the projection Il zex (orange vector in Figure 8) has both local
and global components. Augmenting these local perturbations introduces error in the global component. For other xex
farther from training points, ITjo 2y (blue vector in Figure 8) is almost entirely global and perpendicular to 6* — Oa, leaving
bias unchanged. Thus, augmenting data close to original data cause estimators to fit local components at the cost of the
costly global component which changes overall structure of the predictor like in Figure 2(middle). The choice of inductive
bias in the M/ —norm being minimized results in eigenvectors of X that correspond to local and global components, dictating
this tradeoff.

C.4. Data augmentation can be quite painful for splines

We construct a family of spline problems such that as the number the augmented estimator has much higher error than the
standard estimator. We assume that our predictors are from the full family of cubic splines.

Sampling distribution. We define a modified domain with continuous intervals 7 = Uf;l [t,t + €]. Considering only s
which is a multiple of 2, we sample the original data set as described in Section C.1 with the following probability mass w:

1y g
w(t) = { 2 1< 8/2 1€ Tine

F t>5/2, 1€ Tine.

27)

for v € [0,1). We define a probability distribution Py on 7 for a random variable 7" by setting 7' = Z + S(Z) where
7 ~ Categorical(w) and the Z-dependent perturbation S(z) is defined as

(28)

() ~ {Umform([z, z+¢€) wp.o
z, w.p. 1 —0.

We obtain the training dataset Xyq = {X(¢1),..., X (¢,)} by sampling ¢; ~ Pr.
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Augmenting with an interval. Consider a modified augmented estimator for the splines problem, where for each point ¢;
we augment with the entire interval [|¢;], [£;] +¢€] with € € [0,1/2) and the estimator is enforced to output f;(x) = y; = |t;]
for all z in the interval [|¢;], |¢;] + €]. Additionally, suppose that the ratio s/n = O(1) between the number of stairs s and
the number of samples n is constant.

In this simplified setting, we can show that the standard error of the augmented estimator grows while the standard error of
the standard estimator decays to 0.

Theorem 3. Let the setting be defined as above. Then with the choice of § = M and vy = ¢/s for a constant
¢ € [0, 1), the ratio between standard errors is lower bounded as

= Q(s%) (29)

which goes to infinity as s — co. Furthermore, R(0y4) — 0 as s — oc.

Proof. We first lower bound the standard error of the augmented estimator. Define E; as the event that only the lower
half of the stairs is sampled, i.e. {t : ¢ < s/2}, which occurs with probability (1 — )™. Let t* = max;|t;] be the largest
“stair” value seen in the training set. Note that the min-norm augmented estimator will extrapolate with zero derivative for
t > max;|t;|. This is because on the interval [t*, t* + €], the augmented estimator is forced to have zero derivative, and the
solution minimizing the second derivative of the prediction continues with zero derivative for all ¢ > ¢*. In the event Fj,
t* < s/2 — 1, where t* = s/2 — 1 achieves the lowest error in this event. As a result, on the points in the second half of the
staircase, i.e. t = {t € T : t > § — 1}, the augmented estimator incurs large error:

R(éaug ‘ Ey) > Z (t— (8/2 — 1))2 . 8’/}/72
t=s/2
s/2

_ZQ % %s +2s+1).

Therefore the standard error of the augmented estimator is bounded by

R(Oasg) > RO | E1)P(E1) = ~(s* + 25 + 1)(1 — )"

Y(1 —yn)(s® + 25 + 1)

0—62

(—— . (52 +25+1)) = Q(s)

b @M—lcm\g

where in the first line, we note that the error on each interval is the same and the probability of each interval is (1 — §) 87—2 +
5

oI

€Sz T s

Next we upper bound the standard error of the standard estimator. Define E to be the event where all points are sampled
from Tiine, which occurs with probability (1 — §)™. In this case, the standard estimator is linear and fits the points on Tjipe
with zero error, while incurring error for all points not in 7ji,.. Note that the probability density of sampling a point not in

Thine 18 eitherg~1s7; 0rg~$,which we upper bound as g . %
=61 [f 5 1
R(bga | B2) =) — —> 2du = — - —=O(se3
(Osia | Eo) 2. 5/2/0u U ¢ 52 (s€”)

= 0(9)
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Therefore for event E5, the standard error is bounded as

R(0gq | E2)P(E2) = O(6)(1 — 8)"

=O0(8)e "
sT—1
=0 =)
_ o) = oD el D))

S

since log(s”) —log(s” — 1) < 1 for s > 2. For the complementary event ES, note that cubic spline predictors can grow
only as O(¢3), with error at most O(t°®). Therefore the standard error for case ES is bounded as

R(0ya | ES)P(ES) < O(t°)(1 —e™™)
= 0(°)0() = 0(1/5)

Putting the parts together yields

R(0gq) = R(0sa | B2)P(E2) + R(0ga | ES)P(ES)
< O(1/s) + O(1/s) = O(1/s).

Thus overall, R(f4q) = O(1/s) and combining the bounds yields the result. O

D. Robust Self-Training

We define the linear robust self-training estimator from Equation (11) and expand all the terms.

Ort € argemin {EPX[(xTeint—std o ANE

Xstde = Ystd, mMax (SU;BVG - y)2 =0 Vfﬂ,y S Xstdaystda
wadvET(ﬂ?)

Ep|[ max (x40 —2"6)%] = O}. (30)
Tav €T ()

Notice that for unlabeled components of the estimator, we assume access to the data distribution P and thus optimize the

population quantities.

As we show in the next subsection, we can rewrite the robust self-training estimator into the following reduced form, more
directly connecting to the general analysis of adding extra data X,y in min-norm linear regression.

Orst € al“ggﬂin {(9 - Him—sld)—rz(e - eint—std) : X = Ystd, Kexttd = O} (31)
for the appropriate choice of X, as shown in Section D.1. Here, we can interpret X as the difference between the
perturbed inputs and original inputs. These are perturbations which we want the model to be invariant to, and hence output
Zero.

D.1. Robust self-training algorithm in linear regression

We give an algorithm for constructing X, which enforces the population robustness constraints. Suppose we are given X,
the population covariance of P;. In robust self-training, we enforce that the model is consistent over perturbations of the
labeled data X4 and (infinite) unlabeled data. To do this, we add linear constraints of the form x;‘rive — 276 =0, where
Zaav € T'(z) for all z. We can view these linear constraints as augmenting the dataset with input-target pairs (zex, 0) where

Text = Tady — &. By assumption, x;tf)* = 0 so these augmentations fit into our data augmentation framework.

However, when we enforce these constraints over the entire population P, or when there are an infinite number of
transformations in 7'(x), a naive implementation requires augmenting with infinitely many points. Noting that the space of
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augmentations .y satisfying x ] 6* = 0 is a linear subspace, we can instead summarize the augmentations with a basis
that spans the transformations. Let the space of perturbations be 7" = U, cqupp(P,), w0 €7 (z) Tadv — . Note that this space of
perturbations also contains perturbations of the original data Xy if Xy is in the support of Ps. If Xy is not in the support
of P, the behavior of the estimator on these points do not affect standard or robust error. Assuming that we can efficiently

optimize over T, we construct the basis by an iterative procedure reminiscent of adversarial training.

1. Sett = 0. Initialize 0" = Ojp.sq and (Xexe)o as an empty matrix.

t

tq = arg maxmcleT(xT 6)2. If the objective is unbounded, choose any x!  such that

2. At iteration ¢, solve for x ext

x) 0t # 0.

ext

3160t 2t =0, stop and return (Xex):-

ext

4. Otherwise, add xﬁxt as a row in (Xex )¢ Increment ¢ and let 6¢ solve (31) with Xex = (Xex )t

5. Return to step 2.

In each iteration, we search for a perturbation that the current #" is not invariant to. If we can find such a perturbation, we
add it to the constraint set in (X.x):. We stop when we cannot find such a perturbation, implying that the rows of (Xex):
and X span 7. The final RST estimator solves (31) using Xy, returned from this procedure.

This procedure terminates within O(d) iterations. To see this, note that 6° is orthogonal to all rows of (X );. Any vector
in the span of (Xey); is orthogonal to 6%. Thus, if 6!zt # 0, then z,, must not be in the span of (Xex)¢. At most

d — rank(Xyq) such new directions can be added until (X )¢ is full rank. When (X, ) is full rank, GtTaréxt = 0 must hold
and the algorithm terminates.

D.2. Proof of Theorem 2

In this section, we prove Theorem 2, which we reproduce here.

Theorem 2. Assume the noiseless linear model iy = x 7 0*. Let Oin.a be an arbitrary interpolant of the standard data, i.e.
XaOintstda = Ysa- Then

Lstd (érsz) S Lstd(eint—std) .

Simultaneously, Lmb(ém) = Ls,d(ém).

Proof. We work with the RST estimator in the form from Equation (31). We note that our result applies generally to any
extra data Xy, Yext. We define Ygg = X s—trdXStd' Let {u;} be an orthonormal basis of the kernel Null(Xgq + X, ;:tXext) and
{v;} be an orthonormal basis for Null(Xq4) \ span({u;}). Let U and V' be the linear operators defined by Uw = ), u;w;

and Vw = Y, v;w;, respectively, noting that U "V = 0. Defining I}, := (I — EjtdEstd) to be the projection onto the null
space of X4, we see that there are unique vectors p, a such that

0* = (I -TL)0* +Up + Va. (32a)

As ;. interpolates the standard data, we also have

Oinesia = (I — E)0* +Uw + V2, (32b)
as XgqgUw = XV 2z = 0, and finally, R
Ot = (I —TIg)0* +Up+ VA (32¢)

where we note the common p between Eqgs. (32a) and (32c¢).

Using the representations (32) we may provide an alternative formulation for the augmented estimator (30), using this to
prove the theorem. Indeed, writing .5 — Ot = U(w — p) + V(2 — A), we immediately have that the estimator has the
form (32c¢), with the choice

A= argAmin {Uw—p)+V(z=N)"SUw-p)+V(z—N)}.
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The optimality conditions for this quadratic imply that
VISVA=2) =V 'SU(w - p). (33)

Now, recall that the standard error of a vector # is R(f) = (0 — 6*)T%(0 — 6*) = || — 9*||22, using Mahalanobis norm
notation. In particular, a few quadratic expansions yield

R(Oinesia) — R(Orst)
= lU(w = p) + V(z = a)lls = IV(A = a)lly
= lUGw = p) + Vs + [Valg —2U(w — p) + V) 'SVa ~ VA5 — [Val +2(VA) TEVa
DU - p) + V22 =2V )T SVa — VA2 +2(VA) Va
= [U(w = p) + V=[5 = [VAIS, 34)
where step (i) used that (U(w — p)) "2V = (V(X — 2)) TSV from the optimality conditions (33).
Finally, we consider the rightmost term in equality (34). Again using the optimality conditions (33), we have
VA = ATVISY2SY2(U(w - p) + Va) < VAl IU(w = p) + Vallg

by Cauchy-Schwarz. Revisiting equality (34), we obtain
VALl
IVAIL
VAR U~ p) + Vg

VAL

R(Onesa) — R(Ost) = |U(w — p) + V2|3 —

> |U(w - p) + Vz||n =0,

as desired.

Finally, we show that Lgq(60:st) = Lrob(rst). Here, choose Xy to contain at most d basis vectors which span {z,qy : Zagy €

T'(x),Vx € supp(Px)}. Thus, the robustness constraint Ep [max,,, c7(x) (a:aTdvérst — :Z}Térst)] = 0 is satisfied by fitting Xy
T

By fitting Xy, we thus have xadvérst — 270,y = 0 for all 2,qy € T(z),z € supp(F) up to a measure zero set of z. Thus,

the robust error is

Lrob(arst) = EPX[ max (x;l(—ivérst - ‘T;[lve*)Q] = EPX[(xTérst - xTe)] = Lstd(grst)

$ad\rejj(ﬂ?)
where we used that a:aTdVH* = 2" #* by assumption. Since Lmb(éml) > Lstd(érst), 0. has perfect consistency, achieving the
lowest possible robust error (matching the standard error). O

D.3. Different instantiations of the general RST procedure

The general RST estimator (Equation 10) is simply a weighted combination of some standard loss and some robust loss
on the labeled and unlabeled data. Throughout, we assume the same notation as that used in the definition of the general
estimator. X4, Ysia denote the standard training set and we have access to m unlabeled points z;,7 = 1,...m.

D.3.1. PROJECTED GRADIENT ADVERSARIAL TRAINING

In the first variant, RST + PG-AT, we use multiclass logistic loss (cross-entropy) as the standard loss. The robust loss is the
maximum cross-entropy loss between any perturbed input (within the set of tranformations 7°(+)) and the label (pseudo-label
in the case of unlabeled data). We set the weights such that the estimator can be written as follows.

érst+pg—al = argemin {1_,”)\ Z (1 - B)Z(fe(l”%y) + 3 g(f@(xadv>7y)

(ZE,y)E [Xsm,ysm]

+ Z(l = B fo(Z4), f5,, (i) + B L(fo(Zaavi), féx,d(i'i))}ﬂ (35)
i=1

3>

In practice, T4y is found by performing a few steps of projected gradient method on ¢( fy(x),y), and similarly Z,q4, by
performing a few steps of projected gradient method on £(fo (%), f3 (%))
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D.3.2. TRADES

TRADES (Zhang et al., 2019) was proposed as a modification of the projected gradient adversarial training algorithm
of (Madry et al., 2018). The robust loss is defined slightly differently—it -operates on the normalized logits, which can be
thought of as probabilities of different labels. The TRADES loss minimizes the maximum KL divergence between the
probability over labels for input « and a perturbaed input & € T'(x). Setting the weights of the different loss of the general
RST estimator (10) similar to RST+PG-AT above gives the following estimator.

érst+trades = argmin { (1 ; )\) Z f(fe(l‘), y) + 5 KL(p0<xadv)Hp9($))
? (2.9) € Kol
#2500 53, (2) + 8 KLipa(Ean g, (5) 36)

i=1

In practice, x4y and Z,qy are obtained by performing a few steps of projected gradient method on the respective KL
divergence terms.

E. Experimental Details
E.1. Spline simulations

For spline simulations in Figure 2 and Figure 1, we implement the optimization of the standard and robust objectives
using the basis described in (Friedman et al., 2001). The penalty matrix M computes second-order finite differences of the
parameters 6. We solve the min-norm objective directly using CVXPY (Diamond & Boyd, 2016). Each point in Figure 1(a)
represents the average standard error over 25 trials of randomly sampled training datasets between 22 and 1000 samples.
Shaded regions represent 1 standard deviation.

E.2. RST experiments

We evaluate the performance of RST applied to /., adversarial perturbations, adversarial rotations, and random rotations.

E.2.1. SUBSAMPLING CIFAR-10

We augment with ¢, adversarial perturbations of various sizes. In each epoch, we find the augmented examples via
Projected Gradient Ascent on the multiclass logistic loss (cross-entropy loss) of the incorrect class. Training the augmented
estimator in this setup uses essentially the adversarial training procedure of (Madry et al., 2018), with equal weight on both
the “clean” and adversarial examples during training.

We compare the standard error of the augmented estimator with an estimator trained using RST. We apply RST to adversarial
training algorithms in CIFAR-10 using 500k unlabeled examples sourced from Tiny Images, as in (Carmon et al., 2019).

We use Wide ResNet 40-2 models (Zagoruyko & Komodakis, 2016) while varying the number of samples in CIFAR-10.
We sub-sample CIFAR-10 by factors of {1, 2, 5,8, 10,20, 40} in Figure 1(a) and {1, 2,5, 8,10} in Figure 1(b). We report
results averaged from 2 trials for each sub-sample factor. All models are trained for 200 epochs with respect to the size of
the labeled training dataset and all achieve almost 100% standard and robust training accuracy.

We evaluate the robustness of models to the strong PGD-attack with 40 steps and 5 restarts. In Figure 1(b), we used a simple
heuristic to set the regularization strength on unlabeled data A in Equation (35) to be A = min(0.9, p) where p € [0, 1] is the
fraction of the original CIFAR-10 dataset sampled. We set 8 = 0.5. Intuitively, we give more weight to the unlabeled data
when the original dataset is larger, meaning that the standard estimator produces more accurate pseudo-labels.

Figure 9 shows that the robust accuracy of the RST model improves about 5-15% percentage points above the robust model
(trained using PGD adversarial training) for all subsamples, including the full dataset (Tables 2,3).

We use a smaller model due to computational constraints enforced by adversarial training. Since the model is small, we
could only fit adversarially augmented examples with small e = 2/255, while existing baselines use ¢ = 8/255. Note that
even for e = 2/255, adversarial data augmentation leads to an increase in standard error. We show that RST can fix this.
While ensuring models are robust is an important goal in itself, in this work, we view adversarial training through the lens of
covariate-shifted data augmentation and study how to use augmented data without increasing standard error. We show that
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Figure 9. (a) Difference in robust error between the RST adversarial training model and the vanilla adversarial training (AT) model for
CIFAR-10. RST improves upon the robust error of the AT model by approximately a 15% percentage point increase for small subsamples
and 5% percentage point increase for larger subsamples of CIFAR-10. (b) Relative difference in standard error between augmented
estimators (the RST model and the AT model) and the standard estimator on CIFAR-10. We achieve up to 20% better standard error than
the standard model for small subsamples.

Standard AT RST+AT

Standard Acc 94.63% 94.15%  95.58%
Robust Acc (¢ = 1/255) - 85.59%  88.74%

Table 2. Test accuracies for the standard, vanilla adversarial training (AT), and AT with RST for e = 1/255 on the full CIFAR-10 dataset.
Accuracies are averaged over two trials. The robust accuracy of the standard model is near 0%.

RST preserves the other benefits of some kinds of data augmentation like increased robustness to adversarial examples.

E.2.2. /oo ADVERSARIAL PERTURBATIONS

In Table 1, we evaluate RST applied to PGD and TRADES adversarial training. The models are trained on the full CIFAR-
10 dataset, and models which use unlabeled data (self-training and RST) also use 500k unlabeled examples from Tiny
Images. All models except the Interpolated AT and Neural Architecture Search model use the same base model WideResNet
28-10. To evaluate robust accuracy, we use a strong PGD-attack with 40 steps and 5 restarts against ¢, perturbations of size
8/255. For RST models, we set 5 = 0.5 in Equation (35) and Equation (36), following the heuristic A\ = min(0.9, p) with
p = 1 since we use the entire labeled trainign set. We train for 200 epochs such that 100% training standard accuracy is
attained.

E.2.3. ADVERSARIAL AND RANDOM ROTATION/TRANSLATIONS

In Table 1 (right), we use RST for adversarial and random rotation/translations, denoting these transformations as x,qy in
Equation (35). The attack model is a grid of rotations of up to 30 degrees and translations of up to ~ 10% of the image size.
The grid consists of 31 linearly spaced rotations and 5 linearly spaced translations in both dimensions. The Worst-of-10
model samples 10 uniformly random transformations of each input and augment with the one where the model performs the
worst (causes an incorrect prediction, if it exists). The Random model samples 1 random transformation as the augmented
input. All models (besides cited models) use the WRN-40-2 architecture and are trained for 200 epochs. We use the same
hyperparameters A, 3 as in E.2.2 for Equation (35).

F. Comparison to standard self-training algorithms

The main objective of RST is to allow to perform robust training without sacrificing standard accuracy. This is done by
regularizing an augmented estimator to provide labels close to a standard estimator on the unlabeled data. This is closely
related to but different two broad kinds of semi-supervised learning.

1. Self-training (pseudo-labeling): Classical self-training does not deal with data augmentation or robustness. We view
RST as a a generalization of self-training in the context of data augmentations. Here the pseudolabels are generated
by a standard non-augmented estimator that is not trained on the labeled augmented points. In contrast, standard
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Standard AT RST+AT

Standard Acc 94.63%  92.69% 95.15%
Robust Acc (e = 2/255) - 77.87%  83.50%

Table 3. Test accuracies for the standard, vanilla adversarial training (AT), and AT with RST for € = 2/255 on the full CIFAR-10 dataset.
Accuracies are averaged over two trials. The robust test accuracy of the standard model is near 0%.

self-training would just use all labeled data to generate pseudo-labels. However, since some augmentations cause a
drop in standard accuracy, and hence this would generate worse pseudo-labels than RST.

2. Robust consistency training: Another popular semi-supervised learning strategy is based on enforcing consistency in a
model’s predictions across various perturbations of the unlabeled data (Miyato et al., 2018; Xie et al., 2019; Sajjadi
et al., 2016; Laine & Aila, 2017)). RST is similar in spirit, but has an additional crucial component. We generate
pseudo-labels first by performing standard training, and rather than enforcing simply consistency across perturbations,
RST enforces that the unlabeled data and perturbations are matched with the pseudo-labels generated.

G. Minimum /;-norm problem where data augmentation hurts standard error

We present a problem where data augmentation increases standard error for minimum ¢; -norm estimators, showing that the
phenomenon is not special to minimum Mahalanobis norm estimators.

G.1. Setup in 3 dimensions

Define the minimum #;-norm estimators

Osa = argmein{Heﬂl : Xgat = ysld}

éaug = arg Hl()ln{Ho”l : Xstdo = ystdyXexla = yext}-

We begin with a 3-dimensional construction and then increase the number of dimensions. Let the domain of possible values
be X = {x1,X2,x3} where

x1=[146,1,0], x2=10,1,1446], x3=[1+4,0,1].
Define the data distribution through the generative process for the random feature vector x
X3 wp.l—p
X =4 Xg Wp.e¢€
X3 Wp.p—€

where 0 < 6 < 1 and € > 0. Define the optimal linear predictor §* = 1 to be the all-ones vector, such that in all cases,
x ' 0* = 2 + §. We define the consistent perturbations as

{x1,%x2} € {x1,%x2}

T(@) = {{Xg} o.w.

The augmented estimator will add all possible consistent perturbations of the training set as extra data X.x. For example, if
x1 is in the training set, then the augmented estimator will add xo as extra data since xp € T'(x1). The standard error is
measured by mean squared error.

We give some intuition for how augmentation can hurt standard error in this 3-dimensional example. Define F; to be the
event that we draw n samples with value x;. Given E, the standard and augmented estimators are
p 2496
std —

1—1—6’0’0] , Oag =10,2+6,0]. (37)
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Note that the éaug has slightly higher norm (||9Aaug lh=24+6> ?—ig = Hésthl). Since X3Téaug = ( in this case, the squared
error of éaug wrt to X3 18 (XgTéaug —2+6)% = (2+ 9)2. The standard estimator fits x3 perfectly, but has high error on
xg. If the probability of E; occurring is high and the probability of x3 is higher relative to x2, then the éaug will have high
standard error relative to éstd- Here, due to the inductive bias that minimizes the /; norm, certain augmentations can cause
large changes in the sparsity pattern of the solution, drastically affecting the error. Furthermore, the optimal solution 6*
is quite large with respect to the ¢; norm, satisfying the conditions of Proposition 1 in spirit and suggesting that the /4

inductive bias (promoting sparsity) is mismatched with the problem.

G.2. Construction for general d

We construct the example by sampling x in 3 dimensions and then repeating the vector d times. In particular, the samples
are realizations of the random vector [X; X; X; . . . ; x| which have dimension 3d and every block of 3 coordinates have the
same values. Under this setup, we can show that there is a family of problems such that the difference between standard
errors of the augmented and standard estimators grows to infinity as d, n — oco.

Theorem 4. Let the setting be defined as above, where the dimension d and number of samples n are such that n/d — v
approaches a constant. Let p = 1/d?, ¢ = 1/d3, and § be a constant. Then the ratio between standard errors of the
augmented and standard estimators grows as

= Q(d) (38)
as d,n — oo.

Proof. We define an event where the augmented estimator has high error relative to the standard estimator and bound the
ratio between the standard errors of the standard and augmented estimators given this event. Define F; as the event that
we have n samples where all samples are [x1;X1;...;X1]. The standard and augmented estimators are the corresponding
repeated versions

- 2490 240

std = m’()’())---’m’o)o ) éaug:[0’2+670a"'70a2+670]' (39)

The event E; occurs with probability (1 — p)™ 4 (p — €)™. It is straightforward to verify that the respective standard errors
are

Lstd(ésld | El) = 6d2(2 + 5)27 Lstd<éaug ‘ El) = (p - €)d2<2 + 6)2
and that the ratio between standard errors is

Lstd(éaug | El) _b—¢€

Lya(fsa | Er) €

The ratio between standard errors is bounded by

led(éaug) _ Z P(E) Lstd( aug | E)
led(gstd) EE{ELEf} Lstd(gsld | E)
> P(El)Lstd(eAaug | El)
Lstd(gsld | El)

(1=p)"+(p -9 (=)

> (1= p)"(d =1
> (- H)d-1)
:d—%—l—i—%zﬂ(d)

as n,d — oo, where we used Bernoulli’s inequality in the second to last step. O



