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Abstract—When a security vulnerability or other critical bug
is not detected by the developers’ test suite, and is discovered
post-deployment, developers must quickly devise a new test
that reproduces the buggy behavior. Then the developers need
to test whether their candidate patch indeed fixes the bug,
without breaking other functionality, while racing to deploy
before cyberattackers pounce on exposed user installations. This
can be challenging when the bug discovery was due to factors
that arose, perhaps transiently, in a specific user environment.
If recording execution traces when the bad behavior occurred,
record-replay technology faithfully replays the execution, in the
developer environment, as if the program were executing in
that user environment under the same conditions as the bug
manifested. This includes intermediate program states dependent
on system calls, memory layout, etc. as well as any externally-
visible behavior. Many modern record-replay tools integrate bug
reproduction with interactive debuggers to help locate the root
cause, but how do developers check whether their patch indeed
eliminates the bug under those same conditions?

State-of-the-art record-replay does not support replaying can-
didate patches that modify the program in ways that diverge
program state from the original recording, but successful repairs
necessarily diverge so the bug no longer manifests. This work
builds on record-replay, and binary rewriting, to automatically
generate and run tests for candidate patches. These tests reflect
the arbitrary (ad hoc) user and system circumstances that
uncovered the vulnerability, to check whether a patch indeed
closes the vulnerability but does not modify the corresponding
segment of the program’s core semantics. Unlike conventional
ad hoc testing, each test is reproducible and can be applied
to as many prospective patches as needed until developers are
satisfied. The proposed approach also enables users to make new
recordings of her own workloads with the original version of the
program, and automatically generate and run the corresponding
ad hoc tests on the patched version, to validate that the patch
does not introduce new problems before adopting.

Index Terms—test generation, software patching, record-
replay, binary rewriting, security vulnerabilities

I. INTRODUCTION

When a security vulnerability or other critical bug is not

detected by the developer test suite prior to deployment [1],

but reported after deployment, it can be difficult and time-

consuming for developers to construct new tests that reproduce

the bug. Furthermore the new tests need to verify that candi-

date patches do not exhibit the same or similar buggy behavior.

Although minimizing the time from bug discovery to patch

release is of the essence, users are wary of rushed patches,

since they may break mission-critical functionality [2]. How-

ever, user validation is also difficult and time-consuming.

Fig. 1. Ad hoc Test Generation Concept

The existence of the Common Vulnerabilities and Exposures

(CVE) list for security vulnerabilities [3] and mundane user

bug reports [4], [5] demonstrate that not all bugs are discovered

by developer tests. While vulnerability disclosures and bug

reports sometimes include an explicit test sufficient both to

reproduce the bug and to verify patches [6], [7], it is common

for no such test to be known [8]. But disclosures and other

bug reports often do include some evidence of the bug, such

as memory dumps, stack traces, system logs, error messages,

screenshots, and so on.

This paper presents a novel approach for rapidly generating

new tests that reproduce the bug, support debugging, and

verify that candidate patches do not exhibit buggy behavior,

when the bug report includes a detailed execution trace as

evidence of the bug. The approach even aids user validation

of released patches.

The problem is illustrated abstractly in Figure 1. The top

shows the original execution trace where the bug manifests.

The bottom shows a test automatically generated from that

execution trace. If this test is applied to the same code that

produced the original execution trace, the execution will be the

same. If the test is applied to modified code, i.e., patched to

try to fix the bug, it should execute as if the modified code had

been running in the user context instead of the original code.

If the patch successfully fixes the bug, then this execution will

not manifest the bug.

We refer to this concept as ad hoc test generation because

the generated test emulates whatever user context manifested

the bug. We emphasize that ad hoc test generation is intended

only for urgent time-crunch situations, when there are no ex-

isting developer tests that detect the bug and careful planning

and design of new developer tests would take too long. Ad

hoc test generation is feasible when execution trace divergence

is small, analogous to Tucek et al’s “delta execution” [9],

whose large-scale study of patch size found that security and

other patches solely to fix bugs tend to be modest in size



and scope, rarely changing core program semantics, shared

memory layout or process/thread layout.

The premise of record-replay technology is that there are

behaviors that manifest in the user environment that cannot

be reproduced by simply running the program with known

inputs in the developer environment. If there are such known

inputs, ad hoc testing is easy – just run the program with those

inputs. This paper addresses more complicated scenarios.

Current record-replay technology replays the recorded ex-

ecution trace with the original code. Record-replay tools

faithfully reproduce not just the externally visible manifes-

tation of the bug but also the intermediate program states

for the developer to inspect, single-step, etc. in an interactive

debugger or via inserted debugging statements. Current record-

replay systems do not support testing prospective patches that

modify the program in ways that change those intermediate

program states.

We have developed a novel ad hoc test generation

tool, ATTUNE (Ad hoc Test generation ThroUgh biNary

rEwriting). Instead of requiring developers to build doubles,

mocks or other test scaffolding to fake the user environment

for its tests, ATTUNE builds on existing record-replay tools:

It emulates the original execution context, including external

inputs, environment variables, the results of system calls,

network connections, and the accessed portions of the file

system, databases and other local resources as they were

at the time the exploit or bug manifested. Unlike existing

record-replay tools, ATTUNE leverages binary rewriting [10]

to modify the original executable at load-time to insert the

patched functions from the modified executable, and then

interprets the recorded log to manipulate the test emulation

as it executes the patched functions. Inserting the patched

functions into the original binary results in an execution that

perfectly matches the recorded log until divergence when the

first patched function is reached. Continuing the execution

beyond this point enables the developer to assess whether a

candidate patch indeed fixes the bug.

ATTUNE leverages two key insights: Our first key insight is

that the symbol tables resident in Linux ELF files, intended for

linking relocatable code, provide points of reference between

original and patched versions. Thus each patched function

can replace the corresponding original function and access the

same global variables and strings. New functions, etc. can also

be accessed by patched functions. Our second key insight is

the recorded log of the original execution trace does not need

to be replayed verbatim in order. Instead, events in the log

can be skipped or swapped, and new events can be derived on

the fly from those in the log, to match the changes in patched

functions.

ATTUNE follows the workflow illustrated in Figure 2 to

generate an ad hoc test for candidate patches that is faithful

to the execution trace recorded in the user environment.

Since ATTUNE requires detailed traces that would impose

too much time and space overhead for always-on recording

in user environments, we envision that always-on recording

is performed by a lightweight record-replay mechanism like

Fig. 2. ATTUNE Workflow

Castor [11]. Then when user observation, analysis, monitoring,

etc. determines that a lightweight trace manifests a security

vulnerability or other bug, then that trace is replayed (of-

fline from production but still in the user environment) and

simultaneously re-recorded (analogous to Crosscut [12]), by

ATTUNE’s verbose recorder.

Our initial ATTUNE prototype builds on the rr open-

source record-replay tool [13]–[15] from Mozilla as the ver-

bose recorder. (The authors of this paper are not affiliated

with the rr developers or Mozilla.) We did not modify rr’s

recorder and use it as-is to produce detailed execution traces

during re-recording. We made substantial modifications to

rr’s replayer subsystem to generate and run ad hoc tests

for prospective patches. rr runs without privileges in user-

space on commodity hardware and operating system, assuming

commodity compiler, libraries, etc., with no changes to the

application’s programming language code or executable files.

ATTUNE likewise runs without privileges in user-space, with

conventional hardware, operating system, compiler, libraries,

etc. and no changes to the application. ATTUNE’s binary

rewriting modifies the application executable only at load-time,

i.e., in memory, not the executable file(s). While the technical

details of our binary rewriting mechanisms are specific to our

modification of rr’s replayer, ad hoc test generation is not, and

in principle ATTUNE prototypes could be built on any record-

replay technology that supports sufficiently detailed execution

traces.

Unlike third-party website-session script recordings [16],

the user or a background user-organization process must initi-

ate re-recording and submit the re-recorded traces to develop-

ers; neither ATTUNE nor rr runs surreptitiously. To address the

privacy concerns inherent in all bug-report systems that send

information gathered in the user environment to the developer,

sensitive data could be anonymized during this offline process

(see [17]–[19]), and only the detailed but anonymous trace sent

to developers, but this is not implemented in the prototype.

Our requirements for verbose execution traces and the tech-

nical details of our binary rewriting techniques are explained

in Section II. Our evaluation in Section III describes how a

developer would use ATTUNE to test candidate patches for a

variety of security vulnerabilities and bugs from well-known

open-source projects. Section III also gives an example where

the user records their own workload with the original program
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Fig. 3. Recording and Preparation for Ad Hoc Test Generation

and replays with the modified program to convince themselves

that the bug has been fixed and the patch does not break other

behavior. Section IV compares ad hoc test generation to related

work.

The contributions of this paper are:

• An approach to leveraging record-replay technology and

binary rewriting to generate ad hoc test cases to exercise

candidate patches as if they had been executing in the user

context, instead of the previous buggy version, when the

bad behavior was originally recorded.

• A technique for adding developer environment metadata

to patch releases, enabling users to validate patched

versions with their own workloads by (re-)recording with

the old version and replaying with the new version.

• An open-source prototype implementation, portable

across Linux distributions running on x86-64. This pa-

per’s final version will include a link to our github repos-

itory containing ATTUNE’s open-source implementation

and documentation.

II. ARCHITECTURE AND DESIGN

Our ad hoc test generation workflow constitutes four main

procedures: recording, static preprocessing, load time quilt-

ing and the runtime replay decisions, which we describe in

turn. Recording and the two preparation stages are shown in

Figure 3, with runtime depicted later on in Figure 11.

A. Recording

We assume production recording with the user’s choice

of lightweight tool and, when warranted by some external

mechanism that detects an error or exploit, offline replaying

that tool’s recording while re-recording with rr’s recorder as

in Figure 2. Instead of rr, any other recording engine that

constructs sufficiently verbose traces would suffice, but we do

not know of any actively-supported open-source alternatives.

Specifically, the trace must provide the details needed for

ATTUNE to recreate the successive register contents and

memory layouts leading up to when the bug manifested. Thus

--- a/pngrutil.c // file info

+++ b/pngrutil.c

@@ -3167,10 +3167,13 @@ png_check_chunk_length(...) { //function intfo

...

- (png_ptr->width * png_ptr->channels // source changes

...

+ (size_t)png_ptr->width

+ * (size_t)png_ptr->channels

Fig. 4. libpng-bug-1 Abbreviated Example Patchfile

182: 0000000000003fe0 56 FUNC GLOBAL DEFAULT 1 png_check_chunk_name

//buggy function

183: 0000000000004020 221 FUNC GLOBAL DEFAULT 1 png_check_chunk_length

184: 0000000000004100 172 FUNC GLOBAL DEFAULT 1 png_read_chunk_header

Fig. 5. libpng-bug-1 Symbol Table Entries

the recorded sequence of events must include register values

before and after system calls, files that are mmapped into

memory, and points at which thread interleaving and signal

delivery occur during execution.

B. Static Preprocessing

Source Code and Binary Preprocessing. An abbreviated

example patchfile from a libpng bug fix [20] is shown in

Figure 4. Patchfiles document which files changed, which

function in the file changed, and which lines within that

function were inserted and deleted. Patchfiles are created with

a standard format so we are not limited to a single diff

implementation.

Dwarf Information & Symbol Table. Patch files don’t

provide any information about the resulting binary. Since the

recorded trace relies on binary/OS level information (register

values, pointers, file descriptors, thread ids etc.), we need to

translate from changes in the source to changes in the binary.

Two mechanisms within the binary allow for this translation.

The first is the symbol table standard in all ELF files and

the 2nd is DWARF information. The key insight is that the

symbols act as a point of reference between the old and

the modified binaries. They remain unchanged even if their

addresses and references change. After processing the patchfile

we use the symbol tables to find the locations of functions and

global variables, and we use DWARF information for finding

changed lines and identifying source files. These two sources

combined contain all the information in the source level diff

at the binary level. Refer to Figures 5 and 6 for concrete

examples.

Most real world projects create multiple binaries and as-

sociated libraries when building so it may be unclear which

binary contains the associated change. In order to generalize

to sophisticated build processes ATTUNE uses DWARF infor-

mation to search through all re-compiled binaries to find the

modified file.

Pre-Load Steps for Quilting. Once the function and line

addresses have been resolved via the procedure described

above, and a prospective patched binary has been compiled we

can generate our test code. In order for the newly compiled

...

<c> DW_AT_producer : (indirect string, offset: 0x1d90): GNU C11 7.4.0 ...

<10> DW_AT_language : 12 (ANSI C99)

<11> DW_AT_name : (indirect string, offset: 0x1c8e): pngrutil.c

...

0x0000402b [3156, 0] NS // address to line number table

0x0000403a [3166, 0] NS

0x00004046 [3182, 0] NS

Fig. 6. libpng-bug-1 Relevant DWARF Line Entries
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Fig. 7. Address Space Detail

patched code to remain a viable test case, it must maintain the

binary context of the original code. While most of the binary

context remains unchanged, code pointers and data pointers

that point somewhere inside the modified functions or that

point from the modified functions to any location outside of the

modified binary must updated accordingly. To create the most

accurate test we point to the original binary context wherever

possible. In order to fully integrate the patched code with the

recording, references to shared libraries must point to where

the shared libraries were loaded in the recording, references

to places in the modified section of the code must point to

the appropriate place in the patched code, and references

to unmodified contents of the patched binary must point to

the appropriate place in the original binary as illustrated in

Figure 7.

In order to prepare for load time quilting resolution (ex-

plained shortly), static reference identification needs to occur

for bookkeeping purposes. The patched function is scanned

for all symbol references that need to be resolved to integrate

with the recorded context. Some references like references

to locations within the modified function (e.g.jump and con-

ditional jump instructions) can remain unaltered in position

independent code. So after all references are accounted for,

they are trimmed to the subset of references that need to be

changed during the quilting procedure. This includes refer-

ences to strings, shared library functions, functions that only

exist in either the original or the modified binary, functions

that exist in both, procedure linkage table (PLT) entries, and

global variables. Since symbols are the points of reference

between original and patched binaries because recompilation

renders addresses meaningless, references to be resolved are

defined as a symbol and an offset from that symbol.

C. Load Time Quilting

Loading Replication & Custom ATTUNE loading. In

modern Linux systems the system loader is responsible for

parsing the executable’s header, loading it into memory, and

dynamic linking. Since shared libraries are not always loaded

at the same positions, references related to the global off-

set table (GOT), and procedure linkage table (PLT) cannot

be resolved until after loading completes. So even though

ATTUNE knows which references need resolution pre-load,

Fig. 8. Pointer Translation Procedure

it can’t actually resolve those references until load time. In

order to preserve the integrity of the replay, all required

shared libraries, executables, and system libraries must be

loaded into the recorded memory locations. Shared libraries

and executables required for replay are included in the trace,

and non-recorded libraries loaded during replay are limited to

the system loader which is required at the start of any process.

In order to replicate the recorded loading activity ATTUNE

begins by loading a small entry point program (replay hook)

which hijacks execution from the system loader and begins the

replay process. As mentioned earlier, some references in the

patched code can’t be resolved until the original code is loaded

into memory so initially loading replicates exactly what was

recorded. Once the original segments are loaded into memory

and GOT/PLT relocations are completed ATTUNE resolves

remaining references in the patched code (described below).

Finally, ATTUNE’s loader loads the quilted code after finding

an appropriate place to put it. Note quilting has to be repeated

on every replay, and the files containing the original and

patched executables are not modified. The loader searches the

address space for the lowest slot large enough to accommodate

all of the patched code, then loads the patch following the

Linux loading conventions. Figure 7 depicts the address space

when loading has completed.

Address Translation Procedure. A summary of the pro-

cedure to translate pointers from the context of the modified

binary to the context of the original binary is given in Figure 8,

and consists of both pre-load and load-time actions. The

process starts from the address of the modified function as

determined from the patchfile and DWARF processing. The

modified function is scanned for references. When a reference

is identified, if the pointer is effected by the quilting process

then ATTUNE’s translation procedure corrects the pointer. The

log messages in 9 explain the process in detail. An instruction

in the patched binary at 0x1b214 points to 0xaa60. In

order to update the instruction to point to the same position

in the original binary we need to identify the correct symbol

and offset in the original. First we convert the target address

0xaa60 into a symbol and offset in the patched binary.

Since this instruction is just calling a function, the target

symbol is the function name and the target offset is 0. Then

ATTUNE searches the original binary for the same symbol

and offset, and in this case the function was generated at the

same address in original binary. Resolving string references,

global variable references, and PLT references require slightly
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Linking function: png_check_chunk_length

in module pngutil

Updating Instruction Reference

from [0x1b214] to [0xaa60]

//identifying reference point

Target Symbol: png_chunk_error

Offset From Symbol: 0

Symbol Location in original binary:

0xaa60

//target address in the original binary

Target Address: 0xaa60

...

//patch references string

Resolving string reference at: 0x1b2cd

Resolving offset ...

for "chunk data is too large"

//identified string in original binary

Found string: "chunk data is too large"

at 0x320e

... module pngutil code found at 0x000000

... module pngutil data found at 0x200000

... generating quilted code

Fig. 9. libpng-bug-1 abbreviated linking example

different procedures and are described below. Finally the

patched code is generated with instructions pointing to the

correct locations at runtime.

PIC Code, PLT Entries & Trampolines. Position indepen-

dent code compilation has become the standard for security

and efficiency reasons so modern binaries can be loaded

anywhere in the address space. As a result the locations

of external functions and symbols aren’t known until those

symbols actually exist in the address space. Since most library

functions aren’t called they aren’t all resolved at load time,

and instead are only resolved after they are called. The

procedure linkage table (PLT) acts as a table of tiny functions

that perform a function lookup and trampoline to where the

code for external functions are defined. Unfortunately for

our purposes we can’t rely on a PLT because the system

loader which performs the runtime function resolution doesn’t

know about ATTUNE’s special memory configuration. Two

key differences let us implement static trampolines instead of

relying on the traditional PLT mechanism. 1)We only need to

resolve the PLT entries that are referenced by the modified

code which comprise a small fraction of the overall PLT, and

2) we can resolve these beforehand without relying on the

PLT’s lazy loading mechanism because the shared libraries

have already been loaded by the time this code is injected. The

x86 64 architecture only allows call instructions with a 32-bit

offset, but we need to call functions across the 64-bit address

space to reference shared library functions. To accomplish this

we transform calls to PLT entries into a move instruction that

loads an address into a register, and then a call instruction to

the address in the register. An example transformation is in

Figure 10.

Resolving String & Data Sections. Other than references

to code sections the patched code may reference data section

Fig. 10. PLT Transformation

Fig. 11. Runtime Architecture

variables like global data and strings. The patched code must

reference the old code where possible and the patched code

where required. Identical symbols and strings function as

a point of reference between the modified and the original

binary.

These translations can be done as described in Figure 8, with

a few minor differences. String tables don’t have an associated

symbol table. The modifed code references the string directly,

but to lookup the location of a specific string in the original, we

have to iterate through all of the read-only data. If the string

exists in the original binary then we point at it, otherwise

ATTUNE points to the appropriate location in the new data

section.

To accomplish this another small transformation must take

place. The compiler accesses data through a global offset table

entry, but cannot use it because the global offset table was

compiled for the modified code. Instead ATTUNE points to

the data directly since at code generation time it knows where

the data has been loaded.

D. Runtime Replay Decisions

The runtime architecture is shown in Figure 11. At runtime

we continue to leverage developer environment information

to aid ATTUNE’s decision making, e.g., we know exactly

which functions have been modified and perform a strict replay

until a modified function is called. We break at that point and

move to the patched code where we use information about

added or deleted lines to inform decision making. For any

non-deterministic event that takes place during replay, we must

decide whether to use a corresponding event recorded in the

log or to actually submit the event for operation by the kernel,

i.e., execute live as would be required if the inserted code

makes a new system call. We emulate kernel state and kernel
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Result getResult(event) {

if(!diverged) return next_recorded_result;

if (is_syscall_without_file_io

&& exists unused in log)

return recorded_result;

if (is_syscall_with_file_io &

& supported_recorded_operation)

return recorded_result;

if (is_signal && signal_is_recorded) {

if ( current_pos == inserted code )

return execute_live();

else return

delay_signal_until

_recorded_RCB_count();

}

return execute_live();

}

Fig. 12. Runtime Decision Algorithm

events whenever possible, and only ask the kernel to perform

the replaying action when necessary, following the greedy

approach shown by the pseudocode in Figure 12. It should

be noted that system calls which depend on process state like

malloc, and mmap don’t require emulation since this state is

actually recreated during replay. All file operations performed

during replay are based on the information available from the

recorded trace, essentially recreating how the program would

have acted at the time of the bug except now (for successful

patches) without the bug. If there is no appropriate information

available, the emulation ends.

System Calls. The simplest event types to replay are system

calls that don’t involve file IO. We can reuse results from the

log if the parameters for the syscall match what is in the log.

It won’t match the log exactly since the log contains checks

for all registers including the instruction pointer which is

obviously different, but we relax these checks once replay has

diverged to only check registers containing syscall parameters.

File IO. System calls involving file IO such as any operation

involving a file descriptor including network or device IO are

harder to replay since they require a specific kernel state.

We have to actually recreate the file state as best we can so

we track open, close, stat, read, write, and seek

operations for all file descriptors during replay. At the point

the replay diverges we have a partial view of the file system. Of

course we can’t recreate any data that doesn’t exist, but if a file

operation can’t be satisfied during replay we can look forward

in the recorded trace to see if we have enough information

to satisfy the operation. If we do then we emulate it, and

unfortunately if we don’t we have to die. Another approach

would be to supply random bytes, but we feel this wouldn’t

accurately reflect a realistic state if the full file system were

available.

Signal Delivery. If a signal is intercepted by the emulation

engine, we need to decide if that signal should be delivered

to the replaying process. Our normal replay mechanism based

on rr’s replay mechanism determines when to deliver signals

based on the value of the retired conditional branches (RCB)

performance counter standard in Intel chips. For signals that

have been recorded based on signal type, we check if we

are in an inserted line. If we are then we deliver the signal

and assume it’s created by the patch (e.g.a segfault from

an incorrect memory reference in the patch). However if a

recorded signal is delivered and we are not currently in the

inserted section of the code we can do our best to estimate

at what RCB count it should be delivered by taking the

target RCB count and adding the number of RCB’s caused

by inserted lines. While this isn’t perfect it does allow for

a rough idea as to when the signal should be delivered. In

the event an unrecorded signal fires we allow that signal to

be delivered without interference since there is no recorded

timing information to guide delivery.

E. Limitations

ATTUNE relies on rr as-is to record the execution trace

and to replay that recording with the original version of the

program [13]–[15]. Since rr was designed to be used during

developer testing, with too high overhead for production [13],

we adopt the re-recording model shown in Figure 2. In theory,

lightweight production recorders could fail to capture sufficient

detail to faithfully replay some behaviors even in the same user

environment, but Mashtizadeh et al [11] explain this limitation

is generally unimportant in practice.

Neither ATTUNE nor rr provide any special support, be-

yond interactive debugging (rr integrates with gdb) that helps

developers locate and understand the root cause of the bug

sufficiently to develop successful patches. There are other tools

available for that purpose [21]–[23]. ATTUNE’s role is to

test the developer’s candidate patches as if they had been in

place in the user context where the security vulnerability was

discovered.

Our ATTUNE prototype inherits other limitations of rr.

Most notably, rr runs the recording on a single thread during

replay, so replayed parallel programs incur the slowdown

of a single core [13], [14]. ATTUNE accommodates thread

synchronization, and faithfully emulates the error state, but

because rr simulates thread interleavings by interrupting a

single thread execution, ATTUNE cannot accurately verify

patches for concurrency bugs.

Independent of rr limitations, ATTUNE also does not sup-

port changes to data structures, e.g., changing the size of a

struct on the stack or in the heap, that would require changes

to memory allocation. ATTUNE does not verify patches to

preprocessor macros. Since macros are inserted inline when

executables are generated; there are no associated symbols so

a macro cannot be replaced in the same way that ATTUNE

replaces functions.

III. EVALUATION

We evaluated ATTUNE on a Dell OptiPlex 7040 with Intel

core i7-6700 CPU at 3.4GHz with 32GB memory, running

Ubuntu 18.04 64bit, using gcc/g++ version 7.4.0 and python

3.4.7. ATTUNE is built using CMake version 3.10.2 and Make

version 4.1. This paper’s final version will include a link
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Bug Success

or

Failure

Patching Effort Files

Modi-

fied

LOC

Changed

curl-1 [24] X Changes how a string is parsed 1 16+, 16-

curl-2 [25] X Changes functions arguments and call. 4 9+, 9-

curl-5 [26] X Modified if statement for buffer overflow 1 4+, 1-

curl-6 [27] X Added new function and inserted call 1 55+, 8-

curl-8 [28] ✗ Changes multiple functions calling a write function 4 17+, 17-

curl-9 [29] X Change parameters to a function call 1 2+,1-

curl-10 [30] X Adds a condition check 1 6+, 2-

curl-11 [31] X Off by 1 correction 1 1+, 1-

curl-12 [32] X Changes libc calls to add extra parsing 1 5+, 5-

libpng-1 [20] X Calculation modification for divide by 0 error 1 6+, 3-

libpng-2 [33] X Adjust calculation for idat chunk max 3 13+, 13-

wc-1 [34] X Added new function and changed condition check 1 23+, 2-

wc-2 [35] X Added error condition check 1 3+, 0-

yes-1 [36] X Substantial changes in option parsing 15 40+, 141-

shred-1 [37] ✗ Removed a break statement 1 1+, 1-

ls-1 [38] X Added condition for change in option parsing 1 1+, 2-

mv-1 [39] X Adding a conditional check before operation 2 6+, 0-

df-1 [40] X Replacing open calls with stat calls 2 12+,8-

bs-1 [41] X Changing a loop condition 1 2+, 1-

wget-1 [42] X Adding conditional check for log 1 1-, 2+

redis-1 [43] X Adding conditional check 1 1+, 1-

Fig. 13. Patch-Testing Dataset

to our github repository containing ATTUNE’s open-source

implementation and documentation.

Since we want to evaluate ATTUNE on an unbiased se-

lection of patches for both security vulnerabilities (CVEs)

and other kinds of bugs, and know of no benchmark that

provides user environment execution traces or scripts to set

up the user context for recording traces, we recruited (for

one semester of academic credit) an independent challenge

team of three graduate students who were not involved in

developing ATTUNE nor versed in how it works. They were

tasked to identify a diverse collection of around 20 bugs in

widely used C/Linux programs. The bugs had to be patched

2016–2019 and the students had to construct user contexts

that demonstrated the buggy behavior. For example, in order

to recreate the circumstances leading up to the redis-1 bug,

first one needs to run the server with a specific configuration,

connect to the server in MONITOR mode, and then send a

specific byte stream to the server. Note the team could script

creation of such contexts given the bug and its root cause is

already known; record/replay is for capturing and reproducing

the contexts of previously unknown bugs. The team identified

the 21 bugs listed in Table 13.

A. ATTUNE successfully validates a wide range of patches

provided that corresponding metadata is available

ATTUNE successfully validated the real developer patches

for 19 and failed for 2 of the bugs the challenge team collected,

marked with Xand ✗ in Table 13, resp. We organize the

19 bugs successfully handled into several different types and

describe how the developer employs ATTUNE in each case,

then explain the 2 failures.

String Parsing bugs are fairly common as there are of-

ten many corner cases, which can have significant security

implications since input strings may act as attack vectors.

Figure 14 [24] adjusts Curl’s treatment of URLs that end

in a single colon. In the buggy version, Curl incorrectly

throws an error and never initiates a valid http request. The

patch modifies one file. (The code shown in our figures is

abbreviated.) Since ATTUNE replaces the entire modified

function instead of individual lines of code, it needs to resolve

all references in the new version, e.g., to string manipulation

functions.

ATTUNE uses the recorded test case to recreate the context

that triggered the bug, and then jumps to the patched code

upon entering the modified function. Since the only change

was adding an if statement that doesn’t trigger a recorded

event, the ad hoc test continues past the point where the bug

occurred, without divergence other than instruction pointer and

base pointer. The developer can set a breakpoint at the patched

section, watch the if statement process the input correctly and

verify the string in *portptr. Since the log has no information

regarding how the network would have responded to the http

request had it been sent, the test ends.

Figure 15 [32] deals with mishandling URL strings

crafted with special characters, e.g., the ”#@” in

7



...

+ if(!portptr[1]) {

+ *portptr = ’\0’;

+ return CURLUE_OK;

+ }

- if(rest != &portptr[1]) { ...

- ...

+ *portptr++ = ’\0’; /* cut off the name there */

+ *rest = 0;

+ msnprintf(portbuf, sizeof(portbuf), "%ld", port);

+ u->portnum = port;

...

Fig. 14. Curl-1 URL Parsing

static CURLcode parseurlandfillconn(...) {

path[0]=0;

rc = sscanf(data->change.url,

- "%15[ˆ\n:]:%3[/]%[ˆ\n/?]%[ˆ\n]",

+ "%15[ˆ\n:]:%3[/]%[ˆ\n/?#]%[ˆ\n]", /* new data */

protobuf, slashbuf, conn->host.name, path);

if(2 == rc) {

....

Fig. 15. Curl-12 String Parsing

http://example.com#@evil.com caused Curl to erroneously

send a request to a malicious URL. The patch calls sscanf

with a different filter string. Since the surrounding function

handles all the URL parsing for the application, it is rather

large with lots of references. Unlike the above bug, which

only requires resolving pointers to old strings, the new

filter string needs to be loaded into a new data section and

referenced appropriately. ATTUNE recreates the state that

caused the initial behavior and then jumps to the modified

code. There the developer can verify the patch by checking

the values in protobuf and slashbuf.

Mathematical Errors can have security implications when

related to pointer errors or integer overflows. For example,

an attacker could craft a malicious PNG image that triggers

a bad calculation of row factor in Figure 16 [20], causing

a divide-by-zero error and Denial-of-Service (DoS). With

traditional bug reports, the user would need to send the image

as an attachment, but a legitimate user affected by the DoS

is unlikely to be aware of the carefully crafted malicious

image uploaded by an attacker. ATTUNE does not require

attachments besides the execution trace, since the re-recorded

trace includes the image. After the developer writes the patch,

they use ATTUNE to verify that row factor is no longer 0. The

patch doesn’t trigger any new events so the function returns

gracefully.

New Functions & Function Parameter Refactoring.

Many fixes, especially those that pertain to size miscalcu-

lations, involve refactoring the buggy function to require a

new parameter or writing an entirely new function. While

not particularly strenuous from the developer’s perspective,

these types of fixes do create a challenge from ATTUNE’s

perspective. Since both the function that has been refactored or

inserted and the functions that call the new/refactored function

need to be modified, ATTUNE must replace all these functions

png_check_chunk_length(...) {

...

size_t row_factor =

- (png_ptr->width * png_ptr->channels

- * (png_ptr->bit_depth > 8? 2: 1)

- + 1 + (png_ptr->interlaced? 6: 0));

+ (size_t)png_ptr->width

+ * (size_t)png_ptr->channels

+ * (png_ptr->bit_depth > 8? 2: 1)

+ + 1

+ + (png_ptr->interlaced? 6: 0);

Fig. 16. libpng-1 Mathematical Error

+/* Return non zero if a non breaking space. */

+ static int iswnbspace (wint_t wc) {

+ return ! posixly_correct && (wc == 0x00A0 ...

+ static int isnbspace (int c) {

+ return iswnbspace (btowc (c));

+}

+

wc (args) {

- if (iswspace (wide_char))

+ if (iswspace (wide_char) || iswnbspace(wide_char))

goto mb_word_separator;

...

- if (isspace (to_uchar (p[-1])))

+ if (isspace (to_uchar (p[-1]))

+ || isnbspace (to_uchar (p[-1])))

+ goto word_separator;

}

...

Fig. 17. wc-1 New Function and Refactoring

void addReplyErrorLength(client *c, const char *s ... )

{

- if (c->flags & (CLIENT_MASTER|CLIENT_SLAVE)) {

+ if (c->flags & (CLIENT_MASTER|CLIENT_SLAVE)

+ && !(c->flags & CLIENT_MONITOR)) {

+ char* to = c->flags &

+ CLIENT_MASTER? "master": "replica";

...

Fig. 18. redis-1 Erroneous Conditional

in the executable and properly link them.

A patch for the wc file processing utility adds special

character parsing functions as shown in Figure 17 [34].

ATTUNE loads patched versions of the new function and those

functions that call the new function into the address space. The

new function is loaded to point towards the original libraries

and executables where appropriate, and the modified calling

functions point to the new function. There is no need to send

a file with the problematic non-standard characters in the bug

report to the developer, since it is included in the recorded

log. These types of bugs can be difficult for conventional bug

reports as files in transit may arrive with modified encoding

types and changed contents.

ATTUNE provides the input from the recorded file without

requiring any additional information and successfully returns

from the modified functions displaying the patched output.

Since wc largely contains deterministic operations, testing the

modified code doesn’t diverge drastically from the original

execution trace. The developer can verify the patch by letting

the program run to termination and inspecting the calculated

value.

Adding Conditionals. Perhaps the most common patch

we saw involved adding conditionals. Many security-critical

patches make one-line changes to correct conditional checks.

We examined one such example in redis. Such services are

particularly hard to test and debug using conventional mocks,

as complex network inputs can be difficult to recreate in

mocking frameworks. Redis allows monitor connections to

send logging and status checking commands. The buggy

version in Figure 18 [43] didn’t check the client flags for

the monitor, which resulted in a kernel panic. While this

url_parse (const char *url ...) {

...

+ /* check for invalid control characters in host

name */

+ for (p = u->host; *p; p++) {

+ if (c_iscntrl(*p)) {

+ url_free(u);

+ error_code = PE_INVALID_HOST_NAME;

+ goto error;

+ }

+ }

Fig. 19. wget-2 New Loop
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was one of the smaller patches, the validation process varied

substantially from the log. ATTUNE enables the developer

to step through the program and watch progress through the

modified control flow past the point of the crash.

New or Changing Loop Conditions. Bad loop conditionals

are also common. Reference resolution is performed as before,

but these patches vary greatly from an ad hoc testing per-

spective because loop conditionals do not necessarily exhibit

the bug on the loop’s first iteration. One such example from

the wget utility demonstrates how ATTUNE handles this sort

of change in a security-critical situation. The bug allowed

attackers to inject arbitrary HTTP headers via CRLF sequences

into the URL’s host subcomponent. Attackers could insert

arbitrary cookies and other header info, perhaps granting

access to unauthorized resources. The developer modified the

url parse functions in Figure 19 [44] to check each character

in the host name and throw an appropriate error. During ad

hoc testing the developer verifies the patch works by watching

the program check each character, and upon entering the if

statement freeing the URL pointer and proceeding correctly

to the error handling code.

Swapped Code: ATTUNE successfully constructed test

cases in scenarios that swapped library function calls yes-

1 [36] and swapped control flow blocks df-1 [40]. The yes-

1 patch makes far-reaching changes across the code base to

address the same bug in multiple places (15 files). Assuming

the recorded log only manifests one instance of the bug, then

the generated ad hoc test case can only check for that instance,

not changes elsewhere in the code base.

Failures: ATTUNE successfully generated ad hoc test cases

for those challenge patches where the compiled binaries in-

cluded complete metadata. However, it failed on functions

with no ELF symbol table entry: A removed break statement

in shred-1 [37] caused a surprising error. While the change is

small, the function (used only in one place) is inlined, so there

is no symbol table entry. ATTUNE also failed due to DWARF

omissions: Applying ATTUNE to parameter changing in curl-

8 [28] was unsuccessful. ATTUNE failed to locate pieces of

the modified function in the loaded binaries and couldn’t link

a patch. ATTUNE depends on DWARF information for line

numbers so test construction was unsuccessful.

B. ATTUNE’s wait time and memory overhead is small

Quilting Time: Since ATTUNE’s quilting occurs at load

time, the procedure runs when each candidate patch is tested.

The overhead depends on the time it takes to parse the

binaries, search for pointers, and update those pointers. If this

is excessive, it might hinder developers’ ability to produce

a successful patch. Figure 20 shows our measurements of

quilting overhead. In the worst case the wait time is slightly

below 4 seconds and in the best case near instantaneous.

Memory Footprint: Quilting the patched functions into

the original binaries adds some overhead to the program’s

memory footprint during testing. Figure 21 shows specific

measurements. The worst case overhead was close to 100KB

in curl-2 and a bit over 25KB in curl-11, but otherwise

Fig. 20. Quilting Overhead

Fig. 21. Quilting Memory Footprint

remained well under 25KB. Modern Linux systems with 64bit

address spaces and 4KB page sizes can easily accommodate

this overhead. Increases in the program’s memory footprint

from quilting is not related to the number of lines of code

patched (added or deleted), but instead to the size of the

functions that have been patched and the associated data those

functions access, as well as of course the number of functions

patched. For example, the curl-2 patch is so large because it

spanned multiple large functions.

C. ATTUNE enables users to validate released patches with

their own workloads

In the last (optional) stage of the patching workflow, the

user validates the patch in their own environment to verify no

needed functionality has broken. Because ATTUNE operates

entirely in user-space, without hardware, operating system, etc.

support, it can run in both developer and user environments.

ATTUNE leverages the “diffs” in programming language code,

ELF and DWARF information during developer testing, which

it summarizes and exports into metadata sent along with the

released binary patch.

inserted line addresses:

0x6b

0x6e

deleted line addresses:

0x495AD

0x495B7

patched code:

...

69: jne 0xb9

6b: and $0x2,%eax

6e: lea -0x58090939(%rip),%rdx

75: mov 0x58(%rbx),%rax

...

Fig. 22. redis-bug-1 Metadata for User Validation
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For sample user environment workloads, we used the redis

benchmark [45], which simulates thousands of different re-

quests to the server, and the httperf benchmarking tool [46]

making thousands of connections. The validation procedure for

the redis patch [45] is similar to the redis discussion above, but

ATTUNE utilizes only the metadata it added to the released

patch, shown in Figure 22.

ATTUNE needs the addresses of inserted and deleted lines

for its runtime decision algorithm. The metadata’s ”inserted

line addresses” and ”deleted line addresses” are offsets into

the relevant files. Deleted lines are removed from the original

binary so those addresses are offsets into the original exe-

cutable. Inserted lines only appear in the patch release so their

addresses are offsets into the patched codefile that gets mapped

into memory. With this metadata ATTUNE can emulate the

user’s original execution trace that demonstrated the bug, to

verify it has been fixed, as well as emulate new execution

traces from the user’s choice of workloads that do not trigger

bugs in the original version.

D. Threats to Validity

Internal. As far as we know, neither rr nor any other record-

replay system was recording execution traces when any of the

real bugs we studied were discovered. Some of our scripts

for recording the buggy version run bug reproduction tests

included in the real bug reports, but others were contrived. This

threat is partially mitigated since the contrived scenarios were

developed by a three masters students who were not ATTUNE

developers. We describe how we imagine a developer would

verify the patches using ATTUNE, but we are not developers

on these projects and lack the developers’ knowledge. This

is mitigated to some extent since ATTUNE generated ad hoc

tests for the real developer patches. Lastly, since do not have

execution traces for any real users using the programs in our

dataset, we simulated workloads with benchmarks that may

not be representative of how real users would validate these

programs.

External. We demonstrate that ATTUNE supports a wide

variety of single-line and multi-line patches for security

vulnerabilities and other bugs in real programs. ATTUNE

resolved references between modified and original executables

and program state with binary transformations, but we cannot

claim that ATTUNE’s set of transformations will resolve

all types of references supported by the expansive x86-64

instruction set. We have not yet studied C++ or other non-

C programs and we have not yet investigated ARM or other

architectures. The bugs we studied may not be representative

of real-world bugs; notably we have not yet studied GUI bugs.

IV. RELATED WORK

Kuchta et al [47] generates tests for software patches using

”shadow symbolic execution”. The old and new program

versions are symbolically executed in tandem, with the old

version shadowing the new one. Whenever new and old

diverge, their Shadow tool generates a test exercising the

divergence, to comprehensively test new behaviors. Shadow’s

symbolic execution time budget might permit reaching parts

of the program not exercised by available user execution,

complementing ATTUNE. Shadow does not leverage user

execution traces and may not model all system calls, so its

tests may not reflect known bug-triggering user environments.

Elbaum et al [48] introduced ”differential unit tests” gen-

erated from the execution traces of developer system tests.

Their CR (Carving and Replaying) tool extracts and combines

the trace segments that construct in-memory program state as

it was just prior to invoking the target Java method, which

then serves as a unit test. CR also complements ATTUNE,

since its system tests would likely exercise the program more

broadly than available user execution traces. Since CR does

not leverage user execution traces and its system traces support

only in-memory events, its tests may not reflect known bug-

triggering user environments. Other work similarly extracts

unit tests from developer execution traces, e.g., [49], with

analogous advantages and disadvantages.

Kravets and Tsafrir [50] proposed ”mutable replay”, a

hypothetical design to construct a new execution trace for

a modified program from an execution trace of a previous

program version that, as in ATTUNE, demonstrates a bug.

Mutable replay was later implemented by Viennot et al in

Dora [51], building on the Scribe record-replay system [52].

Dora leveraged checkpoint/restart [53] in a backtracking

search algorithm that sought to minimize adds/deletes to the

original execution trace. Although successful on many bug-

fix examples in the sense that execution continued through

the modified code, the minimal-distance execution trace is not

necessarily the same as would have occurred had the modified

code been running in the user environment, which is what

ATTUNE aims. The underlying Scribe record-replay required

a shared file system (copy on write) between the user and

developer environments and a special Linux kernel module

that intercepted and controlled system calls and other non-

deterministic kernel events within both user and developer

environments, which are impractical for most post-deployment

scenarios, whereas ATTUNE runs without privileges in user-

space with no changes to the operating system and no sharing

between user and developer environments other than user-

submitted execution traces.

Parallel retro-logging allows developers to change their

logging instrumentation and then quickly see what the new

logging would have produced on a previous execution [54],

but the program itself is not modified. Arora et al [55]

describe feeding cloned network traffic to a sandboxed fork of

an architectural component in a service-oriented architecture,

for debugging or testing patches of that component, but the

sandboxed execution trace is not necessarily faithful when

there are non-network sources of non-determinism.

There are numerous other record-replay tools in the litera-

ture, recently including [56]–[60]. Some versions of gdb build-

in recording and replaying debugging sessions [61], as does

Microsoft’s IntelliTrace [62]. These tools reproduce execution

traces for a given program version and cannot test modified

versions. Many record-replay tools focus on reproducing con-

currency bugs, e.g., [63]–[65], outside the scope of this paper.
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While ATTUNE supports ad hoc test generation for multi-

threaded programs, our prototype built on rr cannot generate

tests for patches aimed specifically at concurrency bugs due to

how the rr implements multi-threading (it simulates multiple

threads within a single thread).

Much record-replay research focuses on reducing the over-

head of recording, e.g., [66]–[68]. Cui et al [69] explain

that ”high-fidelity program tracing is not affordable in de-

ployed systems”, so their REPT tool combines hardware

tracing and binary analysis to reconstruct execution traces,

which can then be replayed with the same program ver-

sion. Castor [11] records multi-core applications by leverag-

ing hardware-optimized logging, transactional memory, and

a custom compiler. It can replay slightly modified binaries

when the changes do not impact program state. Pervasive

(always-on) recording will likely require special hardware,

operating system and/or compiler support for the foreseeable

future. ATTUNE users can choose any baseline recording tool

that supports faithful replay. Only execution traces known or

suspected to contain evidence of security vulnerabilities or

other bugs need to be replayed by the host recording system

for ATTUNE’s offline re-recording.

Multi-Version Execution (MVE) provides an alternative

approach to user validation. ATTUNE’s validation of patched

programs in the user environment proceeds by: lightweight

recording of the user’s production workloads with the old

version of the program, offline re-recording, replaying ad hoc

tests generated from those workloads on the patched version

and, if all is satisfactory, switching the new version into pro-

duction by some mechanism outside ATTUNE, e.g., ”mutable

checkpoint-restart” [70]. In MVE, the patched and original

versions run simultaneously on production user workloads,

adding runtime overhead but enabling immediate detection

of undesirable divergences [71], [72]. Unlike MVE running

different code versions, as in ATTUNE, LDX [73] runs two

instances of the same code to infer causality between execution

events. The slave explicitly changes one event from the master

execution to find divergent impacts on later events, which is

orthogonal to our work.

Fuzzing seeks inputs that induce crashes and other prob-

lems [74]. Other approaches also strive to induce bad behav-

iors, e.g., [75], [76]. [77] builds on EvoSuite’s search-based

testing [78] to reproduce crashes. Symbolic execution [79] and

other approaches generate test suites to achieve coverage goals.

There is a rich literature concerned with generating inputs

intended to trigger or reproduce bugs. Generally the same

generated tests could be applied to multiple program versions

— unless those tests are ”flaky”. There has also been much

work towards making tests repeatable, which is sometimes

difficult even in the developer environment on the exact same

system build [80]. These kinds of tools, as well as conventional

regression testing, are complementary to ATTUNE.

V. CONCLUSION

ATTUNE (Ad hoc Test generation ThroUgh biNary

rEwriting) supports ad hoc test generation for security vulner-

abilities and other critical bugs discovered post-deployment,

when there are no existing developer tests for bug reproduction

and testing candidate patches, and little time for constructing

and vetting new developer tests. ATTUNE first quilts the

modified functions (the patch) into the original binary and

then interprets the execution trace from the original binary, as

it executed in the user environment, to emulate the generated

ad hoc test on the patched binary. The developer just modifies

one or more buggy functions to produce a candidate patch

and monitors the progress of the ad hoc test to check that the

bug no longer manifests; the developer does not intervene in

ATTUNE’s binary rewriting and testing and does not need to

build test scaffolding. ATTUNE also produces metadata that

the developer can deploy with the patched program, which

enables users to validate the new version by using ATTUNE

to (re-)record execution traces of their own workloads with the

original version and emulate the corresponding ad hoc tests

with this new version. We showed that ATTUNE generates ad

hoc tests for a wide range of known security vulnerabilities and

bugs in older versions of open-source software, with minimal

developer effort. We will release ATTUNE and our dataset

open-source on github upon acceptance of this paper.
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