
Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Daniel S. Brown 1 Russell Coleman 1 2 Ravi Srinivasan 2 Scott Niekum 1

Abstract

Bayesian reward learning from demonstrations

enables rigorous safety and uncertainty analysis

when performing imitation learning. However,

Bayesian reward learning methods are typically

computationally intractable for complex control

problems. We propose Bayesian Reward Ex-

trapolation (Bayesian REX), a highly efficient

Bayesian reward learning algorithm that scales

to high-dimensional imitation learning problems

by pre-training a low-dimensional feature encod-

ing via self-supervised tasks and then leveraging

preferences over demonstrations to perform fast

Bayesian inference. Bayesian REX can learn to

play Atari games from demonstrations, without

access to the game score and can generate 100,000

samples from the posterior over reward functions

in only 5 minutes on a personal laptop. Bayesian

REX also results in imitation learning perfor-

mance that is competitive with or better than state-

of-the-art methods that only learn point estimates

of the reward function. Finally, Bayesian REX en-

ables efficient high-confidence policy evaluation

without having access to samples of the reward

function. These high-confidence performance

bounds can be used to rank the performance and

risk of a variety of evaluation policies and provide

a way to detect reward hacking behaviors.

1. Introduction

It is important that robots and other autonomous agents can

safely learn from and adapt to a variety of human prefer-

ences and goals. One common way to learn preferences

and goals is via imitation learning, in which an autonomous

agent learns how to perform a task by observing demonstra-

tions of the task (Argall et al., 2009). When learning from

1Computer Science Department, The University of Texas
at Austin. 2Applied Research Laboratories, The University
of Texas at Austin. Correspondence to: Daniel Brown <ds-
brown@cs.utexas.edu>.

Proceedings of the 37
th International Conference on Machine

Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

demonstrations, it is important for an agent to be able to

provide high-confidence bounds on its performance with re-

spect to the demonstrator; however, while there exists much

work on high-confidence off-policy evaluation in the rein-

forcement learning (RL) setting, there has been much less

work on high-confidence policy evaluation in the imitation

learning setting, where the reward samples are unavailable.

Prior work on high-confidence policy evaluation for im-

itation learning has used Bayesian inverse reinforcement

learning (IRL) (Ramachandran & Amir, 2007) to allow an

agent to reason about reward uncertainty and policy gen-

eralization error (Brown et al., 2018). However, Bayesian

IRL is typically intractable for complex problems due to the

need to repeatedly solve an MDP in the inner loop, resulting

in high computational cost as well as high sample cost if a

model is not available. This precludes robust safety and un-

certainty analysis for imitation learning in high-dimensional

problems or in problems in which a model of the MDP is

unavailable. We seek to remedy this problem by propos-

ing and evaluating a method for safe and efficient Bayesian

reward learning via preferences over demonstrations. Pref-

erences over trajectories are intuitive for humans to provide

(Akrour et al., 2011; Wilson et al., 2012; Sadigh et al., 2017;

Christiano et al., 2017; Palan et al., 2019) and enable better-

than-demonstrator performance (Brown et al., 2019b;a). To

the best of our knowledge, we are the first to show that

preferences over demonstrations enable both fast Bayesian

reward learning in high-dimensional, visual control tasks as

well as efficient high-confidence performance bounds.

We first formalize the problem of high-confidence policy

evaluation (Thomas et al., 2015) for imitation learning. We

then propose a novel algorithm, Bayesian Reward Extrapola-

tion (Bayesian REX), that uses a pairwise ranking likelihood

to significantly increase the efficiency of generating samples

from the posterior distribution over reward functions. We

demonstrate that Bayesian REX can leverage neural network

function approximation to learn useful reward features via

self-supervised learning in order to efficiently perform deep

Bayesian reward inference from visual demonstrations. Fi-

nally, we demonstrate that samples obtained from Bayesian

REX can be used to solve the high-confidence policy evalua-

tion problem for imitation learning. We evaluate our method

on imitation learning for Atari games and demonstrate that

we can efficiently compute high-confidence bounds on pol-

a
rX

iv
:2

0
0
2
.0

9
0
8
9
v
2

[c

s.
L

G
]

 8
 J

u
l

2
0
2
0

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

icy performance, without access to samples of the reward

function. We use these high-confidence performance bounds

to rank different evaluation policies according to their risk

and expected return under the posterior distribution over

the unknown ground-truth reward function. Finally, we pro-

vide evidence that bounds on uncertainty and risk provide a

useful tool for detecting reward hacking/gaming (Amodei

et al., 2016), a common problem in reward inference from

demonstrations (Ibarz et al., 2018) as well as reinforcement

learning (Ng et al., 1999; Leike et al., 2017).

2. Related work

2.1. Imitation Learning

Imitation learning is the problem of learning a policy from

demonstrations and can roughly be divided into techniques

that use behavioral cloning and techniques that use in-

verse reinforcement learning. Behavioral cloning methods

(Pomerleau, 1991; Torabi et al., 2018) seek to solve the imi-

tation learning problem via supervised learning, in which

the goal is to learn a mapping from states to actions that

mimics the demonstrator. While computationally efficient,

these methods suffer from compounding errors (Ross et al.,

2011). Methods such as DAgger (Ross et al., 2011) and

DART (Laskey et al., 2017) avoid this problem by repeat-

edly collecting additional state-action pairs from an expert.

Inverse reinforcement learning (IRL) methods seek to solve

the imitation learning problem by estimating the reward

function that the demonstrator is optimizing (Ng & Russell,

2000). Classical approaches repeatedly alternate between a

reward estimation step and a full policy optimization step

(Abbeel & Ng, 2004; Ziebart et al., 2008; Ramachandran

& Amir, 2007). Bayesian IRL (Ramachandran & Amir,

2007) samples from the posterior distribution over reward

functions, whereas other methods seek a single reward func-

tion that induces the demonstrator’s feature expectations

(Abbeel & Ng, 2004), often while also seeking to maximize

the entropy of the resulting policy (Ziebart et al., 2008).

Most deep learning approaches for IRL use maximum en-

tropy policy optimization and divergence minimization be-

tween marginal state-action distributions (Ho & Ermon,

2016; Fu et al., 2017; Ghasemipour et al., 2019) and are

related to Generative Adversarial Networks (Finn et al.,

2016a). These methods scale to complex control problems

by iterating between reward learning and policy learning

steps. Alternatively, Brown et al. (2019b) use ranked demon-

strations to learn a reward function via supervised learning

without requiring an MDP solver or any inference time data

collection. The learned reward function can then be used

to optimize a potentially better-than-demonstrator policy.

Brown et al. (2019a) automatically generate preferences

over demonstrations via noise injection, allowing better-

than-demonstrator performance even in the absence of ex-

plicit preference labels. However, despite their successes,

deep learning approaches to IRL typically only return a point

estimate of the reward function, precluding uncertainty and

robustness analysis.

2.2. Safe Imitation Learning

While there has been much interest in imitation learning,

less attention has been given to problems related to safety.

SafeDAgger (Zhang & Cho, 2017) and EnsembleDAgger

(Menda et al., 2019) are extensions of DAgger that give

control to the demonstrator in states where the imitation

learning policy is predicted to have a large action difference

from the demonstrator. Other approaches to safe imitation

learning seek to match the tail risk of the expert as well as

find a policy that is indistinguishable from the demonstra-

tions (Majumdar et al., 2017; Lacotte et al., 2019).

Brown & Niekum (2018) propose a Bayesian sampling

approach to provide explicit high-confidence performance

bounds in the imitation learning setting, but require an MDP

solver in the inner-loop. Their method uses samples from the

posterior distribution P (R|D) to compute sample efficient

probabilistic upper bounds on the policy loss of any evalu-

ation policy. Other work considers robust policy optimiza-

tion over a distribution of reward functions conditioned on

demonstrations or a partially specified reward function, but

these methods require an MDP solver in the inner loop, lim-

iting their scalability (Hadfield-Menell et al., 2017; Brown

et al., 2018; Huang et al., 2018). We extend and generalize

the work of Brown & Niekum (2018) by demonstrating,

for the first time, that high-confidence performance bounds

can be efficiently obtained when performing imitation learn-

ing from high-dimensional visual demonstrations without

requiring an MDP solver or model during reward inference.

2.3. Value Alignment and Active Preference Learning

Safe imitation learning is closely related to the problem of

value alignment, which seeks to design methods that prevent

AI systems from acting in ways that violate human values

(Hadfield-Menell et al., 2016; Fisac et al., 2020). Research

has shown that difficulties arise when an agent seeks to align

its value with a human who is not perfectly rational (Milli

et al., 2017) and there are fundamental impossibility results

regarding value alignment unless the objective is represented

as a set of partially ordered preferences (Eckersley, 2018).

Prior work has used active queries to perform Bayesian re-

ward inference on low-dimensional, hand-crafted reward

features (Sadigh et al., 2017; Brown et al., 2018; Bıyık

et al., 2019). Christiano et al. (2017) and Ibarz et al. (2018)

use deep networks to scale active preference learning to

high-dimensional tasks, but require large numbers of ac-

tive queries during policy optimization and do not perform

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Bayesian reward inference. Our work complements and

extends prior work by: (1) removing the requirement for ac-

tive queries during reward inference or policy optimization,

(2) showing that preferences over demonstrations enable

efficient Bayesian reward inference in high-dimensional vi-

sual control tasks, and (3) providing an efficient method for

computing high-confidence bounds on the performance of

any evaluation policy in the imitation learning setting.

2.4. Safe Reinforcement Learning

Research on safe reinforcement learning (RL) usually fo-

cuses on safe exploration strategies or optimization objec-

tives other than expected return (Garcıa & Fernández, 2015).

Recently, objectives based on measures of risk such as value

at risk (VaR) and conditional VaR have been shown to pro-

vide tractable and useful risk-sensitive measures of perfor-

mance for MDPs (Tamar et al., 2015; Chow et al., 2015).

Other work focuses on finding robust solutions to MDPs

(Ghavamzadeh et al., 2016; Petrik & Russell, 2019), us-

ing model-based RL to safely improve upon suboptimal

demonstrations (Thananjeyan et al., 2019), and obtaining

high-confidence off-policy bounds on the performance of an

evaluation policy (Thomas et al., 2015; Hanna et al., 2019).

Our work provides an efficient solution to the problem of

high-confidence policy evaluation in the imitation learning

setting, in which samples of rewards are not observed and

the demonstrator’s policy is unknown.

2.5. Bayesian Neural Networks

Bayesian neural networks typically either perform Markov

Chain Monte Carlo (MCMC) sampling (MacKay, 1992),

variational inference (Sun et al., 2019; Khan et al., 2018), or

use hybrid methods such as particle-based inference (Liu &

Wang, 2016) to approximate the posterior distribution over

neural network weights. Alternative approaches such as

ensembles (Lakshminarayanan et al., 2017) or approxima-

tions such as Bayesian dropout (Gal & Ghahramani, 2016;

Kendall & Gal, 2017) have also been used to obtain a distri-

bution on the outputs of a neural network in order to provide

uncertainty quantification (Maddox et al., 2019). We are not

only interested in the uncertainty of the output of the reward

function, but also in the uncertainty over the performance

of a policy when evaluated under an uncertain reward func-

tion. Thus, we face the difficult problem of measuring the

uncertainty in the evaluation of a policy, which depends on

the stochasticity of the policy and the environment, as well

as the uncertainty over the unobserved reward function.

3. Preliminaries

We model the environment as a Markov Decision Process

(MDP) consisting of states S , actions A, transition dynam-

ics T : S × A × S → [0, 1], reward function R : S → R,

initial state distribution S0, and discount factor γ. Our

approach extends naturally to rewards defined as R(s, a)
or R(s, a, s′); however, state-based rewards have some ad-

vantages. Fu et al. (2017) prove that a state-only reward

function is a necessary and sufficient condition for a reward

function that is disentangled from dynamics. Learning a

state-based reward also allows the learned reward to be used

as a potential function for reward shaping (Ng et al., 1999),

if a sparse ground-truth reward function is available.

A policy π is a mapping from states to a probability distribu-

tion over actions. We denote the value of a policy π under

reward function R as V π
R = Eπ[

∑∞

t=0 γ
tR(st)|s0 ∼ S0]

and denote the value of executing policy π starting at state

s ∈ S as V π
R (s) = Eπ[

∑∞

t=0 γ
tR(st)|s0 = s]. Given a

reward function R, the Q-value of a state-action pair (s, a)
is Qπ

R(s, a) = Eπ[
∑∞

t=0 γ
tR(st)|s0 = s, a0 = a]. We also

denote V ∗
R = maxπ V

π
R and Q∗

R(s, a) = maxπ Q
π
R(s, a).

Bayesian inverse reinforcement learning (IRL) (Ramachan-

dran & Amir, 2007) models the environment as an MDP\R
in which the reward function is unavailable. Bayesian IRL

seeks to infer the latent reward function of a Boltzman-

rational demonstrator that executes the following policy

π
β
R(a|s) =

eβQ
∗

R(s,a)

∑

b∈A
eβQ

∗

R
(s,b)

, (1)

in which R is the true reward function of the demonstrator,

and β ∈ [0,∞) represents the confidence that the demon-

strator is acting optimally. Under the assumption of Boltz-

man rationality, the likelihood of a set of demonstrated

state-action pairs, D = {(s, a) : (s, a) ∼ πD}, given a

specific reward function hypothesis R, can be written as

P (D|R) =
∏

(s,a)∈D

π
β
R(a|s) =

∏

(s,a)∈D

eβQ
∗

R(s,a)

∑

b∈A
eβQ

∗

R
(s,b)

.

(2)

Bayesian IRL generates samples from the posterior distri-

bution P (R|D) ∼ P (D|R)P (R) via Markov Chain Monte

Carlo (MCMC) sampling, but this requires solving for Q∗
R′

to compute the likelihood of each new proposal R′. Thus,

Bayesian IRL methods are only used for low-dimensional

problems with reward functions that are often linear combi-

nations of a small number of hand-crafted features (Bobu

et al., 2018; Bıyık et al., 2019). One of our contributions

is an efficient Bayesian reward inference algorithm that

leverages preferences over demonstrations in order to signif-

icantly improve the efficiency of Bayesian reward inference.

4. High Confidence Policy Evaluation for

Imitation Learning

Before detailing our approach, we first formalize the prob-

lem of high-confidence policy evaluation for imitation learn-

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

ing. We assume access to an MDP\R, an evaluation policy

πeval, a set of demonstrations, D = {τ1, . . . , τm}, in which

τi is either a complete or partial trajectory comprised of

states or state-action pairs, a confidence level δ, and perfor-

mance statistic g : Π × R → R, in which R denotes the

space of reward functions and Π is the space of all policies.

The High-Confidence Policy Evaluation problem for Imita-

tion Learning (HCPE-IL) is to find a high-confidence lower

bound ĝ : Π×D → R such that

Pr(g(πeval, R
∗) ≥ ĝ(πeval, D)) ≥ 1− δ, (3)

in which R∗ denotes the demonstrator’s true reward function

and D denotes the space of all possible demonstration sets.

HCPE-IL takes as input an evaluation policy πeval, a set

of demonstrations D, and a performance statistic, g, which

evaluates a policy under a reward function. The goal of

HCPE-IL is to return a high-confidence lower bound ĝ on

the performance statistic g(πeval, R
∗).

5. Deep Bayesian Reward Extrapolation

We now describe our main contribution: a method for scal-

ing Bayesian reward inference to high-dimensional visual

control tasks as a way to efficiently solve the HCPE-IL

problem for complex imitation learning tasks. Our first

insight is that the main bottleneck for standard Bayesian

IRL (Ramachandran & Amir, 2007) is computing the like-

lihood function in Equation (2) which requires optimal Q-

values. Thus, to make Bayesian reward inference scale to

high-dimensional visual domains, it is necessary to either

efficiently approximate optimal Q-values or to formulate

a new likelihood. Value-based reinforcement learning fo-

cuses on efficiently learning optimal Q-values; however, for

complex visual control tasks, RL algorithms can take sev-

eral hours or even days to train (Mnih et al., 2015; Hessel

et al., 2018). This makes MCMC, which requires evaluat-

ing large numbers of likelihood ratios, infeasible given the

current state-of-the-art in value-based RL. Methods such

as transfer learning have great potential to reduce the time

needed to calculate Q∗
R for a new proposed reward function

R; however, transfer learning is not guaranteed to speed up

reinforcement learning (Taylor & Stone, 2009). Thus, we

choose to focus on reformulating the likelihood function as

a way to speed up Bayesian reward inference.

An ideal likelihood function requires little computation and

minimal interaction with the environment. To accomplish

this, we leverage recent work on learning control policies

from preferences (Christiano et al., 2017; Palan et al., 2019;

Bıyık et al., 2019). Given ranked demonstrations, Brown

et al. (2019b) propose Trajectory-ranked Reward Extrap-

olation (T-REX): an efficient reward inference algorithm

that transforms reward function learning into classification

problem via a pairwise ranking loss. T-REX removes the

need to repeatedly sample from or partially solve an MDP in

the inner loop, allowing it to scale to visual imitation learn-

ing domains such as Atari and to extrapolate beyond the

performance of the best demonstration. However, T-REX

only solves for a point estimate of the reward function. We

now discuss how a similar approach based on a pairwise

preference likelihood allows for efficient sampling from the

posterior distribution over reward functions.

We assume access to a sequence of m trajectories, D =
{τ1, . . . , τm}, along with a set of pairwise preferences over

trajectories P = {(i, j) : τi ≺ τj}. Note that we do not

require a total-ordering over trajectories. These preferences

may come from a human demonstrator or could be auto-

matically generated by watching a learner improve at a task

(Jacq et al., 2019; Brown et al., 2019b) or via noise injec-

tion (Brown et al., 2019a). Given trajectory preferences,

we can formulate a pair-wise ranking likelihood to compute

the likelihood of a set of preferences over demonstrations

P , given a parameterized reward function hypothesis Rθ.

We use the standard Bradley-Terry model (Bradley & Terry,

1952) to obtain the following pairwise ranking likelihood

function, commonly used in learning to rank applications

such collaborative filtering (Volkovs & Zemel, 2014):

P (D,P | Rθ) =
∏

(i,j)∈P

eβRθ(τj)

eβRθ(τi) + eβRθ(τj)
, (4)

in which Rθ(τ) =
∑

s∈τ Rθ(s) is the predicted return

of trajectory τ under the reward function Rθ, and β is

the inverse temperature parameter that models the con-

fidence in the preference labels. We can then perform

Bayesian inference via MCMC to obtain samples from

P (Rθ | D,P) ∝ P (D,P | Rθ)P (Rθ). We call this ap-

proach Bayesian Reward Extrapolation or Bayesian REX.

Note that using the likelihood function defined in Equation

(4) does not require solving an MDP. In fact, it does not re-

quire any rollouts or access to the MDP. All that is required

is that we first calculate the return of each trajectory under

Rθ and compare the relative predicted returns to the prefer-

ence labels to determine the likelihood of the demonstrations

under the reward hypothesis Rθ. Thus, given preferences

over demonstrations, Bayesian REX is significantly more ef-

ficient than standard Bayesian IRL. In the following section,

we discuss further optimizations that improve the efficiency

of Bayesian REX and make it more amenable to our end

goal of high-confidence policy evaluation bounds.

5.1. Optimizations

In order to learn rich, complex reward functions, it is desir-

able to use a deep network to represent the reward function

Rθ. While MCMC remains the gold-standard for Bayesian

Neural Networks, it is often challenging to scale to deep net-

works. To make Bayesian REX more efficient and practical,

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

value function of a policy can be written as

V π
R = Eπ[

T
∑

t=0

R(st)] = wT
Eπ[

T
∑

t=0

φ(st)] = wTΦπ, (7)

in which we assume a finite horizon MDP with horizon T

and in which Φπ are the expected feature counts (Abbeel

& Ng, 2004; Barreto et al., 2017) of π. Thus, given any

evaluation policy πeval, we only need to solve one policy

evaluation problem to compute Φeval. We can then com-

pute the expected value of πeval over the entire posterior

distribution of reward functions via a single matrix vector

multiplication WΦπeval
, where W is an N -by-k matrix with

each row corresponding to a single reward function weight

hypothesis wT . This significantly reduces the complexity

of policy evaluation over the reward function posterior dis-

tribution from O(N |S|3) to O(|S|3 +Nk).

When we refer to Bayesian REX we will refer to the opti-

mized version described in this section (see the Appendix

for full implementation details and pseudo-code)1 . Run-

ning MCMC with 66 preference labels to generate 100,000

reward hypothesis for Atari imitation learning tasks takes

approximately 5 minutes on a Dell Inspiron 5577 personal

laptop with an Intel i7-7700 processor without using the

GPU. In comparison, using standard Bayesian IRL to gen-

erate one sample from the posterior takes 10+ hours of

training for a parallelized PPO reinforcement learning agent

(Dhariwal et al., 2017) on an NVIDIA TITAN V GPU.

5.2. Pre-training the Reward Function Network

The previous section presupposed access to a pretrained

latent embedding function φ : S → R
k. We now discuss our

pre-training process. Because we are interested in imitation

learning problems, we need to be able to train φ(s) from the

demonstrations without access to the ground-truth reward

function. One potential method is to train Rθ using the

pairwise ranking likelihood function in Equation (4) and

then freeze all but the last layer of weights; however, the

learned embedding may overfit to the limited number of

preferences over demonstrations and fail to capture features

relevant to the ground-truth reward function. Thus, we

supplement the pairwise ranking objective with auxiliary

objectives that can be optimized in a self-supervised fashion

using data from the demonstrations.

We use the following self-supervised tasks to pre-train Rθ:

(1) Learn an inverse dynamics model that uses embeddings

φ(st) and φ(st+1) to predict the corresponding action at
(Torabi et al., 2018; Hanna & Stone, 2017), (2) Learn a

forward dynamics model that predicts st+1 from φ(st) and

at (Oh et al., 2015; Thananjeyan et al., 2019), (3) Learn an

1Project page, code, and demonstration data are available at
https://sites.google.com/view/bayesianrex/

Table 1. Self-supervised learning objectives used to pre-train φ(s).

Inverse Dynamics fID(φ(st), φ(st+1))→ at
Forward Dynamics fFD(φ(st), at)→ st+1

Temporal Distance fTD(φ(st), φ(st+x)→ x

Variational Autoencoder fA(φ(st))→ st

embedding φ(s) that predicts the temporal distance between

two randomly chosen states from the same demonstration

(Aytar et al., 2018), and (4) Train a variational pixel-to-pixel

autoencoder in which φ(s) is the learned latent encoding

(Makhzani & Frey, 2017; Doersch, 2016). Table 1 summa-

rizes the self-supervised tasks used to train φ(s).

There are many possibilities for pre-training φ(s). We used

the objectives described above to encourage the embedding

to encode different features. For example, an accurate in-

verse dynamics model can be learned by only attending to

the movement of the agent. Learning forward dynamics sup-

plements this by requiring φ(s) to encode information about

short-term changes to the environment. Learning to predict

the temporal distance between states in a trajectory forces

φ(s) to encode long-term progress. Finally, the autoencoder

loss acts as a regularizer to the other losses as it seeks to

embed all aspects of the state (see the Appendix for details).

The Bayesian REX pipeline for sampling from the reward

function posterior is shown in Figure 1.

5.3. HCPE-IL via Bayesian REX

We now discuss how to use Bayesian REX to find an ef-

ficient solution to the high-confidence policy evaluation

for imitation learning (HCPE-IL) problem (see Section 4).

Given samples from the distribution P (w | D,P), where

R(s) = wTφ(s), we compute the posterior distribution over

any performance statistic g(πeval, R
∗) as follows. For each

sampled weight vector w produced by Bayesian REX, we

compute g(πeval, w). This results in a sample from the pos-

terior distribution P (g(πeval, R) | D,P), i.e., the posterior

distribution over performance statistic g. We then compute

a (1− δ) confidence lower bound, ĝ(πeval, D), by finding

the δ-quantile of g(πeval, w) for w ∼ P (w | D,P).

While there are many potential performance statistics g, we

chose to focus on bounding the expected value of the eval-

uation policy, i.e., g(πeval, R
∗) = V πeval

R∗ = w∗TΦπeval
. To

compute a 1−δ confidence bound on V πeval

R∗ , we take advan-

tage of the learned linear reward representation to efficiently

calculate the posterior distribution over policy returns given

preferences and demonstrations. This distribution over re-

turns is calculated via a matrix vector product, WΦπeval
, in

which each row of W is a sample, w, from the MCMC chain

and πeval is the evaluation policy. We then sort the resulting

vector and select the δ-quantile lowest value. This results in

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

a 1− δ confidence lower bound on V πeval

R∗ and corresponds

to the δ-Value at Risk (VaR) over V πeval

R ∼ P (R | D,P)
(Jorion, 1997; Brown & Niekum, 2018).

6. Experimental Results

6.1. Bayesian IRL vs. Bayesian REX

As noted previously, Bayesian IRL does not scale to high-

dimensional tasks due to the requirement of repeatedly

solving for an MDP in the inner loop. However, for

low-dimensional problems it is still interesting to compare

Bayesian IRL with Bayesian REX. We performed a large

number of experiments on a variety of randomly generated

gridworlds with low-dimensional reward features. We sum-

marize our results here for three different ablations and give

full results and implementation details in the appendix.

Ranked Suboptimal vs. Optimal Demos: Given a suffi-

cient number of suboptimal ranked demonstrations (> 5),

Bayesian REX performs on par and occasionally better

than Bayesian IRL when given the same number of optimal

demonstrations.

Only Ranked Suboptimal Demos B-REX always signif-

icantly outperforms Bayesian IRL when both algorithms

receive suboptimal ranked demonstrations. For fairer com-

parison, we used a Bayesian IRL algorithm designed to learn

from both good and bad demonstrations (Cui & Niekum,

2018). We labeled the top X% ranked demonstrations as

good and bottom X% ranked as bad. This improved re-

sults for Bayesian IRL, but Bayesian REX still performed

significantly better across all X .

Only Optimal Demos: Given a sufficient number of opti-

mal demonstrations (> 5), Bayesian IRL significantly out-

performs Bayesian REX. To use Bayesian REX with only

optimal demonstrations, we followed prior work (Brown

et al., 2019a) and auto-generated pairwise preferences using

uniform random rollouts that were labeled as less preferred

than the demonstrations. In general, this performed much

worse than Bayesian IRL, but for small numbers of demon-

strations (≤ 5) Bayesian REX leverages self-supervised

rankings to perform nearly as well as full Bayesian IRL.

These results demonstrate that if a very small number of

unlabeled near-optimal demonstrations are available, then

classical Bayesian IRL is the natural choice for performing

reward inference. However, if any of these assumptions are

not true, then Bayesian REX is a competitive and often su-

perior alternative for performing Bayesian reward inference

even in low-dimensional problems where an MDP solver is

tractable. If a highly efficient MDP solver is not available,

then Bayesian IRL is infeasible and Bayesian REX is the

natural choice for Bayesian reward inference.

6.2. Visual Imitation Learning via Bayesian REX

We next tested the imitation learning performance of

Bayesian REX for high-dimensional problems where classi-

cal Bayesian reward inferernce is infeasible. We pre-trained

a 64 dimensional latent state embedding φ(s) using the self-

supervised losses shown in Table 1 and the T-REX pairwise

preference loss. We found via ablation studies that combin-

ing the T-REX loss with the self-supervised losses resulted

in better performance than training only with the T-REX loss

or only with the self-supervised losses (see Appendix for

details). We then used Bayesian REX to generate 200,000

samples from the posterior P (R | D,P). To optimize a con-

trol policy, we used Proximal Policy Optimization (PPO)

(Schulman et al., 2017) with the MAP and mean reward

functions from the posterior (see Appendix for details).

To test whether Bayesian REX scales to complex imitation

learning tasks we selected five Atari games from the Ar-

cade Learning Environment (Bellemare et al., 2013). We

do not give the RL agent access to the ground-truth reward

signal and mask the game scores and number of lives in

the demonstrations. Table 2 shows the imitation learning

performance of Bayesian REX. We also compare against

the results reported by (Brown et al., 2019b) for T-REX, and

GAIL (Ho & Ermon, 2016) and use the same 12 subopti-

mal demonstrations used by Brown et al. (2019b) to train

Bayesian REX (see Appendix for details).

Table 2 shows that Bayesian REX is able to utilize prefer-

ences over demonstrations to infer an accurate reward func-

tion that enables better-than-demonstrator performance. The

average ground-truth return for Bayesian REX surpasses the

performance of the best demonstration across all 5 games.

In comparison, GAIL seeks to match the demonstrator’s

state-action distributions which makes imitation learning

difficult when demonstrations are suboptimal and noisy. In

addition to providing uncertainty information, Bayesian

REX remains competitive with T-REX (which only finds a

maximum likelihood estimate of the reward function) and

achieves better performance on 3 out of 5 games.

6.3. High-Confidence Policy Performance Bounds

Next, we ran an experiment to validate whether the poste-

rior distribution generated by Bayesian REX can be used to

solve the HCPE-IL problem described in Section 4. We eval-

uated four different evaluation policies, A ≺ B ≺ C ≺ D,

created by partially training a PPO agent on the ground-

truth reward function and checkpointing the policy at vari-

ous stages of learning. We ran Bayesian REX to generate

200,000 samples from P (R | D,P). To address some of

the ill-posedness of IRL, we normalize the weights w such

that ‖w‖2 = 1. Given a fixed scale for the reward weights,

we can compare the relative performance of the different

evaluation policies when evaluated over the posterior.

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Table 2. Ground-truth average scores when optimizing the mean and MAP rewards found using Bayesian REX. We also compare against

the performnace of T-REX (Brown et al., 2019b) and GAIL (Ho & Ermon, 2016). Bayesian REX and T-REX are each given 12

demonstrations with ground-truth pairwise preferences. GAIL cannot learn from preferences so it is given 10 demonstrations comparable

to the best demonstration given to the other algorithms. The average performance for each IRL algorithm is the average over 30 rollouts.

Ranked Demonstrations Bayesian REX Mean Bayesian REX MAP T-REX GAIL

Game Best Avg Avg (Std) Avg (Std) Avg Avg

Beam Rider 1332 686.0 5,504.7 (2121.2) 5,870.3 (1905.1) 3,335.7 355.5

Breakout 32 14.5 390.7 (48.8) 393.1 (63.7) 221.3 0.28

Enduro 84 39.8 487.7 (89.4) 135.0 (24.8) 586.8 0.28

Seaquest 600 373.3 734.7 (41.9) 606.0 (37.6) 747.3 0.0

Space Invaders 600 332.9 1,118.8 (483.1) 961.3 (392.3) 1,032.5 370.2

Table 3. Beam Rider policy evaluation bounds compared with

ground-truth game scores. Policies A-D correspond to evalua-

tion policies of varying quality obtained by checkpointing an RL

agent during training. The No-Op policy seeks to hack the learned

reward by always playing the no-op action, resulting in very long

trajectories with high mean predicted performance but a very neg-

ative 95%-confidence (0.05-VaR) lower bound on expected return.

Predicted Ground Truth Avg.

Policy Mean 0.05-VaR Score Length

A 17.1 7.9 480.6 1372.6

B 22.7 11.9 703.4 1,412.8

C 45.5 24.9 1828.5 2,389.9

D 57.6 31.5 2586.7 2,965.0

No-Op 102.5 -1557.1 0.0 99,994.0

The results for Beam Rider are shown in Table 3. We show

results for partially trained RL policies A–D. We found that

the ground-truth returns for the checkpoints were highly

correlated with the mean and 0.05-VaR (5th percentile policy

return) returns under the posterior. However, we also noticed

that the trajectory length was also highly correlated with the

ground-truth reward. If the reward function learned via IRL

gives a small positive reward at every time step, then long

polices that do the wrong thing may look good under the

posterior. To test this hypothesis we used a No-Op policy

that seeks to exploit the learned reward function by not

taking any actions. This allows the agent to live until the

Atari emulator times out after 99,994 steps.

Table 3 shows that while the No-Op policy has a high ex-

pected return over the chain, looking at the 0.05-VaR shows

that the No-Op policy has high risk under the distribution,

much lower than evaluation policy A. Our results demon-

strate that reasoning about probabilistic worst-case perfor-

mance may be one potential way to detect policies that

exhibit so-called reward hacking (Amodei et al., 2016) or

that have overfit to certain features in the demonstrations

that are correlated with the intent of the demonstrations,

Table 4. Breakout policy evaluation bounds compared with ground-

truth game scores. Top Half: No-Op never releases the ball, result-

ing in high mean predicted performance but a low 95%-confidence

bound (0.05-VaR). The MAP policy has even higher risk but also

high expected return. Bottom Half: After rerunning MCMC with

a ranked trajectory from both the MAP and No-Op policies, the

posterior distribution matches the true preferences.

Risk profiles given initial preferences

Predicted Ground Truth Avg.

Policy Mean 0.05-VaR Score Length

A 1.5 0.5 1.9 202.7

B 6.3 3.7 15.8 608.4

C 10.6 5.8 27.7 849.3

D 13.9 6.2 41.2 1020.8

MAP 98.2 -370.2 401.0 8780.0

No-Op 41.2 1.0 0.0 7000.0

Risk profiles after rankings w.r.t. MAP and No-Op

A 0.7 0.3 1.9 202.7

B 8.7 5.5 15.8 608.4

C 18.3 12.1 27.7 849.3

D 26.3 17.1 41.2 1020.8

MAP 606.8 289.1 401.0 8780.0

No-Op -5.0 -13.5 0.0 7000.0

but do not lead to desired behavior, a common problem in

imitation learning (Ibarz et al., 2018; de Haan et al., 2019).

Table 4 contains policy evaluation results for the game

Breakout. The top half of the table shows the mean return

and 95%-confidence lower bound on the expected return un-

der the reward function posterior for four evaluation policies

as well as the MAP policy found via Bayesian IRL and a

No-Op policy that never chooses to release the ball. Both the

MAP and No-Op policies have high expected returns under

the reward function posterior, but also have high risk (low

0.05-VaR). The MAP policy has much higher risk than the

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Table 5. Beam Rider human demonstrations.

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length

good 12.4 5.8 1092 1000.0

bad 10.7 4.5 396 1000.0

pessimal 6.6 0.8 0 1000.0

adversarial 8.4 2.4 176 1000.0

No-Op policy, despite good true performance. One likely

reason is that, as shown in Table 2, the best demonstrations

given to Bayesian REX only achieved a game score of 32.

Thus, the MAP policy represents an out of distribution sam-

ple and thus has potentially high risk, since Bayesian REX

was not trained on policies that hit any of the top layers

of bricks. The ranked demonstrations do not give enough

evidence to eliminate the possibility that only lower layers

of bricks should be hit.

To test whether active learning can help, we incorporated

two active queries: a single rollout from the MAP policy

and a single rollout from the No-Op policy and ranked them

as better and worse, respectively, than the original set of 12

suboptimal demonstrations. As the bottom of Table 4 shows,

adding two more ranked demonstrations and re-running

Bayesian inference, results in a significant change in the

risk profiles of the MAP and No-Op policy—the No-Op

policy is now correctly predicted to have high risk and low

expected returns and the MAP policy now has a much higher

95%-confidence lower bound on performance.

6.4. Human Demonstrations

To investigate whether Bayesian REX is able to correctly

rank human demonstrations, we used Bayesian REX to

calculate high-confidence performance bounds for a variety

of human demonstrations (see the Appendix for full details

and additional results).

We generated four human demonstrations for Beam Rider:

(1) good, a good demonstration that plays the game well,

(2) bad, a bad demonstration that seeks to play the game but

does a poor job, (3) pessimal, a demonstration that does not

shoot enemies and seeks enemy bullets, and (4) adversarial

a demonstration that pretends to play the game by moving

and shooting but tries to avoid actually shooting enemies.

The resulting high-confidence policy evaluations are shown

in Table 5. The high-confidence bounds and average perfor-

mance over the posterior correctly rank the behaviors. This

provides evidence that the learned linear reward correctly

rewards actually destroying aliens and avoiding getting shot,

rather than just flying around and shooting.

Next we demonstrated four different behaviors when play-

Table 6. Enduro evaluation of a variety of human demonstrations.

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length

good 246.7 -113.2 177 3325.0

periodic 230.0 -130.4 44 3325.0

neutral 190.8 -160.6 0 3325.0

ram 148.4 -214.3 0 3325.0

ing Enduro: (1) good a demonstration that seeks to play

the game well, (2) periodic a demonstration that alternates

between speeding up and passing cars and then slowing

down and being passed, (3) neutral a demonstration that

stays right next to the last car in the race and doesn’t try to

pass or get passed, and (4) ram a demonstration that tries to

ram into as many cars while going fast. Table 6 shows that

Bayesian REX is able to accurately predict the performance

and risk of each of these demonstrations and gives the high-

est (lowest 0.05-VaR) risk to the ram demonstration and the

least risk to the good demonstration.

7. Conclusion

Bayesian reasoning is a powerful tool when dealing with

uncertainty and risk; however, existing Bayesian reward

learning algorithms often require solving an MDP in the

inner loop, rendering them intractable for complex prob-

lems in which solving an MDP may take several hours or

even days. In this paper we propose a novel deep learning

algorithm, Bayesian Reward Extrapolation (Bayesian REX),

that leverages preference labels over demonstrations to make

Bayesian reward inference tractable for high-dimensional

visual imitation learning tasks. Bayesian REX can sam-

ple tens of thousands of reward functions from the poste-

rior in a matter of minutes using a consumer laptop. We

tested our approach on five Atari imitation learning tasks

and showed that Bayesian REX achieves state-of-the-art

performance in 3 out of 5 games. Furthermore, Bayesian

REX enables efficient high-confidence performance bounds

for arbitrary evaluation policies. We demonstrated that these

high-confidence bounds allow an agent to accurately rank

different evaluation policies and provide a potential way to

detect reward hacking and value misalignment.

We note that our proposed safety bounds are only safe

with respect to the assumptions that we make: good fea-

ture pre-training, rapid MCMC mixing, and accurate pref-

erences over demonstrations. Future work includes using

exploratory trajectories for better pre-training of the latent

feature embeddings, developing methods to determine when

a relevant feature is missing from the learned latent space,

and using high-confidence performance bounds to perform

safe policy optimization in the imitation learning setting.

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Acknowledgements

This work has taken place in the Personal Autonomous

Robotics Lab (PeARL) at The University of Texas at

Austin. PeARL research is supported in part by the NSF

(IIS-1724157, IIS-1638107,IIS-1617639, IIS-1749204) and

ONR(N00014-18-2243, N00014-17-1-2143). This research

was also sponsored by the Army Research Office and

was accomplished under Cooperative Agreement Number

W911NF-19-2-0333. The views and conclusions contained

in this document are those of the authors and should not

be interpreted as representing the official policies, either

expressed or implied, of the Army Research Office or the

U.S. Government. The U.S. Government is authorized to

reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation herein.

References

Abbeel, P. and Ng, A. Y. Apprenticeship learning via in-

verse reinforcement learning. In Proceedings of the 21st

International Conference on Machine Learning, 2004.

Akrour, R., Schoenauer, M., and Sebag, M. Preference-

based policy learning. In Joint European Conference

on Machine Learning and Knowledge Discovery in

Databases, pp. 12–27. Springer, 2011.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-

man, J., and Mané, D. Concrete problems in ai safety.

arXiv preprint arXiv:1606.06565, 2016.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B.

A survey of robot learning from demonstration. Robotics

and autonomous systems, 57(5):469–483, 2009.

Aytar, Y., Pfaff, T., Budden, D., Paine, T. L., Wang, Z., and

de Freitas, N. Playing hard exploration games by watch-

ing youtube. arXiv preprint arXiv:1805.11592, 2018.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T.,

van Hasselt, H. P., and Silver, D. Successor features for

transfer in reinforcement learning. In Advances in neural

information processing systems, pp. 4055–4065, 2017.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.

The arcade learning environment: An evaluation plat-

form for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013.

Bıyık, E., Palan, M., Landolfi, N. C., Losey, D. P., and

Sadigh, D. Asking easy questions: A user-friendly ap-

proach to active reward learning. In Conference on Robot

Learning (CoRL), 2019.

Bobu, A., Bajcsy, A., Fisac, J. F., and Dragan, A. D. Learn-

ing under misspecified objective spaces. arXiv preprint

arXiv:1810.05157, 2018.

Bradley, R. A. and Terry, M. E. Rank analysis of incom-

plete block designs: I. the method of paired comparisons.

Biometrika, 39(3/4):324–345, 1952.

Brown, D. S. and Niekum, S. Efficient Probabilistic Perfor-

mance Bounds for Inverse Reinforcement Learning. In

AAAI Conference on Artificial Intelligence, 2018.

Brown, D. S., Cui, Y., and Niekum, S. Risk-aware active

inverse reinforcement learning. In Conference on Robot

Learning (CoRL), 2018.

Brown, D. S., Goo, W., and Niekum, S. Better-than-

demonstrator imitation learning via automaticaly-ranked

demonstrations. In Conference on Robot Learning

(CoRL), 2019a.

Brown, D. S., Goo, W., Prabhat, N., and Niekum, S. Ex-

trapolating beyond suboptimal demonstrations via inverse

reinforcement learning from observations. In Proceed-

ings of the 36th International Conference on Machine

Learning, ICML 2019, 2019b.

Chow, Y., Tamar, A., Mannor, S., and Pavone, M. Risk-

sensitive and robust decision-making: a cvar optimization

approach. In Advances in Neural Information Processing

Systems, 2015.

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg,

S., and Amodei, D. Deep reinforcement learning from

human preferences. In Advances in Neural Information

Processing Systems, pp. 4299–4307, 2017.

Cui, Y. and Niekum, S. Active reward learning from cri-

tiques. In IEEE International Conference on Robotics

and Automation (ICRA), 2018.

de Haan, P., Jayaraman, D., and Levine, S. Causal confusion

in imitation learning. In Advances in Neural Information

Processing Systems, pp. 11693–11704, 2019.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,

M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and

Zhokhov, P. Openai baselines. https://github.

com/openai/baselines, 2017.

Doersch, C. Tutorial on variational autoencoders. arXiv

preprint arXiv:1606.05908, 2016.

Eckersley, P. Impossibility and uncertainty theorems in ai

value alignment (or why your agi should not have a utility

function). arXiv preprint arXiv:1901.00064, 2018.

Finn, C., Christiano, P., Abbeel, P., and Levine, S. A con-

nection between generative adversarial networks, inverse

reinforcement learning, and energy-based models. arXiv

preprint arXiv:1611.03852, 2016a.

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Finn, C., Levine, S., and Abbeel, P. Guided cost learning:

Deep inverse optimal control via policy optimization. In

International Conference on Machine Learning, 2016b.

Fisac, J. F., Gates, M. A., Hamrick, J. B., Liu, C., Hadfield-

Menell, D., Palaniappan, M., Malik, D., Sastry, S. S., Grif-

fiths, T. L., and Dragan, A. D. Pragmatic-pedagogic value

alignment. In Robotics Research, pp. 49–57. Springer,

2020.

Fu, J., Luo, K., and Levine, S. Learning robust rewards

with adversarial inverse reinforcement learning. arXiv

preprint arXiv:1710.11248, 2017.

Gal, Y. and Ghahramani, Z. Dropout as a bayesian approx-

imation: Representing model uncertainty in deep learn-

ing. In international conference on machine learning, pp.

1050–1059, 2016.

Garcıa, J. and Fernández, F. A comprehensive survey on safe

reinforcement learning. Journal of Machine Learning

Research, 16(1):1437–1480, 2015.

Ghasemipour, S. K. S., Zemel, R., and Gu, S. A divergence

minimization perspective on imitation learning methods.

arXiv preprint arXiv:1911.02256, 2019.

Ghavamzadeh, M., Petrik, M., and Chow, Y. Safe policy

improvement by minimizing robust baseline regret. In

Advances in Neural Information Processing Systems, pp.

2298–2306, 2016.

Hadfield-Menell, D., Russell, S. J., Abbeel, P., and Dra-

gan, A. Cooperative inverse reinforcement learning. In

Advances in neural information processing systems, pp.

3909–3917, 2016.

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J., and

Dragan, A. Inverse reward design. In Advances in neural

information processing systems, pp. 6765–6774, 2017.

Hanna, J., Niekum, S., and Stone, P. Importance sampling

policy evaluation with an estimated behavior policy. In

Proceedings of the 36th International Conference on Ma-

chine Learning (ICML), June 2019.

Hanna, J. P. and Stone, P. Grounded action transformation

for robot learning in simulation. In Thirty-First AAAI

Conference on Artificial Intelligence, 2017.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-

vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and

Silver, D. Rainbow: Combining improvements in deep re-

inforcement learning. In Thirty-Second AAAI Conference

on Artificial Intelligence, 2018.

Ho, J. and Ermon, S. Generative adversarial imitation learn-

ing. In Advances in Neural Information Processing Sys-

tems, pp. 4565–4573, 2016.

Hron, J., Matthews, D. G., Ghahramani, Z., et al. Variational

bayesian dropout: Pitfalls and fixes. In 35th International

Conference on Machine Learning, ICML 2018, volume 5,

pp. 3199–3219, 2018.

Huang, J., Wu, F., Precup, D., and Cai, Y. Learning safe

policies with expert guidance. In Advances in Neural

Information Processing Systems, pp. 9105–9114, 2018.

Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., and

Amodei, D. Reward learning from human preferences

and demonstrations in atari. In Advances in Neural Infor-

mation Processing Systems, 2018.

Jacq, A., Geist, M., Paiva, A., and Pietquin, O. Learning

from a learner. In International Conference on Machine

Learning, pp. 2990–2999, 2019.

Jorion, P. Value at risk. McGraw-Hill, New York, 1997.

Kendall, A. and Gal, Y. What uncertainties do we need in

bayesian deep learning for computer vision? In Advances

in neural information processing systems, pp. 5574–5584,

2017.

Khan, M. E., Nielsen, D., Tangkaratt, V., Lin, W., Gal,

Y., and Srivastava, A. Fast and scalable bayesian deep

learning by weight-perturbation in adam. arXiv preprint

arXiv:1806.04854, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

Lacotte, J., Ghavamzadeh, M., Chow, Y., and Pavone, M.

Risk-sensitive generative adversarial imitation learning.

In The 22nd International Conference on Artificial Intel-

ligence and Statistics, pp. 2154–2163, 2019.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple

and scalable predictive uncertainty estimation using deep

ensembles. In Advances in neural information processing

systems, pp. 6402–6413, 2017.

Laskey, M., Lee, J., Fox, R., Dragan, A., and Goldberg,

K. Dart: Noise injection for robust imitation learning.

Conference on Robot Learning (CoRL), 2017.

Leike, J., Martic, M., Krakovna, V., Ortega, P. A., Everitt,

T., Lefrancq, A., Orseau, L., and Legg, S. Ai safety

gridworlds. arXiv preprint arXiv:1711.09883, 2017.

Littman, M. L., Dean, T. L., and Kaelbling, L. P. On the

complexity of solving markov decision problems. Pro-

ceedings of the Eleventh Conference on Uncertainty in

Artificial Intelligence, 1995.

Liu, Q. and Wang, D. Stein variational gradient descent: A

general purpose bayesian inference algorithm. In Ad-

vances in neural information processing systems, pp.

2378–2386, 2016.

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

MacKay, D. J. A practical bayesian framework for backprop-

agation networks. Neural computation, 4(3):448–472,

1992.

Maddox, W. J., Izmailov, P., Garipov, T., Vetrov, D. P., and

Wilson, A. G. A simple baseline for bayesian uncertainty

in deep learning. In Advances in Neural Information

Processing Systems, pp. 13132–13143, 2019.

Majumdar, A., Singh, S., Mandlekar, A., and Pavone, M.

Risk-sensitive inverse reinforcement learning via coher-

ent risk models. In Robotics: Science and Systems, 2017.

Makhzani, A. and Frey, B. J. Pixelgan autoencoders. In

Advances in Neural Information Processing Systems, pp.

1975–1985, 2017.

Menda, K., Driggs-Campbell, K., and Kochenderfer, M. J.

Ensembledagger: A bayesian approach to safe imitation

learning. In 2019 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pp. 5041–5048.

IEEE, 2019.

Milli, S., Hadfield-Menell, D., Dragan, A., and Russell, S.

Should robots be obedient? In Proceedings of the 26th

International Joint Conference on Artificial Intelligence,

pp. 4754–4760, 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,

J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-

land, A. K., Ostrovski, G., et al. Human-level control

through deep reinforcement learning. Nature, 518(7540):

529, 2015.

Ng, A. Y. and Russell, S. J. Algorithms for inverse rein-

forcement learning. In Proceedings of the International

Conference on Machine Learning, pp. 663–670, 2000.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance

under reward transformations: Theory and application to

reward shaping. In ICML, volume 99, pp. 278–287, 1999.

Oh, J., Guo, X., Lee, H., Lewis, R. L., and Singh, S. Action-

conditional video prediction using deep networks in atari

games. In Advances in neural information processing

systems, pp. 2863–2871, 2015.

Osband, I. Risk versus uncertainty in deep learning: Bayes,

bootstrap and the dangers of dropout. In NIPS Workshop

on Bayesian Deep Learning, 2016.

Palan, M., Landolfi, N. C., Shevchuk, G., and Sadigh, D.

Learning reward functions by integrating human demon-

strations and preferences. In Proceedings of Robotics:

Science and Systems (RSS), June 2019.

Petrik, M. and Russell, R. H. Beyond confidence regions:

Tight bayesian ambiguity sets for robust mdps. arXiv

preprint arXiv:1902.07605, 2019.

Pomerleau, D. A. Efficient training of artificial neural net-

works for autonomous navigation. Neural Computation,

3(1):88–97, 1991.

Pradier, M. F., Pan, W., Yao, J., Ghosh, S., and Doshi-Velez,

F. Projected bnns: Avoiding weight-space pathologies by

learning latent representations of neural network weights.

arXiv preprint arXiv:1811.07006, 2018.

Ramachandran, D. and Amir, E. Bayesian inverse reinforce-

ment learning. In Proceedings of the 20th International

Joint Conference on Artifical intelligence, pp. 2586–2591,

2007.

Ross, S., Gordon, G., and Bagnell, D. A reduction of imita-

tion learning and structured prediction to no-regret online

learning. In Proceedings of the fourteenth international

conference on artificial intelligence and statistics, pp.

627–635, 2011.

Sadigh, D., Dragan, A. D., Sastry, S. S., and Seshia, S. A.

Active preference-based learning of reward functions. In

Proceedings of Robotics: Science and Systems (RSS),

2017.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and

Klimov, O. Proximal policy optimization algorithms.

arXiv preprint arXiv:1707.06347, 2017.

Sun, S., Zhang, G., Shi, J., and Grosse, R. Functional

variational bayesian neural networks. arXiv preprint

arXiv:1903.05779, 2019.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,

Y. Policy gradient methods for reinforcement learning

with function approximation. In Advances in neural in-

formation processing systems, pp. 1057–1063, 2000.

Tamar, A., Glassner, Y., and Mannor, S. Optimizing the

cvar via sampling. In Proceedings of the Twenty-Ninth

AAAI Conference on Artificial Intelligence, pp. 2993–

2999, 2015.

Taylor, M. E. and Stone, P. Transfer learning for reinforce-

ment learning domains: A survey. Journal of Machine

Learning Research, 10(Jul):1633–1685, 2009.

Thananjeyan, B., Balakrishna, A., Rosolia, U., Li, F.,

McAllister, R., Gonzalez, J. E., Levine, S., Borrelli,

F., and Goldberg, K. Safety augmented value estima-

tion from demonstrations (saved): Safe deep model-

based rl for sparse cost robotic tasks. arXiv preprint

arXiv:1905.13402, 2019.

Thomas, P. S., Theocharous, G., and Ghavamzadeh, M.

High-confidence off-policy evaluation. In Proceedings of

the AAAI Conference on Artificial Intelligence, pp. 3000–

3006, 2015.

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Torabi, F., Warnell, G., and Stone, P. Behavioral cloning

from observation. In Proceedings of the 27th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI),

July 2018.

Volkovs, M. N. and Zemel, R. S. New learning methods

for supervised and unsupervised preference aggregation.

The Journal of Machine Learning Research, 15(1):1135–

1176, 2014.

Wilson, A., Fern, A., and Tadepalli, P. A bayesian approach

for policy learning from trajectory preference queries. In

Advances in neural information processing systems, pp.

1133–1141, 2012.

Zhang, J. and Cho, K. Query-efficient imitation learning

for end-to-end simulated driving. In Thirty-First AAAI

Conference on Artificial Intelligence, 2017.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K.

Maximum entropy inverse reinforcement learning. In

Proceedings of the 23rd AAAI Conference on Artificial

Intelligence, pp. 1433–1438, 2008.

A. Source Code and Videos

See the project webpage https://sites.google.

com/view/bayesianrex/.

B. MCMC Details

We represent Rθ as a linear combination of pre-trained

features:

Rθ(τ) =
∑

s∈τ

wTφ(s) = wT
∑

s∈τ

φ(s) = wTΦτ . (8)

We pre-compute and cache Φτi =
∑

s∈τi
φ(s) for i =

1, . . . ,m and the likelihood becomes

P (P, D | Rθ) =
∏

(i,j)∈P

e
βwTΦτj

e
βwTΦτj + eβw

TΦτi

. (9)

We use β = 1 and enforce constraints on the weight vec-

tors by normalizing the output of the weight vector pro-

posal such that ‖w‖2 = 1 and use a Gaussian proposal

function centered on w with standard deviation σ. Thus,

given the current sample wt, the proposal is defined as

wt+1 = normalize(N (wt, σ)), in which normalize

divides by the L2 norm of the sample to project back to the

surface of the L2-unit ball.

For all experiments, except Seaquest, we used a default step

size of 0.005. For Seaquest increased the step size to 0.05.

We run 200,000 steps of MCMC and use a burn-in of 5000

Algorithm 1 Bayesian REX: Bayesian Reward Extrapola-

tion

1: Input: demonstrations D, pairwise preferences P ,

MCMC proposal width σ, number of proposals to gen-

erate N , deep network architecture Rθ, and prior P (w).
2: pre-train Rθ using auxiliary tasks (see Section 5.2).

3: Freeze all but last layer, w, of Rθ.

4: φ(s) := activations of the penultimate layer of Rθ.

5: Precompute and cache Φτ =
∑

s∈τ φ(s) for all τ ∈ D.

6: Initialize w randomly.

7: Chain[0]← w

8: Compute P (P, D|w)P (w) using Equation (6)

9: for i← 1 to N do

10: w̃ ← normalize(N (wt, σ))
11: Compute P (P, D|w̃)P (w̃) using Equation (6)

12: u← Uniform(0, 1)

13: if u <
P (P, D|w̃)P (w̃)

P (P, D|w)P (w)
then

14: Chain[i]← w̃

15: w ← w̃

16: else

17: Chain[i]← w

18: end if

19: end for

20: return Chain

and skip every 20th sample to reduce auto-correlation. We

initialize the MCMC chain with a randomly chosen vec-

tor on the L2-unit ball. Because the inverse reinforcement

learning is ill-posed there are an infinite number of reward

functions that could match any set of demonstrations. Prior

work by Finn et al. (2016b) demonstrates that strong regu-

larization is needed when learning cost functions via deep

neural networks. To ensure that the rewards learned allow

good policy optimization when fed into an RL algorithm we

used a non-negative return prior on the return of the lowest

ranked demonstration. The prior takes the following form:

logP (w) =

{

0 if eβw
TΦτ1 < 0

−∞ otherwise
(10)

This forces MCMC to not only find reward function weights

that match the rankings, but to also find weights such that

the return of the worse demonstration is non-negative. If

the return of the worse demonstration was negative during

proposal generation, then we assigned it a prior probability

of −∞. Because the ranking likelihood is invariant to affine

transformations of the rewards, this prior simply shifts the

range of learned returns and does not affect the log likeli-

hood ratios.

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

C. Bayesian IRL vs. Bayesian REX

Bayesian IRL does not scale to high-dimensional tasks due

to the requirement of repeatedly solving for an MDP in the

inner loop. In this section we focus on low-dimensional

problems where it is tractable to repeatedly solve an

MDP. We compare the performance of Bayesian IRL with

Bayesian REX when performing reward inference. Because

both algorithms make very different assumptions, we com-

pare their performance across three different tasks. The first

task attempts to give both algorithms the demonstrations

they were designed for. The second evaluation focuses on

the case where all demonstrations are optimal and is de-

signed to put Bayesian IRL at a disadvantage. The third

evaluation focuses on the case where all demonstrations are

optimal and is designed to put Bayesian REX at a disadvan-

tage. Note that we focus on sample efficiency rather than

computational efficiency as Bayesian IRL is significantly

slower than Bayesian REX as it requires repeatedly solving

an MDP, whereas Bayesian REX requires no access to an

MDP during reward inference.

All experiments were performed using 6x6 gridworlds with

4 binary features placed randomly in the environment. The

ground-truth reward functions are sampled uniformly from

the L1-ball (Brown & Niekum, 2018). The agent can move

in the four cardinal directions and stays in place if it attempts

to move off the grid. Transitions are deterministic, γ = 0.9,

and there are no terminal states. We perform evaluations

over 100 random gridworlds for varying numbers of demon-

strations. Each demonstration is truncated to a horizon of

20. We use β = 50 for both Bayesian IRL and Bayesian

REX and we remove duplicates from demonstrations. After

performing MCMC we used a 10% burn-in period for both

algorithms and only used every 5th sample after the burn-in

when computing the mean reward under the posterior. We

then optimized a policy under the mean reward from the

Bayesian IRL posterior and under the mean reward from

the Bayesian REX posterior. We then compare the average

policy loss for each algorithm when compared with optimal

performance under the ground-truth reward function.

C.1. Ranked Suboptimal vs. Optimal Demonstrations

We first compare Bayesian IRL when it is given optimal

demonstrations with Bayesian REX when it receives subop-

timal demonstrations. We give each algorithm the demon-

strations best suited for its assumptions while keeping the

number of demonstrations equal and using the same starting

states for each algorithm. To generate suboptimal demon-

strations we simply use random rollouts and then rank them

according to the ground-truth reward function.

Table 7 shows that, given a sufficient number of suboptimal

ranked demonstrations (> 5), Bayesian REX performs on

par or slightly better than Bayesian IRL when given the same

Table 7. Ranked Suboptimal vs. Optimal Demos: Average policy

loss over 100 random 6x6 grid worlds with 4 binary features.

2 5 10 20 30

B-IRL 0.044 0.033 0.020 0.009 0.006

B-REX 1.779 0.421 0.019 0.006 0.006

Table 8. Ranked Suboptimal Demos: Average policy loss for

Bayesian IRL versus Bayesian REX over 100 random 6x6 grid

worlds with 4 binary features.

2 5 10 20 30

B-IRL 3.512 3.319 2.791 3.078 3.158

B-REX 1.796 0.393 0.026 0.006 0.006

number of optimal demonstrations starting from the same

states as the suboptimal demonstrations. This result shows

that not only is Bayesian REX much more computationally

efficient, but it also has sample efficiency comparable to

Bayesian IRL as long as there are a sufficient number of

ranked demonstrations. Note that 2 ranked demonstrations

induces only a single constraint on the reward function so it

is not surprising that it performs much worse than running

full Bayesian IRL with all the counterfactuals afforded by

running an MDP solver in the inner-loop.

C.2. Only Ranked Suboptimal Demonstrations

For the next experiment we consider what happens when

Bayesian IRL recieves suboptimal ranked demonstrations.

Table 8 shows that B-REX always significantly outperforms

Bayesian IRL when both algorithms receive suboptimal

ranked demonstrations. To achieve a fairer comparison, we

also compared Bayesian REX with a Bayesian IRL algo-

rithm designed to learn from both good and bad demon-

strations (Cui & Niekum, 2018). We labeled the top x%

ranked demonstrations as good and bottom x% ranked as

bad. Table 9 shows that leveraging the ranking significantly

improves the performance of Bayesian IRL, but Bayesian

REX still performed significantly better across all x.

C.3. Only Optimal Demonstrations

Finally, we compared Bayesian REX with Bayesian IRL

when both algorithms are given optimal demonstrations. As

an attempt to use Bayesian REX with only optimal demon-

strations, we followed prior work (Brown et al., 2019a) and

auto-generated pairwise preferences using uniform random

rollouts that are labeled as less preferred than the demon-

strations. Table 10 shows that Bayesian IRL outperforms

Bayesian REX. This demonstrates the value of giving a

variety of ranked trajectories to Bayesian REX. For small

numbers of optimal demonstrations (≤ 5) we found that

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Table 9. Ranked Suboptimal Demos: Average policy loss for

Bayesian REX and Bayesian IRL using the method proposed by

(Cui & Niekum, 2018)* which makes use of good and bad demon-

strations. We used the top x% of the ranked demos as good and

bottom x% as bad. Results are averaged over 100 random 6x6 grid

worlds with 4 binary features.

Top/bottom percent of 20 ranked demos

x=5% x=10% x=25% x=50%

B-IRL(x)* 1.283 0.956 1.065 2.096

B-REX 0.006

Table 10. Ranked Suboptimal Demos: Average policy loss for

Bayesian IRL versus Bayesian REX over 100 random 6x6 grid

worlds with 4 binary features.

2 5 10 20 30

B-IRL 0.045 0.034 0.018 0.009 0.006

B-REX 0.051 0.045 0.040 0.034 0.034

Bayesian REX leveraged the self-supervised rankings to

only perform slightly worse than full Bayesian IRL. This

result is encouraging since it is possible that a more sophis-

ticated method for auto-generating suboptimal demonstra-

tions and rankings could be used to further improve the

performance of Bayesian REX even when demonstrations

are not ranked (Brown et al., 2019a).

C.4. Summary

The results above demonstrate that if a very small number of

unlabeled near-optimal demonstrations are available, then

classical Bayesian IRL is the natural choice for performing

reward inference. However, if any of these assumptions are

not true, then Bayesian REX is a competitive and often su-

perior alternative for performing Bayesian reward inference.

Also implicit in the above results is the assumption that

a highly tractable MDP solver is available for performing

Bayesian IRL. If this is not the case, then Bayesian IRL

is infeasible and Bayesian REX is the natural choice for

Bayesian reward inference.

D. Pre-training Latent Reward Features

We experimented with several pretraining methods. One

method is to train Rθ using the pairwise ranking likelihood

function in Equation (6) and then freeze all but the last layer

of weights; however, the learned embedding may overfit to

the limited number of preferences over demonstrations and

fail to capture features relevant to the ground-truth reward

function. Thus, we supplement the pairwise ranking ob-

jective with auxiliary objectives that can be optimized in a

self-supervised fashion using data from the demonstrations.

Table 11. Self-supervised learning objectives used to pre-train

φ(s).

Inverse Dynamics fID(φ(st), φ(st+1))→ at
Forward Dynamics fFD(φ(st), at)→ st+1

Temporal Distance fTD(φ(st), φ(st+x)→ x

Variational Autoencoder fA(φ(st))→ st

We use the following self-supervised tasks to pre-train Rθ:

(1) Learn an inverse dynamics model that uses embeddings

φ(st) and φ(st+1) to predict the corresponding action at
(Torabi et al., 2018; Hanna & Stone, 2017), (2) Learn a

forward dynamics model that predicts st+1 from φ(st) and

at (Oh et al., 2015; Thananjeyan et al., 2019), (3) Learn an

embedding φ(s) that predicts the temporal distance between

two randomly chosen states from the same demonstration

(Aytar et al., 2018), and (4) Train a variational pixel-to-pixel

autoencoder in which φ(s) is the learned latent encoding

(Makhzani & Frey, 2017; Doersch, 2016). Table 1 summa-

rizes the auxiliary tasks used to train φ(s).

There are many possibilities for pre-training φ(s); however,

we found that each objective described above encourages

the embedding to encode different features. For example,

an accurate inverse dynamics model can be learned by only

attending to the movement of the agent. Learning forward

dynamics supplements this by requiring φ(s) to encode

information about short-term changes to the environment.

Learning to predict the temporal distance between states in a

trajectory forces φ(s) to encode long-term progress. Finally,

the autoencoder loss acts as a regularizer to the other losses

as it seeks to embed all aspects of the state.

In the Atari domain, input to the network is given visually

as grayscale frames resized to 84 × 84. To provide tem-

poral information, four sequential frames are stacked one

on top of another to create a framestack which provides a

brief snapshot of activity. The network architecture takes

a framestack, applies four convolutional layers following a

similar architecture to Christiano et al. (2017) and Brown

et al. (2019b), with leaky ReLU units as non-linearities fol-

lowing each convolution layer. The convolutions follow the

following structure:

Filter size Image size Stride

Input - 84× 84× 4 -

1 7x7 26× 26× 16 3

2 5x5 11× 11× 32 2

3 5x5 9× 9× 32 1

4 3x3 7× 7× 16 1

The convolved image is then flattened. Two sequential

fully connected layers, with leaky ReLU applied to the first

layer, transform the flattened image into the encoding, φ(s)
where s is the initial framestack. The width of these layers

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

trained as a classification problem with a binary cross-

entropy loss over the discrete action set.

4. A forward dynamics model, which takes a concate-

nated feature encoding and action and predicts the next

feature encoding with a single fully-connected layer.

This is repeated 5 times, which increases the difference

between the initial and final encoding. It is trained

using a mean-squared error between the predicted and

real feature encoding.

5. A T-REX loss, which samples feature encodings from

two different demonstrations and tries to predict which

one of them has preference over the other. This is done

with a single fully-connected layer that transforms an

encoding into scalar reward, and is then trained as

a classification problem with a binary cross-entropy

loss. A 1 is assigned to the demonstration sample with

higher preference and a 0 to the demonstration sample

with lower preference.

In order to encourage a feature encoding that has informa-

tion easily interpretable via linear combinations, the tem-

poral difference, T-REX, inverse dynamics, and forward

dynamics tasks consist of only a single layer atop the fea-

ture encoding space rather than multiple layers.

To compute the final loss on which to do the backwards pass,

all of the losses described above are summed with weights

determined empirically to balance out their values.

D.1. Training specifics

We used an NVIDIA TITAN V GPU for training the embed-

ding. We used the same 12 demonstrations used for MCMC

to train the self-supervised and ranking losses described

above. We sample 60,000 trajectory snippets pairs from the

demonstration pool, where each snippet is between 50 and

100 timesteps long. We use a learning rate of 0.001 and a

weight decay of 0.001. We make a single pass through all

of the training data using batch size of 1 resulting in 60,000

updates using the Adam (Kingma & Ba, 2014) optimizer.

For Enduro prior work (Brown et al., 2019b) showed that

full trajectories resulted in better performance than subsam-

pling trajectories. Thus, for Enduro we subsample 10,000

pairs of entire trajectories by randomly selecting a starting

time between 0 and 5 steps after the initial state and then

skipping every t frames where t is chosen uniformly from

the range [3, 7) and train with two passes through the train-

ing data. When performing subsampling for either snippets

or full trajectories, we subsample pairs of trajectories such

that one is from a worse ranked demonstration and one is

from a better ranked demonstration following the procedure

outlined in (Brown et al., 2019b).

E. Visualizations of Learned Features

Viewable here2 is a video containing an Enduro demonstra-

tion trajectory, its decoding with respect to the pre-trained

autoencoder, and a plot of the dimensions in the latent encod-

ing over time. Observe how changes in the demonstration,

such as turning right or left or a shift, correspond to changes

in the plots of the feature embedding. We noticed that cer-

tain features increase when the agent passes other cars while

other features decrease when the agent gets passed by other

cars. This is evidence that the pretraining has learned fea-

tures that are relevant to the ground truth reward which gives

+1 every time the agent passes a car and -1 every time the

agent gets passed.

Viewable here3 is a similar visualization of the latent space

for Space Invaders. Notice how it tends to focus on the

movement of enemy ships, useful for game progress in

things such as the temporal difference loss, but seems to

ignore the player’s ship despite its utility in inverse dynamics

loss. Likely the information exists in the encoding but is not

included in the output of the autoencoder.

Viewable here4 is visualization of the latent space for Break-

out. Observe that breaking a brick often results in a small

spike in the latent encoding. Many dimensions, like the dark

green curve which begins at the lowest value, seem to invert

as game progress continues on, thus acting as a measure of

how much time has passed.

F. Imitation Learning Ablations for

Pre-training φ(s)

Table 12 shows the results of pre-training reward features

only using different losses. We experimented with using

only the T-REX Ranking loss (Brown et al., 2019b), only

the self-supervised losses shown in Table 1 of the main

paper, and using both the T-REX ranking loss plus the self-

supervised loss function. We found that performance varried

over the different pre-training schemes, but that using Rank-

ing + Self-Supervised achieved high performance across

all games, clearly outperforming only using self-supervised

losses and achieving superior performance to only using the

ranking loss on 3 out of 5 games.

G. Suboptimal Demonstration Details

We used the same suboptimal demonstrations used by

Brown et al. (2019b) for comparison. These demonstrations

2https://www.youtube.com/watch?v=

DMf8kNH9nVg
3https://www.youtube.com/watch?v=

2uN5uD17H6M
4https://www.youtube.com/watch?v=

8zgbD1fZOH8

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Table 12. Comparison of different reward feature pre-training schemes. Ground-truth average returns for several Atari games when

optimizing the mean and MAP rewards found using Bayesian REX. Each algorithm is given the same 12 demonstrations with ground-truth

pairwise preferences. The average performance for each IRL algorithm is the average over 30 rollouts.

Ranking Loss Self-Supervised Ranking + Self-Supervised

Game Mean MAP Mean MAP Mean MAP

Beam Rider 3816.7 4275.7 180.4 143.7 5870.3 5504.7

Breakout 389.9 409.5 360.1 367.4 393.1 390.7

Enduro 472.7 479.3 0.0 0.0 135.0 487.7

Seaquest 675.3 670.7 674.0 683.3 606.0 734.7

Space Invaders 1482.0 1395.5 391.2 396.2 961.3 1118.8

were obtained by running PPO on the ground truth reward

and checkpointing every 50 updates using OpenAI Base-

lines (Dhariwal et al., 2017). Brown et al. (2019b) make the

checkpoint files available, so to generate the demonstration

data we used their saved checkpoints and followed the in-

structions in their released code to generate the data for our

algorithm5. We gave Bayesian REX these demonstrations

as well as ground-truth rankings using the game score; how-

ever, other than the rankings, Bayesian REX has no access

to the true reward samples. Following the recommendations

of Brown et al. (2019b), we mask the game score and other

parts of the game that are directly indicative of the game

score such as the number of enemy ships left, the number of

lives left, the level number, etc. See (Brown et al., 2019b)

for full details.

H. Reinforcement Learning Details

We used the OpenAI Baselines implementation of Proximal

Policy Optimization (PPO) (Schulman et al., 2017; Dhari-

wal et al., 2017). We used the default hyperparameters for

all games and all experiments. We run RL for 50 million

frames and then take the final checkpoint to perform eval-

uations. We adapted the OpenAI Baselines code so even

though the RL agent receives a standard preprocessed ob-

servation, it only receives samples of the reward learned via

Bayesian REX, rather than the ground-truth reward. T-REX

(Brown et al., 2019b) uses a sigmoid to normalize rewards

before passing them to the RL algorithm; however, we ob-

tained better performance for Bayesian REX by feeding

the unnormalized predicted reward Rθ(s) into PPO for pol-

icy optimization. We follow the OpenAI baselines default

preprocessing for the framestacks that are fed into the RL

algorithm as observations. We also apply the default Ope-

nAI baselines wrappers the environments. We run PPO with

9 workers on an NVIDIA TITAN V GPU.

5Code from (Brown et al., 2019b) is available here https:
//github.com/hiwonjoon/ICML2019-TREX

I. High-Confidence Policy Performance

Bounds

In this section we describe the details of the policy perfor-

mance bounds.

I.1. Policy Evaluation Details

We estimated Φπeval
using C Monte Carlo rollouts for

each evaluation policy. Thus, after generating C rollouts,

τ1, . . . , τC from πeval the feature expectations are computed

as

Φπeval
=

1

C

[

C
∑

i=1

∑

s∈τi

φ(s)

]

. (11)

We used C = 100 for all experiments.

I.2. Evaluation Policies

We evaluated several different evaluation policies. To see

if the learned reward function posterior can interpolate and

extrapolate we created four different evaluation policies: A,

B, C, and D. These policies were created by running RL via

PPO on the ground truth reward for the different Atari games.

We then checkpointed the policy and selected checkpoints

that would result in different levels of performance. For all

games except for Enduro these checkpoints correspond to

25, 325, 800, and 1450 update steps using OpenAI baselines.

For Enduro, PPO performance was stuck at 0 return until

much later in learning. To ensure diversity in the evaluation

policies, we chose to use evaluation policies corresponding

to 3125, 3425, 3900, and 4875 steps. We also evaluated

each game with a No-Op policy. These policies are often

adversarial for some games, such as Seaquest, Breakout,

and Beam Rider, since they allow the agent to live for a very

long time without actually playing the game—a potential

way to hack the learned reward since most learned rewards

for Atari will incentivize longer gameplay.

The results for Beam Rider and Breakout are shown in the

main paper. For completeness, we have included the high-

confidence policy evaluation results for the other games here

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Table 13. Policy evaluation statistics for Enduro over the return

distribution from the learned posterior P (R|D,P) compared with

the ground truth returns using game scores. Policies A-D cor-

respond to checkpoints of an RL policy partially trained on the

ground-truth reward function and correspond to 25, 325, 800, and

1450 training updates to PPO. No-Op that always plays the no-

op action, resulting in high mean predicted performance but low

95%-confidence return (0.05-VaR).

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length

A 324.7 48.2 7.3 3322.4

B 328.9 52.0 26.0 3322.4

C 424.5 135.8 145.0 3389.0

D 526.2 192.9 199.8 3888.2

Mean 1206.9 547.5 496.7 7249.4

MAP 395.2 113.3 133.6 3355.7

No-Op 245.9 -31.7 0.0 3322.0

in the Appendix. Table 13 shows the high-confidence policy

evaluation results for Enduro. Both the average returns over

the posterior as well as the the high-confidence performance

bounds (δ = 0.05) demonstrate accurate predictions relative

to the ground-truth performance. The No-Op policy results

in the racecar slowly moving along the track and losing

the race. This policy is accurately predicted as being much

worse than the other evaluation policies. We also evaluated

the Mean and MAP policies found by optimizing the Mean

reward and MAP reward from the posterior obtained using

Bayesian REX. We found that the learned posterior is able

to capture that the MAP policy is more than twice as good

as the evaluation policy D and that the Mean policy has per-

formance somewhere between the performance of policies

B and C. These results show that Bayesian REX has the

potential to predict better-than-demonstrator performance

(Brown et al., 2019a).

Table 14 shows the results for high-confidence policy evalu-

ation for Seaquest. The results show that high-confidence

performance bounds are able to accurately predict that eval-

uation policies A and B are worse than C and D. The ground

truth performance of policies C and D are too close and the

mean performance over the posterior and 0.05-VaR bound

on the posterior are not able to find any statistical difference

between them. Interestingly the no-op policy has very high

mean and 95%-confidence lower bound, despite not scoring

any points. However, as shown in the bottom half of Ta-

ble 14, adding one more ranked demonstration from a 3000

length segment of a no-op policy solves this problem. These

results motivate a natural human-in-the-loop approach for

safe imitation learning.

Finally, Table 15 shows the results for high-confidence pol-

icy evaluation for Space Invaders. The results show that us-

Table 14. Policy evaluation statistics for Seaquest over the return

distribution from the learned posterior P (R|D,P) compared with

the ground truth returns using game scores. Policies A-D cor-

respond to checkpoints of an RL policy partially trained on the

ground-truth reward function and correspond to 25, 325, 800, and

1450 training updates to PPO. No-Op always plays the no-op

action, resulting in high mean predicted performance but low 0.05-

quantile return (0.05-VaR). Results predict that No-Op is much

better than it really is. However, simply adding a single ranked

rollout from the No-Op policy and rerunning MCMC results in

correct relative rankings with respect to the No-Op policy

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length

A 24.3 10.8 338.6 1077.8

B 53.6 24.1 827.2 2214.1

C 56.0 25.4 872.2 2248.5

D 55.8 25.3 887.6 2264.5

No-Op 2471.6 842.5 0.0 99994.0

Results after adding one ranked demo from No-Op

A 0.5 -0.5 338.6 1077.8

B 3.7 2.0 827.2 2214.1

C 3.8 2.1 872.2 2248.5

D 3.2 1.5 887.6 2264.5

No-Op -321.7 -578.2 0.0 99994.0

ing both the mean performance and 95%-confidence lower

bound are good indicators of ground truth performance for

the evaluation polices. The No-Op policy for Space Invaders

results in the agent getting hit by alien lasers early in the

game. The learned reward function posterior correctly as-

signs low average performance and indicates high risk with

a low 95%-confidence lower bound on the expected return

of the evaluation policy.

J. Different Evaluation Policies

To test Bayesian REX on different learned policies we took

a policy trained with RL on the ground truth reward function

for Beam Rider, the MAP policy learned via Bayesian REX

for Beam Rider, and a policy trained with an earlier version

of Bayesian REX (trained without all of the auxiliary losses)

that learned a novel reward hack where the policy repeatedly

presses left and then right, enabling the agent’s ship to stay

in between two of the firing lanes of the enemies. The

imitation learning reward hack allows the agent to live for a

very long time. We took a 2000 step prefix of each policy

and evaluated the expected and 5th perentile worst-case

predicted returns for each policy. We found that Bayesian

REX is able to accurately predict that the reward hacking

policy is worse than both the RL policy and the policy

optimizing the Bayesian REX reward. However, we found

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Table 15. Policy evaluation statistics for Space Invaders over the

return distribution from the learned posterior P (R|D,P) com-

pared with the ground truth returns using game scores. Policies

A-D correspond to checkpoints of an RL policy partially trained on

the ground-truth reward function and correspond to 25, 325, 800,

and 1450 training updates to PPO. The mean and MAP policies are

the results of PPO using the mean and MAP rewards, respectively.

No-Op that always plays the no-op action, resulting in high mean

predicted performance but low 0.05-quantile return (0.05-VaR).

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length

A 45.1 20.6 195.3 550.1

B 108.9 48.7 436.0 725.7

C 148.7 63.6 575.2 870.6

D 150.5 63.8 598.2 848.2

Mean 417.4 171.7 1143.7 1885.7

MAP 360.2 145.0 928.0 1629.5

NoOp 18.8 3.8 0.0 504.0

Table 16. Beamrider policy evaluation for an RL policy trained on

ground truth reward, an imitation learning policy, and a reward

hacking policy that exploits a game hack to live for a long time by

moving quickly back and forth.

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length

RL 36.7 19.5 2135.2 2000

B-REX 68.1 38.1 649.4 2000

Hacking 28.8 10.2 2.2 2000

that the Bayesian REX policy, while not performing as well

as the RL policy, was given higher expected return and a

higher lower bound on performance than the RL policy.

Results are shown in Table 16.

K. Human Demonstrations

To investigate whether Bayesian REX is able to correctly

rank human demonstrations, one of the authors provided

demonstrations of a variety of different behaviors and then

we took the latent embeddings of the demonstrations and

used the posterior distribution to find high-confidence per-

formance bounds for these different rollouts.

K.1. Beamrider

We generated four human demonstrations: (1) good, a good

demonstration that plays the game well, (2) bad, a bad

demonstration that seeks to play the game but does a poor

job, (3) pessimal, a demonstration that does not shoot ene-

mies and seeks enemy bullets, and (4) adversarial a demon-

stration that pretends to play the game by moving and shoot-

Table 17. Beam Rider evaluation of a variety of human demonstra-

tions.

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length

good 12.4 5.8 1092 1000.0

bad 10.7 4.5 396 1000.0

pessimal 6.6 0.8 0 1000.0

adversarial 8.4 2.4 176 1000.0

Table 18. Space Invaders evaluation of a variety of human demon-

strations.

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length

good 198.3 89.2 515 1225.0

every other 56.2 25.9 315 728.0

hold ’n fire 44.3 18.6 210 638.0

shoot shelters 47.0 20.6 80 712.0

flee 45.1 19.8 0 722.0

hide 83.0 39.0 0 938.0

miss 66.0 29.9 0 867.0

pessimal 0.5 -13.2 0 266.0

ing as much as possibly but tries to avoid actually shooting

enemies. The results of high-confidence policy evaluation

are shown in Table 17. The high-confidence bounds and

average performance over the posterior correctly rank the

behaviors. This provides evidence that the learned linear re-

ward correctly rewards actually destroying aliens and avoid-

ing getting shot, rather than just flying around and shooting.

K.2. Space Invaders

For Space Invaders we demonstrated an even wider variety

of behaviors to see how Bayesian REX would rank their rel-

ative performance. We evaluated the following policies: (1)

good, a demonstration that attempts to play the game as well

as possible, (2) every other, a demonstration that only shoots

aliens in the 2nd and 4th columns, (3) flee, a demonstration

that did not shoot aliens, but tried to always be moving while

avoiding enemy lasers, (4) hide, a demonstration that does

not shoot and hides behind on of the barriers to avoid enemy

bullets, (5) pessimal, a policy that seeks enemy bullets while

not shooting, (6) shoot shelters, a demonstration that tries to

destroy its own shelters by shooting at them, (7) hold ’n fire,

a demonstration where the player rapidly fires but does not

move to avoid enemy lasers, and (8) miss, a demonstration

where the demonstrator tries to fire but not hit any aliens

while avoiding enemy lasers.

Table 18 shows the results of evaluating the different demon-

strations. The good demonstration is clearly the best per-

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Table 19. Space Invaders evaluation of a variety of human demon-

strations when considering only the first 6000 steps.

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length

good 47.8 22.8 515 600.0

every other 34.6 15.0 315 600.0

hold ’n fire 40.9 17.1 210 600.0

shoot shelters 33.0 13.3 80 600.0

flee 31.3 11.9 0 600.0

hide 32.4 13.8 0 600.0

miss 30.0 11.3 0 600.0

forming demonstration in terms of mean performance and

95%-confidence lower bound on performance and the pessi-

mal policy is correctly given the lowest performance lower

bound. However, we found that the length of the demon-

stration appears to have a strong effect on the predicted

performance for Space Invaders. Demonstrations such as

hide and miss are able to live for a longer time than policies

that actually hit aliens. This results in them having higher

0.05-quantile worst-case predicted performance and higher

mean performance.

To study this further we looked at only the first 600 timesteps

of each policy, to remove any confounding by the length

of the trajectory. The results are shown in Table 19. With

a fixed length demonstration, Bayesian REX is able to cor-

rectly rank good, every other, and hold ’n fire as the best

demonstrations, despite evaluation policies that are decep-

tive.

K.3. Enduro

For Enduro we tested four different human demonstrations:

(1) good a demonstration that seeks to play the game well,

(2) periodic a demonstration that alternates between speed-

ing up and passing cars and then slowing down and being

passed, (3) neutral a demonstration that stays right next to

the last car in the race and doesn’t try to pass or get passed,

and (4) ram a demonstration that tries to ram into as many

cars while going fast. Table 20 shows that Bayesian REX

is able to accurately predict the performance and risk of

each of these demonstrations and gives the highest (lowest

0.05-VaR) risk to the ram demonstration and the least risk

to the good demonstration.

L. Comparison with Other Methods for

Uncertainty Quantification

Bayesian REX is only one possible method for measure un-

certainty. Other popular methods for measuring epistemic

uncertainty include using bootstrapping to create an ensem-

Table 20. Enduro evaluation of a variety of human demonstrations.

Predicted Ground Truth

Policy Mean 0.05-VaR Avg. Length

good 246.7 -113.2 177 3325.0

periodic 230.0 -130.4 44 3325.0

neutral 190.8 -160.6 0 3325.0

ram 148.4 -214.3 0 3325.0

ble of neural networks (Lakshminarayanan et al., 2017) and

using dropout as an approximation of MCMC sampling (Gal

& Ghahramani, 2016). In this section we compare our fully

Bayesian approach with these two approximations.

L.1. T-REX Ensemble

We used the same implementation used by Brown et al.

(2019b)6, but trained an ensemble of five T-REX networks

using the same training demonstrations but with randomized

seeds so each network is intitialized differently and has a

different training set of subsampled snippets from the full

length ranked trajectories. To estimate the uncertainty over

the return of a trajectory or policy we run the trajectory

through each network to get a return estimate or run multiple

rollouts of the policy through each member of the ensemble

to get a distribution over returns. We used 100 rollouts for

the evaluation policies.

L.2. MC Dropout

For the MC Dropout baseline we used the same base archi-

tecture as T-REX and Bayesian REX, except that we did not

add additional auxiliary losses, but simply trained the base

network to predict returns using dropout during training.

For each training pair of trajectories we randomly sample

a dropout mask on the last layer of weights. Because MC

dropout is supposed to approximate a large ensemble, we

kept the dropout mask consistent across each sampled pref-

erence pair such that the same portions of the network are

dropped out for each frame of each trajectory and for both

the more preferred and less preferred trajectories. Thus, for

each training sample, consisting of a more and less preferred

trajectory, we sample a random dropout mask and then ap-

ply this same mask across all states in both trajectories. To

keep things as similar to Bayesian REX as possible, we used

full trajectories with the same pairwise preferences used by

Bayesian REX.

To estimate the posterior distribution over returns for a trajec-

tory or policy we simply sampled 50 random masks on the

last layer of weights. Thus, this method corresponds to the

MC dropout equivalent of Bayesian REX where the latent

6https://github.com/hiwonjoon/icml2019-trex

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

state encoding is trained end-to-end via dropout rather than

pre-trained and where the posterior distribution is estimated

via randomly dropping out weights on the corresponding lin-

ear reward function. We applied these 50 random dropouts

to each of 100 rollouts for each evaluation policy. We used

a dropout probability of 0.5.

Table 21 shows the results for running RL on the learned

reward functions. The results show that Bayesian REX

is superior or competitive with T-REX Ensemble and MC

Dropout across all games except Beam Rider, where MC

Dropout performs much better.

L.3. T-REX Ensemble High-Confidence Bounds

Tables 22–26 show the results for evaluating different eval-

uation policies via high-confidence performance bounds.

Table 22 shows that the ensemble has accurate expected

returns, but that the 95% confidence lower bounds are not in-

formative and do not represent risk as accurately as Bayesian

REX since policy D is viewed as much worse than policy A.

Note that we normalized the predicted scores by calculating

the average predicted return of each ensemble member for

rollouts from policy A and then using this as a baseline for

all other predictions of each ensemble member by subtract-

ing off the average predicted return for policy A from return

predictions of other policies. Tables 23 and 25 show that

the T-REX Ensemble can sometimes fail to produce mean-

ingful predictions for the expectation or the 95% worst-case

bounds. Table 24 and 26 show good predictions.

L.4. MC Dropout Results

Tables 27–31 show the results for high-confidence bounds

for MC Dropout. Tables 27 and 31 show that MC Dropout

is able to accurately predict high risk for the Beam Rider

and Space Invaders No-Op policies. However, table 28 29,

and 30 show that MC Dropout often fails to predict that the

No-Op policy has high risk. Recent work has shown that

MC Dropout is not a principled Bayesian approximation

since the distribution obtained from MC Dropout does not

concentrate in the limit as the number of data samples goes

to infinity and thus does not necessarily measure the kind

of epistemic risk we are interested in (Osband, 2016). Thus,

while MC Dropout does not perform full Bayesian infer-

ence like Bayesian REX, it appears to work sometimes in

practice. Future work should examine more sophisticated

applications of dropout to uncertainty estimation that seek

to solve the theoretical and practical problems with vanilla

MC Dropout (Hron et al., 2018).

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Table 21. Comparison of policy performance when using a reward function learned by Bayesian REX, a T-REX ensemble, and a dropout

version of Bayesian REX. The results show averages (standard deviations over 30 rollouts. Bayesian REX results in comparable or better

performance across all games except Beam Rider.

Bayesian REX

Game Mean MAP T-REX Ensemble MC Dropout

Beam Rider 5870.3 (1905.1) 5504.7 (2121.2) 5925.0 (2097.9) 7243.1 (2543.6)

Breakout 393.1 (63.7) 390.7 (48.8) 253.7 (136.2) 52.6 (10.1)

Enduro 135.0 (24.8) 487.7 (89.4) 281.5 (95.2) 111.8 (17.9)

Seaquest 606.0 (37.6) 734.7 (41.9) 0.0 (0.0) 0.0 (0.0)

Space Invaders 961.3 (392.3) 1118.8 (483.1) 1164.8 (546.3) 387.5 (166.3)

Table 22. Beam Rider T-REX ensemble.

Predicted Ground Truth Avg.

Policy Mean 0.05-VaR Score Length

A 0.0 -119.5 454.4 1372.6

B 76.1 -63.7 774.8 1412.8

C 201.3 -173.8 1791.8 2389.9

D 282.0 -304.0 2664.5 2965.0

Mean 956.9 -2294.8 5736.8 9495.6

MAP 1095.7 -2743.4 5283.0 11033.4

No-Op -1000.0 -5643.7 0.0 99,994.0

Table 23. Breakout T-REX ensemble.

Predicted Ground Truth Avg.

Policy Mean 0.05-VaR Score Length

A 0.0 -506.3 1.8 202.7

B -305.8 -1509.1 16.1 608.4

C -241.1 -1780.7 24.8 849.3

D -57.9 -2140.0 42.7 1020.8

Mean -5389.5 -867.4 388.9 13762.1

MAP -3168.5 -1066.5 401.0 8780.0

No-Op -39338.4 -95987.2 0.0 99,994.0

Table 24. Enduro T-REX ensemble.

Predicted Ground Truth Avg.

Policy Mean 0.05-VaR Score Length

A -0.0 -137.7 9.4 3322.4

B 23.6 -157.4 23.2 3322.4

C 485.4 232.2 145.6 2289.0

D 1081.1 270.3 214.2 3888.2

Mean 3408.9 908.0 496.7 7249.4

MAP 23.2 -1854.1 133.6 3355.7

No-Op -1618.1 -3875.9 0.0 3322.0

Table 25. Seaquest T-REX ensemble.

Predicted Ground Truth Avg.

Policy Mean 0.05-VaR Score Length

A 0.0 -320.9 321.0 1077.8

B -425.2 -889.3 826.6 2214.1

C -336.7 -784.3 863.4 2248.5

D -386.3 -837.3 884.4 2264.5

Mean -1013.1 -2621.8 721.8 2221.7

MAP -636.8 -1820.1 607.4 2247.2

No-Op -19817.9 -28209.7 0.0 99,994.0

Table 26. Space Invaders T-REX ensemble.

Predicted Ground Truth Avg.

Policy Mean 0.05-VaR Score Length

A 0.0 -136.8 159.4 550.1

B 257.3 -47.9 425.0 725.7

C 446.5 -6.0 553.1 870.6

D 443.3 9.0 591.5 848.2

Mean 1105.6 -392.4 1143.7 1885.7

MAP 989.0 -387.2 928.0 1629.5

No-Op -211.9 -311.9 0.0 504.0

Table 27. Beam Rider MC Dropout.

Predicted Ground Truth Avg.

Policy Mean 0.05-VaR Score Length

A 20.9 -1.5 454.4 1372.6

B 27.9 2.3 774.8 1412.8

C 48.7 8.3 1791.8 2389.9

D 63.5 11.0 2664.5 2965.0

Mean 218.2 -89.2 5736.8 1380

MAP 211.2 -148.7 5283.0 708

No-Op 171.2 -3385.7 0.0 99,994.0

Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences

Table 28. Breakout MC Dropout.

Predicted Ground Truth Avg.

Policy Mean 0.05-VaR Score Length

A 10.8 5.2 1.8 202.7

B 33.1 17.7 16.1 608.4

C 43.5 24.1 24.8 849.3

D 56.0 28.5 42.7 1020.8

Mean 822.9 77.3 388.9 13762.1

MAP 519.7 73.8 401.0 8780.0

No-Op 6050.7 3912.4 0.0 99,994.0

Table 29. Enduro MC Dropout.

Predicted Ground Truth Avg.

Policy Mean 0.05-VaR Score Length

A 541.7 398.0 7.3 3322.4

B 543.6 401.0 26.4 3322.4

C 556.7 409.3 142.5 3389.0

D 663.3 422.3 200.3 3888.2

Mean 2473.0 1701.7 496.7 7249.4

MAP 1097.3 799.5 133.6 3355.7

No-Op 1084.1 849.8 0.0 3322.0

Table 30. Seaquest MC Dropout.

Predicted Ground Truth Avg.

Policy Mean 0.05-VaR Score Length

A 98.9 49.5 321.0 1077.8

B 258.8 194.8 826.6 2214.1

C 277.7 213.2 863.4 2248.5

D 279.6 214.2 884.4 2264.5

Mean 375.6 272.8 721.8 2221.7

MAP 426.3 319.8 607.4 2247.2

No-Op 16211.1 10478.5 0.0 99,994.0

Table 31. Space Invaders MC Dropout.

Predicted Ground Truth Avg.

Policy Mean 0.05-VaR Score Length

A 10.6 0.8 195.3 550.1

B 22.3 8.8 434.9 725.7

C 26.7 9.8 535.3 870.6

D 28.9 15.6 620.9 848.2

Mean 125.9 54.4 1143.7 848.2

MAP 110.6 52.5 928.0 1885.7

No-Op 8.4 -8.6 0.0 504.0

