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Abstract

Fair machine learning studies how to construct predictive machine learning models
such that decisions made with their assistance fairly treat all groups of people.
A recent trend in this field is to define fairness as causality-based notions which
concern the causal connection between protected attributes and decisions. However,
one common challenge of all causality-based fairness notions is identifiability, i.e.,
whether they can be uniquely measured from observational data, which is a critical
barrier to applying these notions to real-world situations. In this paper, we develop
a framework for measuring different causality-based fairness. We propose a unified
definition that covers most of previous causality-based fairness notions, namely the
path-specific counterfactual fairness (PC fairness). Based on that, we propose a
general method in the form of a constrained optimization problem for bounding PC
fairness under all unidentifiable situations. Experiments on synthetic and real-world
datasets show the correctness and effectiveness of our method.

1 Introduction

Fair machine learning is now an important research field which studies how to develop predictive
machine learning models such that decisions made with their assistance fairly treat all groups of
people irrespective of their protected attributes such as gender, race, etc. A recent trend in this field is
to define fairness as causality-based notions which concern the causal connection between protected
attributes and decisions. Based on Pearl’s structural causal models [8], a number of causality-based
fairness notions have been proposed for capturing fairness in different situations, including total effect
[19, 16, 20], direct/indirect discrimination [19, 16, 7, 20], and counterfactual fairness [5, 14, 15, 9].

One common challenge of all causality-based fairness notions is identifiability, i.e., whether they can
be uniquely measured from observational data. As causality-based fairness notions are defined based
on different types of causal effects, such as total effect on interventions, direct/indirect discrimination
on path-specific effects, and counterfactual fairness on counterfactual effects, their identifiability
depends on the identifiability of these causal effects. Unfortunately, in many situations these causal
effects are in general unidentifiable, referred to as unidentifiable situations [12]. Identifiability is a
critical barrier for the causality-based fairness to be applied to real applications. In previous works,
simplifying assumptions are proposed to evade this problem [5, 19, 4]. However, these simplifications
may severely damage the performance of predictive models. In [20] the authors propose a method
to bound indirect discrimination as the path-specific effect in unidentifiable situations, and in [14] a
method is proposed to bound counterfactual fairness. Nevertheless, the tightness of these methods is
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not analyzed. In addition, it is not clear whether these methods can be applied to other unidentifiable
situations, and more importantly, a combination of multiple unidentifiable situations.

In this paper, we propose a framework for handling different causality-based fairness notions. We first
propose a general representation of all types of causal effects, i.e., the path-specific counterfactual
effect, based on which we define a unified fairness notion that covers most previous causality-based
fairness notions, namely the path-specific counterfactual fairness (PC fairness). We summarize all
unidentifiable situations that are discovered in the causal inference literature. Then, we develop a
constrained optimization problem for bounding the PC fairness, which is motivated by the method
proposed in [2] for bounding confounded causal effects. The key idea is to parameterize the causal
model using so-called response-function variables, whose distribution captures all randomness
encoded in the causal model, so that we can explicitly traverse all possible causal models to find
the tightest possible bounds. In the experiments, we evaluate the proposed method and compare it
with previous bounding methods using both synthetic and real-world datasets. The results show that
our method is capable of bounding causal effects under any unidentifiable situation or combinations.
When only path-specific effect or counterfactual effect is considered, our method provides tighter
bounds than methods in [20] or [14].

The proposed framework settles a general theoretical foundation for causality-based fairness. We
make no assumption about the hidden confounders so that hidden confounders are allowed to exist
in the causal model. We also make no assumption about the data generating process and whether
the observation data is generated by linear or non-linear functions would not introduce bias into our
results. We only assume that the causal graph is given, which is a common assumption in structural
causal models. One limitation of the framework is that currently it can only deal with discrete
variables with finite domains. We will extend the framework to continuous variables with infinite
domains in the future work.

2 Preliminaries

In our notations, an uppercase denotes a variable, e.g., X; a bold uppercase denotes a set of variables,
e.g., X; and a lowercase denotes a value or a set of values of the variables, e.g., x and x.

2.1 Causal Model and Causal Graph

Definition 1 (Structural Causal Model [8]). A structural causal model M is represented by a
quadriple 〈U,V,F, P (U)〉 where

1. U is a set of exogenous variables that are determined by factors outside the model.

2. P (U) is a joint probability distribution defined over U.

3. V is a set of endogenous variables that are determined by variables in U ∪V.

4. F is a set of structural equations from U ∪V to V. Specifically, for each V ∈ V, there is a
function fV ∈ F mapping from U ∪ (V\V ) to V , i.e., v = fV (paV , uV ), where paV is a
realization of a set of endogenous variables PAV ∈ V \ V that directly determines V , and
uV is a realization of a set of exogenous variables that directly determines V .

In general, fV (·) can be an equation of any type. In some cases, people may assume that fV (·) is of
a specific type, e.g., the nonlinear additive function if v = fV (paV ) + uV . On the other hand, if all
exogenous variables in U are assumed to be mutually independent, then the causal model is called
a Markovian model; otherwise, it is called a semi-Markovian model. In this paper, we don’t make
assumptions about the type of equations and independence relationships among exogenous variables.

The causal modelM is associated with a causal graph G = 〈V, E〉 where V is a set of nodes and E is
a set of edges. Each node of V corresponds to a variable of V inM. Each edge in E , denoted by a
directed arrow→, points from a node X ∈ U ∪V to a different node Y ∈ V if fY uses values of
X as input. A causal path from X to Y is a directed path which traces arrows directed from X to
Y . The causal graph is usually simplified by removing all exogenous variables from the graph. In a
Markovian model, exogenous variables can be directly removed without loss of information. In a
semi-Markovian model, after removing exogenous variables we also need to add dashed bi-directed
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Figure 1: Causal graphs of a Markovian model and a semi-Markovian models

edges between the children of correlated exogenous variables to indicate the existence of unobserved
common cause factors, i.e., hidden confounders. Examples are demonstrated in Figure 1.

2.2 Causal Effects

Quantitatively measuring causal effects in the causal model is facilitated with the do-operator [8]
which forces some variable X to take certain value x, formally denoted by do(X = x) or do(x).
In a causal modelM, the intervention do(x) is defined as the substitution of structural equation
X = fX(PAX , UX) with X = x. For an observed variable Y (Y 6= X) which is affected by the
intervention, its interventional variant is denoted by Yx. The distribution of Yx, also referred to as the
post-intervention distribution of Y under do(x), is denoted by P (Yx = y) or simply P (yx).

By using the do-operator, the total causal effect is defined as follows.
Definition 2 (Total Causal Effect [8]). The total causal effect of the value change of X from x0 to x1

on Y = y is given by
TCE(x1, x0) = P (yx1

)− P (yx0
).

The total causal effect is defined as the effect of X on Y where the intervention is transferred along
all causal paths from X to Y . If we force the intervention to be transferred only along a subset of all
causal paths from X to Y , the causal effect is then called the path-specific effect, defined as follows.
Definition 3 (Path-specific Effect [1]). Given a causal path set π, the π-specific effect of the value
change of X from x0 to x1 on Y = y through π (with reference x0) is given by

PEπ(x1, x0) = P (yx1|π,x0|π̄)− P (yx0),

where P (Yx1|π,x0|π̄) represents the post-intervention distribution of Y where the effect of intervention
do(x1) is transmitted only along π while the effect of reference intervention do(x0) is transmitted
along the other paths.

Definition 2 and 3 consider the average causal effect over the entire population without any prior
observations. If we have certain observations about a subset of attributes O = o and use them as con-
ditions when inferring the causal effect, then the causal inference problem becomes a counterfactual
inference problem meaning that the causal inference is performed on the sub-population specified
by O = o only. Symbolically, the distribution of Yx conditioning on factual observation O = o is
denoted by P (yx|o). The counterfactual effect is defined as follows.
Definition 4 (Counterfactual Effect [12]). Given a factual condition O = o, the counterfactual effect
of the value change of X from x0 to x1 on Y = y is given by

CE(x1, x0|o) = P (yx1
|o)− P (yx0

|o).

3 Path-specific Counterfactual Fairness

In this section, we define a unified fairness notion for representing different causality-based fairness
notions. The key component of our notion is a general representation of causal effects. Consider
an intervention on X which is transmitted along a subset of causal paths π to Y , conditioning on
observation O = o. Based on that, we define path-specific counterfactual effect as follows.
Definition 5 (Path-specific Counterfactual Effect 1). Given a factual condition O = o and a causal
path set π, the path-specific counterfactual effect of the value change of X from x0 to x1 on Y = y
through π (with reference x0) is given by

PCEπ(x1, x0|o) = P (yx1|π,x0|π̄|o)− P (yx0
|o).

1In [6], the conditional path-specific effect is different from our notion in that, for the former the condition is
on the post-intervention distribution, and for the latter, the condition is on the pre-intervention distribution.
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Description References Relating to PC fairness
Total effect [19, 16] O = ∅ and π = Π

(System) Direct discrimination [19, 7, 16, 3] O = ∅ and π = πd = {S → Ŷ }
(System) Indirect discrimination [19, 7, 16, 3] O = ∅ and π = πi ⊂ Π

Individual direct discrimination [17] O = {S,X} and π = πd = {S → Ŷ }
Group direct discrimination [18] O = Q = PAY \{S} and π = πd = {S → Ŷ }
Counterfactual fairness [5, 9, 14] O = {S,X} and π = Π
Counterfactual error rate [15] O = {S, Y } and π = πd or πi

Table 1: Connection between previous fairness notions and PC fairness
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Figure 2: The “bow graph”.
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Figure 3: The “kite graph”.
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Figure 4: The “w graph”.

In the context of fair machine learning, we use S ∈ {s+, s−} to denote the protected attribute,
Y ∈ {y+, y+} to denote the decision, and X to denote a set of non-protected attributes. The
underlying mechanism of the population over the space S ×X× Y is represented by a causal model
M, which is associated with a causal graph G. A historical dataset D is drawn from the population,
which is used to construct a predictor h : X, S → Ŷ . The causal model for the population over space
S ×X× Ŷ can be considered the same asM except that function fY is replaced with a predictor h.
We use Π to denote all causal paths from S to Ŷ in the causal graph.

Then, we define the path-specific counterfactual fairness based on Definition 5.
Definition 6 (Path-specific Counterfactual Fairness2 (PC Fairness)). Given a factual condition
O = o where O ⊆ {S,X, Y } and a causal path set π, predictor Ŷ achieves the PC fairness if
PCEπ(s1, s0|o) = 0 where s1, s0 ∈ {s+, s−}. We also say that Ŷ achieves the τ -PC fairness if∣∣PCEπ(s1, s0|o)

∣∣ ≤ τ .

We show that previous causality-based fairness notions can be expressed as special cases of the PC
fairness. Their connections are summarised in Table 1, where πd contains the direct edge from S to
Ŷ , and πi is a path set that contains all causal paths passing through any redlining attributes (i.e., a
set of attributes in X that cannot be legally justified if used in decision-making). Based on whether O
equals ∅ or not, the previous notions can be categorized into the ones that deal with the system level
(O = ∅) and the ones that have certain conditions (O 6= ∅). Based on whether π equals Π or not,
the previous notions can be categorized into the ones that deal with the total causal effect (π = Π),
the ones that consider the direct discrimination (π = πd), and the ones that consider the indirect
discrimination (π = πi).

In addition to unifying the existing notions, the notion of PC fairness also resolves new types of
fairness that the previous notions cannot do. One example is individual indirect discrimination,
which means discrimination along the indirect paths for a particular individual. Individual indirect
discrimination has not been studied yet in the literature, probably due to the difficulty in definition
and identification. However, it can be directly defined and analyzed using PC fairness by letting
O = {S,X} and π = πi.

4 Measuring Path-specific Counterfactual Fairness

In this section, we develop a general method for bounding the path-specific counterfactual effect
in any unidentifiable situation. In the causal inference field, researchers have studied the reasons
for unidentifiability under different cases. When O = ∅ and π ⊂ Π, the reason for unidentifiability
can be the existence of the “kite graph” (see Figure 3) in the causal graph [1]. When O 6= ∅ and

2In [3] the authors use the same term path-specific counterfactual fairness but with different meanings. Their
fairness notion is defined only based on the path-specific effect and is a special case covered by our definition.
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π = Π, the reason for unidentifiability can be the existence of the “w graph” (see Figure 4) [11]. In
any situation, as long as there exists a “hedge graph” (where the simplest case is the “bow graph” as
shown in Figure 2), then the causal effect is unidentifiable [12]. Obviously, all above unidentifiable
situations can exist in the path-specific counterfactual effect.

Our method is motivated by [2] which formulates the bounding problem as a constrained optimization
problem. The general idea is to parameterize the causal model and use the observational distribution
P (V) to impose constraints on the parameters. Then, the path-specific counterfactual effect of
interest is formulated as an objective function of maximization or minimization for estimating its
upper or lower bound. The bounds are guaranteed to be tight as we traverse all possible causal models
when solving the optimization problem. Thus, a byproduct of the method is a unique estimation of
the path-specific counterfactual effect in the identifiable situation.

For presenting our method, we first introduce a key concept called the response-function variable.

4.1 Response-function Variable

Response-function variables are proposed in [2] for parameterizing the causal model. Consider
an arbitrary endogenous variable denoted by V ∈ V, its endogenous parents denoted by PAV , its
exogenous parents denoted by UV , and its associated structural function in the causal model denoted
by v = fV (paV , uV ). In general, UV can be a variable of any type with any domain size, and fV can
be any function, making the causal model very difficult to be handled. However, we can note that, for
each particular value uV of UV , the functional mapping from PAV to V is a particular deterministic
response function. Thus, we can map each value of UV to a deterministic response function. Although
the domain size of UV is unknown which might be very large or even infinite, the number of different
deterministic response functions is known and limited, given the domain sizes of PAV and V . This
means that the domain of UV can be divided into several equivalent regions, each corresponding to
the same response function. As a result, we can transform the original non-parameterized structural
function to a limited number of parameterized functions.

Formally, we represent equivalent regions of each endogenous variable V by the response-function
variable RV = {0, · · · , NV −1} where NV = |V ||PAV | is the total number of different deterministic
response functions mapping from PAV to V (NV = |V | if V has no parent). Each value rV represents
a pre-defined response function. We also denote the mapping from UV to RV as rV = `V (uV ).
Then, for any fV (paV , uV ), it can be re-formulated as

fV (paV , uV ) = fV (paV , `
−1
V (rV )) = fV ◦ `−1

V (paV , rV ) = gV (paV , rV ),

where gV is the composition of fV and `−1
V , and denotes the response functions represented by rV .

We denote the set of all response-function variables by R = {RV : V ∈ V}.
Next, we show how joint distribution P (v) can be expressed as a linear function of P (r). According
to [13], P (v) can be expressed as the summation over the probabilities of certain values u of U that
satisfy following corresponding requirements: for each V ∈ V, we must have fV (paV , uV ) = v
where v, paV are specified by v and uV is specified by u. In other words, denoting by V (u) the
value that V would obtain if U = u, we have P (v) =

∑
u:V(u)=v P (u). Then, by mapping from

U to R, we accordingly obtain P (v) =
∑

r:V(r)=v P (r), where for each V ∈ V, V (r) = v means
that gV (paV , rV ) = v. As a result, by defining an indicator function

I(v; paV , rV ) =

{
1 if gV (paV , rV ) = v,

0 otherwise,

we obtain
P (v) =

∑
r

P (r)
∏
V ∈V

I(v; paV , rV ), (1)

which is a linear expression of P (r).
Example 1. Consider the causal graph shown in Figure 1 with two endogenous variables X and Y ,
and two exogenous variables UX and UY with unknown domains. Assume that both X and Y are
binary, i.e., X ∈ {x0, x1} and Y ∈ {y0, y1}, and denote their response variables as RX and RY . For
Y , since there are a total number of 22 = 4 response functions, response-function variable RY and
response function gY can be defined as follows:
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rY = `Y (uY ) =


0 if fY (x0, uY ) = y0, fY (x1, uY ) = y0;

1 if fY (x0, uY ) = y0, fY (x1, uY ) = y1;

2 if fY (x0, uY ) = y1, fY (x1, uY ) = y0;

3 if fY (x0, uY ) = y1, fY (x1, uY ) = y1.

gY (x, rY ) =



y0 if rY = 0;

y0 if x = x0, rY = 1;

y1 if x = x1, rY = 1;

y1 if x = x0, rY = 2;

y0 if x = x1, rY = 2;

y1 if rY = 3.

Similarly, response-function variable RX and response function gX can be defined as

rX = `X(uX) =

{
0 if fX(uX) = x0;

1 if fX(uX) = x1.
gX(rX) =

{
x0 if rX = 0;

x1 if rX = 1.

As a result, the joint distribution over X,Y is given by

P (x, y) =
∑
rX ,rY

P (rX , rY )I(x; rX)I(y;x, rY ).

4.2 Expressing Path-specific Counterfactual Fairness

For bounding the path-specific counterfactual effect, i.e., PCEπ(s1, s0|o) = P (ŷs1|π,s0|π̄|o) −
P (ŷs0 |o), we also apply response-function variables to express it. We focus on the expression of
P (ŷs1|π,s0|π̄|o), and the expression of P (ŷs0 |o) can be similarly obtained as a simpler case. Similar
to the previous section, we first express P (ŷs1|π,s0|π̄|o) as the summation over the probabilities
of certain values of U that satisfy corresponding requirements. However, as described below, the
requirements are much more complicated than previous ones due to the integration of intervention,
path-specific effect, and counterfactual.

Firstly, since the path-specific counterfactual effect is under a factual condition O = o, values u
must satisfy that O(u) = o, i.e., for each O ∈ O, we must have fO(paO, uO) = o. Secondly, the
path-specific counterfactual effect is transmitted only along some path set π. According to [20], for
the variables of X that lie on both π and π̄, referred to as witness variables/nodes [1], we need to
consider two sets of values, one obtained by treating them on π and the other obtained by treating
them on π̄. Formally, non-protected attributes X are divided into three disjoint sets. We denote by
W the set of witness variables, denote by A the set of non-witness variables on π, and denote by
B the set of non-witness variables on π̄. A simple example is given in Figure 5. We denote the
interventional variant of A by As1|π, the interventional variant of B by Bs0|π̄, the interventional
variant of W treated on π by Ws1|π, and the interventional variant of W treated on π̄ by Ws0|π̄.
Then, P (ŷs1|π,s0|π̄|o) can be written as

P (ŷs1|π,s0|π̄|o) =
∑

a,b,w1,w0

P (Ŷs1|π,s0|π̄ = y,As1|π = a,Bs0|π̄ = b,Ws1|π = w1,Ws0|π̄ = w0 | o).

To obtain the above joint distribution, in addition to O(u) = o, values u must also satisfy that:

1. As1|π(u) = a, which means for each A ∈ A, we must have fA(pa1
A, uA) = a, where pa1

A
means that if PAA contains S or any witness node W , its value is specified by s1 or w1 if
edge S/W → Y belongs to a path in π, and specified by s0 or w0 otherwise;

2. Bs0|π̄(u) = b, which means for each B ∈ B, we must have fB(pa0
B , uB) = b, where pa0

B
means that if PAB contains S or any witness node W , its value is specified by s0 or w0;

3. Ws1|π(u) = w1, which means for each W ∈W, we must have fW (pa1
W , uW ) = w1;

4. Ws0|π(u) = w0, which means for each W ∈W, we must have fW (pa0
W , uW ) = w0.

Then, by mapping from U to R, we can obtain the requirements for R accordingly. Finally, denoting
the values of R that satisfy O(r) = o by ro, we obtain

P (ŷs1|π,s0|π̄|o) =∑
a,b,w1
w0,r∈ro

P (r)

P (o)
I(ŷ; pa1

Ŷ
, rŶ )

∏
A∈A

I(a; pa1
A, rA)

∏
B∈B

I(b; pa0
B , rB)

∏
W∈W

I(w1; pa1
W , rW )I(w0; pa0

W , rW ), (2)
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which is still a linear expression of P (r).

Similarly, we can obtain

P (ŷs0 |o) =
∑

v′,r∈ro

P (r)

P (o)
I(ŷ; paŶ , rŶ )

∏
V ∈V′

I(v; paV , rV ), (3)

where V′ = V\{S, Y }.
Example 2. Consider causal graphs shown in Figures 2, 3, 4 and following unidentifiable causal
effects: total causal effect TCE(x1, x0) in Figure 2, path-specific effect PEπ(x1, x0) in Figure 3,
and counterfactual effect CE(x1, x0|x0, y0) in Figure 4. By similarly defining response functions as
in Example 1, for Figure 2 with R = {RX , RY }, we have

TCE(x1, x0) =
∑
rX ,rY

P (rX , rY )I(y;x1, rY )−
∑
rX ,rY

P (rX , rY )I(y;x0, rY ),

for Figure 3 with R = {RX , RW , RZ , RY }, we have

PEπ(x1, x0) =
∑

z,w1,w0,r

P (r)I(y; z, w0, rY )I(z;w1, rZ)I(w1;x1, rW )I(w0;x0, rW )

−
∑
z,w,r

P (r)I(y; z, w, rY )I(z;w, rZ)I(w;x0, rW ),

for Figure 4 with R = {RX , RY }, we have

CE(x1, x0) =
∑

rX ,rY ∈ro

P (rX , rY )

P (x0, y0)
I(y;x1, rY )−

∑
rX ,rY ∈ro

P (rX , rY )

P (x0, y0)
I(y;x0, rY ).

Note that in Figures 2, the total causal effect is identifiable if UX and UY are independent. This
is reflected in our formulation such that when RX and RY are independent, we have P (yx1) =∑
rX ,rY

P (rX)P (rY )I(y;x1, rY ) = P (y|x1), which can be directly measured from observational
data. Similar phenomenons can be observed in other identifiable situations.

S W Ŷ

A

B

π = {S →W → A→ Ŷ ,

S → Ŷ }

Figure 5: A causal graph with unidentifiable path-specific counterfactual fairness.

Example 3. Consider a causal graph shown in Figure 5, and the path-specific counterfactual effect
PCEπ(s1, s0|o) where π = {S → Ŷ , S → W → A → Ŷ } and o = {s0, w

′, a′, b′}. Any
pair of exogenous variables can be correlated. Response-function variables are given by R =
{RS , RW , RA, RB , RŶ }. By similarly defining response functions as in Example 1, we can obtain

P (ŷs1|π,s0|π̄|o) =
∑

a,b,w1,w0
r∈ro

P (r)

P (o)
I(ŷ; a, b, s1, rŶ )I(a;w1, rA)I(b;w0, rB)I(w1; s1, rW )I(w0; s0, rW ),

and

P (ŷs0 |o) =
∑

a,b,w,r∈ro

P (r)

P (o)
I(ŷ; a, b, s0, rŶ )I(a;w, rA)I(b;w, rA)I(w; s0, rW ).

4.3 Bounding Path-specific Counterfactual Fairness

In above two sections we express both joint distribution P (v) and the path-specific counterfactual
effect as linear functions of P (r). All causal models (represented by different P (r)) that agree with
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the distribution of observational dataD cannot be distinguished and should be considered in bounding
PC fairness. Therefore, finding the lower or upper bound of the path-specific counterfactual effect is
equivalent to finding the P (r) that minimizes or maximizes the path-specific counterfactual effect,
subject to that the derived joint distribution P (v) agrees with the observational distribution P (D).
This fact results in the following linear programming problem for deriving the lower/upper bound of
path-specific counterfactual effect.

min/max P (ŷs1|π,s0|π̄|o)− P (ŷs0 |o), (4)

s.t. P (V) = P (D),
∑
r

P (r) = 1, P (r) ≥ 0,

where P (ŷs1|π,s0|π̄|o) is given by Eq. (2), P (ŷs0 |o) is given by Eq. (3), and P (v) is given by
Equation (1).

The lower and upper bounds derived by solving the above optimization problem is guaranteed to
be the tightest, since the response function is an equivalent mapping that covers all possible causal
models thus we can explicitly traverse all possible causal models.

We use the derived bounds for examining τ -PC fairness: if the upper bound is less than τ and the
lower bound is greater than −τ , then τ -PC fairness must be satisfied; if the upper bound is less than
−τ or the lower bound is greater than τ , τ -PC fairness must not be satisfied; otherwise, it is uncertain
and cannot be determined from data.

5 Experiments

Datasets. For synthetic datasets, we manually build a causal model with complete knowledge of
exogenous variables and equations using Tetrad [10] according to the causal graphs. The causal
model consists of 4 endogenous variables, S, W , A, Ŷ , all of which have two domain values. Then,
we consider two versions of the causal model: (1) we assume a shared exogenous variables, i.e., a
hidden confounder, with 100 domain values (the causal graph is shown in Figure 6); (2) we assume
all exogenous variables are mutually independent (the causal graph is omitted due to the space
limit). The distribution of exogenous variables and structural equations of endogenous variables are
randomly assigned. Finally, we generate two datasets from each version of the causal model, denoted
by D1 and D2 respectively.

For the real-world dataset, we adopt the Adult dataset, which consists of 65,123 records with 11
attributes including edu, sex, income etc. Similar to [14], we select 7 attributes, binarize their values,
and build the causal graph. Fairness threshold τ is set to 0.1. The datasets and implementation are
available at http://tiny.cc/pc-fairness-code.

Bounding Path-specific Counterfactual Fairness. We use D1 to validate our method in Eq. (4) for
bounding PCEπ(s+, s−|o) where O = {S,W,A} and π = {S → W → A → Ŷ , S → Ŷ }. The
ground truth can be computed by exactly executing the intervention under given conditions using the
complete causal model. The results are shown in Table 2, where the first column indicates the indices
of o’s value combinations. As can be seen, the true values of PCEπ(s+, s−|o) fall into the range of
our bounds for all value combinations of O, which validates our method.

Comparing with previous bounding methods. We use D2 to compare with the previous methods
[20, 14] which are derived under the Markovian assumption. We compare with [20] for bounding
PEπ(s+, s−) with π = {S → W → A → Ŷ , S → Ŷ }. We also compare with [14] for bounding
CE(s+, s−|o) with O = {S,W,A}. The results are shown in Table 3 where the bold indicates
that our method makes different judgments on discrimination detection due to the tighter bounds.
As can be seen, our method achieves much tighter bounds than previous methods, which can be
used to examine fairness more accurately. For example, when measuring indirect discrimination
using PEπ(s+, s−) (Row 1 in Table 3), it is uncertain for [20] since the lower and upper bounds are
−0.2605 and 0.2656, but our method can guarantee that the decision is discriminatory as the lower
bound 0.1772 is larger than τ = 0.1. As another example, when measuring counterfactual fairness of
the 2nd groups of o using CE(s+, s−|o) (Row 3 in Table 3), the method in [14] is uncertain since
the lower and upper bounds are −0.4383,−0.0212 but our method can guarantee that the decision is
fair due to the range of [−0.0783,−0.0212].
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We also use the Adult datset to compare with the method in [14] for bounding CE(s+, s−|o) with
O = {age, edu,marital-status} and obtain similar results, which are shown in Table 4.

# of o PCEπ(s+, s−|o)
lb ub Truth

1 -0.4548 0.5452 0.1507
2 -0.5565 0.4435 -0.0928
3 -0.5065 0.4935 0.0561
4 -0.4598 0.5402 0.0548

Table 2: Bounds and ground
truth of PC fairness on D1.

# of o Truth
Previous methods Our method
lb ub lb ub

PE N/A 0.1793 -0.2605 0.2656 0.1772 0.1836

CE

1 0.3438 0.0878 0.5049 0.0878 0.5049
2 -0.0557 -0.4383 -0.0212 -0.0783 -0.0212
3 0.2318 -0.1192 0.2979 0.1282 0.2847
4 0.0800 -0.2101 0.2070 0.0110 0.1499

Table 3: Compare with existing methods in [20, 14] on D2.

S W Ŷ

A

Figure 6: The causal graph for the
synthetic dataset D1.

# of o Method in [14] Our Method
lb ub lb ub

0 0.0541 0.2946 0.1498 0.1944
1 -0.1314 0.1091 -0.1314 0.1091
2 0.1878 0.3210 0.2507 0.2890
3 -0.0356 0.0976 -0.0356 0.0976
4 0.1676 0.5289 0.4419 0.5289
5 -0.1634 0.1979 -0.0731 0.1979
6 0.1290 0.4689 0.3942 0.4689
7 -0.1808 0.1591 0.0014 0.1591

Table 4: Compare with the existing method in [14] on
the Adult dataset.

6 Conclusion

In this paper, we develop a general framework for measuring causality-based fairness. We propose
a unified definition that covers most of previous causality-based fairness notions, namely the path-
specific counterfactual fairness (PC fairness). Then, we formulate a linear programming problem to
bound PC fairness which can produce the tightest possible bounds. Experiments using synthetic and
real-world datasets show that, our method can bound causal effects under any unidentifiable situation
or combinations, and achieves tighter bounds than previous methods.

As the concern of scalability, the domain size of each response variable is exponential to the number
of parents, meaning that the joint domain size of all response variables are exponential to the total
in-degree of the causal graph. However, we notice that not all response variables are needed in the
formulation, and only those that directly lead to unidentification are needed. For example, when
a hidden confounder causes unidentification, only the children of the hidden confounder need to
have response variables in the formulation; and when a “kite graph” causes unidentification, only the
witness variable need to have a response variable in the formulation. As a result, the total complexity
of the problem formulation could be significantly decreased. We will study the decomposition and
reduction of response variables in the future work.

How to construct fair predictive models based on the derived bounds is another future research
direction. One possible method would be to incorporate the bounding formulation into a post-
processing method. The new formulation will be a min-max optimization problem, where the
optimization variables will include response variables P (r) as well as a post-processing mapping
P (ỹ|ŷ, paY ). The inner optimization is to maximize the path-specific counterfactual effect to find the
upper bound, and the outer optimization is to minimize both the loss function and the upper bound.
We will to explore this method in the future work.
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