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Abstract
We introduce a new resource, AlloVera, which provides mappings from 218 allophones to phonemes for 14 languages. Phonemes are
contrastive phonological units, and allophones are their various concrete realizations, which are predictable from phonological context.
While phonemic representations are language specific, phonetic representations (stated in terms of (allo)phones) are much closer to a uni-
versal (language-independent) transcription. AlloVera allows the training of speech recognition models that output phonetic transcriptions
in the International Phonetic Alphabet (IPA), regardless of the input language. We show that a “universal” allophone model, Allosaurus,
built with AlloVera, outperforms “universal” phonemic models and language-specific models on a speech-transcription task. We explore
the implications of this technology (and related technologies) for the documentation of endangered and minority languages. We further
explore other applications for which AlloVera will be suitable as it grows, including phonological typology.

1. Introduction
Speech can be represented at various levels of abstraction
(Clark et al., 2007; Ladefoged and Johnson, 2014). It can
be recorded as an acoustic signal or an articulatory score. It
can be transcribed with a panoply of detail (a narrow tran-
scription), or with less detail (broad transcription). In fact,
it can be transcribed retaining only those features that are
contrastive within the language under description, or with
abstract symbols that stand for contrastive units. This latter
mode of representation is what is called a phonemic rep-
resentation while the finer-grained range of representations
are phonetic representations. Most NLP technologies that
represent speech through transcription do so at a phonemic
level (that is, words are represented as strings of phonemes).
For language-specific models and questions, such repre-
sentations are often adequate and may even be preferable
to the alternatives. However, in multilingual models, the
language-specific nature of phonemic abstractions can be a
liability. The added phonetic realism of even a broad pho-
netic representation moves transcriptions closer to a univer-
sal space where categories transcend the bounds of a partic-
ular language.
This paper describes AlloVera1, a resource that maps be-
tween the phonemic representations produced by many NLP
tools—including grapheme-to-phoneme (G2P) transducers
like our own (Mortensen et al., 2018)—and broad phonetic
representations. Specifically, it is a database of phoneme-
allophone pairs (where an allophone is a phonetic realiza-
tion of a phoneme—see § 1.1. below) for 14 languages. It
is designed for notational compatibility with existing G2P
systems. The phonetic representations are relatively broad,
a consequence of our sources, but they are phonetically real-
istic enough to improve performance on a speech-to-phone
recognition task, as shown in § 3.
This resource has applications beyond universal speech-

1https://github.com/dmort27/allovera

to-phone recognition, including approximate search and
speech synthesis (in human language technologies) and
phonetic/phonological typology (in linguistics). The use-
fulness of AlloVera for all purposes will increase as it grows
to cover a broad range of the languages for which phonetic
and phonological descriptions have been completed. How-
ever, to illustrate the usefulness of AlloVera, we will rely
primarily on the zero-shot, universal ASR use-case in the
evaluation in this paper.

1.1. Phonemes and Allophones
There have been various attempts at universal ASR: “de-
signing a universal phone recognizer which can decode a
new target language with neither adaptation nor retraining”
(Siniscalchi et al., 2008). This goal is up against major chal-
lenges. To begin with, defining the relevant units is no triv-
ial task. Some research teams use grapheme-to-phoneme
transducers to map orthography into a universal representa-
tional space. But in fact, as the name implies, these models
typically yield phonemes as their output and phonemes are,
by their nature, language specific. Consider Figure 1.

peak speak ping bing
English Mandarin Chinese

‘level’ ‘ice’
/pik/ /spik/ /pʰiŋ/ /piŋ/

[pʰik] [spik] [pʰiŋ] [piŋ]

Figure 1: Words, phonemes (slashes), and phones (square
brackets) in English and Mandarin Chinese

In English there is a single /p/ phoneme which is realized
two different ways depending on the context in which it oc-
curs (Ladefoged, 1999). These contextual realizations are
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allophones. The aspirated allophone [pʰ] occurs word ini-
tially and at the beginning of stressed syllables. The unaspi-
rated allophone [p] occurs in most other contexts. This is to
be contrasted with Mandarin Chinese where there are dis-
tinct /pʰ/ and /p/ phonemes that are “in contrast” (that is,
exchanging one for the other can result in a new morpheme)
(Norman, 1988). Mandarin /pʰ/ has one allophone, [pʰ],
and Mandarin /p/ has one allophone, [p]. Thus, English and
Mandarin have the same two “p” (allo)phones, but organize
these into phonemes in different ways2.

1.2. AlloVera and Multilingual Models
For reasons stated above, multilingual training of speech
models on English and Mandarin Chinese phonemes is
problematic. A /pʰ/ phoneme in Chinese is always going
to be roughly the same, phonetically, but a /p/ phoneme in
English could be either [p] or [pʰ]. Once data from these
two languages is combined, the contextual information sep-
arating the two sets of phones in English is erased and the
result is a very noisy model. This problem is frequent when
blending data from different languages.
A thoroughly different way to go about doing multilin-
gual training is defining a (universal) set of features to de-
scribe sounds in articulatory, acoustic or perceptual terms
(Siniscalchi et al., 2008; Johny et al., 2019). But defining
these features raises considerable epistemological difficul-
ties. There are cogent proposals from phoneticians and pho-
nologists for transcribing sounds by means of their defining
properties, rather than through International Phonetic Al-
phabet symbols (Vaissière, 2011). While these proposals
appear promising in the mid/long run, they are not currently
tractable to computational implementation in any straight-
forward way. Furthermore, the information that would be
needed to implement such a system simply is not currently
available to us in any form that we can consume.
The method explored here takes the middle ground: we cre-
ate a database of allophones—that is to say, phonetic rep-
resentations (referred to in phonetics/phonology as broad
phonetic transcriptions) rather than phonemic representa-
tions3. This simplifies the annotation task: curators simply
translate a set of relations among IPA symbols given in text
to a simple allophone-phoneme mapping table. A curator
can learn to do this with only a few hours of training. A mul-
tilingual model can then use these mappings in conjunction

2In fact, the situation is even more complicated: [b], [p], and
[pʰ] exist on a continuum called “voice onset time” or VOT. A
sound transcribed as [p] in one language may have a voice on-
set time relatively close to [pʰ]. In another language, it may be
similarly close to [b]. These categories, too, are to some degree
language-specific (Abramson and Whalen, 2017). They are sim-
ply a step closer to phonetic reality than phonemic representations.

3An ideal solution to such a problem might be to construct
rule-based phoneme-to-allophone transducers (perhaps as FSTs)
for each language in the training set. Then phonetic representations
could be derived by first applying G2P to the orthographic text,
then applying the appropriate transducer to the resulting phonemic
representation. However, constructing such a resource is expen-
sive, requires several specialized skills on the part of curators—
who must encode the phonological environments in which allo-
phones occur—and requires information that is often omitted from
phonological descriptions of languages.

with speech data transcribed at the phonemic level to build
a representation of each phone in the set. This resource is
described in the following sections.

2. Description
The AlloVera database is publicly available (via GitHub) at
https://github.com/dmort27/allovera under
an MIT license. In the following section, we explain the
contents of the database, how they were curated, and give
details about the data format and metadata provided for each
language.

2.1. Sources and Languages
This resource consists of mappings between phonemic and
broad phonetic representations for 14 languages with di-
verse phonologies. Languages were chosen based on three
conditions:

• There is significant annotated speech data available for
the language variety

• There is an existing G2P system for the language va-
riety or resources for adding support for that language
variety to Epitran (Mortensen et al., 2018).

• There is a description of the phonology of the language
variety including allophonic rules

The languages released in final form are listed in Table 1.
Additionally, there are currently several languages in al-
pha and beta states. Current alpha languages are Bengali
(Indian; ben), Sundanese (sun), Swahili (swa), Portuguese
(por), Cantonese (yue), Haitian (hat), and Zulu (zul). Cur-
rent beta languages are Nepali (nep), Bengali (Bangladesh;
ben), Korean (kor), Mongolian (mon), Greek (tsd), and
Catalan (cat). We view AlloVera as an open-ended project
which will continue expanding in the future.

2.2. Curation Practices
Most mappings were initially encoded by non-experts with a
few hours of training, but all were subsequently checked by
the first author, a professional linguist with graduate training
in phonetics and phonology.
Our policy, in creating the mappings, was to use—where
available—the “Illustrations of the IPA” series published in
the Handbook of the International Phonetic Association (In-
ternational Phonetic Association, 1999) and the Journal of
the International Phonetic Association as our primary ref-
erences. When that was not possible, we used other refer-
ences, including Wikipedia summaries of research on the
relevant languages. Each mapping was designed to be used
with a particular G2P model. Curators mapped each phone
in the description to the relevant phoneme using a spread-
sheet. The phonemes from the standard (in IPA) were then
mapped to the phonemes output by the G2P system (typi-
cally in X-SAMPA). When there was imperfect alignment
between these sets, changes were typically made to the G2P
model, expanding or restricting its range of outputs. How-
ever, in some cases, phonemes output by the G2P system
could be shown to occur extra-systemically (for example, in
loanwords) and the phoneme set was expanded to accommo-
date it. In these cases, we used equivalent IPA/X-SAMPA
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Language Phonemes Phones Sources
Amharic 49 57 Hayward and Hayward

(1999)
English
(American)

38 44 Ladefoged (1999)

French 36 38 Fougeron and Smith
(1993)

German 40 42 Kunkel-Razum and
Dudenredaktion
(Bibliographisches
Institut) (2005)

Italian
(Standard)

41 45 Rogers and d’Arcangeli
(2004)

Japanese 30 47 Wikipedia contributors
(2019a)

Javanese 31 34 Suharno (1982, 4–6)
Kazakh 41 45 McCollum and Chen

(2018)
Mandarin 31 41 Norman (1988)
Russian 45 62 Yanushevskaya and

Bunčić (2015)
Spanish 30 39 Martínez-Celdrán et al.

(2003; Wikipedia
contributors (2019b)

Tagalog 29 42 Wikipedia contributors
(2019c)

Turkish 30 43 Zimmer and Orgun
(1992)

Vietnamese
(Hanoi)

34 42 Kirby (2011)

Table 1: Languages included in AlloVera

symbols for the phonemic and broad phonetic representa-
tions.
Languages show considerable internal variation. For exam-
ple, the system of fricatives differs significantly between
various varieties of Spanish. In some cases, our speech
data is from a specific variety (e.g. Castilian Spanish). In
other cases, it may be polydialectal. Where possible (as with
Spanish), we have made the mappings general, so that they
admit phoneme-allophone mappings from a variety of di-
alects. In other cases (as with German), however, our re-
sources describe a single “standard” variety and the range
of phonetic variation present in colloquial speech is not nec-
essarily reflected in the mappings. Dialectal variation also
posed a challenge when the datasets did not have sufficient
information about the speakers and the dialect used in the
recorded speech. In these cases, we resorted to asking native
speakers to identify the appropriate variant and create the
mappings based on their analysis. However, we observed
that this task is sometimes difficult, even for life-long speak-
ers of the language. For example, to differentiate between
Indian and Bangladeshi variants of Bengali, multiple exam-
ples had to be presented to the native speakers in order to
get a reasonably confident analysis of the dataset. In fu-
ture work, we plan to increase the generality of as many of
the mappings as possible by incorporating information from
scholarly resources on phonetic variation in the relevant lan-
guages.
There were a few recurring challenges facing curators.

These include descriptions that do not distinguish between
allophonic and morphophonemic (=morphophonological)
rules, or between allophonic rules and orthographic rules.
In these cases, curators were told to ignore any abstrac-
tion above the level that would be produced by the G2P
system. On a related front, some G2P systems—like the
one we use for Japanese—generate archiphonemes, as with
the Japanese moraic nasal N. In these cases, we allowed an
archiphonemic analysis even though it deviated from the
phonemic ideal assumed by most of the mappings.

2.3. Data format
The data is distributed as a set of JSON files (one per lan-
guage variety) and a BibTeX file containing source informa-
tion. Each file contains the following metadata:

• The ISO 639-3 code for the language
• The Glottocode(s) for the supported lect(s) (Ham-

marström et al., 2019)
• The primary source for the mapping (as a BibTeX cite

key)
• The secondary sources for the mapping (as BibTeX cite

keys)
• If the mapping is constructed to be used with Epi-

tran (Mortensen et al., 2018), the associated Epitran
language-script code.

• If the mapping is made for use with another G2P en-
gine, an identifier for this engine.

The data itself is represented as an array (rather than an ob-
ject, in order to allow many-to-many mappings) Each ele-
ment in this array has the following required fields:

• Phonemic representation (IPA)
• Phonetic representation (IPA)

It may have the following optional fields:

• Environment (verbal description of the phonological
environment in which an allophone occurs)

• Source (when source for mapping differs from primary
source)

• Glottocodes, if the mapping only applies to a subset of
the lects listed in the global metadata

• Notes

An excerpt from one of these files is given in Figure 2.

2.4. Summary of the Contents
The database currently defines 218 phones which are as-
sociated with one of 148 phoneme symbols. This falls far
short of the total number of phones in the languages of the
world—the PHOIBLE database has 3,183 phones (Moran
and McCloy, 2019)—but AlloVera has good representation
of the most common phones, as shown in Table 2.

2.5. Limitations
Currently, AlloVera does not support tone, stress or other
suprasegmentals, despite including mappings for two tone
languages (Mandarin Chinese and Vietnamese) and one
language with a pitch accent or restricted tone system
(Japanese), as well as several languages with contrastive



{
”iso”: ”spa”,
”glottocode”: [

”amer1254”,
”cast1244”

],
”primary src”: ”Martinez-Celdran-et-al:2003-illustration”,
”secondary srcs”: [”Wiki:2019-spanish-language”],
”epitran”: ”spa-Latn”,
”mappings”: [
...

{
”phone”: ”χ”,
”phoneme”: ”x”,
”environment”: ”optionally, before a back vowel”,
”glottocodes”: [

”cast1244”
]

},
...
]

}

Figure 2: Fragment of the JSON object for Spanish.

PHOIBLE Set Intersection with AlloVera Phone Set

Top 50 44
Top 100 72
Top 200 107

Table 2: Representation of top PHOIBLE phones (by num-
ber of languages) in AlloVera

stress (e.g. English). This is due, in large part, to the
complexity of representing these phonemes—which are
“spread out” over multiple segments—in terms of IPA
strings. There are two separate standards for representing
tone within IPA (International Phonetic Association, 1999),
one of which is used primarily by linguists working on East
and Southeast Asian languages (Chao tone letters written at
the beginning or end of a syllable) and one of which is used
by linguists working on languages elsewhere in the world
(diacritics written over the nuclear vowel of a syllable). To
achieve the multilingual aims of AlloVera, it would be nec-
essary to have a single scheme for representing tone across
languages.

3. Experiments
To highlight one application of AlloVera, we implement
an allophone speech recognition system, Allosaurus. We
compare its performance with standard universal phoneme
model and language-specific model. The results suggest
that Allovera helps to improve the phoneme error rate on
both the training languages and two unseen languages.

3.1. Multilingual Allophone Model
The standard multilingual speech recognition models can be
largely divided into two types as shown in Figure 3. The
shared phoneme model is a universal multilingual model
which represents phonemes from all languages in a shared
space. The underlying assumption of this architecture is
that the same phoneme from different languages should be
treated similarly in the acoustic model. This assumption is,
however, not an very accurate approximation as the same
phonemes from different languages are often realized by dif-
ferent allophones as described in § 1.1..

loss

universal
phonesencoder

shared
phonemes

loss

language 1

loss

language ...

loss

language L

encoder

language 1

loss

language ...

loss

language L

language-
specific

phonemes encoder

loss

language 1

allophone layer

loss

language ...

allophone layer

loss

language L

allophone layer

Shared Phoneme Model

language-
specific

phonemes

Private Phoneme Model Allosaurus

Figure 3: Traditional approaches predict phonemes directly,
either for all languages (left) or separately for each language
(middle). On the contrary, our approach (right) predicts
over a shared phone inventory, then maps into language-
specific phonemes with an allophone layer.

The second standard approach is the private phoneme
model, which is shown in the middle of the Figure 3.
The model applies a language-specific classifier, which dis-
tinguishes the phonemes from different languages. This
approach consists of a shared multilingual encoder and
language-specific projection layer. This approach tends to
perform better than the shared phoneme model, however, it
fails to consider associations between phonemes across the
languages. For example, /p/ in English and /p/ in Mandarin
are treated as two completely distinct phonemes despite the
fact that their surface realizations overlap with each other.
Additionally, it is difficult to derive language-independent
phones or phonemes from this approach.
In contrast, the Allosaurus model described on the right
side of Figure 3 can overcome both issues of those stan-
dard models by taking advantage of AlloVera. Instead of
constructing a shared phoneme set, the Allosaurus model
constructs a shared phone set by taking the union of all 218
phones covered in the AlloVera dataset. The shared en-
coder first predicts the distribution over the phone set, then
transforms the phone distribution into the phoneme distri-
bution in each language using the allophone layer. The al-
lophone layer is implemented by looking up the language-
specific phone-phoneme correspondences as annotated in
Allovera. By adopting this approach, the Allosaurus model
overcomes the disadvantages of the two standard models:
the phone representation is a much more appropriate choice
for the language-independent representation than the shared
phoneme representation, and this phone representation can
be implemented without sacrificing language-specificity.
For example, the language-independent phone [p] is first
learned and then projected into English phoneme /p/ and
Mandarin phoneme /p/.

3.2. Results
To investigate how AlloVera improves multilingual speech
recognition, we implemented three multilingual models
mentioned above and compared their performance. In par-
ticular, we selected 11 languages from AlloVera taking
into consideration the availability of those languages in our
training speech corpus. For each language, we selected a



Amh Eng Ger Ita Jap Man Rus Spa Tag Tur Vie Average

Fu
ll Shared Phoneme PER 78.4 71.7 71.6 62.9 65.9 76.5 76.9 62.6 74.1 76.6 82.7 73.8

Private Phoneme PER 37.1 22.4 17.6 26.2 17.6 17.9 21.3 18.5 47.6 35.8 56.5 25.6
Allosaurus PER 36.0 20.5 18.8 23.7 23.8 17.0 26.3 19.4 57.4 35.3 57.3 25.0

Lo
w Shared Phoneme PER 80.4 73.3 74.3 72.2 77.1 83.0 83.2 72.8 84.8 84.4 84.5 78.4

Private Phoneme PER 55.4 50.6 41.9 31.6 36.8 37.0 47.9 36.7 62.3 54.5 73.6 43.8
Allosaurus PER 54.8 47.0 41.5 37.4 40.5 33.4 45.0 35.9 70.1 53.6 72.5 41.8

Table 3: Three models’ phoneme error rates on 11 languages. The top half shows the results when training with full datasets.
The bottom half shows the low-resource results in which only 10k utterances are used for training from each dataset.

Language Corpora Utt.
English voxforge, Tedlium (Rousseau et al.,

2012), Switchboard (Godfrey et al.,
1992)

1148k

Japanese Japanese CSJ (Maekawa, 2003) 440k
Mandarin Hkust (Liu et al., 2006), openSLR

(Bu et al., 2017; Dong Wang, 2015)
377k

Tagalog IARPA-babel106b-v0.2g 93k
Turkish IARPA-babel105b-v0.4 82k
Vietnamese IARPA-babel107b-v0.7 79k
Kazakh IARPA-babel302b-v1.0a 48k
German voxforge 40k
Spanish LDC2002S25 32k
Amharic openSLR25 (Abate et al., 2005) 10k
Italian voxforge 10k
Russian voxforge 8k

Inukitut private 1k
Tusom private 1k

Table 4: Training corpora and size in utterances for each lan-
guage. Models are trained and tested with 12 rich resource
languages (top) and 2 low resource unseen languages (bot-
tom).

training corpus from voxforge4, openSLR5 and other re-
sources. The source and size of the data sets used in these
experiments are given in Table 4. To evaluate the model,
we used 90% of each corpus as the training set, and the re-
maining 10% as the testing set. The evaluation metric is the
phoneme error rate (PER) between the reference phonemes
and hypothesis phonemes. For all three models, we ap-
plied the same bidirectional LSTM architecture as the en-
coder. The encoder has 6 layers and each layer has a hidden
size of 1024. Additionally, the private phoneme model has
a linear layer to map the hidden layer into language spe-
cific phoneme distributions and the Allosaurus model ap-
plies AlloVera to project the universal phone distribution
into the language specific phoneme distributions. The loss
function is CTC loss in all three models. The input features
are 40-dimensional MFCCs.
Table 3 show the performance of the three models under
two different training conditions. The row tagged with Full
means that the whole training set was used to train the mul-

4http://www.voxforge.org/
5https://openslr.org/

tilingual model. In contrast, the row with tag Low is trained
under a low resource condition in which we only select 10k
utterances from each training corpus. This low resource
condition is useful when building speech recognizers for
new languages since training sets of most new languages
are very limited. As Table 3 suggests, the private phoneme
model significantly outperforms the shared phoneme on all
languages—the average PER of the shared phoneme model
is 73.8% and the private phoneme model has 25.6% PER
in the full training condition. During the evaluation pro-
cess, we find that the performance of the shared phoneme
model decreases significantly when increasing the number
of training languages. This can be explained by the fact
that phoneme assignment schemes are different across lan-
guages. Therefore, adding more languages can confuse the
model, leading it to assign incorrect phonemes. In contrast,
AlloVera provides a consistent assignment across languages
by using allophone inventories. Comparing Allosaurus and
the private phoneme model, we find that Allosaurus further
improves from the private phoneme model by 0.6% under
the full condition and 2.0% under the low resource condi-
tion. While the improvement is relatively limited in the full
training case, it suggests AlloVera would be valuable for
creating speech recognition models for low resource lan-
guages.
AlloVera gives Allosaurus another important capability—
the ability to generate phones from the universal phone in-
ventory. As Figure 3 shows, the layer before the allophone
layer represents the distribution over universal phone inven-
tory. The universal phone inventory consists of all allo-
phones in AlloVera. In contrast, the shared phoneme model
could only generate inconsistent universal phonemes and
the private phoneme model could only generate language-
specific phonemes. Table 5 highlights the generalization
ability of Allosaurus and AlloVera over two unseen lan-
guages: Inuktitut and Tusom. The table suggests that Al-
losaurus and AlloVera improve the performance over both
the shared phoneme model and the private phoneme model
substantially.

4. Applications
Currently, we intend to integrate AlloVera and Allosaurus
(or other future systems trained using AlloVera) into three
practical downstream systems for very-low-resource lan-
guages, addressing tasks identified as development priori-
ties in recent surveys of indigenous and other low-resource

http://www.voxforge.org/
https://openslr.org/


Inuktitut Tusom

Shared Phoneme PER 94.1 93.5
Private Phoneme PER 86.2 85.8
Allosaurus PER 73.1 64.2

Table 5: Comparisons of phone error rates in two unseen
languages

language technology (Thieberger, 2016; Levow et al., 2017;
Littell et al., 2018).
In our experience, the most requested speech technology
for very-low-resource languages is transcription accelera-
tion, an application of speech recognition for decreasing the
workload of transcribers. Many low-resource and endan-
gered languages do already have extensive untranscribed
speech collections, in the form of recorded radio broad-
casts, linguists’ field recordings, or other personal record-
ings. Transcribing these collections is a high priority for
many speech communities, as an untranscribed corpus is
difficult to use in either research or education (Adams et
al., 2018; Foley et al., 2019). AlloVera and Allosaurus were
originally and primarily intended for use in transcription ac-
celeration, although we will also be exploring other practi-
cal applications.
Another priority technology is approximate search of
speech databases. While the aforementioned untranscribed
speech collections can straightforwardly be made available
online, they are not especially accessible as such. A re-
searcher, teacher, or student cannot in practice listen to
years’ worth of radio recordings in search of a particular
word or topic. AlloVera and Allosaurus, by making an ap-
proximate text representation of the corpus, open up the pos-
sibility for efficient approximate phonetic search through
otherwise-untranscribed speech databases. Previous work
has demonstrated the feasibility of such an approach (Anas-
tasopoulos et al., 2017; Boito et al., 2017), but the qual-
ity of the search results can be significantly boosted by im-
provements in a first-pass phonetic transcription (Ondel et
al., 2018).
We are also planning on integrating AlloVera and Al-
losaurus into a language-neutral forced-alignment
pipeline. While forced-alignment is a task that is already
commonly done in a zero-shot scenario (by manually
mapping target-language phones to the vocabulary of a
pretrained acoustic model, often an English one), the
extensive phonetic vocabulary of AlloVera means that
many phones are already covered. This greatly expands
the number of languages that can be aligned without the
need for an extensive transcribed corpus or manual system
configuration.

5. Related Work
AlloVera builds on work in three major areas: phonetics and
theoretical phonology, phonological ontologies, and human
language technologies.
The term allophone was coined by Benjamin Lee Whorf in
the 1920s and was popularized by Trager and Block (1941).
However, the idea goes back much further, to Baudoin de

Courtenay (1894). The idea of allophony most relevant to
our work here comes from American Structuralist linguists
like Harris (1951), but we also invoke the concept of the
archiphoneme, associated with the Prague Circle (Trubet-
skoy, 1939). In the 1950s and 1960s, the structuralist no-
tions of the “taxonomic” phoneme and of allophones came
under attack by generative linguists (Chomsky and Halle,
1968; Halle, 1962; Halle, 1959), but they have retained their
importance both in linguistic practice and linguistic theory.
Various resources containing phonological information, es-
pecially phonological inventories, have been compiled. An
early resource was UCLA’s UPSID. A more recent resource
that combines UPSID and other segment inventories in a
unified ontology is PHOIBLE (Moran and McCloy, 2019).
However, due to the nature of PHOIBLE’s sources, it is
not always clear what level of representation is intended
within a segment inventory and PHOIBLE does not consis-
tently establish relationships between abstract segments—
phonemes—and concrete segments—(allo)phones. In these
respects, it is complementary to AlloVera.

6. Conclusion
AlloVera embraces the fact that it is useful to analyze the
sounds of language at different levels. It allows scientists
and engineers to build models that are based on phones us-
ing tools that generate phonemic representations. It also
captures allophonic relations in a way that is more generally
useful but which does not require a highly specialized no-
tation (for example, for stating phonological environments).
We have demonstrated its usefulness, in its current form, for
a valuable task (zero-shot speech-to-phone recognition).
The resource will become even more useful as more lan-
guages are added. What we have produced so far should be
seen as a proof of concept. As we develop the resource fur-
ther, the accuracy of our recognizers will go up, our approx-
imate search and forced alignment models will improve, and
new avenues of research will be opened.
Achieving this goal will require participation from more
than just our research team: we invite linguists and lan-
guage scientists who have special knowledge or a partic-
ular interest in a language to contribute their knowledge
to AlloVera in the form of a simple allophone-to-phoneme
mapping (preferably with natural language descriptions of
the environments in which each allophone occurs). With in-
ternational participation, AlloVera can go from a database
that is merely useful to a resource that is indispensable for
speech and language research.
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