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Abstract
We introduce the scheduler subversion problem, where

lock usage patterns determine which thread runs, thereby sub-
verting CPU scheduling goals. To mitigate this problem, we
introduce Scheduler-Cooperative Locks (SCLs), a new family
of locking primitives that controls lock usage and thus aligns
with system-wide scheduling goals; our initial work focuses
on proportional share schedulers. Unlike existing locks, SCLs
provide an equal (or proportional) time window called lock op-
portunity within which each thread can acquire the lock. We
design and implement three different scheduler-cooperative
locks that work well with proportional-share schedulers: a
user-level mutex lock (u-SCL), a reader-writer lock (RW-
SCL), and a simplified kernel implementation (k-SCL). We
demonstrate the effectiveness of SCLs in two user-space appli-
cations (UpScaleDB and KyotoCabinet) and the Linux kernel.
In all three cases, regardless of lock usage patterns, SCLs
ensure that each thread receives proportional lock allocations
that match those of the CPU scheduler. Using microbench-
marks, we show that SCLs are efficient and achieve high
performance with minimal overhead under extreme work-
loads.
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1 Introduction
In the modern shared datacenter, scheduling of resources is

of central importance [30, 41, 54, 60]. Applications and ser-
vices, whether within a single organization or from many com-
peting ones, each place strong demands on compute, memory,
network, and storage resources; as such, scalable and effec-
tive scheduling is required to ensure that no single user or
application receives more than its desired share.

Of particular importance in datacenters is CPU scheduling,
as recent studies have shown [39]. An ideal CPU scheduler
should be able to decide what runs on a given CPU at any
given moment in time. In doing so, the CPU scheduler can
optimize for fair allocation [5, 57], low latency [51], perfor-
mance isolation [4, 55], or other relevant goals.

However, the widespread presence of concurrent shared in-
frastructure, such as found in an operating system, hypervisor,
or server, can greatly inhibit a scheduler and prevent it from
reaching its goals. Such infrastructure is commonly built with
classic locks [13, 59, 61], and thus is prone to a new problem
we introduce called scheduler subversion. When subversion
arises, instead of the CPU scheduler determining the propor-
tion of the processor each competing entity obtains, the lock
usage pattern dictates the share.

As a simple example, consider two processes, P0 and P1,
where each thread spends a large fraction of time competing
for lock L. If P0 generally holds L for twice as long as P1, P0
will receive twice as much CPU time as compared to P1, even
if L is a “fair” lock such as a ticket lock [43]. Even though
the ticket lock ensures a fair acquisition order, the goals of
the scheduler, which may have been to give each thread an
equal share of CPU, will have been subverted due to the lock
usage imbalance. Similarly, for an interactive process where
scheduling latency is crucial, waiting to acquire a lock being
held repetitively by a batch process can subvert the scheduling
goal of ensuring low latency.

To remedy this problem, and to build a lock that aligns with
scheduling goals instead of subverting them, we introduce
the concept of usage fairness. Usage fairness guarantees that
each competing entity receives a time window in which it
can use the lock (perhaps once, or perhaps many times); we
call this lock opportunity. By preventing other threads from
entering the lock during that time, lock opportunity ensures
that no one thread can dominate CPU time.
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To study usage fairness, we first study how existing locks
can lead to the scheduler subversion problem. We then pro-
pose how lock usage fairness can be guaranteed by Scheduler-
Cooperative Locks (SCLs), a new approach to lock construc-
tion. SCLs utilize three important techniques to achieve their
goals: tracking lock usage, penalizing threads that use locks
excessively, and guaranteeing exclusive lock access with lock
slices. By carefully choosing the size of the lock slice, either
high throughput or low latency can be achieved depending on
scheduling goals.

We implement three different types of SCLs; our work fo-
cuses on locks that cooperate with proportional-share sched-
ulers. The user-space Scheduler-Cooperative Lock (u-SCL)
is a replacement for a standard mutex and the Reader-Writer
Scheduler-Cooperative Lock (RW-SCL) implements a reader-
writer lock; these are both user-space locks and can be readily
deployed in concurrent applications or servers where sched-
uler subversion exists. The kernel Scheduler-Cooperative
Lock (k-SCL) is designed for usage within an OS kernel.
Our implementations include novel mechanisms to lower
CPU utilization under load, including a next-thread prefetch
mechanism that ensures fast transition from the current-lock
holder to the next waiting thread while keeping most waiting
threads sleeping.

Using microbenchmarks, we show that in a variety of syn-
thetic lock usage scenarios, SCLs achieve the desired behavior
of allocating CPU resources proportionally. We also study the
overheads of SCLs, showing that they are low. We investigate
SCLs at small scale (a few CPUs) and at larger scale (32
CPUs), showing that behavior actually improves under higher
load as compared to other traditional locks.

We also demonstrate the real-world utility of SCLs in three
distinct use cases. Experiments with UpScaleDB [31] show
that SCLs can significantly improve the performance of find
and insert operations while guaranteeing usage fairness. Sim-
ilarly, experiments with KyotoCabinet [35] show that unlike
existing reader-writer locks, RW-SCL provides readers and
writers a proportional lock allocation, thereby avoiding reader
or writer starvation. Lastly, we show how k-SCL can be used
in the Linux kernel by focusing upon the global file-system
rename lock, s vfs rename mutex. This lock, under certain
workloads, can be held for hundreds of seconds by a single
process, thus starving other file-system-intensive processes;
we show how k-SCL can be used to mitigate this lock usage
imbalance and thus avoid scheduler subversion.

The rest of this paper is organized as follows. We first
discuss the scheduler subversion problem in Section 2 and
show in Section 3 that existing locks do not ensure lock usage
fairness. Then we discuss the design and implementation of
SCLs in Section 4 and evaluate the different implementations
of SCLs in Section 5. We present limitations and applicability
of SCLs in Section 6, related work in Section 7, and our
conclusions in Section 8.

Figure 1. Scheduler subversion with UpScaleDB. We use a modi-
fied built-in benchmarking tool ups bench to run our experiments.
Each thread executes either find or insert operations and runs for
120 seconds. All threads are pinned on four CPUs and have default
thread priority. “F” denotes find threads while “I” denotes insert
threads. “Hold” represents the critical section execution, i.e., the
time the lock is held; “Wait + Other” represents the wait-times and
non-critical section execution. The value presented on the top of the
dark bar is the throughput (operations/second).

2 Scheduler Subversion
In this section, we discuss scheduler goals and expectations

in a shared environment. We describe how locks can lead to
scheduler subversion in an existing application.

2.1 Motivation
Scheduling control is desired for shared services and com-

plex multi-threaded applications. Classic schedulers, such as
the multi-level feedback queue [3, 23], use numerous heuris-
tics to achieve performance goals such as interactivity and
good batch throughput [51]. Other schedulers, ranging from
lottery scheduling [57] to Linux CFS [5], aim for proportional
sharing, thereby allowing some processes to use more CPU
than others.

Unfortunately, current systems are not able to provide the
desired control over scheduling. For example, Figure 1 shows
that UpScaleDB, an embedded key-value database [31], is
not able to correctly give a proportional share of resources
to find and insert operations. The workload is similar to an
analytical workload where new data is continuously updated
while being analyzed. For this experiment, all the threads per-
forming insert and find operations are given equal importance.
We set the thread priority of each thread to the default and
thus the CFS scheduler will allocate CPU equally to each
thread. Although the desired CPU allocation for each thread
is the same, the graph shows that insert threads are allocated
significantly more CPU than the find threads (nearly six times
more) leading to subversion of the scheduling goals.

The breakdown of each bar in Figure 1 also shows that
the global pthread mutex lock used by UpScaleDB to protect
the environment state is held significantly longer by insert
threads than find threads, and the majority of CPU time is
spent executing critical sections.
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Applications Operation
Type

LHT Distributions (microseconds) Notes
Min 25% 50% 90% 99%

memcached
(Hashtable)

Get 0.02 0.05 0.11 0.16 0.29 Get and Put operations are executed having 10M entries in cache using the
memaslap tool.Put 0.02 0.04 0.10 0.14 0.28

leveldb
(LSM trees)

Get 0.01 0.01 0.01 0.01 0.02 2 threads issuing Get and 2 threads issuing Put operations are executed on an
empty database using the db bench tool.Write 0.01 0.11 0.44 4132.7 43899.9

UpScaleDB
(B+ tree)

Find 0.01 0.01 0.03 0.24 0.66 1 thread issuing Find and 1 thread issuing Insert operations are executed on an
empty database.Insert 0.36 0.87 1.11 4.37 9.55

MongoDB
(Journal)

Write-1K 230.3 266.7 296 497.2 627.5
Write operations are executed on an empty collection. Write concern w = 0,
j = 1 used. Size of operations is 1K, 10K and 100K respectively.

Write-10K 381.6 508.2 561.6 632.8 670.3
Write-100K 674.2 849.3 867.8 902.4 938.9

Linux Kernel
(Rename)

Rename-empty 1 2 2 3 3 First rename is executed on an empty directory while the second rename is executed
on directory having 1M empty files; each filename is 36 characters long.Rename-1M 10126 10154 10370 10403 10462

Linux Kernel
(Hashtable)

Insert 0.03 0.04 0.04 0.05 0.13 Design similar to the futex infrastructure in the Linux kernel that allows duplicate
entries to be inserted and delete operation deletes all the duplicate entries in the hashtable.Delete 0.06 1.15 1.61 9.27 18.07

Table 1. Lock hold time (LHT) distribution. The table shows LHT distribution of various operations for various applications that use
different data-structures.

2.2 Non-Preemptive Locks
The scheduler subversion we saw in UpScaleDB is largely

due to how UpScaleDB uses locks. Locks are a key compo-
nent in the design of multi-threaded applications, ensuring
correctness when accessing shared data structures. With a tra-
ditional non-preemptive lock, the thread that holds the lock is
guaranteed access to read or modify the shared data structure;
any other thread that wants to acquire the lock must wait until
the lock is released. When multiple threads are waiting, the
order they are granted the lock varies depending on the lock
type; for example, test-and-set locks do not guarantee any
particular acquisition order, whereas ticket locks [43] ensure
threads take turns acquiring the given lock.

For our work, we assume the presence of such non-
preemptive locks to guard critical data structures. While great
progress has been made in wait-free data structures [29] and
other high-performance alternatives [16], classic locks are
still commonly used in concurrent systems, including the
operating system itself.

2.3 Causes of Scheduler Subversion
There are two reasons why scheduling subversion occurs

for applications that access locks. First, scheduler subversion
may occur when critical sections are of significantly different
lengths: when different threads acquire a lock, they may hold
the lock for varied amounts of time. We call this property
different critical-section lengths.

The property of different critical-section lengths holds in
many common use cases. For example, imagine two threads
concurrently searching from a sorted linked list. If the work-
load of one thread is biased towards the front of the list, while
the other thread reads from the entire list, the second thread
will hold the lock longer, even though the operation is iden-
tical. Similarly, the cost of an insert into a concurrent data
structure is often higher than the cost of a read; thus, one
thread performing inserts will spend more time inside the
critical section than another thread performing reads.

The lengths of critical sections do vary in real-world appli-
cations, as shown in Table 1. We note two important points.

First, the same operation within an application can have sig-
nificant performance variation depending on the size of the
operation (e.g., the size of writes in MongoDB) or the amount
of internal state (e.g., the size of a directory for renames in-
side the Linux kernel). Second, the critical section times vary
for different types of operations within an application. For ex-
ample, in leveldb, write operations have a significantly longer
critical section than find or get operations.

Second, scheduler subversion can occur when time spent in
critical sections is high and there is significant contention for
locks. We call this majority locked run time. There are many
instances in research literature detailing the high amount of
time spent in critical sections; for example, there are highly
contended locks in Key-Value stores like UpScaleDB (90%)
[25], KyotoCabinet [19, 25], LevelDB [19], Memcached
(45%) [25, 37]; in databases like MySQL [25], Berkeley-
DB (55%) [37]; in Object stores like Ceph (53%) [47]; and
in file systems [46] and the Linux kernel [6, 58].

Unfortunately, different critical section lengths combined
with spending a significant amount of time in critical sections
directly subverts scheduling goals. When most time is spent
holding a lock, CPU usage is determined by lock ownership
rather than by scheduling policy: the algorithm within the
lock to pick the next owner determines CPU usage instead
of the scheduler. Similarly, when locks are held for different
amounts of time, the thread that dwells longest in a critical
section becomes the dominant user of the CPU.

For the UpScaleDB experiment discussed earlier, we see
that these two properties hold. First, insert operations hold
the global lock for a longer period of time than the find opera-
tions, as shown in Table 1. Second, the insert and find threads
spend around 80% of their time in critical sections. Thus,
under these conditions, the goals of the Linux scheduler are
subverted and it is not able to allocate each thread a fair share
of the CPU.

Summary: Locks can subvert scheduling goals depend-
ing on the workload and how locks are accessed. Previous
lock implementations have been able to ignore the problem
of scheduler subversion because they have focused on opti-
mizing locks within a single application across cooperating
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(a) Mutex (b) Spinlock (c) Ticket lock (d) Desired

Figure 2. Impact of Critical Section Size. The behavior of existing locks when the critical section sizes of two threads differ are shown. The
CFS scheduler is used and each thread is pinned on a separate CPU. “wait” represents the time spent waiting to acquire the lock; “hold”
represents the critical section execution, i.e., the time the lock is held; “other” represents the non-critical section execution.

threads; in this cooperative environment, the burden of using
locks correctly can be placed on the application developer,
since any scheduling subversion hurts only the threads within
that application. However, when locks are accessed by differ-
ent clients in a competitive environment (e.g., within a shared
service, the kernel, or a virtual machine), important locks may
be unintentionally or even maliciously held for significantly
different amounts of time by different clients; thus, the entire
system may exhibit fairness and starvation problems. In these
cases, lock design must include mechanisms to handle the
competitive nature of their usage.

3 Lock Opportunity
In this section, we describe how existing locks do not guar-

antee lock usage fairness and introduce lock opportunity – a
new metric to measure lock usage fairness.

3.1 Inability to control CPU allocation
Existing locks, such as mutex, spin-locks, and even ticket

locks, do not enable schedulers to control the CPU allocation
given to different threads or processes. We illustrate this with
an extremely simple application that has two threads and
a single critical section. For one of the threads (T0), the
critical section is very long (10 seconds), while for the other
(T1), it is very short (1 second); for both, the non-critical
section time is negligible (0). We consider three common
lock implementations: a pthread mutex, a simple spinlock
that uses the test-and-set instruction and busy-waits, and a
ticket lock that uses the fetch-and-add instruction and busy-
waits. The application is run for 20 seconds.

As shown in Figure 2, even though the scheduler is config-
ured to give equal shares of the CPU to each thread, all three
existing lock implementations enable the thread with the long
critical section (T0) to obtain much more CPU.

In the case of the mutex (Figure 2a), T0 dominates the
lock and starves T1. This behavior arises because the waiter
(T1) sleeps until the lock is released. After T1 is awoken, but
before getting a chance to acquire the lock, the current lock
holder (T0) reacquires the mutex due to its short non-critical
section time. Thus, with a mutex, one thread can dominate
lock usage and hence CPU allocation.

The behavior of the spinlock (Figure 2b) is similar, where
the next lock holder is decided by the cache coherence proto-
col. If the current lock holder releases and reacquires the lock

quickly (with a negligible non-critical section time), it can
readily dominate the lock. With spinlocks, since the waiting
thread busy-waits, CPU time is spent waiting without making
forward progress; thus, CPU utilization will be much higher
than with a mutex.

Finally, the ticket lock suffers from similar problems, even
though it ensures acquisition fairness. The ticket lock (Fig-
ure 2c) ensures acquisition fairness by alternating which
thread acquires the lock, but T0 still dominates lock usage
due to its much longer critical section. Lock acquisition fair-
ness guarantees that no thread can access a lock more than
once while other threads wait; however, with varying critical
section sizes, lock acquisition fairness alone cannot guarantee
lock usage fairness.

This simple example shows the inability of existing locks
to control the CPU allocation. One thread can dominate lock
usage such that it can control CPU allocation. Additionally,
if an interactive thread needs to acquire the lock, lock usage
domination can defeat the purpose of achieving low latency
goals as the thread will have to wait to acquire the lock. Thus,
a new type of locking primitive is required, where lock usage
(not just acquisition) determines when a thread can acquire a
lock. The key concept of lock opportunity is our next focus.

3.2 Lock Opportunity
The non-preemptive nature of locks makes it difficult for

schedulers to allocate resources when each thread may hold a
lock for a different amount of time. If instead each thread were
given a proportional “opportunity” to acquire each lock, then
resources could be proportionally allocated across threads.

Lock opportunity is defined as the amount of time a thread
holds a lock or could acquire the lock, because the lock is
available. Intuitively, when a lock is held, no other thread can
acquire the lock, and thus no thread has the opportunity to
acquire the lock; however, when a lock is idle, any thread has
the opportunity to acquire the lock. The lock opportunity time
(LOT) for Thread i is formally defined as:

LOT (i) = ∑Critical Section(i)+∑Lock Idle Time (1)

For the toy example above, Table 2 shows the lock oppor-
tunity time of threads T0 and T1. We see that thread T1 has a
much lower lock opportunity time than thread T0; specifically,
T1 does not have the opportunity to acquire the lock while
it is held by thread T0. Therefore, thread T1’s LOT is small,
reflecting this unfairness. Using lock opportunity time for
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Mutex Spinlock Ticketlock Desired
LOT Thread 0 20 20 20 10
LOT Thread 1 1 3 2 10
Fairness Index 0.54 0.64 0.59 1

Table 2. Lock Opportunity and Fairness. The table shows lock
opportunity and the Jain fairness index for the toy example across
the range of different existing locks, as well as the desired behavior
of a lock.

each thread, we quantify the fairness using Jain’s fairness in-
dex [32]; the fairness index is bounded between 0 and 1 where
a 0 or 1 indicates a completely unfair or fair scenario respec-
tively. As seen in the table, all three existing locks achieve
fairness scores between 0.54 and 0.64, indicating that one
thread dominates lock usage and thereby CPU allocation as
well. Note that even though the ticket lock ensures acquisition
fairness, it still has a low fairness index.

Thus, fair share allocation represents an equal opportunity
to access each lock. For the given toy example, the desired
behavior for equal lock opportunity is shown in Figure 2d.
Once T0 acquires the lock and holds it for 10 seconds, the
lock should prevent thread T0 from acquiring the lock until
T1 has accumulated the same lock opportunity time. As T0 is
prevented from accessing the lock, T1 has ample opportunity
to acquire the lock multiple times and receive a fair allocation.
Notice that at the end of 20 seconds both threads have the
same lock opportunity time and achieve a perfect fairness
index of 1.

Building upon this idea, we introduce Scheduler-
Cooperative Locks (SCLs). As we will see, SCLs track lock
usage and accordingly adjust lock opportunity time to ensure
lock usage fairness.

4 Scheduler-Cooperative Locks
We describe the goals for Scheduler-Cooperative Locks,

discuss the design of SCL, and present the implementation
of three types of Scheduler-Cooperative Locks: a user-space
Scheduler-Cooperative Lock (u-SCL), a kernel version of
u-SCL (k-SCL), and a Reader-Writer Scheduler-Cooperative
Lock (RW-SCL).

4.1 Goals
Our SCL design is guided by four high-level goals:
Controlled lock usage allocation. SCLs should guarantee

a specified amount of lock opportunity to competing entities
irrespective of their lock usage patterns. To support various
scheduling goals, it should be possible to allocate different
amounts of lock opportunity to different entities. Lock oppor-
tunity should be allocatable across different types of schedula-
ble entities (e.g., threads, processes, and containers) or within
an entity according to the type of work being performed.

High lock-acquisition fairness. Along with lock usage
fairness, SCLs should provide lock-acquisition fairness when
arbitrating across threads with equal lock opportunity. This
secondary criterion will help reduce wait-times and avoid
starvation among active threads.

Minimum overhead and scalable performance. SCLs
must track the lock usage pattern of all threads that interact
with a given lock, which could be costly in time and space.
SCLs should minimize this overhead to provide high perfor-
mance, especially with an increasing number of threads.

Easy to port to existing applications. For SCLs to be
widely used, incorporating SCLs into existing applications
(including the OS) should be straightforward.

In this work, our primary focus is on proportional allo-
cation. In the future, lock cooperation with other types of
schedulers will be an interesting avenue of work.

4.2 Design
To ensure lock usage fairness without compromising perfor-

mance, the design of SCL is comprised of three components.
Lock usage accounting. Each lock must track its usage

across each entity that the scheduler would like to control.
Accounting and classification can be performed across a wide
range of entities [4]. For example, classification can be per-
formed at a per-thread, per-process, or per-container level, or
according to the type of work being performed (e.g., reading
or writing). For simplicity in our discussion, we often assume
that accounting is performed at the thread granularity. We
believe that different types of locks can be built depending
on the classification. Similarly, each thread (or schedulable
entity) has a goal, or allotted, amount of lock opportunity
time; this goal amount can be set to match a proportional
share of the total time as desired by the CPU scheduler; for
example, a default allocation would give each thread an equal
fair share of lock opportunity, but any ratio can be configured.

Penalizing threads depending on lock usage. SCLs force
threads that have used their lock usage quota to sleep when
they prematurely try to reacquire a lock. Penalizing these
threads allows other threads to acquire the lock and thus
ensures appropriate lock opportunity. The potential penalty is
calculated whenever a thread releases a lock and is imposed
whenever a thread attempts to acquire the lock. The penalty
is only imposed when a thread has reached its allotted lock
usage ratio. Threads with a lower lock usage ratio than the
allotted ratio are not penalized.

Dedicated lock opportunity using lock slice. Accounting
for lock usage adds to lock overhead, especially for small
critical sections (lasting nanoseconds or microseconds). To
avoid excessive locking overhead, we introduce the idea of
a lock slice, building on the idea of Lock Cohorts [22]. A
lock slice is similar to a time slice (or quantum) used for
CPU scheduling. A lock slice is the window of time where
a single thread is allowed to acquire or release the lock as
often as it would like. Once the lock slice expires, ownership
is transferred to the next waiting thread. Thus, a lock slice
guarantees lock opportunity to the thread owner; once lock
ownership changes, lock opportunity changes as well. Lock
slices mitigate the cost of frequent lock owner transfers and
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Figure 3. User-space Scheduler-Cooperative Locks. “R” indicates running and the lock is owned. “W” indicates waiting for the slice. The
lock is shown as a dashed box and each lock acquisition request is shown as a node (box). In (1) the lock is initialized and free. (2) A single
thread A has acquired the lock. The tail “T” pointer points to itself and the next “N” pointer points NULL. (3) Thread B arrives to acquire the
lock and is queued. As B is the next-in-line to acquire the lock, it spins instead of parking itself. The tail and the next pointers now point to B.
(4) Thread A releases the lock but as the lock slice has not expired, B will wait for its turn. (5) Thread C also arrives to acquire the lock and is
queued after B. C parks itself as it is not the next-in-line to acquire the lock. The tail now points to the C as it is the last one to request lock
access. (6) Thread A again acquires the lock as it is the owner of the lock slice. (7) Thread A releases the lock. (8) A’s lock slice is over and B is
now the owner of the slice. C is woken up and made to spin as it will acquire the lock next. The tail and the next pointers now point to C. (9) A
again tries to acquire the lock but is penalized and therefore will wait for the penalty period to be over before it can be queued.

related accounting. Thus, lock slices enable usage fairness
even for fine-grained acquisition patterns.

One can design many types of SCL. We now discuss the
implementation of three types of SCL: u-SCL, k-SCL, and
RW-SCL. While u-SCL and k-SCL guarantee lock usage
fairness at a per-thread level, RW-SCL classifies threads based
on the work they do (i.e., readers vs. writers).

4.3 u-SCL Implementation
The implementation of u-SCL is in C and is an extension

of the K42 variant of the MCS lock [2]. Threads holding or
waiting for the lock are chained together in a queue guaran-
teeing lock acquisition. Like the K42 variant, the u-SCL lock
structure also uses two pointers: tail and next. The tail pointer
points to the last waiting thread while the next pointer refers
to the first waiting thread, if and when there is one.

For lock accounting in u-SCL, we classify each thread as a
separate class and track lock usage at a per-thread level. Per-
thread tracking does incur additional memory for every active
u-SCL lock. u-SCL maintains information such as lock usage,
weight (which is used to determine lock usage proportion),
and penalty duration, using a per-thread structure allocated
through the pthread library. The first time a thread acquires
a lock, the data structure for that thread is allocated using a
key associated with the lock. u-SCL does not assume a static
set of threads; any number of threads can participate and can
have varied lock usage patterns.

To achieve proportional allocations that match those of the
CPU scheduler, u-SCL tracks the total weight of all threads
and updates this information whenever a new thread requests
access to a lock or the thread exits. u-SCL identifies the

nice value of the new thread and converts it to weights using
the same logic that the CFS scheduler uses. The mapped
weights are then added to the total weight to reflect the new
proportions.

Consider two threads, T0 and T1, with nice values of 0 and
-3. Based on these nice values, the CFS scheduler sets the
CPU allocation ratio to approximately 1:2. u-SCL identifies
the nice values and converts them to weights using the same
logic that CFS scheduler uses (0 maps to 1024 and -3 maps to
1991). The sum of the weights (1024 + 1991) is assigned to
the total weight. To calculate each thread’s proportion, u-SCL
uses each thread’s weight and the total weight to calculate
the proportion. For T0 and T1, the proportion is calculated as
0.34 and 0.66 respectively, making the lock opportunity ratio
approximately 1:2. This way, u-SCL guarantees lock opportu-
nity allocations that match those of the CPU scheduler.

The interfaces init() and destroy() are used to initialize
and destroy a lock respectively. The acquire() and release()
routines are called by the threads to acquire and release a
lock respectively. Figure 3 shows the operation of u-SCL. For
simplicity, we just show the tail and next pointers to explain
the flow in the figure and not other fields of the lock.

The figure begins with lock initialization (Step 1). If a lock
is free and no thread owns the slice, a thread that tries to
acquire the lock is granted access and is marked as the slice
owner (Step 2). Alternatively, if the lock is actively held by
a thread, any new thread that tries to acquire the lock will
wait for its turn by joining the wait queue (Steps 3 and 5).
When a lock is released (Step 4), the lock owner marks the
lock as free, calculates its lock usage, and checks if the slice
has expired. If the lock slice has not expired, the slice owner
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can acquire the lock as many times as needed (Step 6). Since
a lock slice guarantees dedicated lock opportunity to a thread,
within a lock slice lock acquisition is fast-pathed, significantly
reducing lock overhead.

On the other hand, if the lock slice has expired, the cur-
rent slice owner sets the next waiting thread to be the slice
owner (Steps 7 and 8) and checks to see if it has exceeded the
lock usage ratio to determine an appropriate penalty. When
acquiring the lock, another check is performed to see if the
requesting thread should be penalized for overusing the lock.
A thread whose lock usage ratio is above the desired ratio
is banned until other active threads are given sufficient lock
opportunity. The thread is banned by forcing it to sleep (Step
9) and can try to acquire the lock after the penalty is imposed.

We have chosen two milliseconds as the slice duration for
all experiments unless otherwise stated. The two millisec-
ond duration optimizes for throughput at the cost of longer
tail latency. We will show the impact of slice duration on
throughput and latency in Section 5.4.

Optimizations. To make u-SCL efficient, we use the spin-
and-park strategy whenever the thread does not immediately
acquire the lock; since waiting threads sleep the majority of
the time, the CPU time spent while waiting is minimal.

Another optimization we implement is next-thread prefetch
where the waiting thread that will next acquire the lock is
allowed to start spinning (Steps 3 and 8); this mechanism
improves performance by enabling a fast switch when the
current lock holder is finished with its slice. When this op-
timization marks the next waiting thread as runnable, the
scheduler will allocate the CPU. However, as the thread has
not acquired the lock, it will spin wasting the CPU. This be-
havior will be more visible when the number of threads is
greater than the number of cores available.

Limitations. We now discuss a few of the implementation
limitations. First, threads that sporadically acquire a lock
continue to be counted in the total weight of threads for
that lock; hence, other active threads may receive a smaller
CPU allocation. This limitation is addressed in our kernel
implementation of k-SCL.

Next, our current implementation of u-SCL does not up-
date lock weights when the scheduler changes its goals (e.g.,
when an administrator changes the nice value of a process);
this is not a fundamental limitation. Finally, we have not
yet explored u-SCL in multi-lock situations (e.g., with data
structures that require hierarchical locking or more complex
locking relationships). We anticipate that multiple locks can
interfere with the fairness goals of each individual locks lead-
ing to performance degradation. The interaction of multiple
SCLs remains as future work.

4.4 k-SCL Implementation
k-SCL is the kernel implementation of u-SCL; it is a much

simpler version without any of the optimizations discussed
above. As larger lock slice sizes will increase the wait-time

to own the lock slice, we set the lock slice size to zero while
accessing kernel services. The lock functioning is similar
to u-SCL. The primary difference is that k-SCL does track
whether or not threads are actively interacting with a kernel
lock and accordingly removes them from the accounting; this
is performed by periodically walking through the list of all
thread data and freeing inactive entries. Currently, we use a
threshold of one second to determine if a thread is inactive
or not. A longer threshold can lead to stale accounting for a
longer duration, leading to performance issues.

4.5 RW-SCL Implementation
RW-SCL provides the flexibility to assign a lock usage ratio

to readers and writers, unlike the existing reader-writer locks
that support reader or writer preference. The implementation
of RW-SCL is in C and is an extension of the centralized
reader-writer lock described by Scott [52]. Being centralized,
RW-SCL tracks the number of readers and writers with a
single counter; the lowest bit of the counter indicates if a
writer is active, while the upper bits indicate the number of
readers that are either active or are waiting to acquire the lock.
To avoid a performance collapse due to heavy contention on
the counter, we borrow the idea of splitting the counter into
multiple counters, one per NUMA node [8].

With RW-SCL, threads are classified based on the type
of work each executes; the threads that execute read-only
operations belong to the reader class while the threads exe-
cuting write operations belong to the writer class. Since there
are only two classes, RW-SCL does not use per-thread stor-
age and track each thread. Fairness guarantees are provided
across the set of reader threads and the set of writer threads.
As with other SCL locks, different proportional shares of the
lock can be given to readers versus writers. For the current
implementation, we assume that all the readers will have the
same priority. Similarly, all writers will have the same priority.
Thus, a single thread cannot assume the role of a reader and
writer as the same nice value will be used leading to a 50:50
usage proportion and that might not be the desired proportion.

Figure 4 shows the operation of RW-SCL. The relevant
RW-SCL routines include init(), destroy(), writer lock(),
reader lock(), reader unlock(), and reader unlock(). The lock
begins in a read slice at initialization (Step 1). During a read
slice, the readers that acquire the lock atomically increments
the counter by two (Step 2 and 3). On releasing the lock, the
counter is atomically decremented by two (Step 4). During
the read slice, all the writers that try to acquire the lock must
wait for the write slice to be active (Step 5). When readers
release the lock, they will check if the read slice has expired
and may activate the write slice (Step 6).

While the write slice is active, writers try to acquire the
lock by setting the lowest bit of the counter to 1 using the
compare-and-swap instruction (Step 7). With multiple writers,
only one writer can succeed and other writers must wait for
the first writer to release the lock. If a reader tries to acquire
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Figure 4. Reader-Writer Scheduler-Cooperative Locks. In (1) The lock is initialized and free. (2) A reader thread R1 acquires the lock and
continues its execution in the critical section. (3) Another reader thread R2 also joins in. (4) Reader R1 leaves the critical section. (5) A writer
thread W1 arrives and waits for the write slice to start. (6) Write slice is started and W1 waits for reader R2 to release the lock. (7) Reader R2
releases the lock and writer W1 acquires the lock. (8) Reader R1 now arrives again and waits for the read slice to start. (9) W1 releases the
lock and the read slice starts allowing the reader R1 to acquire the lock.

the lock while the write slice is active, it will wait for the read
slice to be active (Step 8). When a writer releases the lock, it
will check if the write slice has expired and activate the read
slice (Step 9). Whenever a read slice changes to a write slice
or vice versa, the readers and writers will wait for the other
class of threads to drain before acquiring the lock.

As RW-SCL does not track per-thread lock usage, RW-SCL
cannot guarantee writer-writer fairness; however, RW-SCL
can improve performance for multiple writers. Within the
write class, multiple writers can contend for the lock and
thus while one writer is executing the non-critical section,
another writer can acquire the lock and execute. This behavior
is contrary to the u-SCL behavior where the lock remains
unused when the owner is executing the non-critical section
code.

5 Evaluation
In this section, we evaluate the effectiveness of SCLs. Us-

ing microbenchmarks, we show that u-SCL provides both
scalable performance and scheduling control. We also show
how SCLs can be used to solve real-world problems by replac-
ing the existing locks in UpScaleDB with u-SCL, the Linux
rename lock with k-SCL, and the existing reader-writer lock
in KyotoCabinet with RW-SCL.

We perform our experiments on a 2.4 GHz Intel Xeon E5-
2630 v3. It has two sockets and each socket has eight physical
cores with hyper-threading enabled. The machine has 128 GB
RAM and one 480 GB SAS SSD. The machine runs Ubuntu
16.04 with kernel version 4.19.80, using the CFS scheduler.

We begin with a synthetic workload to stress different
aspects of traditional locks as well as u-SCL. The workload
consists of a multi-threaded program; each thread executes
a loop and runs for a specified amount of time. Each loop
iteration consists of two elements: time spent outside a shared

lock, i.e., non-critical section, and time spent with the lock
acquired, i.e., critical section. Both are specified as parameters
at the start of the program. Unless explicitly specified, the
priority of all the threads is the default thereby ensuring each
thread gets an equal share of the CPU time according to the
CFS default policy.

We use the following metrics to show our results:
(i) Throughput: For synthetic workloads, throughput is the
number of times through each loop, whereas for real work-
loads, it reflects the number of operations completed (e.g.,
inserts or deletes). This metric shows the bulk efficiency of
the approach.
(ii) Lock Hold Time: This metric shows the time spent hold-
ing the lock, broken down per thread. This shows whether the
lock is being shared fairly.
(iii) Lock Usage Fairness: This metric captures fair lock
usage among all threads. We use the method described in
Section 3 to calculate lock opportunity time.
(iv) CPU Utilization: This metric captures how much total
CPU is utilized by all the threads to execute the workload.
CPU utilization ranges from 0 to 1. A higher CPU utilization
means that the threads spin to acquire the lock while a lower
CPU utilization means the lock may be more efficient due to
blocking. Lower CPU utilization is usually the desired goal.

5.1 Fairness and Performance
To gauge the fairness and performance of u-SCL compared

to traditional locks, we first run a simple synthetic workload
with two threads. For this 30 second workload, the critical
section sizes are 1 µs and 3 µs and the two threads are pinned
on two different CPUs. In these experiments, the desired
result is that for fair scheduling, each thread will hold the lock
for the same amount of time, and for performance, they will
complete as many iterations as possible.
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(a) LHT and Throughput (b) Lock usage fairness and CPU utilization (c) LHT and Throughput (d) Lock usage fairness and CPU utilization

Figure 5. Comparison on 2 and 16 CPUs. The graphs present a comparison of four locks : mutex (Mtx), spinlock (Spn), ticket lock (Tkt), and
u-SCL (SCL) for 2 (a and b) and 16 (c and d) threads, each has the same thread priority. For 2 threads, each thread has a different critical
section size (1 µs vs. 3 µs). For 16 threads, half have shorter critical section sizes (1 µs) while others have a larger critical section size (3 µs).

“TG” stands for thread group.

Figure 5a shows the amount of time each of the two threads
holds the lock (dark for the thread with a 1 µs critical section,
light for 3 µs); the top of each bar reports throughput. The
mutex, spinlock, and ticket lock each do not achieve equal
lock hold times. For the mutex, the thread with the longer (3
µs) critical section (light color) is almost always able to grab
the lock and then dominate usage. With the spinlock, behavior
varies from run to run, but often, as shown, the thread with the
longer critical section dominates. Finally, with the ticket lock,
threads hold the lock in direct proportion to lock usage times,
and thus the (light color) thread with the 3 µs critical section
receives three-quarters of the lock hold time. In contrast, u-
SCL apportions lock hold time equally to each thread. Thus,
u-SCL achieves one of its most important goals. Figure 5b
summarizes these results with Jain’s fairness metric for lock
hold time. As expected, u-SCL’s lock usage fairness is 1 while
that of other locks is less than 1.

Figure 5a also shows overall throughput (the numbers along
the top). As one can see, u-SCL and the spinlock are the
highest performing. The mutex is slowest, with only 53.8M
iterations; the mutex often blocks the waiting thread using
futex calls and the thread switches between user and kernel
mode quite often, lowering performance. For CPU utilization,
the mutex performs better than others since the mutex lets
the waiters sleep by calling futex wait(). The spinlock and
ticket lock spin to acquire the lock and thus their utilization
is high. u-SCL’s high CPU utilization is attributed to the
implementation decision of letting the next thread (that is
about to get the lock) spin. However, with more threads, u-
SCL is extremely efficient, as seen next.

We next show how u-SCL scales, by running the same
workload as above with 16 threads on 16 cores. For this
experiment, the critical section size for half of the threads
(8 total) is 1 µs and other half (also 8) is 3 µs respectively.
From the Figure 5c, we see again that the three traditional
locks – mutex, spinlock, and ticket lock – are not fair in terms
of lock usage; not all threads have the same lock hold times.
The threads with larger critical section sizes (lighter color)

clearly dominate the threads with shorter critical section sizes
(darker). In contrast, u-SCL ensures that all threads receive
the same lock opportunity irrespective of critical section size.
The throughput with u-SCL is comparable to that of spinlock
and we believe that further tuning could reduce this small
gap.

However, the more important result is found in Figure 5d,
which shows CPU utilization. u-SCL’s CPU utilization is
reduced significantly compared to other spinning (spinlock
and ticket lock) approaches. With u-SCL, out of 16 threads,
only two are actively running at any instance, while all
other threads are blocked. u-SCL carefully orchestrates which
threads are awake and which are sleeping to minimize CPU
utilization while also achieving fairness. While a mutex also
conserves CPU cycles, it has much higher lock overhead, de-
livers much lower throughput, and does not achieve fairness.

In summary, we show that u-SCL provides lock opportunity
to all threads and minimizes the effect of lock domination by
a single thread or a group of threads, thus helping to avoid the
scheduler subversion problem. While ensuring the fair-share
scheduling goal, u-SCL also delivers high throughput and
very low CPU utilization. u-SCL thus nearly combines all the
good qualities of the three traditional locks – the performance
of spinlock, the acquisition fairness of the ticket lock, and the
low CPU utilization of the mutex.

5.2 Proportional Allocation
We next demonstrate that u-SCL enables schedulers to

proportionately schedule threads according to a desired ratio
other than 50:50. Figure 6 shows the performance of all four
locks when the desired CPU time allocation is varied. We now
consider four threads pinned to two CPUs, while the other
workload parameters remain the same (the critical sections
for two threads are 1 µs, for the other two threads they are 3
µs; the workload runs for 30 seconds).

To achieve different CPU proportions for the thread groups,
we vary the CFS nice values. The leftmost group (3:1) indi-
cates that shorter critical section threads (darker color) should
receive three times the CPU of longer critical section threads
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Figure 6. Changing Thread Proportionality. Comparison of the
four locks : mutex (Mtx), spinlock (Spn), ticket lock (Tkt), and u-SCL
(SCL) for four threads running on two CPUs having different thread
priorities (shown as ratios along the bottom) and different critical
section sizes. The number on the top of each bar shows the lock
usage fairness.

(a) (b)

Figure 7. Lock Overhead Study. The figure presents two lock over-
head studies. On the left(a), the number of threads and CPU cores
are increased, from 2 to 32, to study scaling properties of u-SCL and
related locks. On the right(b), the number of CPUs is fixed at two,
but the number of threads is increased from 2 to 32.

(lighter). The rightmost group shows the inverse ratio, with
the shorter critical section threads meant to receive one third
the CPU of the longer critical section threads.

Figure 6 shows that traditional locks subvert the target
CPU allocations of the CFS scheduler. Having a longer criti-
cal section leads to threads holding onto the CPU for a longer
duration. Note that the fairness of ticket locks improves when-
ever the critical section ratio and the thread priority matches.

In contrast, u-SCL performs exactly in alignment with
CPU scheduling goals and allocates the lock in the desired
proportion to each thread. To do so, u-SCL uses the same
weight for the lock usage ratio as the thread’s scheduling
weight, thereby guaranteeing CPU and lock usage fairness.
By configuring u-SCL to align with scheduling goals, the
desired proportional-sharing goals are achieved.

5.3 Lock Overhead
Minimal overhead was one of our goals while designing u-

SCL. To understand the overhead of u-SCL, we conduct two
different experiments as we increase the number of threads
with very small critical sections.

For the first experiment, we set each critical section and
non-critical section size to 0. We then run the synthetic appli-
cation varying the number of threads from 2 to 32, with each
thread pinned to a CPU core.

Figure 7a (left) compares the throughput of the four lock
types. For spinlocks and ticket locks, throughput is generally
low and decreases as the number of threads increases; these
locks generate a great deal of cache coherence traffic since
all threads spin while waiting. In contrast, the mutex and u-
SCL block while waiting to acquire a lock and hence perform
better. While u-SCL significantly outperforms the other locks
for 8 or fewer threads, u-SCL performance does drop for
16 and 32 threads when the threads are running on different
NUMA nodes; in this configuration, there is an additional cost
to maintain accounting information due to cross-node cache
coherency traffic. This indicates that u-SCL could benefit
from approximate accounting across cores in future work.

In the second experiment, we show performance when the
number of CPUs remains constant at two, but the number of
threads increases. For the experiment in Figure 7a (right), we
vary the number of threads from 2 to 32 but pin them to only
two CPUs. The critical section size is 1 µs.

As expected, the performance of u-SCL and mutex is in-
deed better than the alternatives and remains almost constant
as the number of threads increases. With spinlock and ticket
locks, the CPU must schedule all the spin-waiting threads on
two CPUs regardless of the fact that threads cannot make for-
ward progress when they are not holding the lock. Moreover,
as the threads never yield the CPU until the CPU time slice
expires, a great deal of CPU time is wasted.

In contrast, with u-SCL and mutex, only two threads or one
thread, respectively, are running, which significantly reduces
CPU scheduling. u-SCL performs better than mutex since
the next thread to acquire the lock is effectively prefetched;
the dedicated lock slice also helps u-SCL achieve higher
performance since lock overhead is minimal within a lock
slice. With a mutex lock, a waiting thread must often switch
between user and kernel mode, lowering performance.

5.4 Lock Slice Sizes vs. Performance
We next show the impact of lock slice size on throughput

and latency, as a function of critical section size. In general,
increasing lock slice size increases throughput, but harms
latency. As we will show, the default two millisecond slice
size optimizes for high throughput at the cost of long-tail
latency.

Throughput: For our first workload, we run four identical
threads pinned to two cores for 30 seconds, varying the size
of each critical section. Figure 8a shows throughput in a
heatmap. The x-axis varies the lock slice size while the y-axis
varies the critical section size. Throughput is calculated by
summing the individual throughput of each thread. For larger
slice sizes, the throughput increases while for very small slice
sizes, the throughput decreases significantly; the overhead
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Figure 8. Impact of lock slice size on performance. The left figure (a) shows the throughput across two dimensions : critical section and the
slice size. The right figure (b) shows the wait-time distribution when the lock slice varies and the critical section size is 1 µs.
of repeatedly acquiring and releasing the lock causes the
substantial decrease.

Latency: Figure 8b shows the wait-time distribution to
acquire the lock as a function of the slice size for a 10 µs
critical section; we chose 10 µs to show the impact of having
a slice size smaller, greater, or equal to the critical section size.
We omit 1 ms and 10 ms lock slices because those results are
similar to that of 2 ms. The figure shows that for lock slices
larger than the critical section, the wait-time of the majority of
operations is less than 100 ns; each thread enters the critical
section numerous times without any contention. However,
when the thread does not own the lock slice, it must wait for
its turn to enter the critical section; in these cases, the wait
time increases to a value that depends on the lock slice size
and the number of participating threads.

When the lock size is smaller than or equal to the size of
the critical section (i.e., 1 or 10 µs), lock ownership switches
between threads after each critical section and each thread
observes the same latency. We observe this same relationship
when we vary the size of the critical section (not shown).

To summarize, with larger lock slices, throughput increases
but a small portion of operations observe high latency, increas-
ing tail latency. On the other hand, with smaller lock slices, la-
tency is relatively low, but throughput decreases tremendously.
Hence, applications that are latency sensitive should opt for
smaller lock slices while applications that need throughput
should opt for larger lock slices.

Interactive jobs: We now show that u-SCL can deliver low
latency to interactive threads in the presence of batch threads.
Batch threads usually run without user interaction and thus
do not require low scheduling latency [5]. On the other hand,
interactive threads require low scheduling latency; thus, the
scheduler’s task is to reduce the wait-time for interactive
threads so they can complete tasks quickly. Both Linux’s CFS
and FreeBSD’s ULE schedulers identify interactive and batch
threads and schedule them accordingly [51]; for example, as
the interactive threads sleep more often without using their
entire CPU slice, CFS schedules such threads before others
to minimize their latency.

Figure 9. Interactivity vs. Batching. The figure shows the compar-
ison of the wait-time to acquire the lock for mutex, spinlock, ticket
lock and u-SCL.

To show that u-SCL can effectively handle both batch and
interactive threads, we examine a workload with one batch
thread and three interactive threads. The batch thread repeat-
edly acquires the lock, executes a 100 µs critical section, and
releases the lock; the three interactive threads execute a 10
µs critical section, release the lock, and then sleep for 100
µs. The four threads are pinned on two CPUs. The desired
result is that the interactive threads should not need to wait to
acquire the lock.

Figure 9 shows the CDF of the wait-time for one of the in-
teractive threads to acquire each of the four lock types: mutex,
spinlock, ticket lock, and u-SCL. For u-SCL, we show four
lock slice sizes. The results of the other interactive threads
are similar. The graph shows that for the mutex and spinlock,
wait-time is very high, usually between 10 ms and 1 second.
Even though the goal of the scheduler is to reduce latency by
scheduling the interactive thread as soon as it is ready, lock
ownership is dominated by the batch thread, which leads to
longer latency for the interactive threads. The ticket lock re-
duces latency since lock ownership alternates across threads;
however, wait-time is still high because the interactive thread
must always wait for the critical section of the batch thread
to complete (100 µs).

The graph shows that for u-SCL, the length of the slice size
has a large impact on wait-time. When the slice size is smaller
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(a) Mutex (b) u-SCL

Figure 10. Mutex and u-SCL performance with UpScaleDB.
The same workload is used as Section 2.1. The same CFS scheduler
is used for the experiments. “F” denotes find threads while “I” de-
notes insert threads. The expected maximum lock hold time is shown
using the dashed line. “Hold” represents the critical section execu-
tion, i.e., the time until the lock is held; “Wait + Other” represents
the wait-times and non-critical section execution. The number on
top of the dark bar represents the throughput (operations/second).
The left figure (a) shows the same graph as shown in Section 2.1.
The right figure (b) shows the performance of u-SCL.

than or equal to the interactive thread’s critical section (e.g.,
1 or 10 µs), the interactive thread often has a relatively short
wait time and never waits longer than the critical section of
the batch thread (100 µs). When the slice size is relatively
large (e.g., 2 ms), the interactive thread often acquires the
lock with no waiting, but the wait-time distribution has a
long tail. Finally, the 100 µs slice performs the worst of the
u-SCL variants because the interactive threads sleep after
releasing the lock, wasting the majority of the lock slice and
not allowing other waiting threads to acquire the lock.

In summary, to deliver low latency, the slice size in u-SCL
should always be less than or equal to the smallest critical
section size. Our initial results with the ULE scheduler are
similar, but a complete analysis remains as future work.

5.5 Real-world Workloads
We conclude our investigation by demonstrating how SCLs

can be used to solve real-world scheduling subversion prob-
lems. We concentrate on two applications, UpScaleDB and
KyotoCabinet, and a shared lock within the Linux kernel.
The user-space applications show how SCLs can be used to
avoid the scheduler subversion problem within a single pro-
cess. With the kernel example, we illustrate a competitive
environment scenario where multiple applications running
as different processes (or containers) can contend for a lock
within a kernel, thus leading to cross-process scheduler sub-
version.
5.5.1 UpScaleDB

As part of the original motivation for u-SCL, we saw in
Figure 1 that UpScaleDB was unable to deliver a fair share of
the CPU to threads performing different operations. For easy
comparison, Figure 10a shows the same graph. We now show
that u-SCL easily solves this problem; the existing locks in

Figure 11. Comparison of RW-SCL and KyotoCabinet The dark
bar shows the lock hold time for each individual thread and the light
bar shows the lock opportunity not being unused. The values on top
of the bar shows the aggregated throughput (operations/sec) for the
writer and reader threads.

UpScaleDB can simply be converted to u-SCL locks and then
the unmodified Linux CFS scheduler can effectively schedule
UpScaleDB’s threads independent of their locking behavior.

We repeat the experiment shown in Figure 1, but with
u-SCL locks. UpScaleDB is configured to run a standard
benchmark.1 We again consider four threads performing find
operations and four threads performing inserts, pinned to four
CPUs. Figure 10b shows how much CPU time each thread is
allocated by the CFS scheduler.

As desired, with u-SCL, the CPU time allocated to each
type of thread (i.e., threads performing find or insert opera-
tions) corresponds to a fair share of the CPU resources. With
u-SCL, all threads, regardless of the operation they perform
(or the duration of their critical section), are scheduled for
approximately the same amount of time: 30 seconds. In con-
trast, with mutexes, UpScaleDB allocated approximately only
2 CPU seconds to the find threads and 24 CPU seconds to the
insert threads (with four CPUs). With a fair amount of CPU
scheduling time, the lock hold times becomes more fair as
well; note that it is not expected that each thread will hold the
lock for the same amount of time since each thread spends a
different amount of time in critical section versus non-critical
section code for its 30 seconds.

The graph also shows that the overall throughput of find
and insert threads is greatly improved with u-SCL compared
to mutexes. On four CPUs, the throughput of find threads
increases from only about 12K ops/sec to nearly 700K op-
s/sec; the throughput of insert threads also increases from
22K ops/sec to 35K ops/sec. The throughput of find opera-
tions increases most dramatically because find threads are
now provided more CPU time and lock opportunity. Even
the throughput of inserts improves since u-SCL provides a
dedicated lock slice where a thread can acquire the lock as
many times possible; thus, lock overhead is greatly reduced.

Finally, when we sum up the total lock utilization across the
u-SCL and mutex versions, we find that the lock is utilized for
roughly 59% of the total experiment duration for u-SCL but

1ups bench –use-fsync –distribution=random –keysize-fixed –journal-
compression=none –stop-seconds=120 –num-threads=N
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(a) Reader Scaling (b) Writer Scaling

Figure 12. Performance of RW-SCL with reader and writer scaling. For reader scaling, only one writer is used while for writer scaling,
only one reader is used. The number of readers and writers vary for reader scaling and writer scaling experiments. The dark bar shows the lock
hold time while the light bar shows the unused lock opportunity. The values on top of the bar shows the throughput of the writers and readers.

nearly 83% for mutexes. Given that the overall lock utilization
decreases with an increase in throughput, we believe that u-
SCL can help scale applications. Instead of redesigning the
applications to scale by minimizing critical section length, a
more scalable lock can be used.
5.5.2 KyotoCabinet

KyotoCabinet [35] is an embedded key-value storage en-
gine that relies on reader-writer locks. Given that locks are
held for significant periods of time, and critical sections are
of different lengths, it also suffers from scheduler subversion;
specifically, writers can be easily starved. We show that our
implementation of RW-SCL allows KyotoCabinet and the
default CFS Linux scheduler to control the amount of CPU
resources given to readers and writers, while still delivering
high throughput; specifically, RW-SCL removes the problem
of writers being starved.

To setup this workload, we use KyotoCabinet’s built-in
benchmarking tool kccachetest in wicked mode on an in-
memory hash-based database. We modified the tool to let
the thread either issue read-only (reader) or write (writer)
operations and run the workload for 30 seconds. The database
contains ten million entries which are accessed at random.
We pin threads to cores for all the experiments. We assign
a ratio of 9:1 to the reader and writer threads. The original
version of KyotoCabinet uses pthread reader-writer locks.

To begin, we construct a workload with one writer thread
and seven reader threads. In Figure 11, we present the write
throughput and the aggregated read throughput, the average
lock hold time, and the lock opportunity for readers and writer.
In the default KyotoCabinet using pthread reader-writer locks
which give strict priority to readers, the writer is starved and
less than ten write operations are performed over the entire
experiment. In other experiments (not shown), we find that
the writer starves irrespective of the number of readers.

On the other hand, RW-SCL ensures that the writer thread
obtains 10% of the lock opportunity compared to 90% for the
readers (since readers can share the reader lock, their lock
opportunity time is precisely shared as well). Since the writer

thread is presented with more lock opportunity with RW-
SCL, the write throughput increases significantly compared
to the vanilla version. As expected, RW-SCL read throughput
decreases slightly because the reader threads now execute
for only 90% of the time and writes lead to many cache
invalidations. The overall aggregated throughput of readers
and writers for eight threads with RW-SCL is comparable to
other reader-writer locks with KyotoCabinet [19].

We run similar experiments by varying the number of read-
ers and show the result in Figure 12a. KyotoCabinet scales
well until 8 threads (7 readers + 1 writer). The throughput
drops once the number of threads crosses a single NUMA
node. We believe that this performance drop is due to the
excessive data sharing of KyotoCabinet data structure across
the sockets. Another point to note here is that irrespective of
the number of readers, RW-SCL continues to stick to the 9:1
ratio that we specified.

When there is only one writer thread with RW-SCL, the
writer cannot utilize its entire write slice since the lock is
unused when the writer is executing non-critical section code.
To show how multiple writers can utilize the write slice effec-
tively, we conduct another experiment with only one reader
while varying the number of writers. As seen in Figure 12b,
when the number of writers increases from one to two, the
lock opportunity time becomes completely used as lock hold
time (as desired); when one writer thread is executing the
non-critical section code, the other writer thread can acquire
the lock, thereby fully utilizing the write slice. Increasing
the number of writers past two cannot further increase write
lock hold time or therefore improve throughput; continuing
to increase the number of writers past three simply increases
the amount of cache coherence traffic.
5.5.3 Linux Rename Lock

A cross-directory rename in Linux is a complicated opera-
tion that requires holding a global mutex to avoid a deadlock.
When accessed by competing entities, such a global lock can
lead to performance problems since all threads needing to per-
form a rename must wait to acquire it. We show that k-SCL
can prevent a bully process that holds the global lock for long

13



Figure 13. Rename Latency. The graph shows the latency CDFs
for SCL and the mutex lock under the rename operation. The dark
lines show the distributions for the long rename operation (the bully),
whereas lighter lines represent the short rename operation costs (the
victim). Dashed lines show standard mutex performance, whereas
solid lines show k-SCL performance.

periods of time from starving out other processes that must
also acquire the global lock.

Our specific experiment to recreate a bully and a victim
process is as follows. We use Linux version 4.9.128 and the
ext4 file system; we have disabled dir index using tune2fs [9]
since that optimization leads to problems [56] which force
administrators to disable it. We run a simple program2 that
repeatedly performs cross-directory renames. We create three
directories, where one directory contains one million empty
files and the other directories are empty; each file name is 36
characters. A bully process executes the rename program with
dst set to the large directory (potentially holding the rename
lock for a long time), while a victim process executes the
same program with two empty directories as arguments (thus
only needing the lock for a short while).

We use the ftrace kernel utility to record cross-directory
rename latency, which is plotted in Figure 13 as a CDF. The
dimmed and the bold lines represent the victim and bully,
respectively. The dotted lines show the behavior with the
default Linux locks. The bully has an expected high rename
latency of 10 ms. About 60% of victim’s rename calls are
performed when the bully is not holding the global lock, and
thus have a latency less than 10 µs. However, about 40% of
the victim’s calls have a latency similar to that of the bully due
to lock contention. If more bullies are added to the system,
the victim has even less chance to acquire the lock and can
be starved (not shown).

The root cause of this problem is the lack of lock oppor-
tunity fairness. To fix this problem, we modified the global
rename lock to use the k-SCL implementation. The solid lines
in Figure 13 show the new results. With k-SCL, almost all
of the victim’s rename calls have less than 10 µs latency and
even its worst-case latency is lower, at roughly 10 ms. Both
results arise because the bully is banned for about 10 ms after
it releases the lock, giving the victim enough lock opportunity
to make progress. If more bullies are added, the effect on
the victim remains minimal. We believe that this behavior is

2while True: touch(src/file); rename(src/file, dst/file); unlink(dst/file);

(a) LHT and Throughput (b) Lock usage fairness

Figure 14. Rename Lock Comparison. The figure presents a com-
parison of two locks – mutex and k-SCL for 2 threads on two CPUs;
each has the same thread priority and one thread is performing
rename operations on a directory that is empty while another thread
is performing rename on a directory having a million empty files.

desired because all tenants on a shared system should have
an equal opportunity to utilize the lock.

Figure 14 shows the breakdown of the bully and the vic-
tim process’s lock behavior. We can see that for the mutex,
the bully process dominates lock usage, and the fairness co-
efficient is very low. k-SCL penalizes the bully process by
providing enough opportunity to the victim process to acquire
the lock. Therefore, the victim thread is easily able to perform
around 49.7K rename operations compared to 503 with the
mutex version. As the critical section size of the victim pro-
gram is very small, the non-critical section involving touch
and unlink operation dominates the lock opportunity time
presented to the victim. Thus, the victim’s lock hold time is
not quite equal to that of the bully process.

6 Limitations and Applicability
In this section, we discuss the limitations and applicabil-

ity of SCLs. We start by discussing limitations and their
impact on performance. The current design of SCL is non-
work-conserving relative to locks. That is, within a lock slice,
whenever the lock slice owner is executing non-critical sec-
tion code, the lock will be unused, even if other threads are
waiting to acquire the lock. Since the lock remains unused,
performance could be impacted. Threads that have larger non-
critical section sizes compared to critical section sizes are
more likely to see this effect. One way to alleviate the perfor-
mance problem is to reduce the size of the lock slice, but at
the cost of throughput as shown earlier.

To design a work-conserving lock, one can assign multiple
threads to the same class such that multiple threads can ac-
quire the lock withing a single lock slice. While one thread is
executing the non-critical section, another thread can enter the
critical section thereby ensuring high performance. However,
it is hard to classify multiple threads statically to one class
and hence the lock should have the capability to dynamically
classify the threads and create classes. Exploring dynamic
classification remains an interesting avenue for future work.

To support a variety of scheduling goals, the implementa-
tion of SCL needs to be accordingly adjusted. For example,
our current implementation of SCL does not support priority

14



scheduling. To support priority scheduling, the lock should
also contain queues and grant lock access depending on the
priority.

Scheduler subversion happens when the time spent in criti-
cal sections is high and locks are held for varying amounts of
time by different threads. As these two conditions can lead to
lock usage imbalance, the likelihood of the scheduler subver-
sion problem increases. If there is not much lock contention
or all threads hold locks for similar amounts of time, then
it might be better to use other simpler locks that have less
overhead. We believe that shared infrastructure represents a
competitive environment where multiple applications can be
hosted having varied locking requirements. SCLs will play
a vital role in such an environment where one application
or user can unintentionally or maliciously control the CPU
allocation via lock usage imbalance.

7 Related Work
Locks have been split into five categories based on their

approaches [26]: (i) flat, such as pthread mutexes [34],
spinlocks [52], ticket locks [43] and many other simple
locks [1, 21] (ii) queue [14, 42, 43], (iii) hierarchical
[11, 12, 20, 40, 49], (iv) load-control [17, 27], and (v)
delegation-based [24, 28, 38, 48]. Our work borrows from
much of this existing literature. For example, queue-based ap-
proaches are needed to control fairness and hierarchical locks
contain certain performance optimizations which are useful
on multiprocessors. Although less related, even delegation-
based locks could benefit from considering usage fairness,
perhaps through a more sophisticated scheduling mechanism
of delegated requests.

Many studies have been done to understand and improve
the performance and fairness characteristics of locks [10, 15,
25]. However, the authors do not consider lock usage fairness
as we propose herein. Guerraoui et al. [25] do acknowledge
that interaction between locks and schedulers is important.
In this work, we show how locks can subvert the scheduling
goals; and SCLs and schedulers can align with each other.

Reader-writer locks have been studied extensively for the
past several decades [7, 18, 33, 36, 44, 45] to support fairness,
scaling and performance requirements. Brandenburg et al. [7]
present a phase fair reader-writer lock that always alternates
the read and write phase thereby ensuring that no starvation
occurs. Our approach for RW-SCL and the phase fair reader-
writer lock do have certain properties in common. Like the
phase fair lock, RW-SCL will ensure that read and write slices
alternate. RW-SCL is flexible enough to assign lock usage
ratio to readers and writers depending on the workload.

The closest problem related to the scheduler subversion
problem is the priority inversion problem [53] where a higher
priority process is blocked by a lower priority process. The
scheduler subversion problem can occur with any priority
thread and as we have shown, it can also happen when all the

threads have the same priority. We believe that to prevent pri-
ority inversion, priority inheritance [53] should be combined
with SCL locks.

8 Conclusion
In this paper, we have demonstrated that locks can subvert

scheduling goals as lock usage determines which thread is
going to acquire the lock next. To remedy this, we introduce
Scheduler-Cooperative Locks (SCLs) that track lock usage
and can align with the scheduler to achieve system-wide
goals. We present three different types of SCLs that show-
case their versatility, working in both user-level and kernel
environments.

Our evaluation shows that SCLs ensure lock usage fair-
ness even with extreme lock usage patterns and scale well.
We also show that SCLs can solve the real-world prob-
lem of scheduler subversion imposed by locks within ap-
plications. We believe that any type of schedulable entity
(e.g., threads, processes, and containers) can be supported
by SCLs and look forward to testing this hypothesis in
the future. The source code for SCL can be accessed at
https://research.cs.wisc.edu/adsl/Software/.
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