
Read as Needed: Building WiSER, a Flash-Optimized Search Engine

Jun He, Kan Wu, Sudarsun Kannan†, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau
Department of Computer Sciences, University of Wisconsin–Madison

†Department of Computer Science, Rutgers University

Abstract

We describe WiSER, a clean-slate search engine designed
to exploit high-performance SSDs with the philosophy "read
as needed". WiSER utilizes many techniques to deliver high
throughput and low latency with a relatively small amount
of main memory; the techniques include an optimized data
layout, a novel two-way cost-aware Bloom filter, adaptive
prefetching, and space-time trade-offs. In a system with mem-
ory that is significantly smaller than the working set, these
techniques increase storage space usage (up to 50%), but re-
duce read amplification by up to 3x, increase query throughput
by up to 2.7x, and reduce latency by 16x when compared to
the state-of-the-art Elasticsearch. We believe that the philoso-
phy of "read as needed" can be applied to more applications
as the read performance of storage devices keeps improving.

1 Introduction

Modern solid-state storage devices (SSDs) [19, 20] provide
much higher throughput and lower latency than traditional
persistent storage such as hard disk drives (HDDs). Currently,
flash-based SSDs [19, 20] are readily available; in the near
future, even higher performance NVRAM-based systems may
supplant flash [4], boosting performance even further.

SSDs exhibit vastly different characteristics from
HDDs [24, 36]; as we shift from HDDs to SSDs, the software
on top of the storage stack must evolve to harvest the
high performance of the SSDs. Thus far, optimization for
SSDs has taken place within many important pieces of the
storage stack. For example, RocksDB [16], Wisckey [38]
and other work [23, 34, 42] have made key-value stores
more SSD-friendly; FlashGraph [59], Mosaic [43] and
other work [48, 49, 60] optimize graphs for SSDs; SFS [45],
F2FS [39] and other work [30, 37] have made systems
software more SSD-friendly.

In this evolution, an important category of application has
been overlooked: full-text search engines. Search engines
are widely used in many industrial and scientific settings to-
day, including popular open-source offerings such as Elastic-
search [7] and Solr [3]. As of the time of this writing, Elastic-
search is ranked 7th among all database engines, higher than
well-known systems such as Redis, Cassandra, and SQLite [6].
Elasticsearch is used in important applications, such as at
Wikipedia and Github to power text (edited contents or source

code) search [7, 22]. They are also widely used for data ana-
lytics [7]; for example, Uber uses Elasticsearch to generate
dynamic prices in real time based on users’ locations.

Furthermore, the challenges in search engines are unique,
interesting, and different from the ones in key-value stores,
graphs, and system software. The key data structure in a
search engine is an inverted index, which maps individual
terms (i.e., words) to lists of documents that contain the terms.
On top of the inverted index, multiple auxiliary data struc-
tures (e.g., posting lists) and technologies (e.g., compression)
also play important roles to implement an efficient search
engine. In addition to compelling data structures, the unique
workloads of search engines also provoke new thoughts on
SSD-based optimizations. For example, phrase queries (e.g.,
“United States”) stress multiple data structures in the engine
and require careful design.

Search engines pose great challenges to storage systems.
First, search engines demand low latency as users often inter-
face with them interactively. Second, search engines demand
high data throughput because they retrieve information from a
large volume of data. Third, search engines demand high scal-
ability because data grows quickly. Due to these challenges,
many search engines eschew using secondary storage, putting
most/all data directly into memory instead [13, 15].

However, we believe the advent of faster storage suggests
a reexamination of modern search engine design. Given that
using RAM for large datasets can be cost prohibitive, can
one instead rebuild a search engine to better utilize SSDs to
achieve the necessary performance goals with main memory
that is significantly smaller than the dataset?

We believe the answer is yes, if we re-design the system
with the principle read as needed. Emerging fast storage de-
vices [14, 18, 29, 36, 57] offer high bandwidth; for example,
inexpensive (i.e., $0.17/GB) SSDs currently offer 3.5 GB/s
read bandwidth [17], and even higher performance can be
provided with multiple devices (e.g., RAID). These high-
performance storage devices allow applications to read data
as needed, which means that main memory can be used as
a staging buffer, instead of a cache; thus, large working sets
can be kept within secondary storage and less main memory
is required. To read as needed, applications must optimize the
efficiency of the data stream flowing from the storage device,
through the small buffer (memory), to CPU.

In this paper, we present the design, implementation, and
evaluation of WiSER, a flash-optimized high-I/O search en-
gine that reads data as needed. WiSER reorganizes tradi-
tional search data structures to create and improve the read
stream, thus exploiting the bandwidth that modern SSDs pro-
vide. First, we propose a technique called cross-stage group-
ing, which produces locality-oriented data layout and signif-
icantly reduces read amplification for queries. Second, we
propose a novel two-way cost-aware Bloom filter to reduce
I/O for phrase queries. Third, we use adaptive prefetch to
reduce latency and improve I/O efficiency. Fourth, we enable
a space-time trade-off, increasing space utilization on flash
for fewer I/Os; for example, we compress documents indi-
vidually, which consumes more space than compression in
groups, but allows us to retrieve documents with less I/O.

We built WiSER1 from ground up with 11,000 lines of C++
code, for the following reasons. First, an implementation in
C++ allows us to interact with the operating system more
closely than the state of the art engine, Elasticsearch, which
is written in Java; for example, it allows us to readily prefetch
data using OS hints. Second, a fresh implementation allows
us to reexamine the limitations of current search engines. For
example, by comparing with WiSER, we found that the net-
work implementation in Elasticsearch significantly limits its
performance and could be improved. Overall, our clean slate
implementation produces highly efficient code, which allows
us to apply various flash-optimized techniques to achieve
high performance. For some (but not all) workloads, WiSER
with limited memory performs better than Elasticsearch with
memory that holds the entire working set.

We believe that this paper makes the following contribu-
tions. First, we propose a design philosophy, read as needed,
and follow the philosophy to build a flash-optimized search en-
gine with several novel techniques. For example, we find that
plain Bloom filters employed elsewhere [11, 16, 42] surpris-
ingly increase I/O traffic; consequently, we propose two-way
cost-aware Bloom filters, which exploit unique properties of
search engine data structures. Second, WiSER significantly
reduces the need for vast amounts of memory by exploiting
high-bandwidth SSDs to achieve high performance at low
cost. Third, we have built a highly efficient search engine:
thanks to our proposed techniques and efficient implementa-
tion, WiSER delivers higher query throughput (up to 2.7x)
and lower latencies (up to 16x) than a state-of-the-art search
engine (Elasticsearch) in a low-memory system that we use
to stress the engine.

The paper is organized as follows. We introduce the back-
ground of search engines in Section 2. We propose techniques
for building a flash-optimized search engine in Section 3.
We evaluate our flash-optimized engine in Section 4, discuss
related work in Section 5, and conclude in Section 6.

1WiSER is available at http://research.cs.wisc.edu/adsl/Software/wiser/.

ID Text

1 I thought about naming the engine CHEESE, but I
could not explain CHEE.

2 Fried cheese curds, cheddar cheese sale.
3 Tofu, also known as bean curd, may not pair well

with cheese.

Table 1: An Example of Documents An indexer parses the
documents to build an inverted index; a document store will
keep the original text.

ID
2
3

POS
3
6

OFF
(13,17)
(25,28)

ID
1
2
3

POS
7
2,5
12

OFF
(34,39)
(6,11),(28,33)
(52,57)

…
cheese

…
curd

…

…

…

…Term Map Postings Lists

A Posting

TF
1
2
1

TF
1
1

Figure 1: An Example of Inverted Index This figure shows
the general contents of inverted index without specific layout
information. Term Map allows one to look up the location of
the postings list of a term.

2 Search Engine Background

Search engines play a crucial role in retrieving information
from large data collections. Although search engines are de-
signed for text search, they are increasingly being used for
data analytics because search engines do not need fixed data
schemes and allow flexible data exploration. Popular modern
search engines, which share similar features, include Elas-
ticsearch, Solr, and Splunk [6]. Elasticsearch and Solr are
open-source projects based on Lucene [1], an information
retrieval library. Elasticsearch and Solr wrap Lucene by im-
plementing practical features such as sharding, replication,
and network capability. We use Elasticsearch as our baseline
as it is the most popular [6] and well-maintained project. Al-
though we only study Elasticsearch, our results also apply to
other engines, which share the same underlying library (i.e.,
Lucene) or key data structures.

2.1 Elasticsearch Data Structures

Search engines allow users to quickly find documents (e.g.,
text files, web pages) that contain desired information. Docu-
ments must be indexed to allow fast searches; the core index
structure in popular engines is the inverted index, which stores
a mapping from a term (e.g., a word) to all the documents
that contain the term.

An indexer builds the inverted index. Table 1 shows an
example of documents to be indexed. First, the indexer splits
a document into tokens by separators such as space and punc-
tuation marks. Second, the indexer transforms the tokens. A
common transformation is stemming, which unifies tokens
(e.g., curds) to their roots (e.g., curd). The transformed tokens
are usually referred to as terms. Finally, the location informa-

Term Index
Term Dictionary

Skiplist
ID-TF

POS OFF

1

2

3 4 5

6 7

Figure 2: Inverted Index in Elasticsearch Term Index maps
a term to an entry in Term Dictionary. A Term Dictionary
entry contains metadata about a term (e.g., doc frequency)
and multiple pointers pointing to files that contain document
IDs and Term Frequencies (ID-TF), positions (POS), and byte
offsets (OFF). The number in the figure indicates a typical
data access sequence to serve a query. No.3, 4, and 5 indicate
the access of skip lists, document ID and Term Frequencies.
For Wikipedia, the sizes of each component are Term Index: 4
MB, Term Dictionary: 200 MB, Skiplist.ID.TF: 2.7 GB, POS:
4.8 GB, OFF: 2.8 GB.

tion of the term is inserted to a list, called a postings list. The
resulting inverted index is shown in Figure 1.

A posting contains the location information of a term in
a particular document (Figure 1). Such information often in-
cludes a document ID, positions, and byte offsets of the term
in the document. For example, a position records that term
“cheese” is the 2-th and 5-th token in document 2. Positions en-
able the processing of phrase queries: given a phrase such as
“cheese curd”, we know that a document contains the phrase if
the first term, “cheese”, is the x-th token and the second term
“curd” is the x+1-th one. An offset pair records the start and
end byte address of a term in the original document. Offsets
enable quick highlighting; the engine presents the most rele-
vant parts (with the queried terms highlighted) of a document
to the user. A posting also contains information such as term
frequency for ranking the corresponding document.

Query processing includes multiple stages: document
matching, ranking, phrase matching, highlighting; different
types of queries go through different stages. For queries with
a single term, an engine executes the following stages: it-
erating document IDs in a term’s postings list (document
matching); calculating the relevance score of each document,
which usually uses term frequencies, and finding the top doc-
uments (ranking); and highlighting queried terms in the top
documents (highlighting). For AND queries such as “cheese
AND curd”, which look for documents containing multiple
terms, document matching includes intersecting the document
IDs in multiple postings lists. For the example in Figure 1,
intersecting {1,2,3} and {2,3} produces {2,3}, which are
the IDs of documents that contain both “cheese” and “curd”.
For phrase queries, a search engine needs to use positions to
perform phrase matching after document matching.

Figure 2 shows the data structures of Elasticsearch. To
serve a query with a single term, Elasticsearch follows these
steps. First, Elasticsearch locates a postings list by Term In-

●

●

●

●

●

●
●

●

● ● ● ● ● ●

●

● ● ●
●

● ●

ideally−needed
1

10

100

in−mem 16 8 4 2 1 0.5
memory size(GB)

R
ea

d
Tr

af
fic

 (G
B

) ● ● ●es es_no_pref wiser

Figure 3: Read Traffic of Search Engines This figure shows
read I/O traffic of various search engines as the size of mem-
ory decreases. es: Elasticsearch, es_no_pref: Elasticsearch
without prefetch. Note that serving queries leads to only read
traffic. The ideally-needed traffic assumes a byte-addressable
storage device.

dex (1) and a Term Dictionary (2). The Term Index and Term
Dictionary contain location information of the skip lists, doc-
ument IDs, positions, and offsets (details below). Second, the
engine will load the skip list, which contains more informa-
tion for navigating document IDs, term frequencies, positions,
and offsets. Third, it will iterate through the document IDs and
use the corresponding term frequencies to rank documents.
Fourth, after finding the documents with top scores, it will
read offsets and document text to generate snippets.

2.2 Elasticsearch Performance Problems

Elasticsearch cannot achieve the highest possible performance
from the storage system due in part to read amplification.
Elasticsearch groups data of different stages into multiple
locations and arranges data such that data items in the early
stages are smaller. The intention is that data in early stages,
which is accessed more frequently than data in later stages, is
cached. However, grouping data by stage also could lead to
large read amplification.

Figure 3 shows the I/O traffic of a real query workload
over Wikipedia; as the amount of memory is decreased, the
I/O traffic incurred by Elasticsearch increases significantly.
In contrast, the amount of read traffic in WiSER remains
relatively low regardless of the amount of memory available.

3 WiSER: A Flash-Optimized Search Engine

Given that SSDs offer high bandwidth, applications that "read
data as needed" may be able to run effectively on systems that
do not contain enough main memory to cache the entire work-
ing set. However, since device bandwidth is not unlimited,
applications must carefully control how data is organized and
accessed to match the performance characteristics of modern
SSD storage [36].

At the highest level, the less I/O an application must per-
form, the faster that application will complete; since search
engine queries involve only read operations, we should reduce
read amplification as much as possible. Second, retrieving
data from SSDs instead of RAM can incur relatively long
latency; therefore, applications should hide I/O latency as

Prefetch Zone

md skiplist IDs TFs

…

POSs OFFs

zone size locationterm

zone size locationterm

zone size locationterm

…

Term Map

…BFs

Figure 4: Structure of WiSER’s Inverted Index Contents
of each postings list are placed together. Within each postings
list, IDs, TFs and so on are also placed together to maximize
compression ratio, which is the same as Elasticsearch.

much as possible with prefetching or by overlapping compu-
tation with I/O. Third, SSDs deliver higher data bandwidth
for larger requests; therefore, an application should organize
and structure its data to enable large requests.

We introduce techniques that allow WiSER to reduce read
amplification, hide I/O latency, and issue large requests. First,
cross-stage data grouping groups data of different stages and
stores it compactly during indexing (reducing read implication
and enabling large requests). Second, two-way cost-aware fil-
tering employs special Bloom filters to prune paths early and
reduce I/O for positions in the inverted index; our Bloom
filters are novel in that they are tightly integrated with the
query processing pipeline and exploit unique properties of
search engines (again reducing read amplification). Third, we
adaptively prefetch data to reduce query latency; unlike the
prefetch employed by Elasticsearch (i.e., OS readahead), our
prefetch dynamically adjusts the prefetch size to avoid read-
ing unnecessary data (hiding I/O latency and enabling large
requests without increasing read amplification). Fourth, we
take advantage of the inexpensive and ample space of SSDs
by trading disk space for I/O speed; for example, WiSER
compresses documents independently and aligns compressed
documents to file system blocks to prevent data from cross-
ing multiple blocks (reducing read amplification). We now
describe these techniques in more detail.

In discussing our design, we will draw on examples from
the English Wikipedia, which is a representative text data
set [33, 35, 44, 50, 53, 54, 56]. Its word frequency follows the
same distribution (zipf’s law) as many other corpuses [41,50],
such as Twitter [47].

3.1 Technique 1: Cross-Stage Data Grouping

One key to building a flash-optimized high-I/O search engine
is to reduce read amplification. We propose cross-stage group-
ing to reduce read amplification for posting lists of small or
medium sizes. The processing of such postings lists is critical
because most of the postings lists fall into this category. For
example, 99% of the postings lists in Wikipedia are small or
medium (less than 10,000 documents are in the postings list).
Also, search engines often shard large postings lists into such
smaller ones to reduce processing latency.

Cross-stage data grouping puts data needed for different
stages of a query into continuous and compact blocks on the

storage device, which increases block utilization when trans-
ferring data for a query. Figure 4 shows the resulting data
structures after group; data needed for a query is located in
one place and in the order that it will be accessed. Essentially,
the grouped data becomes a stream of data, in which each
piece of data is expected to be used at most once. Such ex-
pectation matches the query processing in a search engine, in
which multiple iterators iterate over lists of data. Such streams
can flow through a small buffer efficiently with high block
utilization and low read amplification.

Grouped data introduces significantly less read amplifica-
tion than Elasticsearch for small and medium postings lists.
Due to highly efficient compression, the space consumed
by each postings list is often small; however, due to Elastic-
search’s layout, the data required to serve a query is spread
across multiple distant locations (Term Dictionary, ID-TF,
POS, and OFF) as shown in Figure 2. Elasticsearch’s layout
increases the I/O traffic and also the number of I/O operations.
On the other hand, as shown in Figure 4, the grouped data
can often be stored in the one block (e.g., 99% of the terms in
Wikipedia can be stored in a block), incurring only one I/O.

3.2 Technique 2: Two-way Cost-aware Filters

Phrase queries are pervasive and are often used to improve
search precision [31]. Unfortunately, phrase queries put great
pressure on a search engine’s storage system, as they require
retrieving a large amount of positions data (as described in
Section 2). To build a flash-optimized search engine, we must
reduce the I/O traffic of phrase queries.

Bloom filters, which can test if an element is a member of
a set, are often used to reduce I/O; however, we have found
that plain Bloom filters, which are often directly used in data
stores [11, 42, 46], increase I/O traffic for phrase queries be-
cause individual positions data is relatively small due to com-
pression and, therefore, the corresponding Bloom filter can
be larger than the positions data.

As a result, we propose special two-way cost-aware Bloom
filters by exploiting unique properties of search engines to
reduce I/O. The design is based on the observation that the
postings list sizes of two (or more) terms in a phrase query are
often different. Therefore, we construct Bloom filters during
indexing to allow us to pick the smaller Bloom filter to filter
out a larger amount of positions data during querying. In
addition, we design a special bitmap-based structure to store
Bloom filters to further reduce I/O. This section gives more
details on our Bloom filters.
3.2.1 Problems of plain Bloom filters

A plain Bloom filter set contains terms that are after a par-
ticular term; for example, the set.after of term “cheese” in
document 2 of Table 1 contains “curd” and “sale”. To test the
existence of a phrase “cheese curd”, an engine can simply
test if “curd” is in set.after of “cheese”, without reading any
positions. If the test result is negative, we stop and conse-
quently avoid reading the corresponding positions. If the test

BF POS

term1

term2

BF POS1 2

2

Figure 5: Phrase Processing With Bloom Filters WiSER
uses one of the Bloom filters to test the existence of a phrase
(1) and then read positions for positive tests to confirm (2).

result is positive, we must confirm the existence of the phrase
by checking positions because false positives are possible in
Bloom filters; also, we may have to use positions to locate
the phrase within a document for highlighting.

However, we must satisfy the following two conditions to
reduce I/O. First, the percentage of negative tests must be
high because this is the case where we only read the Bloom
filters and avoid other I/O. If the test is positive (a phrase
may exist), we have to read both Bloom filters and positions,
which increases I/O. Empirically, the percentage of positive
results is low for real phrase queries to Wikipedia [21]: only
12% of the tests are positive. Intuitively, the probability for
two random terms to form a phrase in a document is also low
due to a large number of terms in a regular document. The
second condition is that the I/O traffic to the Bloom filters
must be smaller than the traffic to positions needed to identify
a phrase; otherwise, we would just use the positions.

Meeting the second condition is challenging because the
sizes of plain Bloom filters are too large in our case, although
they are considered space-efficient in other uses [11, 42].
Bloom filters can be larger than their corresponding posi-
tions because positions are already space efficient after com-
pression (delta encoding and bit packing [2]). In addition,
Bloom filters are configured to be relatively large because
their false positive ratios must be low. The first reason to
reduce false positive is to increase negative test results, as
mentioned above. The second reason is to avoid reading un-
necessary file system blocks. Note that a 4-KB file system
block contains positions of hundreds of postings. If any of the
positions are requested due to false positive tests, the whole
4-KB block must be read; however, none of the data in the
block is useful.

3.2.2 Two-way and cost-aware filtering

We now show how we can reduce I/O traffic to both Bloom fil-
ters and positions with cost-aware pruning and a bitmap-based
store. To realize it, first we estimate I/O cost and use Bloom
filters conditionally (i.e., cost-aware): we only use Bloom
filters when the I/O cost of reading Bloom filters is much
smaller than the cost of reading positions if Bloom filters are
not used. For example, in Figure 5, we will not use Bloom
filters for query “term1 term2” as the I/O cost of reading the
Bloom filters is too large. We estimate the relative I/O costs
of Bloom filter and positions among different terms by term
frequencies (available before positions are needed), which is
proportional to the sizes of Bloom filters and positions.

Second, we build two Bloom filters for each term to al-

Bitmap Filter Array Bitmap Filter Array Bitmap Filter Array …

…Skip List

Figure 6: Bloom Filter Store The sizes of the arrays may
vary because some Bloom filters contain no entries and thus
are not stored in the array.

low filtering in either direction (i.e., two-way): a set for all
following terms and another set for all preceding terms of
each term. This design is based on the observation that the
positions (and other parts) sizes of the terms in a query are
often vastly different. With these two Bloom filters, we can
apply filters forward or backward, whichever can reduce I/O.
For example, in Figure 5, instead of using Bloom filters of
term1 to test if term2 is after term1, we can now use Bloom
filters of term2 to test if term1 is before term2. Because the
Bloom filters of term2 are much smaller, we can apply it to
significantly reduce I/O.

To further reduce the size of Bloom filters, we employ a
bitmap-based data layout to store Bloom filters. Figure 6
shows the data layout. Bloom filters are separated into groups,
each of which contains a fixed number of filters (e.g., 128);
the groups are indexed by a skip list to allow skipping reading
large chunks of filters. In each group, we use a bitmap to
mark the empty filters and only store non-empty filters in the
array; thus, empty Bloom filters only take one bit of space
(in the bitmap). Reducing the space usage of empty filters
can significantly reduce overall space usage of Bloom filters
because empty filters are common. For instance, about one-
third of the filters for Wikipedia are empty. Empty filters of
a term come from surrounding punctuation marks and stop
words (e.g., “a”, “is”, “the”), which are not added to filters.

Empirically, we find that expecting five insertions and a
false positive probability of 0.0009 in the Bloom filter [12]
(each filter is 9-byte) offers a balanced trade-off between
space and test accuracy for English Wikipedia; these param-
eters should be tuned for other data sets. We use the same
parameters for all Bloom filters in WiSER because storing
parameters would require extra space and steps before testing
each filter; one could improve the space overhead and accu-
racy by limiting the number of parameter sets for the engine
and selecting the optimal ones for specific filters from the
available sets.

3.3 Technique 3: Adaptive Prefetching

Although the latency of SSDs is low, it is still much higher
than that of memory. The relatively high latency of SSDs
adds to query processing time, especially the processing of
long postings lists which demands a large amount of I/O. If
we load one page at a time as needed, query processing will
frequently stop and wait for data, which also increases system
overhead. In addition, the I/O efficiency will be low due to
small request sizes [36].

To mitigate the impact of high I/O latency and improve the
I/O efficiency, we propose adaptive prefetching. Prefetching, a
commonly used technique, can reduce I/O stall time, increase
the size of I/O requests, and reduce the number of requests,
which boosts the efficiency of flash devices and reduces sys-
tem overhead. However, naive prefetching, such as the Linux
readahead [10], used by Elasticsearch, suffers from signif-
icant read amplification. Linux unconditionally prefetches
data of a fixed size (default: 128 KB), which causes high read
amplification due to the diverse data sizes needed.

For the best performance, prefetching should adapt to the
queries and the structures of persistent data. Among all data
in the inverted index, the most commonly accessed data in-
cludes metadata, skip lists, document IDs, and term frequen-
cies, which are often accessed together and sequentially; thus
we place them together in an area called the prefetch zone. Our
adaptive approach prefetches data when doing so can bring
significant benefits. We prefetch when all prefetch zones in-
volved in a query are larger than a threshold (e.g., 128 KB);
we divide the prefetch zone into small prefetch segments to
avoid accessing too much data at a time.

To enable adaptive prefetch, WiSER employs prefetch-
friendly data structures, as shown in Figure 4. A search engine
should know the size of the prefetch zone before reading the
posting list (so the prefetch size can be adapted). To enable
such prefetching, we hide the size of the prefetch zone in the
highest 16 bits of the offset in WiSER’s Term Map (the 48 bits
left is more than enough to address large files). In addition, the
structure in the prefetch zone is also prefetch-friendly. Data
in the prefetch zone is placed in the order it is used, which
avoid jumping ahead and waiting for data that has not been
prefetched. Finally, compressed data is naturally prefetch-
friendly. Even if there are data “holes” in the prefetch zone
that are unnecessary for some queries, prefetching data with
such holes is still beneficial because these holes are usually
small due to compression and the improved I/O efficiency can
well offset the cost of such small read amplification.

WiSER prefetches by dynamically calling madvise() with
the MADV_SEQUENTIAL hint to readahead in the prefetch zone.
We could further improve prefetching with more precise mem-
ory management; for example, we could isolate the buffers
used for different queries and avoid interference between
queries. In addition, Linux prefetches in fixed sizes; we could
allow variable sizes to avoid wasting I/O.

3.4 Technique 4: Trade Disk Space for I/O

With a small increase in disk space, WiSER is able to perform
less I/O to its document store. We compress each document
individually in WiSER, which often increases space usage but
avoids reading and decompressing unnecessary documents.
Compression algorithms, such as LZ4, achieve better com-
pression when more data is compressed together. As a result,
when compressing documents, engines like Elasticsearch put
documents into a buffer (default size: 16 KB) and compresses

all data in the buffer together. Unfortunately, decompressing a
document requires reading and decompressing all documents
compressed before the document, leading to more I/O and
computation. In WiSER, we trade space for less I/O by using
more space but reducing the I/O while processing queries.

In addition, WiSER aligns compressed documents to the
boundaries of file system blocks if the unaligned data would
incur more I/O. A document may suffer from the block-
crossing problem, where a document is unnecessarily placed
across two (or more) file system blocks and requires reading
two blocks during decompression. For example, a 3-KB data
chunk has a 75% chance of spanning across two 4-KB file sys-
tem blocks. To avoid this problem, WiSER aligns compressed
document if doing so could reduce the block span.

3.5 Impact on Indexing

Our techniques focus on optimizing query processing instead
of index creation since query processing is performed far more
frequently. Overall, we believe the overhead introduced to
indexing is more than justified by the significant performance
improvements on query processing. Cross-stage data group-
ing does not add overhead to indexing since the same data
is simply placed in different locations. Adaptive prefetching
employs existing information and does not add any overhead
during indexing. Trading space for less I/O adds moderate I/O
overhead for the indexing phase (25% for Wikipedia) because
the document store takes more space.

Building two-way cost-aware Bloom filters requires addi-
tional computation: the indexer in WiSER builds two Bloom
filters, set.before and set.after, for each term in each document.
Although a fixed number of hashing calls are required to add
an entry to a filter and some filters are empty, the accumula-
tive cost can be high. Currently, we have not optimized the
building of Bloom filters. One way to speed up the building
is to parallelize it, which also speeds up writing the filters to
SSDs. Another way is to cache the hash values of popular
terms to avoid hashing the same term frequently; popular
terms appear hundreds of thousands times but would only
need to be hashed once.

3.6 Implementation

We have implemented WiSER with 11,000 lines of C++ code,
which allows us to interact with the OS more directly than
higher-level languages. Data files are mapped by mmap() to
avoid complex buffer management. We rigorously conducted
hundreds of unit tests to ensure the correctness of our code.

The major implementation differences between WiSER
and Elasticsearch are the programming languages and net-
work libraries. From our experimentation, we found that C++
does not bring significant advantage to WiSER over Elastic-
search. In fact, to make the starting performance of WiSER
similar to that of Elasticsearch we had to implement a number
of optimizations: we switched from class virtualization to
templates; we manually inlined frequently-called functions;
we used case-specific functions to allow special optimizations

for the case; and, we avoided frequent memory allocations
(e.g., by reusing preallocated std::vector).

4 Evaluation

In this section, we evaluate WiSER with WSBench, a bench-
mark suite we built, which includes synthetic and realistic
search workloads. The impact of a particular technique can
be demonstrated by comparisons between two versions of
WiSER (i.e., with and without the technique). For example,
we demonstrate the effect of two-way cost-aware Bloom fil-
ters by comparing WiSER with and without them.

At the beginning of this section, we analyze in detail how
each of the proposed techniques in WiSER is able to improve
performance by significantly reducing read amplification. We
show that: cross-stage data grouping reduces I/O traffic by 2.9
times; two-way cost-aware Bloom filters reduce I/O traffic
by 3.2 times; adaptive prefetching prefetches only necessary
data; and, trading disk space for less I/O reduces I/O traffic
by 1.7 times.

Later in this section, we show that our techniques improve
end-to-end performance. For example, we compare WiSER
(with Bloom filters) and WiSER (without Bloom filters) to
show that our Bloom filters increase query throughput up to
2.6x. We also show that WiSER delivers higher end-to-end
performance than Elasticsearch, which indicates that WiSER
is well implemented and its techniques can be applied to
modern search engines.

We strive to conduct a fair comparison between Elastic-
search and WiSER. We pre-process the dataset using Elastic-
search and input the same pre-processed data to both WiSER
and Elasticsearch. The pre-processor produces tokens, posi-
tions, and offsets. We implement the exact same relevance
calculation (BM25 [7]) in WiSER as is used in Elasticsearch.
The pre-processing and the implementation ensure that both
WiSER and Elasticsearch will produce query results with the
same quality. Despite our efforts, WiSER and Elasticsearch
still have many differences (e.g., network implementation,
where Elasticsearch performs poorly, and program languages).
However, by comparing time-independent metrics such as
read traffic size, we can see how WiSER reduces amplifica-
tion, which in turn improves end-to-end performance.

We conduct experiments on machines with 16 CPU cores,
64-GB RAM and a 256-GB NVMe SSD (peak read bandwidth
is 2.0 GB/s; peak IOPS is 200,000) [5]. We use Ubuntu with
Linux 4.4.0. We optimize the configuration of Elasticsearch
by following the best practices and tune parameters such as
the number of threads, heap size and stack size.

To evaluate how well each search engine can scale up to
large data sets that do not fit in main memory, our experiments
focus on environments with a small ratio of main memory to
working set size. The total size of English Wikipedia dataset is
18 GB, and from our experiments, we infer that the working
sets are generally a few GBs. Therefore, we configure the
search engine processes to use only 512 MB of memory (using

a Linux container); this limits the engine’s page cache to a
small size (i.e., tens of MBs). Such a configuration allows us
to demonstrate that our proposed techniques are effective at
reducing read amplification, hiding I/O latency and increasing
I/O efficiency, which are essential challenges at larger scale.

4.1 WSBench

We had to create our own benchmark to evaluate WiSER and
Elasticsearch because existing benchmarks are not sufficient.
To evaluate its engine, the Elasticsearch team uses Wikipedia
[33,44,54] and scientific papers from PubMed Central (PMC);
unfortunately, the Wikipedia benchmarks do not include real
queries and the PMC dataset is very small (only 574,199
documents and 5.5 GB when compressed) with only a few
hand-picked queries [8, 9].

We create WSBench, a benchmark based on the Wikipedia
corpus, to evaluate WiSER and Elasticsearch. The corpus
is from English Wikipedia in May 2018, which includes 6
million documents and 6 million unique terms (excluding stop
words). WSBench contains 24 synthetic workloads varying
the number of terms, the type of queries, and the popularity
level of the queried terms (also known as document frequency:
the number of documents in which a term appears). A high
popularity level indicates a long postings list and large data
size per query. These variables allow us to cover a wide range
of query types and stress the system. WSBench also includes a
realistic query workload extracted from production Wikipedia
servers [21], and three workloads with different query types
derived from the original realistic workload.

4.2 Impact of Proposed Techniques

We evaluate the proposed techniques in WiSER for three
types of synthetic workloads: single-term queries, two-term
queries, and phrase queries. Such evaluations allow us to in-
vestigate how the proposed techniques impact various aspects
of the system as different techniques have different impacts
on workloads. We investigate low-level metrics such as traffic
size to precisely show why the proposed techniques improve
end-to-end performance.

4.2.1 Cross-stage Data Grouping

Cross-stage grouping can reduce the read amplification for all
types of queries. Here we show its impact on single-term and
two-term queries where grouping plays the most important
role; phrase queries are dominated by positions data where
two-way cost-aware Bloom filters play a more important role
(as we will soon show).

Figure 7 shows the decomposed read traffic for single-term
queries. The figure shows that WiSER can significantly re-
duce read amplification (indicated by lower waste than Elas-
ticsearch); the reduction is up to 2.9x. The reduction is more
when the popularity level is lower because the block utiliza-
tion is lower. To process queries with low-popularity terms, a
search engine only needs a small amount of data; for exam-
ple, an engine only needs approximately 30 bytes of data to

10 100 1000 10000 100000
w

as
te

do
ci

d of
f tf ti

w
as

te
do

ci
d of
f tf ti

w
as

te
do

ci
d of
f tf ti

w
as

te
do

ci
d of
f tf ti

w
as

te
do

ci
d of
f tf ti

0

3

6

9

IO
 T

ra
ffi

c
(G

B
) es_no_pref wiser

Figure 7: Decomposed Traffic of Single-Term Queries

waste represents the data that is unnecessarily read; docid,
off, skiplist, tf, and ti represents the ideally needed
data of document ID, offset, skip list, term frequency, term
index/dictionary. Positions is not needed in match queries
and thus not shown. This figure only shows the traffic from
inverted index, which relates to cross-stage data grouping;
we investigate the rest of the traffic (document store) later.

2.
384.

83

8.
5918

.8

10
.5
7

14
.8
9

6.
48

7 7.
57.
73

18
.6
9

82 32
9

20
5

37

0

1

2

3

10 100 1000 10000 100000
Two Terms Workloads (Popularity Level)N

or
m

al
iz

ed
 R

ea
d

Tr
af

fic

es es_no_pref wiser

Figure 8: I/O Traffic of Two-term Match Queries The size
(GB) is normalized to the traffic size of Elasticsearch without
prefetching.

process the term “tugman” (popularity=8). To retrieve such
small data, read amplification is inevitable as the minimal I/O
request size is 4 KB. However, we can (and should) mini-
mize the read amplification. Elasticsearch, which groups data
by stages, often needs three separate I/O requests for such
queries: one to term index, one to document IDs/term fre-
quency, and one to offsets. In contrast, WiSER only needs
one I/O request because the data is grouped to one block.

For high popularity levels (popularity=100,000), the traf-
fic reduction is inconspicuous because queries with popular
terms require a large amount of data for each stage (KBs or
even MBs). In that case, the waste from grouping data by
stages in Elasticsearch is negligible.

Figure 8 shows the aggregated I/O traffic for two-term
queries, which read two postings lists. Similar to Figure 7, we
can see that WiSER (wiser) incurs significantly less traffic
than Elasticsearch. In this figure, we show two configura-
tions of Elasticsearch: one with prefetch (es) and one without
prefetch (es_no_pref). Prefetch is a common technique to
boost performance in systems with ample memory; however,
as shown in Figure 8, naive prefetch in Elasticsearch (es)
can increase read amplification significantly. Such a dilemma
motivates our adaptive prefetch.

0
5

10
15
20

1000 5000 10000 50000 100000

IO
 T

ra
ffi

c
(G

B
)

es
wiser
wiser_bf

Figure 9: I/O Traffic of Phrase Queries Results of Elastic-
search with prefetch is not shown as it is always much worse
than Elasticsearch without prefetch.

1000 5000 10000 50000 100000

bl
oo

m
do

ci
d

po
s tf

bl
oo

m
do

ci
d

po
s tf

bl
oo

m
do

ci
d

po
s tf

bl
oo

m
do

ci
d

po
s tf

bl
oo

m
do

ci
d

po
s tf

0

5

IO
 T

ra
ffi

c
(G

B
) es_no_pref

wiser
wiser_bf

Figure 10: Decomposed Traffic Analysis of Phrase

Queries The bars show the ideal traffic sizes for each engine,
assuming the storage device is byte-addressable. The sizes
were obtained by adding counters to engine code.

4.2.2 Two-Way Cost-Aware Bloom Filters

Two-way cost-aware Bloom filters only affect phrase queries
as filters are only used to avoid positions data, which is used
for phrase queries. In Figure 9, we show that WiSER without
our Bloom filters demands a similar amount of data as Elas-
ticsearch; WiSER with our Bloom filters incurs much less I/O
traffic than WiSER without them and Elasticsearch.

Figure 10 shows the read amplification by the decomposed
traffic in Elasticsearch, WiSER without Bloom filters, and
WiSER with Bloom filters. The bars labeled with data type
names show the data needed ideally, assuming the storage de-
vice is byte-addressable. First, we can see that applying filters
significantly reduce the data needed ideally which is shown
by the reduced aggregated size of all the bars. As shown in
the figure, both Elasticsearch (es) and WiSER without filters
(wiser) demand a large amount of position data; in contrast,
WiSER with our two-way cost-aware filters (wiser_bf) sig-
nificantly reduces positions needed in all workloads. Surpris-
ingly, we find that our filters also significantly reduce the
traffic from term frequencies (tf), which is used to iterate
positions (an engine needs to know the number of positions in
each document in order to iterate to the positions of the desti-
nation document). The traffic to term frequencies is reduced
because the engine no longer need to iterate many positions.

Note that the introduction of our Bloom filters only adds a
small amount of traffic to the Bloom filters (Figure 10), thanks
to our two-way cost-aware design and the bitmap-based data
layout of Bloom filters. The two-way cost-aware design al-
lows us to prune by the smaller Bloom filter between the two
Bloom filters of the two terms in the query. The bitmap-based

bitmap

naive

0 5 10
Bloom Filter Footprint (GB)

Figure 11: Bloom Filter Footprint Our bitmap-based layout
reduces footprint by 29%.

es

wiser

0 1 2 3 4 5
IO Traffic (GB)

waste
doc

Figure 12: Document Store Traffic doc indicates ideal traf-
fic size. The relative quantity between Elasticsearch and
WiSER is the same across different workloads; therefore, we
show the result of one workload here for brevity (single-term
queries with the popularity level = 10).

layout, which uses only one bit to store an empty Bloom fil-
ter, significantly compresses Bloom filters, reducing traffic.
We observe that 32% of the Bloom filters for Wikipedia are
empty, which motivates the bitmap-based layout. Figure 11
shows that using bitmap-based layout reduces the Bloom filter
footprint by 29%.
4.2.3 Adaptive Prefetching

Adaptive prefetching aims to avoid frequent wait for I/O and
reduce read amplification by prefetching only the data needed
for the current queries. As shown in Figure 7 and Figure 8,
WiSER incurs less traffic than Elasticsearch with and without
prefetching. As expected, by taking advantage of the informa-
tion embedded in the in-memory data structure (Section 3.3),
WiSER only prefetches the necessary data. Later in this sec-
tion, we show that adaptive prefetching is able to avoid wait-
ing for I/O and improve end-to-end performance.
4.2.4 Trade Disk Space for Less I/O

The process of highlighting, which is the last step of all com-
mon queries, reads documents from the document store and
produces snippets. Figure 12 show that WiSER’s highlighting
incurs significantly less I/O traffic (42%) to the document
store than Elasticsearch because in WiSER documents are
decompressed individually and are aligned, whereas Elastic-
search may have to decompress irrelevant documents and read
more I/O blocks due to misalignment. The size of WiSER’s
document store (9.5 GB) is 25% larger than that of Elastic-
search (7.6 GB); however, we argue that this space amplifica-
tion is well justified by the 42% I/O traffic reduction. WiSER
still wastes some traffic because the compressed documents
in Wikipedia are small (average: 1.44 KB) but WiSER must
read at least 4 KB (the file system block size).

4.3 End-to-end Performance

We examine various types of workloads in this section, in-
cluding match queries (single-term and multi-term), phrase
queries, and real workloads. For match queries, WiSER
achieves 2.5 times higher throughput than Elasticsearch. For

90
50
8

35
36
0

47
35

66
43
3

25
66
0

38
02

36
88
7

15
99
6

33
32 71
84

49
59

21
69

90
0

80
0

10
42

0
5

10
15
20
25
30

10 100 1000 10000 100000
Single Term Workloads (Popularity Level)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

es es_no_pref wiser

Figure 13: Single Term Matching Throughput The through-
put (QPS) is normalized to the performance of Elasticsearch
with prefetch (the default 128 KB).

0.
41.
1

6.
7

0.
81.
5

8.
4

1.
52.
2

8.
7

5.
4

12
.6

10
.4

16
.7

23
.1

16
.8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10 10
0

10
00

10
00

0

10
00

00

Workloads
(Popularity Level)

N
or

m
al

iz
ed

 M
ed

ia
n

La
te

nc
y

es
es_no_pref
wiser

0.
9

4.
6

9.
8

1.
7

6.
5

11
.1

3.
2

9.
2
12
.3 16
.8

30
.7

15
.6

46
.8

80
.3

48

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10 10
0

10
00

10
00

0

10
00

00

Workloads
(Popularity Level)

N
or

m
al

iz
ed

 9
5t

h%
 L

at
en

cy
 (m

s) es
es_no_pref
wiser

Figure 14: Single Term Matching Latency The latency (ms)
is normalized to the median latency of Elasticsearch with
default prefetching.

phrase queries, WiSER achieves 2.7 times higher through-
put than Elasticsearch. WiSER achieves consistently higher
performance than Elasticsearch for real-world queries. The
end-to-end evaluation shows that WiSER is overall more effi-
cient than Elasticsearch, thanks to our proposed techniques
and efficient implementation.

4.3.1 Match Queries

We now describe the results for the single-term and multi-
term queries. Because queries that match more than two terms
share similar characteristics with two-terms queries, we only
present the results of two-term queries here.

Figure 13 presents the single-term match QPS (Queries
Per Second) of WiSER. The default Elasticsearch is much
worse than other engines when the popular levels are low
because Elasticsearch incurs significant read amplification:
Elasticsearch reads 128 KB of data when only a much
smaller amount is needed (e.g., dozens of bytes). Elastic-
search without prefetch (es_no_pref) performs much better
than es_default, thanks to much less read amplification.

WiSER achieves higher throughput than Elasticsearch with-
out prefetch (es_no_pref) for low/medium popularity levels,
which accounts for a large portion of the postings lists; the
speedup is up to 2.5 times. When popularity level is 100,000,

35
82
8

13
81
5

19
11

27
26
1

98
17

14
60

14
05
4

95
93

18
96

22
92

17
72

11
81

61
6

60
0

60
0

0
5

10
15
20
25
30

10 100 1000 10000 100000
Two Terms Workloads (Popularity Level)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

es es_no_pref wiser

Figure 15: Two Terms Intersecting Performance Through-
put (QPS) is normalized to the performance of Elasticsearch.

the query throughput of WiSER is 14% worse than Elastic-
search with default prefetching. We found that the difference
is related to WiSER’s less efficient score calculation, which
is not directly linked to I/O.

The query throughput improvement largely comes from
the reduced I/O traffic as queries with low popularity levels
are I/O intensive and I/O is the system bottleneck. Indeed, we
see that the query throughput improvement is highly corre-
lated with the I/O reduction. For example, WiSER’s query
throughput for popularity level 10 is 2.6 times higher than
Elasticsearch’s; WiSER’s I/O traffic for the same workload is
2.9 times lower than Elasticsearch’s.

WiSER achieves better median latency and tail latency than
Elasticsearch, thanks to adaptive prefetch and cross-stage data
grouping. Figure 14 shows that WiSER achieves up to 16x and
11x lower median latency than Elasticsearch, for median and
tail latency respectively. The latency of Elasticsearch is longer
due to similar reasons for its low query throughput. Elastic-
search’s data layout incurs more I/O requests than WiSER;
the time of waiting for page faults adds to the query latency.
In contrast, WiSER’s more compact data layout and adaptive
prefetch incur minimal I/O requests, eliminating unnecessary
I/O wait.

Grouped data layout also benefits two-term match queries.
Figure 15 presents results for two-term match queries, which
are similar to single-term ones. As we have shown in Figure 8
that WiSER reduces by 17% to 51% of I/O traffic for work-
loads with popularity levels no more than 1,000. As a result,
WiSER achieves 1.5x to 2.6x higher query throughput com-
pared with Elasticsearch. When a workload includes popular
terms, WiSER’s traffic reduction becomes negligible since
data grouping has little effects.
4.3.2 Phrase Queries

In this section, we show that our two-way cost-aware Bloom
filters make fast phrase query processing possible. Specif-
ically, WiSER can achieve up to 2.7 times higher query
throughput and up to 8 times lower latency, relative to Elas-
ticsearch. To support early pruning, WiSER needs to store 9
GB of Bloom filters (the overall index size increases from 18
GB to 27 GB, a 50% increase). We believe such space ampli-
fication is reasonable because flash is an order of magnitude
cheaper than RAM.

73
37

27
86

24
26

13
61

58
33

21
24

17
56

12
17

41
09

17
37

15
17

11
80 88
9

53
1

49
0

50
0

43
7

30
4

27
3

35
3

0

2

4

6

1000 5000 10000 50000 100000
Phrase Queries Workloads (Popularity Level)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t es es_no_pref wiser wiser_bf

Figure 16: Phrase Query QPS The throughput (QPS) is nor-
malized to the performance of Elasticsearch.

4.
6
9.
7

9.
2

14
.9

7.
291
0.
21
5.
9

7.
8
13
.5

12
.31
6.
9 40
.1

61
.9

56
.5

35

81
.412
4.
51
08
.5

55
.6

0

1

2

3

4

10
00

50
00

10
00

0

50
00

0

10
00

00

Workloads
(Popularity Level)

N
or

m
al

iz
ed

 M
ed

ia
n

La
te

nc
y

es
es_no_pref
wiser
wiser_bf

22
.5

67
.1

52
.7

40 36
.344
.1

85
.3

41

36
.9

10
5.
6

89
.7

43
.5 14

0.
2

23
1.
826
2.
5

10
9.
1

30
0.
53
6838
3.
2

16
2.
2

0

1

2

3

4

10
00

50
00

10
00

0

50
00

0

10
00

00

Workloads
(Popularity Level)

N
or

m
al

iz
ed

 9
5t

h%
 L

at
en

cy

es
es_no_pref
wiser
wiser_bf

Figure 17: Phrase Queries Latency The latency (ms) is nor-
malized to the corresponding latency of Elasticsearch with
default prefetching.

WSBench produces the phrase query workloads by varying
the probability that the two terms in a phrase query become
a phrase. WSBench chooses one term from popular terms
(popularity level is larger than 10,000); it then varies the
popularity level of another term from low to high. As the
popularity increases, the two terms are more likely to co-exist
in the same document and also more likely to appear as a
phrase in the document.

Figure 16 presents the phrase queries results among work-
loads in Elasticsearch (es and es_no_pref), WiSER (wiser),
and WiSER with two-way cost-aware pruning (wiser_bf).
The QPS of the basic WiSER (wiser and Elasticsearch with
no prefetch (es_no_pref) are similar because our techniques
in the basic WiSER (cross-stage data grouping, adaptive
prefetch, trading space for less I/O) have little effect for
phrase query. WiSER with two-way cost-aware Bloom fil-
ters achieves from 1.3x to 2.7x higher query throughput than
that of basic WiSER, thanks to significantly lower read ampli-
fication brought by the filters.

Figure 17 shows that Bloom filters can significantly reduce
latency (wiser vs. wiser_bf); also WiSER reduces median
and tail latency by up to 3.2x and 8.7x respectively, com-
pared to Elasticsearch. The reduction is more evident when

19
28

17
89

17
29 50
48

50
48

50
08

19
05

19
05

18
68

93
5

77
0

76
8

0.0
0.5
1.0
1.5
2.0
2.5
3.0

overall single_term multi_terms phrases
Derived Worklads

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t wiser wiser_al wiser_al_bf

Figure 18: Throughput of Derived Workloads The through-
put (QPS) is normalized to the throughput of Elasticsearch
without Prefetching

the probability of forming a phrase is lower (low popular-
ity level) because the Bloom filters are smaller in that case.
Interestingly, Elasticsearch with OS prefetch (es) achieves
the lowest latency when the probability of forming phrases is
higher. The latency is lower because the OS prefetches 128
KB of positions data and avoids waiting for many page faults,
although the large prefetch increases read amplification. In
contrast, Elasticsearch without prefetch (es_no_pref) and
WiSER do not prefetch; thus they may have to frequently stop
query processing to wait for data (WiSER’s adaptive prefetch
does not prefetch position data due to fragments of unneces-
sary data.). However, the reduction of latency comes at a cost:
although the latency of individual queries is lower, the query
throughput is also lower due to the read amplification caused
by prefetch (Figure 16).

Interestingly, we find our Bloom filters also speed up the
computation of phrase queries. WiSER checks if a phrase
exists by Bloom filters, which is essentially O(1) hashing. In
the common case that the Bloom filter is empty, WiSER can
even check faster because an empty Bloom filter is marked
as 0 in the bitmap and we only need to check this bit. As a
result, in addition to avoiding reading positions, Bloom filters
also allow us to avoid intersecting the positions.

4.3.3 Real Workload

WSBench also includes realistic workloads. We compare Elas-
ticsearch and WiSER’s query throughput on the real query
log; we also split the query log into different types of query
workloads to examine the performance closely.

WiSER performs significantly better than Elasticsearch as
shown in Figure 18. For example, for single-term queries,
WiSER achieves as high as 2.2x throughput compared to Elas-
ticsearch. We observe that around 60% queries in the real
workload are of popularity less than 10,000, which benefits
from our cross-stage data grouping. For multi-term match
queries, grouped data layout also helps to increase throughput
by more than 60%. For phrase queries extracted from the real-
istic workload, WiSER with Bloom filters increases through-
put by more than 60% compared to Elasticsearch. Note that
WiSER cannot achieve 2.7x higher throughout as shown in
our synthetic phrase queries because, in this real workload,
many phrases are the names of people, brand, or events and

so on. Among these names, many terms are unpopular terms
that are not I/O intensive, where pruning has limited effect.
Finally, the overall performance of WiSER is similar to that of
real single-term query log because single-term queries occupy
half of the overall query log.

4.4 Scaling with Memory

Our previous experiments showed that WiSER performs sig-
nificantly better than Elasticsearch for a single small memory
size of 512 MB. This small memory size was chosen to stress
the I/O performance of each search engine. For our final ex-
periments, we show that we have rebuilt a search engine that
can rely less on expensive memory and more on cheaper flash.
Over a broader range of memory sizes, WiSER’s techniques
continue to improve I/O and end-to-end performance. In ad-
dition, it shows that WiSER works well with a low memory

size / working set size ratio, which may allow WiSER
to scale to large dataset without increasing much memory.

Figure 19 compares the query throughput, 50-th% query
latency, bandwidth, and amount of traffic for Elasticsearch
(es), WiSER with only cross-stage grouping (wiser_base),
and fully-optimized WiSER (wiser_final). For our two end-
to-end metrics, both versions of WiSER have much higher
query throughput and much lower query latency than Elastic-
search across all workloads and memory sizes. As expected,
query throughput is higher, and latency is lower, when more
memory is available. For workload twoterm, single.high,
and single.low, our highly efficient implementation allows
WiSER with limited memory (e.g., 128 MB) to perform bet-
ter than Elasticsearch with memory that can hold the entire
working set (e.g., 8 GB).

The significant difference in end-to-end performance be-
tween WiSER and Elasticsearch for workload twoterm,
single.high, and single.low at large memory sizes (Fig-
ure 19a and Figure 19b) is attributed to the network issue of
Elasticsearch (we have carefully setup tests in Elasticsearch
and compared it with similar applications to confirm the is-
sue); with this memory size, I/O is not a bottleneck and our
techniques should not make big differences. For the same
workloads, we can identify the effects of our techniques in
Figure 19d as we reduce the memory sizes, where I/O oper-
ations increase due to reduced cache. We can see that when
the memory size is big, the traffic sizes between Elasticsearch
and WiSER are similar, but WiSER’s traffic sizes increase
much slower than Elasticsearch’s as we reduce memory sizes,
thanks to data grouping, adaptive prefetching and trading disk
space for I/O. Note that wiser_final has more read traf-
fic than wiser_base because adaptive prefetch is turned on,
which increases the read bandwidth (Figure 19c) and helps
with end-to-end performance.

The effect of two-way cost-aware Bloom filters is evident
in Figure 19a by comparing wiser_base (no Bloom filters)
and wiser_final. The improvement is up to 1.4x (memory
size = 256 MB, note that the improvement here is less than

phrase
tw
oterm

single.high
single.low

12
8M
B

25
6M
B

51
2M
B

1G
B

2G
B

4G
B

8G
B

0
200
400
600

0
4,000
8,000
12,000

0
1,000
2,000

0
20,000
40,000
60,000

Q
P
S

es

wiser_base

wiser_final

(a)

phrase
tw

oterm
single.high

single.low

12
8M

B

25
6M

B

51
2M

B

1G
B

2G
B

4G
B

8G
B

0
250
500
750

1,000
1,250

0
20
40
60

0
30
60
90

0
5

10
15
20
2550

th
%

 Q
ue

ry
 L

at
en

cy
 (m

s)

(b)

phrase
tw

oterm
single.high

single.low

12
8M

B

25
6M

B

51
2M

B

1G
B

2G
B

4G
B

8G
B

0
200
400

0
200
400
600

0
100
200
300
400

0
200
400
600R

ea
d

B
an

dw
id

th
 (M

B
/s

)

(c)

phrase
tw

oterm
single.high

single.low

12
8M

B

25
6M

B

51
2M

B

1G
B

2G
B

4G
B

8G
B

0
10
20
30
40

0
5

10
15

0
10
20

0
20
40

R
ea

d
Tr

af
fic

 (G
B

)

(d)
Figure 19: Performance over a range of memory sizes. Elasticsearch fails to run at some low memory sizes and thus some of
its data points are missing. Elasticsearch’s default prefetch is turned off here because we have found that it hurts performance.
Note that we place smaller memory sizes on the right side of the X axes to emphasize the effect of reducing memory sizes.

the max in Figure 16 because we have queries with mixed
popularity levels here). Figure 19d shows the wiser_final,
the engine with two-way cost-aware Bloom filters, incurs
much less I/O than wiser_base and es when memory is
reduced; the reduction is also up to 1.4x (wiser_base vs
wiser_final, memory size = 256 MB). As we can see, when
I/O is the bottleneck, the reduction of traffic correlates well
with improvement of end-to-end performance.

5 Related Work

Much work has gone into building flash-optimized key-value
stores that utilize high-performance SSDs [23, 34, 38, 42].
For example, Wisckey [38] separates keys and values to re-
duce I/O amplification on SSDs. FAWN-KV [23] is a power-
efficient key-value store with wimpy CPUs, small RAM and
some flash. Facebook [34] proposes yet another SSD-based
key-value store to reduce the consumption of DRAM by small
block sizes, aligning blocks and adaptive polling.

Graph applications are also often optimized for SSDs.
FlashGraph [59] speeds up graph processing by storing ver-
tices in memory and edges in SSDs. MOSAIC [43] uses
locality-optimizing, space-efficient graph representation on
a single machine with NVMe SSDs. Many other work also
facilitate high performance SSDs [48, 49, 60].

Search engines have different data manipulation and data
structures from regular key-value stores and graphs. Among
the limited literature, Wang et al. [55] and Tong et al. [52] stud-
ied studied search engine cache policies for SSDs; Rui et al.
proposes to only cache metadata of snippets in memory and
leave the data on SSDs because the I/O cost is reduced [58]. In
this paper, we systematically redesign and implement many
key data structures and processing algorithms to optimize
search engines for SSDs. Such study exposes new opportuni-
ties and insights; for example, although using Bloom filters
is straightforward in a key-value store, using them in search

engines requires understanding the search engine pipeline,
which leads us to the novel two-way cost-aware Bloom filter.

Many proposed techniques for search engines seek to re-
duce the overhead/cost of query processing [25–28,32,40,51].
These techniques may be adopted in WiSER to further im-
prove its performance.

6 Conclusions

We have built a new search engine, WiSER, that efficiently
utilizes high-performance SSDs with smaller amounts of sys-
tem main memory. WiSER employs multiple techniques, in-
cluding optimized data layout, a novel Bloom filter, adaptive
prefetching, and space-time trade-offs. While some of the
techniques could increase space usage, these techniques col-
lectively reduce read amplification by up to 3x, increase query
throughput by up to 2.7x, and reduce latency by 16x when
compared to the state-of-the-art Elasticsearch. We believe
that the design principle behind WiSER, "read as needed",
can be applied to optimize a broad range of data-intensive
applications on high performance storage devices.

Acknowledgments

We thank Suparna Bhattacharya (our shepherd), the anony-
mous reviewers and the members of ADSL for their valuable
input. This material was supported by funding from NSF
CNS-1838733, CNS-1763810 and Microsoft Gray Systems
Laboratory. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and may not reflect the views of NSF or any other institutions.

References

[1] Apache Lucene. https://lucene.apache.org/.

[2] Apache Lucene Index File Formats. https://lucene.
apache.org/core/6_0_0/index.html/.

[3] Apache Solr. lucene.apache.org/solr/.

[4] Breakthrough Nonvolatile Memory Technol-
ogy. https://www.micron.com/products/

advanced-solutions/3d-xpoint-technology.

[5] CloudLab. http://www.cloudlab.us.

[6] DB-Engines Ranking. https://db-engines.com/

en/ranking/.

[7] Elasticsearch. https://www.elastic.co/.

[8] Elasticsearch Adhoc Benchmark. https:

//elasticsearch-benchmarks.elastic.co/

no-omit/pmc/index.html.

[9] Full Text Benchmark With Academic Papers from PMC.
https://github.com/elastic/rally-tracks/

blob/master/pmc/.

[10] Improving Readahead. https://lwn.net/Articles/
372384/.

[11] LevelDB. https://github.com/google/leveldb.

[12] Libbloom. https://github.com/jvirkki/

libbloom.

[13] Lucene Memory Index. https://lucene.apache.

org/core/4_0_0/memory/org/apache/lucene/

index/memory/MemoryIndex.html.

[14] Micron NAND Flash Datasheets. https://www.

micron.com/products/nand-flash.

[15] RediSearch. redisearch.io/.

[16] RocksDB. https://rocksdb.org.

[17] Samsung 970 EVO SSD. https://www.amazon.

com/Samsung-970-EVO-1TB-MZ-V7E1T0BW/dp/

B07BN217QG/.

[18] Samsung K9XXG08UXA Flash Datasheet. http://

www.samsung.com/semiconductor/.

[19] Samsung Semiconductor. http://www.samsung.com/
semiconductor/.

[20] Toshiba Semiconductor. https://toshiba.

semicon-storage.com/ap-en/top.html.

[21] WikiBench. http://www.wikibench.eu/.

[22] Wikimedia Moving to Elasticsearch. https:

//blog.wikimedia.org/2014/01/06/

wikimedia-moving-to-elasticsearch/.

[23] David Andersen, Jason Franklin, Michael Kaminsky,
Amar Phanishayee, Lawrence Tan, and Vijay Vasudevan.
FAWN: A Fast Array of Wimpy Nodes. In Proceedings
of the 22nd ACM Symposium on Operating Systems
Principles (SOSP ’09), pages 1–14, Big Sky, Montana,
October 2009.

[24] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books, 1.00 edition, August 2018.

[25] Nima Asadi and Jimmy Lin. Fast Candidate Genera-
tion for Two-phase Document Ranking: Postings List
Intersection with Bloom Filters. In Proceedings of the
21st ACM international conference on Information and
knowledge management, pages 2419–2422, Maui, HI,
2012. ACM.

[26] Nima Asadi and Jimmy Lin. Effectiveness/efficiency
Tradeoffs for Candidate Generation in Multi-stage Re-
trieval Architectures. In Proceedings of the 36th in-
ternational ACM SIGIR conference on Research and
development in information retrieval, pages 997–1000,
Dublin, Ireland, 2013. ACM.

[27] Nima Asadi and Jimmy Lin. Fast Candidate Gener-
ation for Real-time Tweet Search with Bloom Filter
Chains. ACM Transactions on Information Systems
(TOIS), 31(3):13, 2013.

[28] Aruna Balasubramanian, Niranjan Balasubramanian,
Samuel J Huston, Donald Metzler, and David J Wether-
all. FindAll: a Local Search engine for Mobile Phones.
In Proceedings of the 8th international conference on
Emerging networking experiments and technologies,
pages 277–288. ACM, 2012.

[29] Matias Bjørling, Javier González, and Philippe Bonnet.
LightNVM: The Linux Open-Channel SSD Subsystem.
In Proceedings of the 15th USENIX Conference on File
and Storage Technologies (FAST ’17), pages 359–374,
Santa Clara, California, February 2017.

[30] Feng Chen, David A. Koufaty, and Xiaodong Zhang.
Understanding Intrinsic Characteristics and System Im-
plications of Flash Memory Based Solid State Drives. In
Proceedings of the 2009 Joint International Conference
on Measurement and Modeling of Computer Systems
(SIGMETRICS/Performance ’09), pages 181–192, Seat-
tle, Washington, June 2009.

[31] G. G. Chowdhury. Introduction to Modern Information
Retrieval. Neal-Schuman, 2003.

[32] Austin T Clements, Dan RK Ports, and David R Karger.
Arpeggio: Metadata Searching and Content Sharing with
Chord. In International Workshop on Peer-To-Peer Sys-
tems, pages 58–68. Springer, 2005.

[33] Ludovic Denoyer and Patrick Gallinari. The Wikipedia
XML Corpus. In International Workshop of the Initia-
tive for the Evaluation of XML Retrieval, pages 12–19.
Springer, 2006.

[34] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman,
Jens Axboe, Siying Dong, Kim Hazelwood, Chris Pe-
tersen, Asaf Cidon, and Sachin Katti. Reducing DRAM
Footprint with NVM in Facebook. In Proceedings of
the EuroSys Conference (EuroSys ’18), page 42, Porto,
Portugal, April 2018. ACM.

[35] Evgeniy Gabrilovich and Shaul Markovitch. Computing
Semantic Relatedness Using Wikipedia-based Explicit
Semantic Analysis. In IJcAI, volume 7, pages 1606–
1611, 2007.

[36] Jun He, Sudarsun Kannan, Andrea C Arpaci-Dusseau,
and Remzi H Arpaci-Dusseau. The Unwritten Contract
of Solid State Drives. In Proceedings of the EuroSys
Conference (EuroSys ’17), pages 127–144, Belgrade
Serbia, April 2017. ACM.

[37] Hyojun Kim, Nitin Agrawal, and Cristian Ungureanu.
Revisiting Storage for Smartphones. ACM Transactions
on Storage, 8(4):14, 2012.

[38] Lanyue Lu and Thanumalayan Sankaranarayana Pillai
and Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-
Dusseau. WiscKey: Separating Keys from Values in
SSD-conscious Storage. In Proceedings of the 14th
USENIX Conference on File and Storage Technologies
(FAST ’16), pages 133–148, Santa Clara, California,
February 2016.

[39] Changman Lee, Dongho Sim, Joo-Young Hwang, and
Sangyeun Cho. F2FS: A New File System for Flash
Storage. In Proceedings of the 13th USENIX Conference
on File and Storage Technologies (FAST ’15), pages 273–
286, Santa Clara, California, February 2015.

[40] Jinyang Li, Boon Thau Loo, Joseph M Hellerstein,
M Frans Kaashoek, David R Karger, and Robert Mor-
ris. On the Feasibility of Peer-to-peer Web Indexing
and Search. In International Workshop on Peer-to-Peer
Systems, pages 207–215. Springer, 2003.

[41] Wentian Li. Random Texts Exhibit Zipf’s-law-like Word
Frequency Distribution. IEEE Transactions on informa-
tion theory, 38(6):1842–1845, 1992.

[42] Hyeontaek Lim, Bin Fan, David G Andersen, and
Michael Kaminsky. SILT: A Memory-efficient, High-
performance Key-value Store. In Proceedings of the
23rd ACM Symposium on Operating Systems Principles
(SOSP ’11), Cascais, Portugal, October 2011.

[43] Steffen Maass, Changwoo Min, Sanidhya Kashyap,
Woonhak Kang, Mohan Kumar, and Taesoo Kim. Mo-
saic: Processing a Trillion-edge Graph on a Single Ma-
chine. In Proceedings of the EuroSys Conference (Eu-
roSys ’17), pages 527–543, Belgrade Serbia, April 2017.
ACM.

[44] David Milne and Ian H Witten. Learning to Link with
Wikipedia. In Proceedings of the 17th ACM conference
on Information and knowledge management, pages 509–
518. ACM, 2008.

[45] Changwoo Min, Kangnyeon Kim, Hyunjin Cho, Sang-
Won Lee, and Young Ik Eom. SFS: Random Write
Considered Harmful in Solid State Drives. In Proceed-
ings of the 10th USENIX Symposium on File and Storage
Technologies (FAST ’12), San Jose, California, February
2012.

[46] James K. Mullin. Optimal Semijoins for Distributed
Database Systems. IEEE Transactions on Software
Engineering, (5):558–560, 1990.

[47] Alexander Pak and Patrick Paroubek. Twitter as a Cor-
pus for Sentiment Analysis and Opinion Mining. In
LREc, volume 10, pages 1320–1326, 2010.

[48] Amitabha Roy, Laurent Bindschaedler, Jasmina Malice-
vic, and Willy Zwaenepoel. Chaos: Scale-out Graph
Processing from Secondary Storage. In Proceedings of
the 25th ACM Symposium on Operating Systems Princi-
ples (SOSP ’15), Monterey, California, October 2015.

[49] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel.
X-Stream: Edge-centric Graph Processing Using
Streaming Partitions. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP
’13), pages 472–488, Nemacolin Woodlands Resort,
Farmington, Pennsylvania, October 2013.

[50] Bin Tan and Fuchun Peng. Unsupervised Query Seg-
mentation Using Generative Language Models and
Wikipedia. In Proceedings of the 17th international
conference on World Wide Web, pages 347–356. ACM,
2008.

[51] Nicola Tonellotto, Craig Macdonald, and Iadh Ounis.
Efficient and Effective Retrieval Using Selective Prun-
ing. In Proceedings of the sixth ACM international con-
ference on Web search and data mining, pages 63–72.
ACM, 2013.

[52] Jiancong Tong, Gang Wang, and Xiaoguang Liu.
Latency-aware Strategy for Static List Caching in Flash-
based Web Search Engines. In Proceedings of the 22nd
ACM international conference on Information & Knowl-
edge Management, pages 1209–1212. ACM, 2013.

[53] Max Völkel, Markus Krötzsch, Denny Vrandecic, Heiko
Haller, and Rudi Studer. Semantic Wikipedia. In Pro-
ceedings of the 15th international conference on World
Wide Web, pages 585–594, 2006.

[54] Jakob Voß. Measuring Wikipedia. Proceedings of ISSI
2005: 10th International Conference of the International
Society for Scientometrics and Informetrics, 1, 01 2005.

[55] Jianguo Wang, Eric Lo, Man Lung Yiu, Jiancong Tong,
Gang Wang, and Xiaoguang Liu. The Impact of Solid
State Drive on Search Engine Cache Management. In
Proceedings of the 36th international ACM SIGIR con-
ference on Research and development in information
retrieval, pages 693–702. ACM, 2013.

[56] Fei Wu and Daniel S Weld. Autonomously Semantify-
ing Wikipedia. In Proceedings of the sixteenth ACM
conference on Conference on information and knowl-
edge management, pages 41–50, 2007.

[57] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-
Dusseau. Towards an Unwritten Contract of Intel Op-
tane SSD. In 11th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage ’19), Renton,
WA, July 2019.

[58] Rui Zhang, Pengyu Sun, Jiancong Tong, Rebecca Jane
Stones, Gang Wang, and Xiaoguang Liu. Compact Snip-

pet Caching for Flash-based Search Engines. In Proceed-
ings of the 38th International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 1015–1018. ACM, 2015.

[59] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vo-
gelstein, Carey E Priebe, and Alexander S Szalay. Flash-
graph: Processing billion-node graphs on an array of
commodity ssds. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST
’15), pages 45–58, Santa Clara, California, February
2015.

[60] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Grid-
graph: Large-scale Graph Processing on a Single ma-
chine Using 2-Level Hierarchical Partitioning. In Pro-
ceedings of the USENIX Annual Technical Conference
(USENIX ’15), pages 375–386, Santa Clara, California,

July 2015.

