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Abstract

As smart home environments get more complex and denser,
they are becoming harder to manage. We present our ongo-
ing work on the design and implementation of “SafeHome”,
a system for management and coordination inside a smart
home. SafeHome offers users and programmers the flexibility
to specify safety properties in a declarative way and to spec-
ify routines of commands in an imperative way. SafeHome
includes mechanisms which ensure that under concurrent
routines and device failures, the smart home behavior is con-
sistent (e.g., serializable) and safety properties are always
guaranteed. SafeHome is intended to run on edge machines
co-located with the smart home. Our design space opens the
opportunity to borrow and adapt rich ideas and mechanisms
from related areas such as databases and compilers.

1 Introduction

The smart home market is growing disruptively, and is pre-
dicted to balloon from the current $27B market size to $150B
by 2024 [40,41]. Simultaneously, both the density and diver-
sity of IoT (Internet of Things) devices inside a smart home
are increasing. An average home will contain over 50 smart
devices by 2023 [15]. Roughly 1,500 vendors sell IoT de-
vices [30], from giants (Google, Amazon) to startups [35].
Smart devices cover all aspects of the home, from safety (fire
alarms, sensors, cameras), to doors+windows (e.g., automated
shades), home-+kitchen gadgets, HVAC+thermostats, lighting,
garden sprinkler systems, home security, and others.

In today’s smart homes, devices are controlled by com-
mands. A command is a user-initiated or programmatic-
triggered action that changes the state of an individual device,
e.g., turn on kitchen light, open bedroom window, increase
temperature to 73°F. Commands are usually issued through
smart home controllers, e.g., Alexa, Google Home, Siri, Smart-
Things, etc. [2,5, 16,37]. To add convenience to the home
automation, major smart home controllers extend the interac-
tion with smart devices beyond merely single commands, to
a sequence of commands, or so-called routines [3,43]. Rou-
tines are needed for either convenience (e.g., turn on group
of bedroom lights, switch on entertainment system), or for
correct operation (e.g., run garden sprinklers in four house
corners sequentially, 20 minutes each). Table | defines these
common smart home terms and other important terms.

Today’s commercial smart home systems, such as Alexa
or Google Home, are best-effort systems. They have scant
support for correctness, safety, or failures. Further, they have

a strong cloud dependency, which means that under discon-
nection or cloud outage, the entire home system becomes
unprotected and unavailable [31]. As a result, a major chal-
lenge with smart homes has become the unsafe and unreliable
states they may go into, as seen by many user-reported in-
cidents [25]. We observe that these unsafe states commonly
arise from one or more of the following three main reasons:
i) concurrent commands and routines, ii) failures and discon-
nections, and iii) incorrect programming of routines.

First, commands and routines, if executed in an ad-hoc
fashion, may conflict with other concurrent commands or
routines, thus, create an inconsistent state that affects the
human users. For example, consider a “leave home” routine
which turns off all devices including the stove and the fan.
Alongside, consider a case where it is required for the kitchen
exhaust fan to be on when cooking food, as the smoke and
vapor might kill the pet birds [10,45]. If a person leaves home
(turning off all devices) and simultaneously their spouse on
their way home initiates a “cook food” routine from their
phone (turning on the stove and exhaust fan), a possible end-
result would be the stove on and the exhaust fan off, as there
is no proper isolation among routines.

Second, the smart home is an unreliable environment with a
collection of commodity devices and high chances of failures.
Devices can fail at any time and the recovery time might be
unpredictable [25], causing unsafe situations. For example,
consider the “cook food” routine turning on the stove and
exhaust fan. For safety, it is expected that if the stove is on,
the fan must also be on. However, if the exhaust fan fails to
turn on or fails afterward, it will violate the safety expectation.

Finally, a smart home includes a variety of devices support-
ing complex commands. Even without failures and conflicts,
designing bug-free routines that do not create unsafe out-
comes is not easy. A “leave home” routine programmed to
lock the front door but forgetting to list a command to switch
on a newly installed security alarm, is a violation of safety.
Such situations can be complicated further by myriad pos-
sible interactions among routines (as shown by the earlier
examples).

At the same time, users of smart homes are general public
with little to no programming skills. Even for the tech-savvy
user, reasoning about concurrency and failures is non-trivial
(as every database developer knows!). It is inconceivable that
future smart homes will continue to rely solely on human
users to arbitrate such complex interactions.



Table 1: Terminology used in smart homes.

Term Definition

device a smart home device with a set of potential states

command a user/program triggered instruction that changes
the state of an individual device

routine a sequence of commands

safety- guaranteed device behaviors that user expects

properties from the smart home.

What is needed is an integrated approach that abstracts
away the complex parts of smart home management while
continuing to offer users programmability and flexibility in
defining routines and safety clauses.

A number of industrial and research systems have each ad-
dressed parts of the underlying complexities in smart homes.
Some systems [14,36] use priority-based approaches to ad-
dress concurrent device access. Others [6] propose mecha-
nisms to handle failures. A few systems [7,28,33] formally
verify procedures. However, none address the entire picture.

We introduce SafeHome, an autonomous system for a safe
and reliable smart home. SafeHome supports the full flexi-
bility of being able to imperatively define complex routines
(containing sequences of commands), while also guaranteeing
a set of desired properties, called “safety properties”, speci-
fied by the user in a declarative manner. Internally, SafeHome
includes components for catching and responding to concur-
rency conflicts, safety violations, and failures. Each compo-
nent is modular and transparent, i.e., it can easily be swapped
with another state-of-the-art mechanism without any change
in the user’s routines. Finally, SafeHome encapsulates an
edge-first philosophy to its design, assuring safety properties
even under cloud disconnection. Our edge-based approach
means that device firmware does not need to be changed, and
that SafeHome interacts directly with APIs and commands
supported by devices.

A few salient features of our approach are as follows. First,
borrowing from the well-known and widely-tested notion of
ACID properties in transactional databases [19], SafeHome
proposes a new thought paradigm tailored to the smart home,
which we call SafeHome-ASID (Atomicity, Safety, Isolation,
Durability). Second, borrowing from compilers, SafeHome’s
imperative routines undergo both static checking as well as dy-
namic checking, w.r.t. the declared safety properties. Finally
in spite of the analogues, a smart home is different from a
database, e.g., intermediate states of devices are seen by users
in the former, and this entails subtle design considerations.

2 Issues in Today’s Smart Homes

Human users have certain safety expectations from their
smart home environments. These safety expectations may
be life-critical (e.g., avoiding fire, power overload) or highly-
desirable (e.g., reducing energy waste). Yet, today’s systems
are widely known [25] to repeatedly violate safety and relia-
bility. We discuss the main reasons behind this status.

Table 2: Unsafe States and Safety Properties to catch them.
Undesirable State Desirable Safety Property

Routine R1 turns on both stove | if (stove==0N) then

and exhaust-fan, but then Rou- | (exhaust—-fan==0N)

tine R2 turns off exhaust-fan.
Routine R1 opens a win- | if (air-cond==0N) then
dow, Routine R2 turns on air- | (windows==CLOSED)

conditioner.
Subsequent commands switch | if (dishwasher==on) then ATMOST (1)
on multiple power-hungry de- | (washingmachine==0N, dryer==0N)

vices, causing power overload.
Turning on all sprinklers | ATMOST (1)

around the house leads to | (Northeast-sprinkler=ON,
insufficient water pressure. Northwest-sprinkler=0N,
Southeast-sprinkler=0N)

User accidentally left the | if (garage-door.OPEN > ‘n’ hours)
garage-door open overnight. then (garage-door==CLOSE)

A. Poor Programming of Routines: In its most general-
ized form, an assistant or user of a smart home executes a
mini-program of commands. We call such mini-programs as
routines—defined, in simple terms, as a sequence of commands
(Table 1). A routine may be either user-initiated or trigger-
based (time or event trigger), and either short (e.g., turn off
all lights) or long (e.g., sprinkler system).

As smart homes grow in complexity, designing routines
to control the home also becomes an increasingly compli-
cated and error-prone activity. A wrong sequence of com-
mands/routines, poorly designed routines, or ill-maintained
routines (especially when adding or removing devices, which
is typical in a smart home) can put the smart home in an unsafe
state. Table 2 (first column) shows several such examples.

This shows the need for: a) users to have a way in which to

specify safety properties, as well as b) for underlying mecha-
nisms in a smart home to ensure safety in spite of concurrent
execution. Table 2 (second column) also shows the corre-
sponding desirable safety guarantees for each example.
B. Concurrency Conflicts: Smart home systems have been
designed with the assumption of “running one command at a
time”. However, a smart home can receive commands concur-
rently from many sources: multiple users, multiple assistants
in different rooms, and pre-scheduled or sensor-triggered com-
mands. Executing concurrent and overlapping routines might
leave the smart home in an inconsistent state, i.e., a state with
a mixture of the effect of two (or more) concurrent routines.
This is not addressed by today’s smart home systems.

We measure the likelihood of such inconsistent states for
a common setup. We run two concurrent routines on seven
TP-Link HS105 [46] smart plugs. Routine R1 turns on all
lights sequentially, when routine R2 turns off all lights after a
minuscule interval. There are two desirable outcomes from
this concurrent execution—all lights are off, or all lights are
on. However, Figure | shows that as the number of devices
touched by each routine rises, the probability of mixture result
(some lights on with others off) grows quickly. Further, if R2
starts sooner after R1 (different lines in the plot), the chances
of inconsistency become higher.
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Figure 1: Concurrency results in conflicts in a real smart home
deployment. Two routines R1 (turn on all lights) and R2 (turn off
all lights) executed on a varying number of devices (x axis), and with
routine R2 starting a little after R1 (different lines). Y axis shows
[fraction of end states that are not serialized (all off, or all on).

This shows the need for mechanisms in the smart home
which can ensure that routines execute atomically and in an
isolated way from each other.

C. Unpredictable Failures: Like other commodity machines,
smart [oT devices can also fail unpredictably. Today, there is
little failure support available in a smart home environment,
with only a “best-effort” philosophy being prevalent [31].

Failures can negatively impact both: a) execution of rou-
tines (e.g., not turning on all lights when a light is failed), and
b) safety property violations (e.g., exhaust fan failing while
the stove is still on).

This shows the need for mechanisms that detect device fail-
ures, and policy and mechanisms that react to such failures.

D. Strong Cloud Dependency: The popular home automa-
tion systems including Google Home [16], Alexa [2], Smart-
Things [37] rely heavily on their own cloud infrastruc-
ture [48,49]. This reliance can break during routine network
outages [12,51], or due to (lower but non-negligible proba-
bility) cloud outages, with examples abounding from Google
Home [17], Alexa [1], and others [18].

In all these cases, failures disrupt the home-automation
system’s availability [4, 20, 38]. Even if there were a safety
mechanism in place in these home-automation systems, this
mechanism (in the cloud) would be unavailable to the smart
home devices under disconnections. If a critical home device
(e.g., fire-alarm) fails during this period, it will go undetected,
even though the smart home has plenty of compute power
available onsite including the smart home controller.

This shows the need to house much of the logic for concur-
rency and safety in the edge, in (or nearby) the smart home.

3 SafeHome’s Design: Salient Aspects

The goal of our system, named SafeHome, is to achieve the
vision of a reliable and safe home at all times, despite the chal-
lenges arising from concurrency, safety concerns, failures, and
complex routines. SafeHome materializes the reliable and safe
home vision using an edge-based architecture. This section
describes key abstractions and mechanisms in SafeHome.

3.1 A New Abstraction: SafeHome-ASID

SafeHome aims to abstract away the burden of considering
concurrency, failures, and safety away from the human user.
Towards this, SafeHome introduces a new thought paradigm
called SafeHome-ASID.

ASID stands for SafeHome versions of Atomicity, Safety,
Isolation and Durability, and we define these terms below.
This is inspired by the well-known and well-tested ACID
properties that transactional databases routinely offer. The
analogy is apt because: a) in a smart home, commands change
the state of devices, and a routine consists of a sequence of
commands (Table 1), while b) in a transactional database, op-
erations change the value of server objects, and a transaction
consists (simply speaking) of a sequence of operations.

However, in spite of the analogy, a smart home is different
from a database in many ways. As a result, we define new
SafeHome-ASID properties for smart homes as follows.

e A: SafeHome-Atomicity. Execution of a routine is
atomic and exactly-once. When a routine finishes, either:
a) all its commands have been executed successfully, or
b) none of its commands have had an effect on the smart
home. Atomicity also implies that SafeHome will have to
reason about what it means to abort a routine, and undo
its operations.

o S: SafeHome-Safety. Safety properties are specifiable in
a clear, declarative fashion, and concurrent routine execu-
tion always satisfies all safety properties across the smart
home. We expand in the next subsection. Note that safety
properties often span multiple devices (Table 2).

¢ I: SafeHome-Isolation. Concurrent routines are isolated
from interfering with each other at devices. If they in-
terfere, SafeHome will have to ensure the execution is
serially equivalent, i.e., the end state of the smart home is
equivalent to executing one routine at a time.

e D: SafeHome-Durability. A routine that completes suc-
cessfully cannot be undone (except by another subsequent
routine).

Satisfying these properties in SafeHome requires special
care in design. Naively using mechanisms from the DB trans-
actions world could make the home too restrictive—any device
failure reverts the whole routine which is not always neces-
sary, especially given that devices are not inherently highly-
available. For example, a failed light should not prevent a
“leave home” routine that locks the doors and turns off lights.

Hence, in SafeHome, we allow a subset of a routine’s com-
mands to be tagged as critical (by the programmer/user), with
remaining as optional not requiring for successful routine
completion (e.g., a “leave home” routine must lock the doors
and close windows, and attempt to turn off lights).

3.2 Safety Properties

Specification: While safety properties can be specified in a
myriad number of ways [28, 54], we find that a large majority



of clauses can be specified using the following grammar.
A:- if A then A else A

A:- DevicelD.StateID ==<>!= foo

A:- ALL(A), ANY(A), !'A, ATLEAST (k) (A), ATMOST (k) (A),

A AND A, A OR A

In SafeHome, a user may define a safety property
either because it is critical to human safety, e.g., if
(stove==0ON) then (fire-alarm==HEALTHY), or for user
convenience, e.g., if (GarageDoor.State==0PEN) then
(GarageLight.State==0N). Further examples are shown
in Table 2. We envision that some safety properties will come
“baked” into the smart home, while others can be programmed
and changed by the user. All safety properties admitted into
SafeHome are stored in the edge, and continually checked.
Safety Checking of Routines: SafeHome performs safety
checking at multiple levels:

1. Static Safety Checking: Does a routine by itself violate
safety? This is a compile-time checker. (e.g., a routine that
turns on the air conditioner and opens the window).

2. Dynamic Safety Checking: Does a routine violate safety,
given the current state of the home (device states, failures, and
other currently-executing routines)? This is a runtime checker.
This checking can be done either eagerly (when the routine
is started, check all its commands for safety), and/or lazily
(for each individual command, right before it is initiated).
While lazy checking is mandatory, eager checking can catch
violations early and prevent wasted work. Both types can be
used together.

Unexpected states such as failures, conflict resolution
(e.g., aborting or reverting mid-routine), externally initiated
changes (e.g., manually turning a device off), and certain se-
quence of routines, can lead a smart home to unsafe states.
Dynamic checking identifies these situations.

3.3 Failure-Tolerance

Failures of devices need to be detected by using an appropri-
ate failure detector protocol running across the devices and
the edge. Failure detection, alongside the stateful nature of
devices, is crucial in ensuring the durability property (D). We
are currently exploring both fully-distributed and edge-based
failure detectors. Both of these classes [13,27,44] rely on
timeout mechanisms (heartbeats or pings).

SafeHome’s response to a failure may affect other devices
in a home (to satisfy safety properties), as well as currently-
executing routines (for atomicity, isolation, and safety). When
a safety property is violated, SafeHome offers the guarantee
of a tolerance window within which all safety properties will
again be satisfied. The tolerance window may be set either
by the user (e.g., exhaust fan violations must be resolved
within 5 seconds) or physical requirements (e.g., humidity
sensor reboots within 3 seconds, so SafeHome waits that long
before shutting down humidifier). Importantly, the tolerance
window can be used to set the timeout set in SafeHome’s
failure detector protocol.

4 Important Challenges in SafeHome

Concurrency Control-Pessimistic vs. Optimistic: Concur-
rency control techniques fall along a spectrum. Near the pes-
simistic end are techniques that: i) disallow routines which
touch overlapping devices, ii) disallow routines which touch
overlapping safety clauses, iii) have routines “lock” devices
(at the edge) before sending commands. Near the optimistic
end are approaches such as “last-writer-wins” for device com-
mands, with serializability checks at routine completion. This
spectrum is a user convenience tradeoff between responsive-
ness vs. aborts.We plan to start with pessimistic approaches,
and progressively relax them while keeping aborts low. It
is an open question which side of this spectrum is the best
matched for tomorrow’s smart home workloads.

Atomicity, Aborts, and Undoing: If a routine needs to be
aborted (e.g., a command failed), naively aborting by sequen-
tially reversing its executed operations may cause a disruptive
human experience, e.g., switching on and off lights repeatedly.
The problem is worsened by multiple routines aborting. This
challenge is unique to smart homes—in the database transac-
tion world intermediate states during an undo are invisible
to users. When a set of routines rolls back in SafeHome, no
device status must be changed more than once. This requires
mechanisms for consolidated aborting, wherein groups of
routines are aborted together, and their net result is effected
on each device at most once. While aborting routines, we can
only undo the states of affected devices (e.g., set washing ma-
chine to off), but actions are impossible to undo (e.g., cannot
undo the elapsed wash).

We also note that SafeHome’s Atomicity+Durability only
requires commands to complete successfully when executed—
this is easier to tackle than databases wherein object values
are saved at commit time. If the user desires device states to
be set a particular when the routine’s ends, she can program
an explicit check/assert command inside the routine.
Conflicting Safety Properties: Conflicting safety properties
need to be either disallowed (if a conflict is likely) or allowed
but monitored (if conflict plausible). Responses may include
aborting the routine, or ignoring optional commands. Priori-
ties among safety properties are a possible approach, but may
be be prohibitive if low complexity is a goal.

Scoping of Safety Properties: To overcome the inflexibility
offered by the global set of safety properties, it may be ten-
able to allow routines or commands to specify locally-scoped
safety properties. A locally-scope safety property overrides
conflicting global safety properties for the local scope of that
routine or command. It is an open question as to what level of
density and scale is needed in smart homes, for locally-scoped
safety properties to become inevitable.

Long-Running Commands and Routines: Some com-
mands take non-negligible time to execute (e.g., raise shades).
These can be captured by two possible approaches: allowing
such long-running commands to send the edge a second ack
on completion, or allowing devices to expose their intermedi-



ate states [54]. Long-running routines are defined as routines
containing such long-running commands. Such routines need
to be handled carefully especially w.r.t. conflicts. Aborting a
long routine because of a short routine is wasted work, and
should be avoided where possible.

Signals in Routines—Exceptions and Interrupts: The rou-
tines of a smart home need to be responsive to changing
circumstances and changing intentions of the users. If a user
(or device) wishes to stop an executing routine, the routine
receives an exception. If a routine needs to be paused tem-
porarily, it receives an interrupt. The code for routines thus
needs to come associated with handlers for such exceptions
and interrupts. These improve correctness but increase pro-
grammer effort-however, it is possible that “template” signal
handlers may suffice for most devices or signals.

Goto-Safe States and Dilemma: For a device that fails while
aroutine is executing a command on it, the edge may not know
what state the device restarts in. We address this by having
devices restarted in a pre-determined “goto-state”. Goto-states
are convenient but could cause “Goto dilemmas”. If a garage
door opener’s goto-state is OPEN, burglars may be let in; if it
is CLOSED, it might close on a car underneath it. Both are
safety violations. How to handle these is an open question.
Note that such dilemmas also occur in other cyber-physical
environments like self-driving cars [47].

5 SafeHome’s Architecture

The architecture of the SafeHome system we are implement-
ing is shown in Figure 2. SafeHome employs a modular de-
sign where each component transparently can be swapped
with an equivalent mechanism. The key components are:

e Routine Manager for Atomicity: Manages the lifecycle
of individual Routines.

o Safety Checker for Safety: Checks for safety property
violations. Includes both a static checker and dynamic
checker, respectively for compile time and runtime.

e Concurrency Controller for Isolation: Handles concur-
rency conflicts across routines.

o Command Deployer for Durability: Executes the com-
mands on the devices in a durable manner.

e State & Health Tracker: Tracks the current state, health
and failures of devices. Notifies Routine Manager and
Safety Checker accordingly.

e Definition Bank: Contains all routines and safety proper-
ties admitted to the system (after static checking).

An “Edge-First” approach: SafeHome is designed with an
edge-first approach. On the one hand, cloud dependency hin-
ders scalability, latency, and bandwidth [53] (Section 2). On
the other hand, the diversity of smart devices and vendor plat-
forms implies that it is nearly impossible for SafeHome logic
itself to run inside all the IoT devices themselves.

The edge-first design cuts through the middle, wherein
most of the logic runs on edge devices co-located with the
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Figure 2: Architecture of SafeHome’s system.
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home (e.g, home controllers), with the cloud serving as a
backup. Using the edge makes SafeHome generalizable, scal-
able, efficient, and fast enough to provide SafeHome-ASID
properties. Also, it breaks the strong dependency to the cloud,
ensuring safety “at-all-times”, even in presence of disconnec-
tions. For further fault-tolerance we are exploring approaches
including a Zookeeper [23] cluster of edges, and (where pos-
sible) failover logic in the devices themselves.

6 Related Work

Smart home abstractions: Ease-of-use is a well-studied
topic for smart homes with various abstractions to simplify
automation and management of smart devices [8, 14,24,32,
34,50,52]. For example, IFTTT [24] represents the home as
a set of simple conditional statements, while HomeOS [14]
provides a PC-like abstraction for the home where devices
are analogous to peripherals in a PC. Beam [39] optimizes
the resource utilization by partitioning the applications across
devices. However, none of these fully address all challenges
on of failures, concurrent commands or miss programming.
Concurrency Control: Concurrency control is a decades-
long studied area in database [9]. In the context of [0oT systems
such as [14,28,33,36] have explored solutions tailored for
this cyber-physical environment. While SafeHome utilizes a
simple serialization, any of these approaches can replace the
modular concurrency controller of SafeHome.

Verification and Type Checking: Detecting conflicts in poli-
cies (safety properties in our case) is a long-studied area of
research used in several contexts. For example, for network
verification, several systems such as NICE [11], Anteater [29],
VeriFlow [26] and others [21,22,42] detect violating rules
and configurations. Similarly, in the IoT space systems such
as APEX [54] and [7,28, 33] enable user-specified conditions
and dependencies and verify them. Despite the similarities
in these approaches and SafeHome’s safety properties, Safe-
Home is solving a more generic problem (including failures,
conflicts and safety violations) where these approaches can
be applied to SafeHome’s safety checker engine.

7 Conclusion

Designing a safe and reliable home requires carefully de-
signing routine management, declarative safety, concurrency
control, and beyond. Many exciting challenges in this direc-
tion arise from subtle differences between systems we know
(e.g., transactional databases) and systems we are just getting
to know (smart homes).



8 Discussion Topics
Expected Feedback, and Discussion Points:

1. What are the downsides of the transaction-based (routine-

based) approach for smart homes?

. Are there examples of complex safety properties that
cannot be specified by our grammar?

. Can the edge fully remove the cloud dependency?

. Do other ideas from transactional database literature ap-
ply (e.g., timestamp ordering, MVCC, etc.)? How about
other areas, such as compilers, literature apply?

. Does SafeHome’s idea generalize beyond smart homes,
e.g., smart buildings, smart cities, smart factories?

Controversial Points, and Open Issues:

1. The idea of bringing transactional properties into the

smart home routines is a radical change from the way
smart homes are managed today. The system needs to be
designed carefully so that the resulting human-perceived
behavior of the system (especially under exceptional
circumstances like cascading aborts) is more preferable
to the status quo.

. Safety properties need to be specifiable easily, especially
by the lay user. A good UI may be needed for this.

. While our approach assumes logic on the edge and very
little functionality from devices (beyond responding to
commands), smarter devices may be able to help with
the system’s responsiveness and failover. At the same
time, the sheer diversity and incompatibility of vendor
offerings may be an obstacle to the latter approach.

. There is an adoptability challenge, especially with closed
source assistants, such as Alexa and Google Home.
SafeHome can interact with these assistants through
an IFTTT binding. However, the definition and invoca-
tion of commands/routines should go through SafeHome.
This opens a challenge on users adopting SafeHome.

When Does the Idea Fall Apart:

1. If the system is slow to respond, especially to the user.

E.g., Pessimistic concurrency control may delay starting
of user-initiated routines.

. If conflicting safety properties and concurrency create
chances of deadlocks, which could be especially dan-
gerous if the user is not present to arbitrate such (rare)
occurrences.

. If users are unable to specify safety properties, or there
are insufficient safety properties, or routines devolve into
single commands, or there is insufficient concurrency.
(We think these are unlikely, given the use cases we
already see.)
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