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Abstract

We introduce a statistical procedure that integrates survival data from multiple biomed-
ical studies, to improve the accuracy of predictions of survival or other events, based
on individual clinical and genomic profiles, compared to models developed leveraging
only a single study or meta-analytic methods. The method accounts for potential dif-
ferences in the relation between predictors and outcomes across studies, due to distinct
patient populations, treatments and technologies to measure outcomes and biomark-
ers. These differences are modeled explicitly with study-specific parameters. We use
hierarchical regularization to shrink the study-specific parameters towards each other
and to borrow information across studies. Shrinkage of the study-specific parameters is
controlled by a similarity matrix, which summarizes differences and similarities of the
relations between covariates and outcomes across studies. We illustrate the method in
a simulation study and using a collection of gene-expression datasets in ovarian can-
cer. We show that the proposed model increases the accuracy of survival prediction

compared to alternative meta-analytic methods.
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1 Introduction

Various biomedical technologies enable the use of omics information for prognostic purposes,
to quantify the risk of diseases, or to predict response to treatments. Risk stratification in
oncology often utilizes a set of biomarkers to predict cancer progression or death within a time
period. The number of covariates can exceed the sample size. This makes the identification
of relevant genomic features for risk prediction and the development of accurate models
challenging. Penalized regression and methods that utilize multiple datasets have been
discussed in this context. Penalization methods enable parameter estimation and prediction
when the number of predictors is large [46]. Meta-analyses [16] and integrated analyses [12]
combine information from multiple studies for parameter estimation and prediction [24, 48].
These statistical procedures improve the estimation of parameters of interest with respect to
single-study estimates if the covariate-outcome relations are similar across studies [40, 3, 51].
For instance Riester et al. [40], Bernau et al. [3] and Waldron et al. [51] showed that meta-
analytic procedures tend to outperform the prediction accuracy of models developed using
only a single study. But [40, 51, 47] also described heterogeneity of covariate effects across
cancer studies, due to differences in assays, treatments and patient populations.

We introduce a model for the integrated analysis of a collection of datasets, with the aim
of improving the accuracy of predictions, compared to single-study models and meta-analytic
procedures. We use study-specific parameters in covariate-outcome regression models. These
parameters are estimated borrowing information across studies with hierarchical regulariza-
tion, which shrinks the study-specific regression coefficients towards each other. We use a
squared K x K similarity matrix representative of differences and similarities of the covari-

ates’ effects across K studies. The matrix is used to estimate the study-specific models. The



regression parameters of each study are shrunken more towards the parameters of similar
studies and less towards the remaining studies.

In previous work on integrative analyses Liu et al. [28] discussed Bayesian methods and
variable selection for accelerated failure time models. Hierarchical normal models for multi-
study gene expression analyses have been developed in [12, 11, 13], and Ma et al. [30,
31] studied penalized regression methods for integrative analyses, focusing on binary and
accelerated failure-time outcome models. For case-control analyses with multiple datasets,
Liu et al. [29] proposed an adaptive group-LASSO (agLASSO) procedure, and Cheng et al.
[10] extended the approach using different regularization techniques. In the following sections
we introduce a procedure which builds on the work that we mentioned. The procedure shrink
study-specific parameters towards each other accounting for the degrees of similarity specific

of each pair of studies.

2 The multi-study model

We consider K studies with time-to-event outcomes and predictors such as gene expression
measurements. For each study k = 1,..., K the vector Y, = {Y},;}i*, indicates (possibly
censored) survival times of ny individuals and Cy = {C;}:*, denotes the vector of censoring
variables, where C},; = 1 if Y} ; is an observed event time and it is zero if there is censoring at
time Y} ;. The vector x;,; € R? represents a set of p predictors and Xj = (xx 1, - - ,mk,nk)T.
Lastly, Dy = (Y%, C, X}) indicates the data from study k and D = {D;}/_, is a collection
of studies.

We assume that failure times in each study k& follow a proportional hazard model [14]
with baseline survival function Si(-) and study-specific coefficients By € RP. The approach
that we will describe can be applied to alternative time to event models, for instance to
accelerated failure time models [53] or accelerated hazards models [9], computations would

only require minor modifications.



Inference is based on the Breslow’s modification of the partial log-likelihood functions

[14] for (possible tied) survival times,

mp,
L(BrDi) = Y S & Br —diglog | D exp{ai B} | ¢
/=1 Yy i >tk e

where {tk’g}gl are the my, unique event times in study &, dj ¢, denotes the number of observed
events at time g4, Ty = Zwk,iI(C’M =1,Y,; = tyy), for £ =1,...,my, and I(A) is the
indicator function of the eveint A.

When the number of predictors exceeds the number of observed events a unique maximum
partial-likelihood estimate does not exist and maximization of the regularized likelihood
function I (B, Di) — R (Bk) has been proposed [46, 34, 43] to obtain covariate effect estimates.
Here R (B) is a non-negative function that equals zero when B, = 0. Popular approaches
include the LASSO, ridge, elastic-net and the bridge penalties to name a few [25, 45, 46,
19, 52, 43]. We refer to [5, 6, 50, 3] for comparisons of regularization methods for predicting
survival outcomes using genomic profiles.

As demonstrated in [3] studies, with nearly identical aims, often presents different joint
distributions of predictors xj; and outcomes Y} ;. Clusters of studies which correspond to
different essays, patient populations, treatments, and study designs have been discussed
[3, 47]. We introduce a model with study-specific parameters G, and a latent parameter
Bo, which can be interpreted as the mean parameter across studies. Some studies will have
similar vectors @5 due to similarities in the assays and patient populations, while other
studies might be considerably different [3, 51]. We estimate the vectors B by borrowing
information from studies ¥’ # k that are similar to study k. At the same time, studies &’
that differ substantially from study k& will have little influence on the estimation of 3. In
different words, borrowing of information mirrors similarities and differences across studies.

The latent parameter and study-level parameters 3 = (8o, - - - , Bk ) are estimated using the



regularized likelihood

Ir(B) =D _1(Br.Di) — Ro(Bo) — R (B). (1)

k=1

Here the parameters 3, can be interpreted as a noisy realization of 3y, the average effect
across studies. The non-negative function Ry(-) regularizes By and is zero when By = 0 (for
example a lasso penalty). Similarly, the non-negative function R;(-) is zero when By = B, =
.-+ = Bk (see below for examples) and is used to borrow information across studies in the
estimation of 3. In our applications in Sections 4 and 5 we will use B\o for risk predictions
of patients in populations £ > K that are not represented in our collection of K studies,
whereas for patients belonging to populations k£ =1, ..., K, the estimate B\k can be directly
used for risk predictions.

Penalized maximum likelihood estimates based on (1) have a Bayesian interpretation.
See [45, 23, 37, 35| for a discussion on the relations between regularization methods and
Bayesian analyses. Consider a Bayesian model for the unknown parameters 3, with prior
probability Pr(8y) oc e~ for the vector By and Pr(Bi,...,Bxk|B) x e #1®) for the
study specific parameters conditionally on By. The approximate posterior density of B with

respect to the partial likelihood (see [44] for a formal justification) is proportional to

K
Prpy, (BID) o< Pr(Bo)Pr(By, -+, Bx|Bo) [ [ ™. 2)

k=1

Therefore the mode of (2) coincides with the parameter 3 that maximizes (1). If we set
Ry (B) = >, Ry (B, Bo), with Ry (Bk,Bo) > 0 then the Bayesian model (2) incorporates
the assumption that studies are exchangeable with, conditionally on 3y, independent and
identically distributed covariate effects B;. For example Ry (8, Bo) = ||8x — Bol|3/(2\1) and
Ro (Bo) = ||Bol|3/(2X0) is consistent with the commonly utilized hierarchical normal prior

model with, a priori, correlations Cor(f ;, Bi.j) = Ao/ (Ao + A1) > 0 for studies k' # k when



the latent vector 3 is integrated out. This regularization implies positive and symmetric
borrowing of information for all pairs k # k' of studies, and may not be appropriate for
groups of studies with different patient populations.

For the latent mean parameter B, we use the elastic-net penalty [54],

Ro(Bo) = Xol|Boll1 + Mil1Bol I3,

Ao, A1 > 0, with LASSO and ridge penalty as special cases, when Ay = 0 and \g = 0
respectively.

To account for differences and similarities of the available studies, we use

p
R (B) = Z 1Br:x; — Boi1l[s: (3)
j=1
in (1), where 1 is a K-dimensional vector with one on each component, Bi.x; = (51,5, - , Bk.;)

refers to covariate j = 1,--- ,p in each study, and ||z||s = V&S~ 1. The symmetric matrix
3} is positive-semidefinite and enables differential borrowing of information across studies.

For a = 2, the minimizer of (1) is equivalent to the posterior mode when, a priori, the
coefficients B1.x j,7 = 1,--- ,p across studies are modeled as multivariate normal with mean
Bo,;1 and covariance matrix 3. In this case ¥ j» = 0 implies that B and B are, a priori and
conditionally on By independent. Whereas a large covariance ¥, ;» > 0 indicates similarities
between 3, and (G, .

For a = 1 the penalty R;(3) in (3) becomes the sum of Mahalanobis distance of 3.k ;
from the mean ;1 with covariance matrix 3. With ¥ oc I this penalty reduces to the
group LASSO [10, 29] with one group for each covariate j = 1,--- , J.

The regularization parameters Mg, A, a, and ¥ determine (i) the sparsity of Bo (the

number of components Bo,j = 0) and (ii) the similarity of the estimates 31,;‘7 cee B K.j QCTOSS



studies, including the number of identical study-specific estimates B\k,j = Bk/,j.

When a > 1, X is positive-definite and Ag > 0 or A\; > 0, the regularized log-partial-
likelihood (1) is concave. If we fix A\; > 0, a > 1 and the positive-definite matrix 3,
then the number of components Bo,j equal to 0 increases with \y. For instance, consider
a>1in (1), Ay =0, and g(By) = maxg, .. g, Zlel(ﬁk,l)k) — Ry (B) . The concave map
9(Bo) — Xo||Bol|1 bounds the regularized log-partial-likelihood. If we choose A larger than
maxi <<, [09(80)/0Po ;| at Bo = 0, then (1) is maximized at By = 0. In contrast, for values
Ao below this maximum some of the estimates BO,j will be different from zero.

For Ao, A1 > 0, and a = 1, the choice of 3 can lead to identical study specific estimates
ELJ- = ... = BKJ. We provide an example with \g = 0 and ¥ = 0?I. Let z;, = B —
Bo,k=1,---, K, and define h(z) = maxg, S r, | (2 + Bo, Di) — Ro (Bo) . The map h(z) —
>i<j<p (2155 - -+, 2K5)||$ Pounds the re-parametrized regularized log-partial-likelihood (I :
1Bo, 21, -+, zxg| = R). If we specify 1/0 > max;; |0h(z)/0z;| at z = 0, then the concave
function (1) is maximized at B: = ... = B} = BB. More generally, if we don’t assume a
diagonal ¥ and indicate with o2 the largest eigenvalue of ¥, then the equalities ,/B\k = BE

hold when 1/0 > max; |0h(z)/0z ;| at z = 0.

3 Parameter estimation

We use an alternating direction method of multipliers algorithm [7] to estimate 3, see [7] for
an introduction to this algorithm. We first formulate the optimization of (1) with respect to

B = (Bo, -+ ,BKk) as a constrained convex minization problem

min { Z —U(Br, Dk) + Ro(Bo) + Rl(z)},

(8,2)



where z = (zg, -+, 2K)’, 2z € RP, subjected to the affine constraints 8 = z, k =0,..., K.

We then introduce for this minimization problem the scaled augmented Lagrangian

K K
Ly(z.B.u) = Y ~U(Bi D) + Ro(Bo) + Ra(=) + Y _ S8 —m+ il (4)
k=0

k=1

where p > 0, with augmented u = (ug, -+ ,ux),ur € RP. For a fixed p > 0, the algorithm
that we describe converges to a solution 3 — z = u = 0 that maximizes (1). The algorithm
minimizes (4) iteratively (i) with respect to B, and (ii) with respect to z, and (iii) then it
updates u to u < u + 3 — z, while keeping at each of the three steps the remaining two
parameters fixed. At each iteration of the algorithm the minimization of (4) with respect
to B (step i) can be carried out independently for each component B, k = 0,..., K, and
the minimization with respect to z (step i) can be carried out independently by covariates
j=1,---,p.

The algorithm starts with an initial estimate of 3 (we use 0 or preliminary estimates of

Br,k=0,--- K), 3= zand u = 0. At each iteration, in step i the algorithm minimizes (4)
S(P(Zo —uy), Ao)
p+ 2N
wise soft-thresholding function s(x;, A) = (1 — A\/|z;|)+x; [45], and

B3, keeping z and wu fixed, by setting By = where S(x, \) is the coordinate-

B = argmbin ( — (b, Dy) + p||b— 21, + Uk||g/2>

for the remaining k = 1,--- , K. We used a low-memory quasi-Newton algorithm [8] for the
latter minimization k£ > 0.

In step ii, the algorithm minimizes (4) with respect to z keeping 3 and w fixed. This is
done independently for each covariate 1 < j < p, because R;(-) and the [3-norm in (4) can
be factors into the sum of p terms each involving only the j-th row of z = (z¢,- -+ , 2x) and
the j-th row of B + u. For example, when a = 2 in (3), 2’ = <I+ 2H/E*1H/p> 71(,3 +u),

where the K by K + 1 matrix H = [—1, I] is the concatenation of —1 with k-dimensional



identity matrix I. This, computation is implemented by first computing the matrix K +1 by
K + 1 matrix <I + 2H/E_1I-I/p> _1, and then multiplying it with each column j =1,--- |p
of (B+u).

Lastly, in step i1, u from the last iteration is updated to w + 8 — z. We iterate this
three steps until the /2-norm of both z — 3 and the difference between 2z from two successive

iterations becomes smaller than a pre-specified treshold e > 0 [7].

4 Simulation Study

We consider a total of 18 studies. Either 2,5, 10 or 15 of these 18 studies are used to estimate
the model (1). The remaining 16, 13,8 or 3 studies are used for out-of study evaluations.
For each study £k = 1,---,18, we drew the sample size nj; of the study from a uniform
distribution ng ~ Unif(100,---,500), and then generated the covariates x;; € R5% of
observations ¢ = 1,---,ny from a normal distribution @j; ~ N500(0, V) with covariance
Vi = 0.3=7'l between variables j and j’.

We then generated 100 times the parameters 8 € R°*19 and a collection of 18 studies
D = (Dy);2,. In each of these 100 simulations we first generated the vector By € R
from a two-component mixture distribution with (i) a point mass at zero and (ii) a nor-
mal distribution with mean zero and variance 0.1. The proportion of zeros of this mix-
ture distribution equals py = 0.9 or 0. We then generated independently p = 500 vectors
(€14, -, €xj) ~ Ng(0,%) and set By ; = o ; + €x,; for each covariate j = 1,...,p and study
k=1,..., K. We consider three matrices ¥ = 3, 39, 33 (see Figure 1) with 3, 2 or a single
cluster of studies.

Survival times where generated from proportional hazard models with baseline survival
functions §k(), regression coefficients (3, and censoring survival functions §Ck() Here
Se(+) and §Ck() have been estimated from the ovarian cancer datasets that we discuss in

Section 5. For each study k we also generated an additional 1,000 observations, that were
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Figure 1: Similarity matrixes ¥ = X1, 3,5, X3 € R¥*18 ysed to simulate the datasets. We
simulated collections of 18 datasets D = {D;};2, with similarity matrix ¥ for 3. Studies
indicated in blue (2 studies), yellow (5 studies), red (10 studies) or green (15 studies) are
used to fit models with K = 2,5,10 or 15 studies.

not used to fit regression models, but were used to evaluate predictions.

4.1 Estimation of ¥ and selection of (A, \g)

We use initial estimates B; obtained from K independent ridge regression models to esti-
mate X. The procedure leverage the Bayesian interpretation (2) of the regularized likeli-
hood (1). As formalized in (2), with Ry (8) = > 0_, [|B.x; — Bo;1|/$, we can interpret
(Bjas--+»Bik),J = 1,---,p, as p independent vectors each with covariance matrix X. If
the By, k = 1,--- | K, were known we could straightforwardly estimate 3. For instance
with a = 2, the parameters (5;1,---,58jx),j = 1,---,p can be interpreted as independent
multivariate normal vectors with mean zero and covariance matrix 3. The joint normal
distribution implies that E[B|{Bw o<k <2k = ZO<k'§K,k’;ﬁk ap B where the weight
vector oy, = (i )o<k <k, k2k 15 as function of 3 [18] for each k = 1,--- , K. Therefore the
conditional expectation of X0y, given {Bi o<k <k i2k 15 ZO<k’§K,k’7ék apr (XiBi). After

replacing B, with out initial estimates Bk/, we estimate oy via a Cox model with K — 1
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covariates zp = X kﬁk/ and regression coefficients ay;,. We then use the empirical covariance
matrix of B = ZO<k’§K,k’;ék am/@, k=1,---,K as an estimate of 3. Note that 3; has a
direct interpretation under the assumption that the independent vectors (81 ;,. .., Sk ;) are
in a linear subspace with dimension less than K.

Figure 2 shows averages across the 100 simulations of the estimated similarity matrix
between studies for the largest model with K = 15 studies when py = 0 (top row) and
po = 0.9 (bottom row). Figures 2 and 1 show that the algorithm of Section 4.1 on average

recovers the similarity structure of the 15 studies.
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Figure 2: Average estimates across 100 simulations of the similarity matrix of the regression
coefficients between the K = 15 studies.

To select the parameters Ao and/or A;, we use Monte-Carlo cross-validation (CV) [42].
We evaluate candidate parameter estimates ,@ using C (,@) = ,wiC (,@k, Dy), where the C-
statistics C(By, Dy) = f’\r(a}’lﬁk > xgﬁkﬁ/l < Y2> is the estimated concordance [21, 36, 49|

between two survival times Y; and Y; with covariate vectors @, and @, in population k. The
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weights wy, > 0 account for differences in study sample sizes, we used wy = 1/\/my. We
first split the data randomly M-times into training (80%) and validation (20%) datasets.
Next we define a grid of tuning parameters A = (A1, Ag). For each combination of tuning
parameters X of the grid, we estimate B(m) based on the m = 1,--- , M CV training datasets
(which are identical across different grid-points) and use the validation datasets to obtain
estimates of the study-specific C-statistics CA(B,gm), Dy),m=1,---, M for ,@,(Cm) with X. We

then average these M C-statistics and compute the overall estimate Cy(3) for A. Lastly, we

select the \-value with the highest average C-statistics C ,\(B\)

4.2 Prediction Accuracy

Figure 3 shows, for each of the 18 studies box-plots of the estimated C-statistics [21, 36, 49|
when either 2, 5,10 or 15 studies (1st to 4th column) were used to estimate the similarity
matrix and the model. C-statistics C (,@k,Dk) for studies k£ that were utilized to estimate
the model are highlighted inside the brown rectangles (estimated using the additional 1000
hold-out observations in study k), whereas C-statistics C (,@0, Dy) for studies k that were not
used to estimate the model are shown on the right of the brown rectangles.

The three rows of Figure 3 correspond to scenarios with data generated using 3 (top
row of Figure 3), 3o, (2nd row), or X3 (bottom row) as illustrated in Figure 1. Red, green
and blue box-plots on the top-row indicate the three clusters of studies under ¥;. Similarly,
red and green box-plots in the 2-nd row indicate the two clusters of studies under X.
Differences in the distribution of the C-statistics between studies within the same cluster are
due to differences in the sample sizes n; and covariate matrixes X}, which remain identical
across the simulated datasets.

For ¥ = 3, (Ist row of Figure 3), with three clusters of studies, predictions show
improvements when the number of studies used to train the regression models increases K.

For K = 2 or 5, all studies used for estimation belong to the first two clusters (red and green

12
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Figure 3: Predictions with the penalized regression model with (a, A\g) = (2,0). We consider
3 =35, % and X3 (see Figure 1), and py = 0 across 100 simulations of a collection of 18
studies. Either K = 2,5,10 or 15 studies (studies inside the brown rectangles) were used
for estimation/selection of (X, A1, 3). The colors (red, green, blue) of the Box-plots indicate
clusters of studies (3, 2, or 1 clusters when ¥ = 3, 35 or X3).

box-plots). In these two cases, for each study k£ = 13,---18 in cluster 3 (blue box-plots)
the inter-quartile range (IQR) of the C-statistics C(Bo, Dy) across simulations lies within the
interval 0.52 to 0.55. Whereas for K = 10 (3rd column, studies 1-4 and 10-15 are use for
estimation), studies from all three clusters have been used for training. In this case, the
IQRs of C (Bo, D) across simulations for all three hold-out studies &k = 16,17, 18 in cluster
3 are within the interval 0.65 to 0.69. The last row of Figure 3 shows that, as expected,
borrowing of information in the estimation of model parameters is most effective in the case

of a single cluster of studies.
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Next, we compared our estimates of 3 based on model (1), with a = 2 for R;(-) and ridge
penalty (HR-R, A; = 0) or LASSO penalty (HR-L, A\ = 0) for By, to Cox models trained
separately on each study Dy with LASSO (single-study LASSO, SL) or ridge penalties (single-
study ridge, SR) for 8. In addition we consider two models that combine all (2, 5, 10 or 15)
studies into a single dataset and estimate a single Cox model (with regression parameters ()
using a LASSO (pooled LASSO, PL) or ridge (pooled ridge, PR) penalty for the coefficients
Bo. We also consider two meta-analysis approaches described in [51, 40] that combine study
specific estimates Bk into a single vector BO using either fixed effects (FE) or random-effects
(RE) estimation.

Figures 4 and supplementary Figures A.1 and A.2 show the average C-statistics of each
method when we used K = 5 or K = 10 studies for estimation. The pooled LASSO and
ridge models (PL and PR) and the meta-analyses methods (FE and RE) estimate a single
parameter B3y, which was used to compute the C-statistics C' (Bo, Dy) for each study k. For
the single-study SL and SR models we used the study-specific estimates Bk to compute
C (B\k, Dy,) for in-study prediction (using the 1,000 validation observations). For prediction
with SL and SR in studies £’ not used for estimation, we used each estimate ,@k of the K =5
(or 10) training studies for predictions C (,3’“, Dys) in all hold-out studies k’. For each hold-
out studies & we then averaged these C (B\k, Dy) over all K =5 (or 10) training studies, i.e.
Figure 4 reportes ), C(B’“, D))/ K for studied k'

For studies k used to train the model, both HR-L and HR-R improve predictions C (Bk, Dy)
substantially compared to single-study estimates SL and SR. For instance, with K = 5,py =
0 and unknown ¥ = 3 (three clusters of studies), the average difference between C' (Bk, Dy)
of HR-R and SR is between 0.07 and 0.16 for each of the five studies (0.62 to 0.75 for SR
compared to 0.73 to 0.85 for HR-R). Similarly, meta-analytic and pooled estimates FE, RE
and PL, SL improve predictions on the K = 5 datasets compared to single-study estimates,

especially PR. But improvements are smaller than for HR-P and HR-L, with C-values on av-
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erage (across simulations) between 0.08 to 0.15 below HR-R and HR-L models (for instance,
0.63 to 0.73 for PR compared to 0.73 to 0.85 for HR-R). When K = 10 studies are used to
estimate the models, results are similar to the setting with K = 5 - meta-analytic, pooled
and hierarchical estimates improve predictions over single-study estimates, with larger im-
provements for HR-R and HR-L estimates for in-study predictions.

In the case of a single cluster of studies (X = X3, supplementary Figure A.2), with strong
similarity of the study-specific parameters 3, pooling of studies to estimate a single 3y is
expected to be the most favorable prediction approach. Therefore, PL, PR, HR-R and HR-L
predict survival substantially better than the FE, RE, SL and SR methods (supplementary
Figure A.2). With py = 0, in-study predictions based on HR-R and HR-L estimates are on
average slightly better than for PR and PL estimates (difference of 0.01 to 0.04 for HR-R
compared to PR with K = 5 studies, and 0.02 to 0.05 with K = 10). Whereas PR, PL,

HR-R and HR-L have similar average C-statistics for holdout studies.

5 Survival prediction in ovarian cancer

We applied model (1) to predict survival in ovarian cancer using the curatedOvarianData
repository, a curated collection of gene-expression datasets [20]. To evaluate prediction,
we split the largest study in the database, the TCGA dataset [32] with 510 observations,
1,000 times randomly into a training dataset of ny = 50,75,..., or 300 observations and
a validation dataset with 510 — m; observations. We predicted patient survival Y;; in
the TCGA holdout data by leveraging the hierarchical regularization model (1) using five
additional datasets k = 2,--- | K = 6 (PMID-17290060[17], GSE51088[26], MTAB386[2],
GSE13876[15] and GSE19829 [27]) with sample sizes ranging between n; = 42 (GSE19829)
and 157 (GSE13876) observations. In all the analyses we used the expression values of the
p = 3,030 genes that are common in all six studies to predict patient survival.

To evaluate the hierarchical regularization method (1), we created different cross-study
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heterogeneity scenarios that are motivated by documented inconsistencies across cancer
datasets and by possible pre-processing errors [33, 39, 4, 1, 38, 41]. This is achieved by
introducing in one (scenario 2: GSE13876[15]) or two studies (scenario 3: GSE13876[15] and
GSE19829 [27]) a distortion of the expression values x,; which become 10 — 3z, ;,7 =
1,...,p for study k = K (scenario two) or studies k = K — 1, K (scenario three). In scenario
one we used the covariates xy; ; of the six studies.

Similar to Section 4, we consider parameter estimates based on the ny = 50,---,300
TCGA training samples using (i) single study Cox models with LASSO (SL) or (ii) ridge
(SR) regularization, pooled Cox regression models that combine the n; TCGA-observations
and the remaining five studies (PMID-17290060, GSE51088, MTAB386, GSE13876 and
GSE19829) into a single dataset with (iii) LASSO (PL) or (iv) ridge (PR) regularization, (v)
fixed effects (FE) and (vi) random effects (RE) model meta-analyses models as described in
[40, 3, 51], and (vii) the proposed hierarchical regularization model (1) with Ay = 1,a = 2
(HR-R).

Single-study cox-models with LASSO-penalty trained on the TCGA data with n; = 50
data points had low average C-values of 0.505 across the 1,000 generated training-validation
samples, with minor improvements up 0.52 when n; = 300 observations are used for model
training. Single study ridge regression models performed substantially better, with average
C-statistics ranging between 0.53 for n; = 50 and 0.57 for n; = 300 observations. Improve-
ments in risk predictions through integration of additional studies vary substantially across
data-integration methods and scenarios. For scenario 1, FE and RE meta-analyses have both
nearly constant and identical average C-statistics of 0.57 across all sample sizes ny, while PL
had an average C-statistics of 0.56 for n; = 50 with minor improvements up to 0.57 when
ni; = 300. Both, HR-R and PR have similar prediction accuracy across sample sizes n;, with
identical average C-statistics of 0.60 when n; = 50 and modest improvements up to 0.61 for

both, HR-R and PR, when n; = 300.
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Figure 5 shows, for scenarios two and three, average C-statistics for the TCGA validation
samples. Different curves correspond to different prediction methods. The black curves show
the average C-statistics (y-axis) across the 1,000 TCGA validation samples of size 510—n for
Cox models trained on ny; = 50, - - -, 300 observations from the TCGA study (x-axis) using
either SL (dotted curve) or SR (solid curve). The red curves show the average C-statistic for
PR (solid curve) and PL (dotted curve) models, the green curves correspond to FE (dotted

line) and RE (solid line) meta-analysis models, and the blue curve corresponds to the HR-R.
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Figure 5: Average C-statistics for single-study SL and SR methods with ny; = 50,--- ,300
TCGA training samples, and for data-integration methods (PL, PR, FE, RE, HR-R) use
the n; TCGA training samples and training samples from five additional studies (PMID-
17290060, GSE51088, MTAB386, GSE13876 and GSE19829).

In scenario two, the RE meta-analysis, which combines estimates from the n; = 50 TCGA
data points with estimates from the remaining five studies, has the same average C-statistics
as the single-study SR model trained on n; = 240 patients. For sample sizes n; > 250,
pooled regression models PR have similar performances as RE models. The HR-R model

trained on ny; = 50 TCGA patients has an average C-statistics the is superior to those of
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PR and FE procedures with n; = 50, --- ;300. As expected, with increased discrepancies in
the relations between covariates and outcomes across studies (scenario three), performances
of all data-integration methods decrease. HR-R models with ny = 50 TCGA patients have
similar average C-values as single study SR modes with n; =~ 200 patients. PR, PL, FE
and RE methods rely on the assumption that the regression parameters are similar across
studies. With substantial departures from this assumption the hierarchical model HR-R
shows, across all sample sizes 50 < n; < 300, gains in average prediction accuracy compared

to PR, PL, FE and RE.

6 Discussion

The analysis of relations between omics variables and time to event outcomes, and the use of
individual profiles x; for predictions, are particularly challenging when the sample size ny,
is small. These analyses often include thousands of potential predictors. The use of multiple
studies and pooling of information can improve prediction accuracy. Meta-analyses can be
utilized when the relations of covariates and outcomes are homogeneous across studies. But
recent work in oncology [40, 51, 47] showed that there can be clusters of studies with relevant
discrepancies in their covariate-outcome relations due, for example, to differences in study
designs, patient populations and treatments.

We combined two established concepts, regularization of regression models [25, 45, 46, 19]
and metrics of similarity between datasets [22] that identify clusters of studies. We used
these concepts to estimate study-specific regression parameters 3 and for predictions, both
in k =1,..., K contexts that are represented in our collection of datasets, for example K
distinct geographic regions, and in other contexts (k = K + 1) by estimating the latent
parameters 3.

The K x K similarity matrix 3 is used to regularize the likelihood function, and it

tunes the degree of borrowing of information in the estimation of K study-specific regression
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models. It shrinks the estimate of the k-th study-specific regression parameter 3 towards
estimates By of studies &’ that are similar to study k (large Xy /). In contrast studies with
low similarity (X5, =~ 0) have little influence on the estimation of 8. In our analyses
we verified that, if there are clusters of studies with similar predictors-outcome relations,
then the introduced method improves the accuracy of predictions compared to alternative
procedures, including single-study estimates, meta-analyses and pooling of all studies into a

single data matrix.
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Figure A.1: Average prediction across 100 simulations of a collection of 18 studies. Study
specific effects B;, have been generated under 3. Either 5 or 10 of the 18 studies (studies

in the left of the horizontal red bar) are used for the similarity matrix and covariate-effect
estimation.
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Figure A.2: Average prediction across 100 simulations of a collection of 18 studies. Study
specific effects Bj, have been generated under 3. Either 5 or 10 of the 18 studies (studies

in the left of the horizontal red bar) are used for the similarity matrix and covariate-effect
estimation.
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