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Abstract

We introduce a statistical procedure that integrates survival data from multiple biomed-

ical studies, to improve the accuracy of predictions of survival or other events, based

on individual clinical and genomic profiles, compared to models developed leveraging

only a single study or meta-analytic methods. The method accounts for potential dif-

ferences in the relation between predictors and outcomes across studies, due to distinct

patient populations, treatments and technologies to measure outcomes and biomark-

ers. These differences are modeled explicitly with study-specific parameters. We use

hierarchical regularization to shrink the study-specific parameters towards each other

and to borrow information across studies. Shrinkage of the study-specific parameters is

controlled by a similarity matrix, which summarizes differences and similarities of the

relations between covariates and outcomes across studies. We illustrate the method in

a simulation study and using a collection of gene-expression datasets in ovarian can-

cer. We show that the proposed model increases the accuracy of survival prediction

compared to alternative meta-analytic methods.
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1 Introduction

Various biomedical technologies enable the use of omics information for prognostic purposes,

to quantify the risk of diseases, or to predict response to treatments. Risk stratification in

oncology often utilizes a set of biomarkers to predict cancer progression or death within a time

period. The number of covariates can exceed the sample size. This makes the identification

of relevant genomic features for risk prediction and the development of accurate models

challenging. Penalized regression and methods that utilize multiple datasets have been

discussed in this context. Penalization methods enable parameter estimation and prediction

when the number of predictors is large [46]. Meta-analyses [16] and integrated analyses [12]

combine information from multiple studies for parameter estimation and prediction [24, 48].

These statistical procedures improve the estimation of parameters of interest with respect to

single-study estimates if the covariate-outcome relations are similar across studies [40, 3, 51].

For instance Riester et al. [40], Bernau et al. [3] and Waldron et al. [51] showed that meta-

analytic procedures tend to outperform the prediction accuracy of models developed using

only a single study. But [40, 51, 47] also described heterogeneity of covariate effects across

cancer studies, due to differences in assays, treatments and patient populations.

We introduce a model for the integrated analysis of a collection of datasets, with the aim

of improving the accuracy of predictions, compared to single-study models and meta-analytic

procedures. We use study-specific parameters in covariate-outcome regression models. These

parameters are estimated borrowing information across studies with hierarchical regulariza-

tion, which shrinks the study-specific regression coefficients towards each other. We use a

squared K ×K similarity matrix representative of differences and similarities of the covari-

ates’ effects across K studies. The matrix is used to estimate the study-specific models. The
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regression parameters of each study are shrunken more towards the parameters of similar

studies and less towards the remaining studies.

In previous work on integrative analyses Liu et al. [28] discussed Bayesian methods and

variable selection for accelerated failure time models. Hierarchical normal models for multi-

study gene expression analyses have been developed in [12, 11, 13], and Ma et al. [30,

31] studied penalized regression methods for integrative analyses, focusing on binary and

accelerated failure-time outcome models. For case-control analyses with multiple datasets,

Liu et al. [29] proposed an adaptive group-LASSO (agLASSO) procedure, and Cheng et al.

[10] extended the approach using different regularization techniques. In the following sections

we introduce a procedure which builds on the work that we mentioned. The procedure shrink

study-specific parameters towards each other accounting for the degrees of similarity specific

of each pair of studies.

2 The multi-study model

We consider K studies with time-to-event outcomes and predictors such as gene expression

measurements. For each study k = 1, . . . , K the vector Yk = {Yk,i}nk

i=1 indicates (possibly

censored) survival times of nk individuals and Ck = {Ck,i}nk

i=1 denotes the vector of censoring

variables, where Ck,i = 1 if Yk,i is an observed event time and it is zero if there is censoring at

time Yk,i. The vector xk,i ∈ R
p represents a set of p predictors and Xk = (xk,1, · · · ,xk,nk

)T .

Lastly, Dk = (Yk,Ck,Xk) indicates the data from study k and D = {Dk}Kk=1 is a collection

of studies.

We assume that failure times in each study k follow a proportional hazard model [14]

with baseline survival function Sk(·) and study-specific coefficients βk ∈ R
p. The approach

that we will describe can be applied to alternative time to event models, for instance to

accelerated failure time models [53] or accelerated hazards models [9], computations would

only require minor modifications.
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Inference is based on the Breslow’s modification of the partial log-likelihood functions

[14] for (possible tied) survival times,

l (βk,Dk) =

mk∑

`=1



x̃′

k,`βk − dk,` log


 ∑

i:Yk,i≥tk,`

exp{x′
k,iβk}





 ,

where
{
tk,`

}mk

`=1
are themk unique event times in study k, dk,` denotes the number of observed

events at time tk,`, x̃k,` =
∑

i

xk,iI(Ck,i = 1, Yk,i = tk,`), for ` = 1, . . . ,mk, and I(A) is the

indicator function of the event A.

When the number of predictors exceeds the number of observed events a unique maximum

partial-likelihood estimate does not exist and maximization of the regularized likelihood

function l (βk,Dk)−R (βk) has been proposed [46, 34, 43] to obtain covariate effect estimates.

Here R (βk) is a non-negative function that equals zero when βk = 0. Popular approaches

include the LASSO, ridge, elastic-net and the bridge penalties to name a few [25, 45, 46,

19, 52, 43]. We refer to [5, 6, 50, 3] for comparisons of regularization methods for predicting

survival outcomes using genomic profiles.

As demonstrated in [3] studies, with nearly identical aims, often presents different joint

distributions of predictors xk,i and outcomes Yk,i. Clusters of studies which correspond to

different essays, patient populations, treatments, and study designs have been discussed

[3, 47]. We introduce a model with study-specific parameters βk, and a latent parameter

β0, which can be interpreted as the mean parameter across studies. Some studies will have

similar vectors βk due to similarities in the assays and patient populations, while other

studies might be considerably different [3, 51]. We estimate the vectors βk by borrowing

information from studies k′ 6= k that are similar to study k. At the same time, studies k′

that differ substantially from study k will have little influence on the estimation of βk. In

different words, borrowing of information mirrors similarities and differences across studies.

The latent parameter and study-level parameters β = (β0, · · · ,βK) are estimated using the
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regularized likelihood

lR (β) =
K∑

k=1

l (βk,Dk)−R0(β0)−R1 (β) . (1)

Here the parameters βk can be interpreted as a noisy realization of β0, the average effect

across studies. The non-negative function R0(·) regularizes β0 and is zero when β0 = 0 (for

example a lasso penalty). Similarly, the non-negative function R1(·) is zero when β0 = β1 =

· · · = βK (see below for examples) and is used to borrow information across studies in the

estimation of β. In our applications in Sections 4 and 5 we will use β̂0 for risk predictions

of patients in populations k > K that are not represented in our collection of K studies,

whereas for patients belonging to populations k = 1, . . . , K, the estimate β̂k can be directly

used for risk predictions.

Penalized maximum likelihood estimates based on (1) have a Bayesian interpretation.

See [45, 23, 37, 35] for a discussion on the relations between regularization methods and

Bayesian analyses. Consider a Bayesian model for the unknown parameters β, with prior

probability Pr(β0) ∝ e−R0(β0) for the vector β0 and Pr(β1, . . . ,βK |β0) ∝ e−R1(β) for the

study specific parameters conditionally on β0. The approximate posterior density of β with

respect to the partial likelihood (see [44] for a formal justification) is proportional to

PrPL (β|D) ∝ Pr(β0)Pr(β1, · · · ,βK |β0)
K∏

k=1

el(βk,Dk). (2)

Therefore the mode of (2) coincides with the parameter β that maximizes (1). If we set

R1 (β) =
∑

k R̃1 (βk,β0), with R̃1 (βk,β0) ≥ 0 then the Bayesian model (2) incorporates

the assumption that studies are exchangeable with, conditionally on β0, independent and

identically distributed covariate effects βk. For example R̃1 (βk,β0) = ||βk−β0||22/(2λ1) and

R0 (β0) = ||β0||22/(2λ0) is consistent with the commonly utilized hierarchical normal prior

model with, a priori, correlations Cor(βk,j, βk′,j) = λ0/(λ0 + λ1) > 0 for studies k′ 6= k when
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the latent vector β0 is integrated out. This regularization implies positive and symmetric

borrowing of information for all pairs k 6= k′ of studies, and may not be appropriate for

groups of studies with different patient populations.

For the latent mean parameter β0 we use the elastic-net penalty [54],

R0(β0) = λ0||β0||1 + λ1||β0||22,

λ0, λ1 ≥ 0, with LASSO and ridge penalty as special cases, when λ1 = 0 and λ0 = 0

respectively.

To account for differences and similarities of the available studies, we use

R1 (β) =

p∑

j=1

||β1:K,j − β0,j1||aΣ (3)

in (1), where 1 is a K-dimensional vector with one on each component, β1:K,j = (β1,j, · · · , βK,j)
′

refers to covariate j = 1, · · · , p in each study, and ||x||Σ =
√
x′Σ−1x. The symmetric matrix

Σ is positive-semidefinite and enables differential borrowing of information across studies.

For a = 2, the minimizer of (1) is equivalent to the posterior mode when, a priori, the

coefficients β1:K,j, j = 1, · · · , p across studies are modeled as multivariate normal with mean

β0,j1 and covariance matrix Σ. In this case Σk,k′ = 0 implies that βk and βk′ are, a priori and

conditionally on β0 independent. Whereas a large covariance Σk,k′ > 0 indicates similarities

between βk and βk′ .

For a = 1 the penalty R1(β) in (3) becomes the sum of Mahalanobis distance of β1:K,j

from the mean β0,j1 with covariance matrix Σ. With Σ ∝ I this penalty reduces to the

group LASSO [10, 29] with one group for each covariate j = 1, · · · , J .

The regularization parameters λ0, λ1, a, and Σ determine (i) the sparsity of β̂0 (the

number of components β̂0,j = 0) and (ii) the similarity of the estimates β̂1,j, · · · , β̂K,j across

6



studies, including the number of identical study-specific estimates β̂k,j = β̂k′,j.

When a ≥ 1, Σ is positive-definite and λ0 > 0 or λ1 > 0, the regularized log-partial-

likelihood (1) is concave. If we fix λ1 ≥ 0, a ≥ 1 and the positive-definite matrix Σ,

then the number of components β̂0,j equal to 0 increases with λ0. For instance, consider

a > 1 in (1), λ1 = 0, and g(β0) = maxβ1,··· ,βK

∑K

k=1 l (βk,Dk) − R1 (β) . The concave map

g(β0) − λ0||β0||1 bounds the regularized log-partial-likelihood. If we choose λ0 larger than

max1≤j≤p |∂g(β0)/∂β0,j| at β0 = 0, then (1) is maximized at β̂0 = 0. In contrast, for values

λ0 below this maximum some of the estimates β̂0,j will be different from zero.

For λ0, λ1 ≥ 0, and a = 1, the choice of Σ can lead to identical study specific estimates

β̂1,j = · · · = β̂K,j. We provide an example with λ0 = 0 and Σ = σ2I. Let zk = βk −

β0, k = 1, · · · , K, and define h(z) = maxβ0

∑K

k=1 l (zk + β0,Dk)−R0 (β0) . The map h(z)−
∑

1≤j≤p ||(z1,j, . . . , zK,j)||aΣ bounds the re-parametrized regularized log-partial-likelihood (lR :

[β0, z1, · · · , zK ] → R). If we specify 1/σ > maxj,k |∂h(z)/∂zk,j| at z = 0, then the concave

function (1) is maximized at β̂1 = . . . = β̂K = β̂0. More generally, if we don’t assume a

diagonal Σ and indicate with σ2 the largest eigenvalue of Σ, then the equalities β̂k = β̂0

hold when 1/σ > maxj,k |∂h(z)/∂zk,j| at z = 0.

3 Parameter estimation

We use an alternating direction method of multipliers algorithm [7] to estimate β, see [7] for

an introduction to this algorithm. We first formulate the optimization of (1) with respect to

β = (β0, · · · ,βK) as a constrained convex minization problem

min
(β,z)

{∑

k

−l(βk,Dk) +R0(β0) +R1(z)

}
,
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where z = (z0, · · · , zK)
′, zk ∈ R

p, subjected to the affine constraints βk = zk, k = 0, . . . , K.

We then introduce for this minimization problem the scaled augmented Lagrangian

Lρ(z,β,u) =
K∑

k=1

−l(βk,Dk) +R0(β0) +R1(z) +
K∑

k=0

ρ

2
||βk − zk + uk||22, (4)

where ρ > 0, with augmented u = (u0, · · · ,uK),uk ∈ R
p. For a fixed ρ > 0, the algorithm

that we describe converges to a solution β − z = u = 0 that maximizes (1). The algorithm

minimizes (4) iteratively (i) with respect to β, and (ii) with respect to z, and (iii) then it

updates u to u ← u + β − z, while keeping at each of the three steps the remaining two

parameters fixed. At each iteration of the algorithm the minimization of (4) with respect

to β (step i) can be carried out independently for each component βk, k = 0, . . . , K, and

the minimization with respect to z (step ii) can be carried out independently by covariates

j = 1, · · · , p.

The algorithm starts with an initial estimate of β (we use 0 or preliminary estimates of

βk, k = 0, · · · , K), β = z and u = 0. At each iteration, in step i the algorithm minimizes (4)

β, keeping z and u fixed, by setting β0 =
S
(
ρ(z0 − u0), λ0

)

ρ+ 2λ1

where S(x, λ) is the coordinate-

wise soft-thresholding function s(xj, λ) = (1− λ/|xj|)+xj [45], and

βk = argmin
b

(
− l(b,Dk) + ρ||b− zk + uk||22/2

)

for the remaining k = 1, · · · , K. We used a low-memory quasi-Newton algorithm [8] for the

latter minimization k > 0.

In step ii, the algorithm minimizes (4) with respect to z keeping β and u fixed. This is

done independently for each covariate 1 ≤ j ≤ p, because R1(·) and the l22-norm in (4) can

be factors into the sum of p terms each involving only the j-th row of z = (z0, · · · , zK) and

the j-th row of β+u. For example, when a = 2 in (3), z′ =
(
I + 2H ′Σ−1H/ρ

)−1

(β+u)′,

where the K by K + 1 matrix H = [−1, I] is the concatenation of −1 with k-dimensional
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identity matrix I. This, computation is implemented by first computing the matrix K+1 by

K +1 matrix
(
I +2H ′Σ−1H/ρ

)−1

, and then multiplying it with each column j = 1, · · · , p

of (β + u)′.

Lastly, in step iii, u from the last iteration is updated to u + β − z. We iterate this

three steps until the l22-norm of both z−β and the difference between z from two successive

iterations becomes smaller than a pre-specified treshold ε > 0 [7].

4 Simulation Study

We consider a total of 18 studies. Either 2, 5, 10 or 15 of these 18 studies are used to estimate

the model (1). The remaining 16, 13, 8 or 3 studies are used for out-of study evaluations.

For each study k = 1, · · · , 18, we drew the sample size nk of the study from a uniform

distribution nk ∼ Unif(100, · · · , 500), and then generated the covariates xk,i ∈ R
500 of

observations i = 1, · · · , nk from a normal distribution xk,i ∼ N500(0,V ) with covariance

Vj,j′ = 0.3|j−j′| between variables j and j′.

We then generated 100 times the parameters β ∈ R
500×19 and a collection of 18 studies

D = (Dk)
18
k=1. In each of these 100 simulations we first generated the vector β0 ∈ R

500

from a two-component mixture distribution with (i) a point mass at zero and (ii) a nor-

mal distribution with mean zero and variance 0.1. The proportion of zeros of this mix-

ture distribution equals p0 = 0.9 or 0. We then generated independently p = 500 vectors

(ε1,j, . . . , εK,j) ∼ NK(0,Σ) and set βk,j = β0,j + εk,j for each covariate j = 1, . . . , p and study

k = 1, . . . , K. We consider three matrices Σ = Σ1,Σ2,Σ3 (see Figure 1) with 3, 2 or a single

cluster of studies.

Survival times where generated from proportional hazard models with baseline survival

functions Ŝk(·), regression coefficients βk, and censoring survival functions ŜC,k(·). Here

Ŝk(·) and ŜC,k(·) have been estimated from the ovarian cancer datasets that we discuss in

Section 5. For each study k we also generated an additional 1,000 observations, that were
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studies used to estimate the models:
studies 1, 11 studies 1−3, 10, 11 studies 1−4, 10−15 studies 1−6, 9−17
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Figure 1: Similarity matrixes Σ = Σ1,Σ2,Σ3 ∈ R
18×18 used to simulate the datasets. We

simulated collections of 18 datasets D = {Dk}18k=1 with similarity matrix Σ for β. Studies
indicated in blue (2 studies), yellow (5 studies), red (10 studies) or green (15 studies) are
used to fit models with K = 2, 5, 10 or 15 studies.

not used to fit regression models, but were used to evaluate predictions.

4.1 Estimation of Σ and selection of (λ1, λ0)

We use initial estimates β̂k obtained from K independent ridge regression models to esti-

mate Σ. The procedure leverage the Bayesian interpretation (2) of the regularized likeli-

hood (1). As formalized in (2), with R1 (β) =
∑p

j=1 ||β1:K,j − β0,j1||aΣ, we can interpret

(βj,1, · · · , βj,K), j = 1, · · · , p, as p independent vectors each with covariance matrix Σ. If

the βk, k = 1, · · · , K, were known we could straightforwardly estimate Σ. For instance

with a = 2, the parameters (βj,1, · · · , βj,K), j = 1, · · · , p can be interpreted as independent

multivariate normal vectors with mean zero and covariance matrix Σ. The joint normal

distribution implies that E[βk|{βk′}0<k′≤K,k′ 6=k] =
∑

0<k′≤K,k′ 6=k αk,k′βk′ where the weight

vector αk = (αk,k′)0<k′≤K,k′ 6=k is as function of Σ [18] for each k = 1, · · · , K. Therefore the

conditional expectation of Xkβk, given {βk′}0<k′≤K,k′ 6=k is
∑

0<k′≤K,k′ 6=k αk,k′(Xkβk′). After

replacing βk′ with out initial estimates β̂k′ , we estimate αk via a Cox model with K − 1

10



covariates zk′ = Xkβ̂k′ and regression coefficients αk. We then use the empirical covariance

matrix of β?
k =

∑
0<k′≤K,k′ 6=k α̂k,k′β̂k, k = 1, · · · , K as an estimate of Σ. Note that β?

k has a

direct interpretation under the assumption that the independent vectors (β1,j, . . . , βK,j) are

in a linear subspace with dimension less than K.

Figure 2 shows averages across the 100 simulations of the estimated similarity matrix

between studies for the largest model with K = 15 studies when p0 = 0 (top row) and

p0 = 0.9 (bottom row). Figures 2 and 1 show that the algorithm of Section 4.1 on average

recovers the similarity structure of the 15 studies.
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Figure 2: Average estimates across 100 simulations of the similarity matrix of the regression
coefficients between the K = 15 studies.

To select the parameters λ0 and/or λ1, we use Monte-Carlo cross-validation (CV) [42].

We evaluate candidate parameter estimates β̂ using C(β̂) = ∑
k wkC(β̂k,Dk), where the C-

statistics C(β̂k,Dk) = P̂ r
(
x′
1β̂k > x′

2β̂k|Y1 < Y2

)
is the estimated concordance [21, 36, 49]

between two survival times Y1 and Y2 with covariate vectors x1 and x2 in population k. The

11



weights wk ≥ 0 account for differences in study sample sizes, we used wk = 1/
√
mk. We

first split the data randomly M -times into training (80%) and validation (20%) datasets.

Next we define a grid of tuning parameters λ = (λ1, λ0). For each combination of tuning

parameters λ of the grid, we estimate β̂(m) based on the m = 1, · · · ,M CV training datasets

(which are identical across different grid-points) and use the validation datasets to obtain

estimates of the study-specific C-statistics Cλ(β̂(m)
k ,Dk),m = 1, · · · ,M for β̂

(m)
k with λ. We

then average these M C-statistics and compute the overall estimate Cλ(β̂) for λ. Lastly, we

select the λ-value with the highest average C-statistics Cλ(β̂).

4.2 Prediction Accuracy

Figure 3 shows, for each of the 18 studies box-plots of the estimated C-statistics [21, 36, 49]

when either 2, 5, 10 or 15 studies (1st to 4th column) were used to estimate the similarity

matrix and the model. C-statistics C(β̂k,Dk) for studies k that were utilized to estimate

the model are highlighted inside the brown rectangles (estimated using the additional 1000

hold-out observations in study k), whereas C-statistics C(β̂0,Dk) for studies k that were not

used to estimate the model are shown on the right of the brown rectangles.

The three rows of Figure 3 correspond to scenarios with data generated using Σ1 (top

row of Figure 3), Σ2, (2nd row), or Σ3 (bottom row) as illustrated in Figure 1. Red, green

and blue box-plots on the top-row indicate the three clusters of studies under Σ1. Similarly,

red and green box-plots in the 2-nd row indicate the two clusters of studies under Σ2.

Differences in the distribution of the C-statistics between studies within the same cluster are

due to differences in the sample sizes nk and covariate matrixes Xk, which remain identical

across the simulated datasets.

For Σ = Σ1 (1st row of Figure 3), with three clusters of studies, predictions show

improvements when the number of studies used to train the regression models increases K.

For K = 2 or 5, all studies used for estimation belong to the first two clusters (red and green
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Next, we compared our estimates of β based on model (1), with a = 2 for R1(·) and ridge

penalty (HR-R, λ1 = 0) or LASSO penalty (HR-L, λ2 = 0) for β0, to Cox models trained

separately on each studyDk with LASSO (single-study LASSO, SL) or ridge penalties (single-

study ridge, SR) for βk. In addition we consider two models that combine all (2, 5, 10 or 15)

studies into a single dataset and estimate a single Cox model (with regression parameters β0)

using a LASSO (pooled LASSO, PL) or ridge (pooled ridge, PR) penalty for the coefficients

β0. We also consider two meta-analysis approaches described in [51, 40] that combine study

specific estimates β̂k into a single vector β̂0 using either fixed effects (FE) or random-effects

(RE) estimation.

Figures 4 and supplementary Figures A.1 and A.2 show the average C-statistics of each

method when we used K = 5 or K = 10 studies for estimation. The pooled LASSO and

ridge models (PL and PR) and the meta-analyses methods (FE and RE) estimate a single

parameter β0, which was used to compute the C-statistics C(β̂0,Dk) for each study k. For

the single-study SL and SR models we used the study-specific estimates β̂k to compute

C(β̂k,Dk) for in-study prediction (using the 1,000 validation observations). For prediction

with SL and SR in studies k′ not used for estimation, we used each estimate β̂k of the K = 5

(or 10) training studies for predictions C(β̂k,Dk′) in all hold-out studies k′. For each hold-

out studies k′ we then averaged these C(β̂k,Dk′) over all K = 5 (or 10) training studies, i.e.

Figure 4 reportes
∑

k C(β̂k,Dk′)/K for studied k′.

For studies k used to train the model, both HR-L and HR-R improve predictions C(β̂k,Dk)

substantially compared to single-study estimates SL and SR. For instance, with K = 5, p0 =

0 and unknown Σ = Σ1 (three clusters of studies), the average difference between C(β̂k,Dk)

of HR-R and SR is between 0.07 and 0.16 for each of the five studies (0.62 to 0.75 for SR

compared to 0.73 to 0.85 for HR-R). Similarly, meta-analytic and pooled estimates FE, RE

and PL, SL improve predictions on the K = 5 datasets compared to single-study estimates,

especially PR. But improvements are smaller than for HR-P and HR-L, with C-values on av-
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Figure 4: Average prediction across 100 simulations of a collection of 18 studies. Study
specific effects βk have been generated under Σ1 (see Figure 1). Either 5 or 10 of the 18
studies (studies in the left of the horizontal red bar) are used for the similarity matrix and
covariate-effect estimation. See Figures A.1 and A.2 for results with similarity scenarios Σ2

and Σ3.
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erage (across simulations) between 0.08 to 0.15 below HR-R and HR-L models (for instance,

0.63 to 0.73 for PR compared to 0.73 to 0.85 for HR-R). When K = 10 studies are used to

estimate the models, results are similar to the setting with K = 5 - meta-analytic, pooled

and hierarchical estimates improve predictions over single-study estimates, with larger im-

provements for HR-R and HR-L estimates for in-study predictions.

In the case of a single cluster of studies (Σ = Σ3, supplementary Figure A.2), with strong

similarity of the study-specific parameters βk, pooling of studies to estimate a single β0 is

expected to be the most favorable prediction approach. Therefore, PL, PR, HR-R and HR-L

predict survival substantially better than the FE, RE, SL and SR methods (supplementary

Figure A.2). With p0 = 0, in-study predictions based on HR-R and HR-L estimates are on

average slightly better than for PR and PL estimates (difference of 0.01 to 0.04 for HR-R

compared to PR with K = 5 studies, and 0.02 to 0.05 with K = 10). Whereas PR, PL,

HR-R and HR-L have similar average C-statistics for holdout studies.

5 Survival prediction in ovarian cancer

We applied model (1) to predict survival in ovarian cancer using the curatedOvarianData

repository, a curated collection of gene-expression datasets [20]. To evaluate prediction,

we split the largest study in the database, the TCGA dataset [32] with 510 observations,

1,000 times randomly into a training dataset of n1 = 50, 75, . . . , or 300 observations and

a validation dataset with 510 − n1 observations. We predicted patient survival Y1,i in

the TCGA holdout data by leveraging the hierarchical regularization model (1) using five

additional datasets k = 2, · · · , K = 6 (PMID-17290060[17], GSE51088[26], MTAB386[2],

GSE13876[15] and GSE19829 [27]) with sample sizes ranging between nk = 42 (GSE19829)

and 157 (GSE13876) observations. In all the analyses we used the expression values of the

p = 3, 030 genes that are common in all six studies to predict patient survival.

To evaluate the hierarchical regularization method (1), we created different cross-study
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heterogeneity scenarios that are motivated by documented inconsistencies across cancer

datasets and by possible pre-processing errors [33, 39, 4, 1, 38, 41]. This is achieved by

introducing in one (scenario 2: GSE13876[15]) or two studies (scenario 3: GSE13876[15] and

GSE19829 [27]) a distortion of the expression values xk,i,j which become 10 − 3xk,i,j, j =

1, . . . , p for study k = K (scenario two) or studies k = K−1, K (scenario three). In scenario

one we used the covariates xk,i,j of the six studies.

Similar to Section 4, we consider parameter estimates based on the n1 = 50, · · · , 300

TCGA training samples using (i) single study Cox models with LASSO (SL) or (ii) ridge

(SR) regularization, pooled Cox regression models that combine the n1 TCGA-observations

and the remaining five studies (PMID-17290060, GSE51088, MTAB386, GSE13876 and

GSE19829) into a single dataset with (iii) LASSO (PL) or (iv) ridge (PR) regularization, (v)

fixed effects (FE) and (vi) random effects (RE) model meta-analyses models as described in

[40, 3, 51], and (vii) the proposed hierarchical regularization model (1) with λ0 = 1, a = 2

(HR-R).

Single-study cox-models with LASSO-penalty trained on the TCGA data with n1 = 50

data points had low average C-values of 0.505 across the 1,000 generated training-validation

samples, with minor improvements up 0.52 when n1 = 300 observations are used for model

training. Single study ridge regression models performed substantially better, with average

C-statistics ranging between 0.53 for n1 = 50 and 0.57 for n1 = 300 observations. Improve-

ments in risk predictions through integration of additional studies vary substantially across

data-integration methods and scenarios. For scenario 1, FE and RE meta-analyses have both

nearly constant and identical average C-statistics of 0.57 across all sample sizes n1, while PL

had an average C-statistics of 0.56 for n1 = 50 with minor improvements up to 0.57 when

n1 = 300. Both, HR-R and PR have similar prediction accuracy across sample sizes n1, with

identical average C-statistics of 0.60 when n1 = 50 and modest improvements up to 0.61 for

both, HR-R and PR, when n1 = 300.
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Figure 5 shows, for scenarios two and three, average C-statistics for the TCGA validation

samples. Different curves correspond to different prediction methods. The black curves show

the average C-statistics (y-axis) across the 1,000 TCGA validation samples of size 510−n1 for

Cox models trained on n1 = 50, · · · , 300 observations from the TCGA study (x-axis) using

either SL (dotted curve) or SR (solid curve). The red curves show the average C-statistic for

PR (solid curve) and PL (dotted curve) models, the green curves correspond to FE (dotted

line) and RE (solid line) meta-analysis models, and the blue curve corresponds to the HR-R.
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Figure 5: Average C-statistics for single-study SL and SR methods with n1 = 50, · · · , 300
TCGA training samples, and for data-integration methods (PL, PR, FE, RE, HR-R) use
the n1 TCGA training samples and training samples from five additional studies (PMID-
17290060, GSE51088, MTAB386, GSE13876 and GSE19829).

In scenario two, the RE meta-analysis, which combines estimates from the n1 = 50 TCGA

data points with estimates from the remaining five studies, has the same average C-statistics

as the single-study SR model trained on n1 = 240 patients. For sample sizes n1 > 250,

pooled regression models PR have similar performances as RE models. The HR-R model

trained on n1 = 50 TCGA patients has an average C-statistics the is superior to those of
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PR and FE procedures with n1 = 50, · · · , 300. As expected, with increased discrepancies in

the relations between covariates and outcomes across studies (scenario three), performances

of all data-integration methods decrease. HR-R models with n1 = 50 TCGA patients have

similar average C-values as single study SR modes with n1 ≈ 200 patients. PR, PL, FE

and RE methods rely on the assumption that the regression parameters are similar across

studies. With substantial departures from this assumption the hierarchical model HR-R

shows, across all sample sizes 50 ≤ n1 ≤ 300, gains in average prediction accuracy compared

to PR, PL, FE and RE.

6 Discussion

The analysis of relations between omics variables and time to event outcomes, and the use of

individual profiles xk,i for predictions, are particularly challenging when the sample size nk

is small. These analyses often include thousands of potential predictors. The use of multiple

studies and pooling of information can improve prediction accuracy. Meta-analyses can be

utilized when the relations of covariates and outcomes are homogeneous across studies. But

recent work in oncology [40, 51, 47] showed that there can be clusters of studies with relevant

discrepancies in their covariate-outcome relations due, for example, to differences in study

designs, patient populations and treatments.

We combined two established concepts, regularization of regression models [25, 45, 46, 19]

and metrics of similarity between datasets [22] that identify clusters of studies. We used

these concepts to estimate study-specific regression parameters βk and for predictions, both

in k = 1, . . . , K contexts that are represented in our collection of datasets, for example K

distinct geographic regions, and in other contexts (k = K + 1) by estimating the latent

parameters β0.

The K × K similarity matrix Σ is used to regularize the likelihood function, and it

tunes the degree of borrowing of information in the estimation of K study-specific regression
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models. It shrinks the estimate of the k-th study-specific regression parameter βk towards

estimates βk′ of studies k
′ that are similar to study k (large Σk,k′). In contrast studies with

low similarity (Σk,k′ ≈ 0) have little influence on the estimation of βk. In our analyses

we verified that, if there are clusters of studies with similar predictors-outcome relations,

then the introduced method improves the accuracy of predictions compared to alternative

procedures, including single-study estimates, meta-analyses and pooling of all studies into a

single data matrix.
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Figure A.1: Average prediction across 100 simulations of a collection of 18 studies. Study
specific effects βk have been generated under Σ2. Either 5 or 10 of the 18 studies (studies
in the left of the horizontal red bar) are used for the similarity matrix and covariate-effect
estimation.
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Figure A.2: Average prediction across 100 simulations of a collection of 18 studies. Study
specific effects βk have been generated under Σ3. Either 5 or 10 of the 18 studies (studies
in the left of the horizontal red bar) are used for the similarity matrix and covariate-effect
estimation.
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