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Abstract

Jointly using data from multiple similar sources for the training of pre-

diction models is increasingly becoming an important task in many fields of

science. In this paper, we propose a framework for generalist and specialist

predictions that leverages multiple datasets, with potential heterogenity in

the relationships between predictors and outcomes. Our framework uses en-

sembling with stacking, and includes three major components: 1) training of

the ensemble members using one or more datasets, 2) a no-data-reuse tech-

nique for stacking weights estimation and 3) task-specific utility functions.

We prove that under certain regularity conditions, our framework produces

a stacked prediction function with oracle property. We also provide analyt-

ically the conditions under which the proposed no-data-reuse technique will

increase the prediction accuracy of the stacked prediction function compared

to using the full data. We perform a simulation study to numerically verify

and illustrate these results and apply our framework to predicting mortality

based on a collection of variables including long-term exposure to common

air pollutants.
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1 Introduction

New advances in technologies, for example biomarker assays in biomedical studies,

enable the generation of rich datasets. It is increasingly common for researchers

to have access to multiple (K > 1) studies, or more generally sets of data, able to

answer the same or similar scientific questions (Klein et al., 2014; Kannan et al.,

2016; Manzoni et al., 2018). Although datasets from multiple studies may contain

the same outcome variable Y and covariates X (for example, patient survival and

pre-treatment prognostic profiles in clinical studies), the (X,Y ) joint distributions

P1, . . . , PK are typically different, due to distinct study populations, study designs

and technological artifacts (Simon et al., 2003; Rhodes et al., 2004; Patil et al.,

2015; Sinha et al., 2017). In this article, we focus on the task of developing

prediction models using multiple datasets, accounting for the heterogeneity across

the (Pk, k = 1, . . . ,K) study-specific distributions. We introduce a distinction

between two classes of prediction functions (PFs) depending on the goal of the

prediction problem in the multi-study setting: generalist and specialist prediction

functions.

Generalist predictions are directed to hypothetical future studies K + 1,K +

2, . . .. The training strategy to develop a generalist prediction function depends

on relations and similarities between studies. For example, the study-specific ge-

ographic areas or assays can be relevant in the development of prediction models.

If studies are considered exchangeable, i.e. joint analyses are invariant to permu-

tations of the study indices, then a model which consistently predicts accurately

across the available K studies is a good candidate for a generalist use, to predict

Y in future studies k > K. This class of prediction functions has been studied in

the literature (Sutton and Higgins, 2008; Tseng et al., 2012; Pasolli et al., 2016)

and several contributions are based on hierarchical models (Warn et al., 2002;

Babapulle et al., 2004; Higgins et al., 2009). Similarly, when the exchangeabil-

ity assumption is inadequate, joint models for multiple studies can incorporate

information on relevant relations between studies to construct generalist mod-

els(Moreno-Torres et al., 2012). For example, when K studies are collected at

different time points t1 < t2 < ... < tK , the development of a generalist model

can incorporate potential cycles or short-term trends.
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Specialist predictions are in contrast directed to predicting future outcomes Y

based on covariatesX in the context of a specific study k in {1, . . .K} –for example

a geographic area– represented by one of the K datasets. Bayesian models can be

used to borrow information and leverageK−1 datasets in addition to the targeted

study k. Typically the degree of heterogeneity of the distributions (P1, . . . , PK)

affects the extent of improvement in accuracy that one achieves with multi-study

models compared to simpler models developed using only data from study k.

Recently, the use of ensemble methods has been proposed to develop general-

ist prediction functions based on multi-study data collections (Patil and Parmi-

giani, 2018; Zhang et al., 2019; Loewinger et al., 2019). In particular, stacking

(Wolpert, 1992; Breiman, 1996) is used to combine prediction functions {Ŷk(·), k =

1, . . . ,K}, each trained on a single study k, into a single generalist prediction

function that targets contexts k > K. The weights assigned to each model Ŷk

in stacking are often derived by maximizing a utility function representative of

the performance of the resulting prediction function. In this manuscript, our fo-

cus will be on collections of exchangeable studies. Nonetheless, the application

of stacking does not require this exchangeability assumption, and the optimiza-

tion of the ensemble weights can be tailored to settings where exchangeabilty is

implausible. Importantly, stacking allows investigators to capitalize on multiple

machine learning algorithms, such as random forest or neural networks, to train

the study-specific functions Ŷk.

We investigate within the stacking framework Patil and Parmigiani (2018) the

optimization of the ensemble weights assigned to a collection of single-set predic-

tion functions (SPFs), generated with arbitrary machine learning methods. Each

SPF is trained by a single study k or combining multiple studies. The ensemble

weights will approximately maximize a utility function U which we estimate using

the entire collection of K studies (generalist prediction) or only data in study k

(specialist prediction). Notably, stacking as currently implemented in multi-study

learning can potentially suffer from over-fitting due to data reuse (DR): the same

datasets generate SPFs and contribute (with others) to guiding the optimization

of the stacking weights. With the aim of mitigating overfitting we introduce a

no data reuse (NDR) procedure that still includes three key components of the

staking methodology: the training of SPFs, the estimation of the utility function
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U , and the optimal choice of the ensemble weights.

In this manuscript we compare procedures to weight SPFs with and without

data reuse. We use the mean squared error (MSE) as our primary metric to

evaluate prediction accuracy. Our results prove that, when the number of studies

K and the sample sizes nk become large, both stacking with DR and NDR achieve

a performance similar to that of an oracle benchmark. The oracle is defined as

the linear combination of the SPFs’ limits (limnk
Yk) that minimizes the MSE in

future studies k > K. Our results bound the MSE difference between the oracle

ensembles and two stacking procedures, with and without data reuse. We use

these asymptotic results to describe similarities between stacking and multi-study

Bayesian hierarchical models when the SPFs are linear. Related bounds have

been studied for the single-study setting in van der Laan et al. (2006) and in

the functional aggregation literature (Juditsky and Nemirovski, 2000; Juditsky

et al., 2008). We also illustrate that if the oracle predictions lie within the convex

hull of the SPFs limits (limnk
Yk; k = 1, . . . ,K), then stacking produces prediction

functions that are asymptotically equivalent to the oracle. We finally provide finite

sample comparisons of stacking with DR and NDR. We identify a threshold value

for the number of datasets K, which depends on the cross-study heterogeneity,

below which NDR stacking reduces the MSE.

We apply our NDR and DR stacking procedures to predict mortality in Medi-

care beneficiaries enrolled before 2002. The datasets contain demographic and

health-related information of the beneficiaries at the zipcode-level and measure-

ments of air pollutants. We are interested in predicting the number of deaths

per 10,000 person-years. In distinct analyses, we partitioned the database into

state-specific datasets (K = 50) and in county-specific dataset (K = 58). We

compare NDR and DR stacking relative performances. The results are aligned

with our analytic results. Indeed with hold-out data we verified that in the first

analysis, with K = 10 state-level datasets (high heterogeneity; the remaining 40

are used as validation datasets), NDR produced generalist predictions with better

accuracy than DR. In contrast, with SPFs developed with county-specific datasets

(low cross-study hetherogeneity) DR staking predictions are more accurate than

with NDR stacking. These comparisons were confirmed by iterated analyses with

random sets of K = 10 states and K = 10 counties.
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Figure 1: An illustration of the relation between studies and training sets, where
D = {D1, D2, D3}.

2 Generalist and Specialist Predictions

2.1 Notation

We observeK studies k = 1, . . . ,K, with sample sizes nk. For individual i in study

k we have a vector of features xi,k ∈ X and the individual outcome yi,k ∈ R. We

use S = {(xi,k, yi,k); i = 1, . . . , nk, k = 1, . . . ,K} to indicate the collection of all

K datasets. Based on these, we define a library of training sets (LTS), denoted

as D, which includes T members D1, . . . , DT . Each Dt is a set of (i, k) indices,

where i ∈ {1, 2, . . . , nk} is the sample index within a study k. The set Dt can

include indices with different k values (see for example D3 in Figure 1). We

call a collection D study-specific if T = K and Dt = {(1, t), . . . , (nt, t)}, with

t = 1, . . . ,K.

We consider L different learners —a learner is a method of generating a pre-

diction function, such as linear regression, random forest, or a neural network.

Training learner ` on set Dt ∈ D generates a single-study prediction function

(SPF) noted as Ŷ `
t : X → R. The set of all SPFs is Ŷ = {Ŷ `

t (·); ` = 1, . . . , L, t =

1, . . . , T}. LetW be a subset of RTL. With stacking (Wolpert, 1992), we combine

the Ŷ components into Ŷw : X → R via:

Ŷw(·) =
L∑

`=1

T∑

t=1

w`,tŶ
`
t (·), (1)

where w = (w`,t; ` ≤ L, t ≤ T ) is a vector of weights in W .

We want to use Ŷw for prediction in a target population with unknown joint
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(X,Y ) distribution π. The performance of Ŷw is quantified by its expected utility

U , quantifying accuracy in the target population:

U(w;π) =

∫

(x,y)
u(Ŷw(x), y) dπ(x, y),

where u(ŷ, y) is a utility function, e.g. u(ŷ, y) = −(ŷ − y)2. The distribution π is

unknown and we estimate U(w;π) with

Û(w; ν) =
K∑

k=1

νk
nk

nk∑

i=1

u(Ŷw(xi,k), yi,k). (2)

The weights νk ≥ 0,
∑

k νk = 1, are user-specified and are designed to capture

the relation between the target π and the set of distributions P1, . . . , PK . In this

paper, we are interested in generalist prediction, which corresponds to νk = 1
K ,

for k = 1, . . . ,K, and specialist prediction, which corresponds to νk = 1 for study

k in 1, . . . ,K and 0 for the remaining K − 1 studies.

2.2 Generalist prediction

The target distribution π coincides with a future sequence of heterogeneous studies

K + 1,K + 2, . . ., and the utility of a generalist prediction function Ŷw can be

represented as

Ug(w) = lim
I→∞

I−1
I∑

i=1

U(w;PK+i).

where the subscript g reminds us that the limit is taken in the generalist case.

We will consider scenarios where the above limit is well defined for any w ∈ W

with probability 1. If P1, P2, . . ., are exchangeable, i.e. there exists Q such that

Pk|Q iid∼ Q, k = 1, 2, . . . , then Ug(w) can be rewritten as,

Ug(w) =

∫
[
∫

(x,y)
u(Ŷw(x), y)dP (x, y)

]

dQ.

Changing the order of integration,

Ug(w) =

∫

(x,y)
u(Ŷw(x), y)dP0(x, y),

where P0 is the mean of Q, i.e. P0(·) =
∫
P (·)dQ.

When π = P0, we can use νk = 1/K for k = 1, . . . ,K in expression (2) to
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approximate Ug(w). Note that in several applications the sequence P1, P2 . . . may

not be exchangeable. For example, it can be better modeled by a Markov Chain

(Shumway and Stoffer, 2017) i.e. Pk|P1, . . . , Pk−1 = Pk|Pk−1. Throughout this

manuscript we will not need to specify the model Q, but we will assume the

exchangeability of the sequence P1, P2, . . ..

2.3 Specialist prediction

In this case, the target population distribution π coincides with Pk, for a single

k ∈ {1, 2, . . . ,K}. The expected utility of a specialist prediction function is

Us(w; k) = U(w;Pk) =

∫

(x,y)
u(Ŷw(x), y)dPk(x, y).

We can use the empirical distribution of study k to estimate Pk, and the implied

specification of ν in (2) is νi = 1 for i = k and 0 otherwise.

3 Generalist and specialist stacking

We use stacking for generalist and specialist predictions in multi-study settings.

Recall the definition of a stacked prediction function Ŷw(·) =
∑

`≤L,t≤T w`,tŶ
`
t (·)

based on a set of SPFs Ŷ and weights w ∈W . We indicate as oracle weights

wg = argmax
w∈W

Ug(w)

w(k)
s = argmax

w∈W
Us(w; k).

Note that W ⊂ R
TL.

Constraints on or penalties applied to select parameters like w can lead to

identical results. For example, in several optimization problem constraining an

KL−dimensional parameter to W = {w : ‖w‖2 ≤ c} is equivalent to the uncon-

strained optimization with an L2 penalty on the parameter. The use of penalties in

the estimation of stacking weights has been discussed in Breiman (1996); LeBlanc

and Tibshirani (1996). One of the main arguments is that members of the library

of SPFs Ŷ tend to be correlated, especially those that are trained on the same set

Dt.
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3.1 Stacking with data reuse

A direct approach to select wg and w
(k)
s consists in optimizing the Û(w; ν) esti-

mates of Ug(w) and Us(w; k). When the studies are exchangeable Û(w;K−11K)

can be used to select wg. The estimation of stacking weights attempts to provide

values close to the oracle solution wg. If instead we develop a specialist predic-

tion function for study k, we can optimize Û(w; ek) to select w
(k)
s , where ek is a

K−dimensional vector with the k-th component to be one and all others zero.

This approach reuses data. Training an SPF Ŷ `
t uses part of the data Dt ⊂ S

that are then reused to compute Û(w; ν). Data reuse makes Û(w; ν) a biased

estimator of Ug(w) and Us(w; k). In the next paragraph we illustrate a simple

example where the bias of Û(w; ν) due to data reuse makes the selection of w,

denoted as ŵ, erroneously favors those Ŷ `
t generated from studies with large νk.

Consider a scenario where D is study-specific and K = 2. Let u(y, y′) = −(y−

y′)2. We only observe yi,k without any covariates and we assume yi,k ∼ N(µk, 1)

for k = 1, 2 where µk ∼ N(0, 1). Let n1 = n2 = n. In this simple example, we

generate a library of SPFs with two constant functions Ŷ1(·) = ȳ1 and Ŷ2(·) = ȳ2,

where ȳk = n−1
∑

i yi,k. Under the constraint that W = ∆1, where ∆1 is the

standard 1-simplex, the weights that optimize Û(w; ν) is ŵ = (ŵ1, ŵ2) = (ν1, ν2),

while the oracle weights wg = (wg,1, wg,2) that optimize Ug(w) are

wg =







(
|ȳ2|

|ȳ1|+|ȳ2|
, |ȳ1|
|ȳ1|+|ȳ2|

)

ȳ1 · ȳ2 < 0,

(1, 0) |ȳ1| ≤ |ȳ2|, ȳ1 · ȳ2 ≥ 0,

(0, 1) |ȳ1| > |ȳ2|, ȳ1 · ȳ2 ≥ 0.

The oracle weights favor Ŷ1, i.e. wg,1 > wg,2, if cMSE(Ŷ1) < cMSE(Ŷ2), where

cMSE indicates the conditional MSE of a SPF Ŷ `
t :

cMSE(Ŷ ) =

∫

(x,y)

(

y − Ŷ (x)
)2
dP0(x, y).

The cMSE measures the actual prediction performance of Ŷ `
t across studies given

the observed data (y1,1, . . . , y1,n, y2,1, . . . , y2,n). Note that in our example, cMSE(Ŷk) =

|ȳk|2 + 2, k = 1, 2. On the other hand, ŵ favor Ŷk whenever νk > νk′ , regardless

of the cMSE of each SPF.

To understand the discrepancy described above, we examine the bias of Û(w;K−11K)
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to Ug(w), defined as E

(

Û(w;K−11K)− Ug(w)
)

, where the expectation is taken

over all observed data (y1,1, . . . , y1,n, y2,1, . . . , y2,n). By definition, we have

Û(w;K−11K)− Ug(w) = 2(ν1w2 + ν2w1)ȳ1ȳ2 + 2(ν1w1ȳ
2
1 + ν2w2ȳ

2
2)

︸ ︷︷ ︸

data-reuse

+2− ν1y21 − ν2y22,

where y2k = n−1
∑

i y
2
i,k. The first two terms on the right-hand side exist because

of data reuse, that is, we evaluate the utility of w1Ŷ1 + w2Ŷ2 using the training

data of Ŷ1 and Ŷ2.

It follows that

E

(

Û(w;K−11K)− Ug(w)
)

=
2(n+ 1)

n
(ν1w1 + ν2w2).

We can see data-reuse introduces a non-zero bias to Û(w;K−11K). This bias

term is not always maximized at wg. In fact, if ν1 ≥ ν2, ν1w1+ν2w2 is maximized

at w = (1, 0). In this case, the bias term would shift ŵ1 towards 1, which would

make ŵ1 larger than wg,1 if wg,1 6= 1. The strength of this shift increases as ν1

increases, which explains the reason that ŵ1 increases as ν1 increases.

The effect of the bias term on the discrepancy of ŵ to wg is particularly pro-

nounced when training specialist PFs for study k with Û(w; ek). In our example,

ŵ = ek regardless of the values of cMSE of Ŷk, which in our setting also captures

the prediction accuracy of Ŷ on future samples in study k. This result also gen-

eralizes to K > 2 and to the setting where L > 1 with at least one of the single

learner using −u(y, y′) as its loss function. The specialist PF for study k is then

equal to the SPF trained on study k, and we do not borrow any information from

other studies, even though they share the same hyper-distribution of mean of the

outcome Y with study k.

3.2 Stacking without data reuse

A common approach to limit the effects of data reuse is cross-validation (CV). CV

in stacking is implemented by using part of the data for the training of the library

of PFs Ŷ and the rest of the data for the estimation of w (see for example Breiman

(1996)). How to split the data in multi-study settings is not as obvious as in the
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single-study setting due to the multi-level structure of the data. We consider

two approaches based on CV. We first introduce their primary characteristics and

their precise definitions are deferred to Section 3.2.1 and 3.2.2.

1. Within-set (CVws). For this approach, we assume that sets Dt are mutu-

ally exclusive. AnM -fold CVws includesM iterations. At each iteration, we

randomly partition each Dt into Dt,1 and Dt,2. We use {Dt,1; t ≤ T} to gen-

erate the class of SPFs and predict outcomes for samples in {Dt,2; t ≤ T}.

The final selection of w maximizes a utility estimate that involves all pre-

dictions generated across the M iterations.

2. Cross-set (CVcs). This approach can handle LTS with overlapped Dt sets

and involves a pre-defined number of iterations. At each iteration, we ran-

domly select T ′ setsDt ∈ D to generate the library of SPFs. We then predict

outcomes for samples in the rest of Dt sets using each member of the library.

The final selection of w maximizes a utility function that involves predictions

generated across all interations.

3.2.1 Within-set CV

We describe the CVws procedure in the multi-study setting. It can be used to

estimate generalist and specialist utilities. AnM−fold CVws for stacking includes

four steps. Without loss of generality, we assume that |Dt| is divisible by M for

t = 1, . . . , T , where |Dt| is the cardinality of Dt.

1. Randomly partition each index setDt intoM equal-sized subsets and denote

them as Dt,m,m = 1, . . . ,M .

2. For every m = 1, . . . ,M , train Ŷ `
t,m with {(xi,k, yi,k); (i, k) ∈ Dt ∩Dc

t,m} for

` = 1, . . . , L and t = 1, . . . , T .

3. For a sample with index (i, k), denote the only index m such that (i, k) ∈

Dt,m by m(i, k). The estimated utility function for w is

Ûws(w; ν) =

K∑

k=1

νk
nk

nk∑

i=1

u




∑

`,t

w`,tŶ
`
t,m(i,k)(xi,k), yi,k



 . (3)
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and

ŵws = argmax
w∈W

Ûws(w; ν).

4. The CVws stacked PF is

Ŷ ws
w =

∑

`,t

ŵws
`,t Ŷ

`
t .

For specialist predictions, CVws can solve the data-reuse related problem in

Section 3.1. In particular, we consider the example in Section 3.1. Assume Dt

is study-specific. Denote ŵws
s = argmaxw Ûws(w; e1) the CVws selected weights

for the specialist PF of study 1 and ŵs = argmaxw Û(w; e1). We measure the

prediction accuracy of a PF Ŷw with the expected MSE on study 1 is MSE1(w) =
∫

µ1
(µ1 − Ŷw)

2dP (µ1) + 1, where P (µ1) is the distribution of µ1.

Since there is no analytic expression for ŵws
s , we use Monte Carlo simula-

tion (1000 replications) to compare MSE1(ŵ
ws
s ) and MSE1(ŵ1). We set n =

90 and µ1 ∼ N(0, 0.1), where borrowing information from study 2 is bene-

ficial for the estimation of µ1. When varying M from 3 to 15, we observe

that E [MSE1(ŵ1)−MSE1(ŵ
ws
s )] first increases from 0.0014 to 0.002 then de-

crease when M > 8 to 0.0012 at M = 15. Here the expectation is taken over

(y1,1, . . . , y1,n, y2,1, . . . , y2,n). This indicates that CVws-based approach produces

a more accurate PF that stacking with data reuse but the advantage decreases if

M is large.

In contrast we illustrate that, if we compare CVws and stacking with data reuse

for generalist predictions, the difference between the resulting estimates of U(w),

Û(w; ν)− Ûws(w; ν), converges to zero faster than the difference between Û(w; ν)

and its limit as n → ∞ for any fixed K, rendering Û(w; ν) to be asymptotically

identical to Û(w; ν).

To see this result, we first consider the example in Section 3.1 with fixed

µ = (µ1, µ2)
ᵀ and bounded W . The utility function for stacking with data reuse

is Û(w; (1/2, 1/2)) = wᵀΣ̂w − 2b̂ᵀw + (y21 + y22)/2, where

Σ̂ =






ȳ21 ȳ1ȳ2

ȳ1ȳ2 ȳ22




 , b̂ =






ȳ1ȳ

ȳ2ȳ




 ,
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and ȳ = (ȳ1 + ȳ2)/2. Let ȳk,−m = (n(M − 1)/M)−1
∑

i/∈Dk,m
yk,i and ȳk,m =

(n/M)−1
∑

i∈Dk,m
yk,i. We use a 2-fold CVws to select w for generalist predictions.

The associated utility function is Ûws(w; (1/2, 1/2)) and

Ûws(w; (1/2, 1/2)) = wᵀΣ̂wsw − 2b̂ᵀwsw +
y21 + y22

2
,

where

Σ̂ws =M−1






2∑

m=1

ȳ2
1,−m

2∑

m=1

ȳ1,−mȳ2,−m

2∑

m=1

ȳ1,−mȳ2,−m

2∑

m=1

ȳ2
2,−m




 , b̂ws = (2M)−1






2∑

m=1

(ȳ1,m + ȳ2,m)ȳ1,−m

2∑

m=1

(ȳ1,m + ȳ2,m)ȳ2,−m




 .

Note by construction, ȳk = (M − 1)/Mȳk,−m + 1/Mȳk,m. Therefore,

∑

m

ȳk,−myk′,−m =
M3 − 2M2 +M

(M − 1)2
ȳkȳk′ +

∑

m

(
ȳk,mȳk′,m − ȳkȳk′

)
,

for any k, k′ ∈ {1, 2}. It is straightforward to show that

var

(
∑

m

(
ȳk,mȳk′,m − ȳkȳk′

)

)

=
1

4
var
(
(ȳk,1 − ȳk,2)(ȳk′,1 − ȳk′,2)

)
=

1 + I(k = k′)

n2
.

Therefore
∑

m ȳk,−myk′,−m = 2ȳkȳk′ + Op(1/n). Similarly, we can prove that

∑

m(ȳk,m + ȳk′,m)ȳk,−m = 2Mȳȳk + Op(1/n) for k, k
′ ∈ {1, 2} and k 6= k′. Based

on these results, if w is bounded by a finite constant, we have |Ûws(w; (1/2, 1/2))−

Û(w; (1/2, 1/2))| ≤ Op(1/n).

On the other hand, the limit of Û(w; (1/2, 1/2)) as n → ∞ is wᵀµµᵀw −

wᵀµµᵀ12 + µᵀµ/2 + 1. Since ȳkȳk′ = µkµk′ + Op(1/
√
n) and ȳkȳ = µk(µ1 +

µ2)/2 + Op(1/
√
n) by central limit theorem and delta method, Û(w; (1/2, 1/2))

converges to its limit with rate 1/
√
n. Hence |Ûws(w; (1/2, 1/2))−Û(w; (1/2, 1/2))|

is ignorable compared to the random fluctuation of Û(w; (1/2, 1/2)) when n is

large.

This result on convergence rate also holds when E(Y |X) is linear and Ŷ `
t is

trained with an ordinary least squares (OLS) regression. Consider K studies,

yi,k = βᵀkxi,k + εi,k, (4)

where βk is a study-specific regression coefficient and εi,k are N(0, σ2) noise terms.

The xi,k ∼ N(0, I) are iid p-dimensional covariate vectors in all K studies. In the
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following proposition, we show the respective rates at which |Ûws(w; 1/K1K) −

Û(w; 1/K1K)| and |Û(w; 1/K1K)− limn→∞ Û(w; 1/K1K)| converge to 0.

Proposition 1. Assume D is study-specific and nk = n for k ∈ {1, 2, . . . ,K},

where n is divisible by M . Fix β1, . . . , βK and assume the data are generated with

(4). Let L = 1 and the single learner be an OLS procedure. If any sub-matrix X ′
k

formed by (1−1/M)n rows of Xk is invertible for every k, and u(ŷ, y) = −(ŷ−y)2,

then for any w ∈ W , where W is a bounded set in R
T , the following inequality

holds

sup
w∈W

∣
∣
∣Û(w;K−11K)− Ûws(w;K

−11K)
∣
∣
∣ ≤ Op(1/n),

sup
w∈W

∣
∣
∣Û(w;K−11K)− lim

n→∞
Û(w;K−11K)

∣
∣
∣ ≤ Op(1/

√
n).

(5)

The above proposition indicates that the difference between utility functions

in data reuse stacking and CVws is order of magnitude smaller than the random

fluctuation in Û(w;K−11K), and in turn establishes the asymptotic equivalence

of utility functions of stacking with data reuse and CVws. Since the results in

Proposition 1 concerns uniform convergence, the near equivalence of Û(w;K−11K)

and Ûws(w;K
−11K) can translate into asymptotic equivalence of ŵ and ŵws,

provided the limit of Û(w;K−11K) has a unique maximizer in W .

In Figure 2a, we plot the estimated
∣
∣
∣Û(w;K−11K)− Ûws(w;K

−11K)
∣
∣
∣ and

|Û(w;K−11K)− limn→∞ Û(w;K−11K)|at w = K−11K as a function of n. We set

K = 20, p = 10 and βk ∼ N(1p, I). We use a 5-fold CVws.

3.2.2 Cross-set CV and stacking with no data reuse

In this section, we focus on leave-one-set-out CVcs where T iterations are per-

formed. At each iteration a different Dt is held out. We first introduce this CV

scheme when D is study-specific hence T = K:

1. Generate the library of SPFs Ŷ using every set in D. Note that this library

remains the same across T iterations.

2. At iteration t, evaluate the utility of w using Dt with SPFs that are not

trained on Dt:

Û (t)
cs (w; ν) =

1

nt

nt∑

i=1

u




∑

`,t

I(t′ 6= t)w`,t′ Ŷ
`
t′(xi,t), yi,t



 . (6)
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3. Combine all Û
(t)
cs across T iterations and evaluated at a scaled w, yielding

the utility function Ûcs(w; ν) for the selection of w in CVcs:

Ûcs(w; ν) =
∑

t

νtÛ
(t)
cs (w; ν) =

K∑

t=1

νt
nt

∑

i

u




∑

`,t′

I(t′ 6= t)

1− νt
w`,t′ Ŷ

`
t′(xi,t), yi,t



 .

(7)

The scaling factor (1−νt)−1 is used to extrapolate the predicted value given

by the full ensemble using the prediction from the partial ensemble. For ex-

ample, in generalist predictions for exchangeable studies with νt = K−1, we

expect that Ŷ `
k (x) ≈ Ŷ `

k′(x) for k
′ 6= k and hence (

∑

k,` Ŷ
`
k (x))/(

∑

k 6=k′,` Ŷ
`
k (x)) ≈

K/(K − 1).

4. Let ŵcs = argmaxw∈W Ûcs(w; ν), CVcs stacked PF is

Ŷ cs
w =

∑

`,t

ŵcs
`,tŶ

`
t .

To understand the rationale for (7), we consider applying CVcs for generalist

predictions. Note that under exchangeable Pk distributions, k = 1, . . ., Û
(t)
cs (w) is

an unbiased estimator of Ug(w
(t)), where w(t) is equal to w except for components

w`,t ` = 1, . . . , L, which are set to zero:

E

[

Û (t)
cs (w)

]

= E

[

Ug(w
(t))
]

,

where the expectation is taken over S. For {νt; t ≤ K} ∈ ∆K−1, it follows that

E

[
K∑

t=1

νtÛ
(t)
cs (w)

]

=

K∑

t=1

νtE
[

Ug(w
(t))
]

.

Consider the Taylor expansion of Ug(w
(t)), t = 1, . . . ,K, around 0. Since

∑

t νt = 1,

∑

t

νtUg(w
(t)) = Ug(0) +

∂Ug

∂wᵀ
(0)
∑

t

νkw
(t) + o(‖w‖).

By construction
∑

t νtw
(t) = ((1− νt)w`,t; ` = 1, . . . , L, t = 1, . . . ,K). Let S be a

KL×KL diagonal matrix with the diagonal term corresponding to w`,t as 1− νt,

we have
∑

t νtw
(t) = Sw.
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Based on the results above, we know that

E

[

νt

K∑

t=1

Û (t)
cs (w)

]

= EUg(0) + E

[
∂Ug

∂wᵀ
(0)

]

Sw + o(‖w‖).

If w is defined close to 0, e.g. W = {w : ‖w‖1 ≤ 1}, the linear term in the above

expansion dominates higher order terms of w and we have

E

(
∑

k

νkÛ
(k)
cs (w)

)

= EUg(Sw) + o(‖w‖).

Therefore, a nearly unbiased estimator of Ug(w) is

Ûcs(w; ν) =
∑

k

νkÛ
(k)
cs

(
S−1w

)
.

Expanding the above equation, we get the expression in (7).

In general, D is not necessarily study-specific and it might contains Dt’s that

overlap. The utility function for CVcs in the general case can be constructed in

the similar manner as when D is study-specific. In the first place, we modify

Û
(t)
cs (w), which estimates the expected utility of the PF combining the library of

SPFs with weight w(t), into

Û (t)
cs (w) =

1

|Dt|
∑

(i,k)∈Dt

u




∑

`,t′

I(st ∩ st′ = ∅)w`,t′ Ŷ
`
t′(xi,k), yi,k



 ,

where st = {k : (i, k) ∈ Dt for some i = 1, . . . , nk} is the list of studies with

at least one sample in Dt. This modified Û
(t)
cs guarantees no-date-reuse even if

Dt’s are overlapped, since the set of studies that are involved in evaluating the

utility of the stacked PF is mutually exclusive to the set of studies that are used

in training SPFs in the considered stacked PF.

With the no-data-reuse property, it follows that with exchangeable distribu-

tions P1, P2, . . .

E

[

Û (t)
cs (w)

]

= E

[

Ug(w
(t))
]

,

where w(t) is equal to w except for all elements w`,t′ , such that st′ ∩ st 6= ∅ and

` = 1, . . . , L, which are equal to zero.

In the study-specific D scenario, each Û
(t)
cs (w) is combined into Ûcs(w; ν) ac-
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cording a relative importance νt. This relative importance can be interpreted as

the total probability mass assigned to data in Dt in the empirical distribution of

S:

π̂(x, y) =
∑

k

νk
nk

∑

i

I ((x, y) = (xi,k, yi,k)) .

With this definition, in the general case, the relative importance of Dt is

γt =
∑

k∈st
νknk,t/nk, where nk,t is the number of samples from study k that are

present in Dt. As in the case for study-specific D, we can use these γt to combine

Û
(t)
ws (w).

With Taylor expansion of Ug(w
(t)) around 0, we get

E

(
∑

t

γtÛ
(t)
cs (w)

)

=

(
∑

t

γt

)

EUg(0) + E

[
∂Ug

∂wᵀ
(0)

]
∑

t

γtw
(t) + o(‖w‖).

Let Γ be a KL×KL diagonal matrix with the element corresponds to w`,t equal

to
∑

t′ γt′I(st′ ∩ st = ∅)w`,t. By the definition of w(t),
∑

t γtw
(t) = Γw. Therefore

we have

(
∑

t

γt

)−1

E

(
∑

t

γtÛ
(t)
cs (w)

)

= EUg(0) + E

[
∂Ug

∂wᵀ
(0)

]
Γw
∑

t γt
+ o(‖w‖).

If the linear term dominates higher order terms in the above expansion, we

have (
∑

t

γt

)−1

E

(
∑

t

γtÛ
(t)
cs (w)

)

= EUg

(
Γw
∑

t γt

)

+ o(‖w‖),

and again, an approximated unbiased estimator of Ug(w) is

(
∑

t

γt

)−1(
∑

t

γtÛ
(t)
cs

(
∑

t

γtΓ
−1w

))

.

Expand the above expression, we get the estimated utility function for CVcs for

a general D:

Ûcs(w; ν) =
∑

t

γ̃t|Dt|−1
∑

(i,k)∈Dt

u




∑

`,t′

I (st′ ∩ st = ∅)
rt

w`,t′ Ŷ
`
t′(xi,k), yi,k



 , (8)

where γ̃t = γt/(
∑

t′ γt) and rt =
∑

t′ γ̃t′I (st′ ∩ st = ∅).

An implicit assumption built in (8) is that none of the rt’s is zero. This is

equivalent to the requirement that for each Dt, there exists at least one Dt′ that
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contains a completely different list of studies than Dt. It is not too stringent if

we only allow each Dt contains samples from a subset of studies.

We now apply Ûcs(w; (1/2, 1/2)) to select w for the example in Section 3.1.

Note in this example, D is study-specific. It follows that

Ûcs(w; (1/2, 1/2)) = −
(

2w2
1ȳ

2
1 = 2w2

2ȳ
2
2 − 2ȳ1ȳ2 +

y21 + y22
2

)

.

The maximzier of Ûcs(w; (1/2, 1/2)) is ŵcs =
(
ȳ22/(ȳ

2
1 + ȳ22), ȳ

2
1/(ȳ

2
1 + ȳ22)

)
. Like

the oracle weights wg, ŵcs depend on ȳ1 and ȳ2. We can compare the cMSE of

PFs specified by ŵ and ŵcs:

cMSE(Ŷ cs
w )− cMSE(Ŷŵ) =

−(ȳ21 − ȳ22)
2(ȳ1 + ȳ2)

2

4(ȳ21 + ȳ22)
2

≤ 0.

The equality holds if and only if ȳ1 = ȳ2. This comparison shows that CVcs

outperforms stacking with data-reuse for selecting generalist PFs.

In light of Proposition 1, which indicates the asymptotic equivalence of CVws

to stacking with DR as n → ∞ with K fixed, we will refer to CVcs as stacking

with NDR and will denote Ûcs(w; ν) as Ũ(w; ν) and ŵcs as w̃ in the remainder

of this manuscript. The relative performance of CVcs to stacking with DR, in a

general setting, will be discussed in Proposition 3 and a condition under which

CVcs outperforms stacking with DR is illustrated.

Remark. CVws and CVcs have their strengths and limitations. Datasets for se-

lecting w in CVcs are not used to generate Ŷ and are indeed “external”. This

is not the case for CVws. For example when D is study-specific, Ŷ `
t,m trained on

Dt,−m will be used to predict samples in Dt,m from the same study t, which might

still lead to optimistic estimation of Ug(w), as observed for CV in model selection

(Zhang, 1993). On the other hand, CVcs at each iteration considers linear combi-

nations of sets of SPFs with lower cardinality compared to Ŷ, whose cardinality

is TL. In addition, CVcs cannot handle specialist predictions for certain types of

D. For example, Ûcs(w; ek) is not well defined if D is study-specific.

17



3.3 Penalization in stacking

Adding a penalty to the utility function Û(w; ν) is a common practice for selecting

weights w in stacking (Breiman, 1996; LeBlanc and Tibshirani, 1996). Flexible

forms of penalties on w can deal with a wide variety of relationships between SPFs

in Ŷ. For example, group LASSO can be used when SPFs can be organized into

related groups. In this section, we leverage this flexibility for specialist predictions

when nk is small.

When nk is small, the estimated prediction accuracy of a PF is highly vari-

able. This disadvantage is further compounded by the fact that under certain

conditions, specialist PFs fail to incorporate information from other studies. For

instance, stacked PFs for specialist predictions derived from stacking with DR,

when OLS regression serves as the single learner, do not put any weights on SPFs

derived from studies other than the target study(see Section 3.1). To overcome

the above disadvantage arising from small nk, we introduce a penalized utility

function that promotes shrinkage of specialist PFs towards generalist PFs.

The penalized Û(w; ek) is defined as follows.

ŵ(k)
p = argmax

w∈W
Û(w; ek)− λ‖w − ŵg‖22, (9)

where λ > 0 is a tuning parameter, ŵg = argmaxw∈W Û(w; νg) and νg is a set of

study weights used in generalist utility. We use a leave-one-out cross-validation to

select the turning parameter λ. For sample i in study k, we generate Ŷ using data

with this sample excluded. We then calculate the prediction error of the resulting

stacked PF with weights ŵ
(k)
p on sample i. This procedure is repeated over a set

of candidate values for λ. We specify that the candidate values decrease as nk

increases.

In Figure 2b, we illustrate the effect of penalization in training of specialist

PFs for a study with small sample size (n1 = 10). As λ increases from 10−3, the

expected MSE in study 1, defined as
∫

(x,y)(y − Ŷ (x))2dP1(x, y), of the penalized

specialist PFs first decreases, indicating the benefit of shrinking the specialist

weights towards the generalist weights. The expected MSE is minimized at λ ≈ 8

and when λ increases beyond it, the expected MSE starts to increase. The details

of the distribution assumptions for this example is describe in Section 5.1.
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Figure 2: (a) |U(w;K−11K) − Ûws(w;K
−11K)| and |U(w;K−11K) −

limn→∞ U(w;K−11K)| at w = K−11K as a function of n. A 5-fold CVws is
used and we repeat the simulation for 40 times. CV indicates CVws, DR indicates
stacking with data reuse. Both X-axis and Y-axis are log10 transformed. The
dashed lines indicate the upper and lower fifth percentile of the differences. The
solid lines illustrate the linear regression fitted lines of log-transformed difference
on log10(n). The slopes are labelled beside the two lines. (b) Effect of penalization
on specialist prediction performance. λ controls the strength of the penalization.
Larger λ shrinks the specialist predictions more towards generalist predictions.
The two dashed lines indicate the expected MSE when λ = 0 (No penalty) and
λ→ ∞ (Generalist). Note that the X-axis is log10 transformed.

4 Properties of generalist prediction models

We examine properties of generalist PFs Ŷw when w are obtained with (ŵ) and

without (w̃) data reuse when W = {‖w‖1 ≤ 1}. Recall that under the exchange-

ability assumption, ŵ = argmaxw∈W Û(w;K−11K) and w̃ = argmaxw∈W Ũ(w;K−11K).

For the remainder of this manuscript, we will assume û(ŷ, y) = −(ŷ − y)2. We

work under the assumption that the data generating distribution underlying the

multi-study collection is a hierarchical model, and D will be study-specific. In the

last part of this manuscript, we explore and discuss the results derived when this

assumption is relaxed.

We present two properties of generalist predictors. First, the expected MSE of

the generalist PFs in future k > K studies, as determined by ŵ and w̃, converge

to the MSE of an oracle PF Yw0
g
, and the discrepancy between the MSEs will be

bounded by a monotone function of K and mink nk. Second, we investigate under

which circumstances stacking without data reuse has better MSE compared to

stacking with data reuse.
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The joint hierarchical model underlying available and future datasets is:

yi,k = fk(xi,k) + εi,k,

fk ∼ F, xi,k
iid∼ FX ,

(10)

for i = 1, . . . , nk and k = 1, 2, . . .. Here fk : Rp → R, k ≥ 1, are iid random

functions with marginal distribution F . The mean of F is indicated as f0 =
∫
fdF (f). Covariate vectors xi,k ∈ X have the same distribution FX with finite

second moment across all datasets, and the noise terms εi,k are independent with

mean zero and variance σ2.

Our propositions 2 and 3 will assume that:

A1. There exists an M1 <∞ such that for any k > 0 and ` ≤ L,

sup
x∈X

|fk(x)| ≤M1, a.e. and sup
x∈X

|Ŷ `
k (x)| ≤M1, a.e.

The first a.e. is with respect to the joint distribution of fk whereas the

second a.e. concerns the joint distribution of S.

For example, if X is a compact set and outcomes Y are bounded, the SPFs

trained with a linear regression model with a L1 constraint on the regression

coefficients, i.e. a LASSO regression model, or with tree-based regression

models satisfy the assumption.

A2. There exist M2 < ∞, p` > 0 and functions Yk,` for k = 1, . . . ,K, ` =

1, . . . , L, such that supx∈X |Y `
k (x)| ≤M1 a.e., and,

∫

x
n2p`k

(

Ŷ `
k (x)− Y `

k (x)
)2
dFX(x) ≤M2,

Here Y `
k is the limit of Ŷ `

k as nk goes to infinity. For example, if the learner

is an OLS model, then p` < 1/2.

Let Xk = (x1,k, . . . , xnk,k)
ᵀ and Yk = (y1,k, . . . , ynk,k). The predicted outcomes

for study k, based on a SPF Ŷ `
k′ , is denoted as Ŷ `

k′(Xk) = (Ŷ `
k′(xi,k); i ≤ nk)

ᵀ.
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When u(y, y′) = −(y − y′)2, we have

Û(w;K−11K) = wᵀΣ̂w − 2b̂ᵀw +K−1
∑

k

n−1
k

∑

i

y2i,k,

Ũ(w;K−11K) = wᵀΣ̃w − 2b̃ᵀw +K−1
∑

k

n−1
k

∑

i

y2i,k,

(11)

where Σ̂, Σ̃, b̂, and b̃ are defined as follows,

Σ̂k,k′;`,`′ =

K∑

i=1

(

Ŷ `
k (Xi)

)ᵀ
Ŷ `′

k′ (Xi)

niK
, bk;` =

K∑

i=1

(

Ŷ `
k (Xi)

)ᵀ
Yi

niK
,

Σ̃k,k′;`,`′ =
∑

i 6=k,i 6=k′

K
(

Ŷ `
k (Xi)

)ᵀ
Ŷ `′

k′ (Xi)

ni(K − 1)2
, b̃k;` =

∑

i 6=k

(

Ŷ `
k (Xi)

)ᵀ
Yi

ni(K − 1)
.

Note that Σ̂ and Σ̃ are KL×KL matrices, w, b̂ and b̃ are KL-dimensional vectors.

Σ̂k,k′;`,`′ is the element corresponding to wk,` and wk′,`′ while b̂k;` is the element

corresponding to wk,`.

We define the oracle generalist stacking weights w0
g based on the limits of Ŷ `

k :

w0
g = argmax

w∈W

∫

x,y
u(Yw(x), y)dP0(x, y),

where Yw =
∑

`,tw`,tY
`
t and P0 is the average joint distribution of (X,Y ) across

studies k ≥ 1. The cross-study MSE associated with a stacking weight w is defined

as

ψ(w) =

∫

x,y
(y − Yw(x))dP0(x, y) = wᵀΣw − 2bᵀw +

∫

y
y2dP0(y),

where Σk,k;`,`′ =
∫

x Y
`
k (x)Y

`′

k′ dFX(x) and bk,` =
∫

x,y yY
`
k (x)dP0(x, y).

4.1 Generalist models and oracle ensembles

In Proposition 2 we compare Ŷŵ and Ŷw̃ to oracle prediction, using the metrics

E(ψ(ŵ)− ψ(w0
g)) and E(ψ(w̃)− ψ(w0

g)).

Proposition 2. Let L ≥ 2 and u(x, y) = −(x−y)2. Consider K available datasets

and future k > K studies from model (10). If (A1) and (A2) hold, then

E
(
ψ(ŵ)− ψ(w0

g)
)
≤ C0

√

log(KL)K−1/2 + C1(min
k
nk)

−min` p` ,
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and,

E
(
ψ(w̃)− ψ(w0

g)
)
≤ C ′

0

√

log(KL)K−1/2 + C ′
1(min

k
nk)

−min` p` ,

where the expectations are taken over the joint distribution of the data S. C0, C
′
0,

C1 and C ′
1 are constants, independent of K and nk.

The above proposition shows that if we have enough studies and samples in

each study, then the estimated generalist PFs Ŷŵ and Ŷw̃ have similar accuracy

compared to Yw0
g
.

4.2 Generalist predictions with and without data reuse

We compare the prediction accuracy, as indicated by ψ(ŵ) and ψ(w̃), of generalist

PFs trained with and without data reuse. We start from a specific example,

followed by a general result on the relative accuracy levels of PFs.

Consider u(y, y′) = −(y− y′)2 and L = 1. Assume that nk = n and fk(xi,k) =

βᵀkxi,k, where each component of βk is an independent U(β0 − τ, β0 + τ) random

variable for k = 1, . . . ,K. Let each component in xi,k ∈ Rp be a U(−
√
3,
√
3)

random variable and εi,k be iid U(−
√
3,
√
3) random variables for i = 1, . . . , n,

k = 1, . . . ,K. Let the learner be an OLS model, therefore Ŷ `
k (x) = β̂ᵀkx. Denote

β = (β1, . . . , βK) and β̂ = (β̂1, . . . , β̂K).

In this setting, we have Σk,k′ = βᵀkβk′ , bk = βᵀkβ0 and

Σ̂k,k′ = (nK)−1
∑

s

β̂ᵀkX
ᵀ
sXsβ̂k, b̂k = (nK)−1

∑

s

β̂ᵀkX
ᵀ
sYs,

Σ̃k,k′ =
K

n(K − 1)2

∑

s 6=k,k′

βᵀkX
ᵀ
sXsβ̂k, b̃k = (n(K − 1))−1

∑

s 6=k

β̂ᵀkX
ᵀ
sYs.

To understand the behavior of ŵ and w̃, we first consider the bias of (Σ̂, b̂)

and (Σ̃, b̃) with respect to (Σ, b), as captured by the difference between their

expectation over the joint distribution of the observed data S:

E(Σ̂(k, k′))− E(Σ(k, k′)) = − p(p+ 1)

Kn(n− p− 1)
(1− δi,j),

E(Σ̃(k, k′))− E(Σ(k, k′)) =







(K − 1)−1(βᵀ0β0 + pτ2 + p
n−p−1) i = j,

−(K − 1)−2βᵀ0β0 i 6= j,

E(b̂(k))− b(k)) =
pτ2 + p/n

K
, E(b̃(k))− b(k)) = 0.
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The above equalities indicate that stacking without data reuse estimates off-

diagonal elements of Σ without bias while zero-out stacking estimates b without

bias. However, the equalities don’t provide a direct comparisons of the relative

performances of stacking with and without data reuse.

The next step is to derive an approximation of ŵ and w̃ to compare the stacking

procedures based on ψ(w). One approximation considers the optimization of

Û(w;K−11K) and Ũ(w;K−11K) at the limit when n → ∞. In this case, if

W = R
K

ŵ ≈ K−11K , w̃ ≈ K − 2

K − 1
K−11K +

1

K − 1

(
1

K
Sβᵀβ − K − 1

K
I

)

1K ,

where S = diag{‖β1‖−2
2 , . . . , ‖βK‖−2

2 }. Note that each component of (Sββᵀ/K −

(K−1)/KI)1K decreases as τ increases. When τ = 0, each component is equal to

K−1 whereas when τ → ∞, the limit is approximately −(K − 1)/K. We can find

w̃ is a shrunk version of ŵ towards zero. For study with larger βk, the strength

of shrinkage for wk tends to be larger. A Monte-Carlo simulation determines that

based on the above approximations, E (ψ(ŵ)) > E (ψ(w̃)) when τ &
√
K. This

bound is verified by a simulation study (see Figure 3).
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Figure 3: Comparison of stacking PFs constructed with and without data reuse
whenK = 2 (left) andK = 9 (right). We set p = 10, β0 = 1K , n = 200, σ = 1 and
vary τ2. The difference in EψK(w) is calculated with 1,000 replications. Oracle is
the predictor Ŷwg , “new study” means we train weights with a set of new studies

that are not used in constructing X̂ and “merge” means we merge all studies to
train a single regression model to serve as the generalist PF.

Motivated by the simulation results, we investigate under what circumstances

Eψ(w̃) is smaller than Eψ(ŵ). We present our results in Proposition 3 about the

characterization of the relative performance of Ŷŵ and Ŷw̃ in a general setting,
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when data are generated from the model (10).

Proposition 3. Assume the data are generated via (10) with nk = n and as-

sumptions A1-A2 hold. Denote

σ2f =

∫

f

(∫

(f(x)− f0(x))dFX(x)

)2

dF (f).

There exists κ > 0 such that when

8
√
e(2M2

1 +M1σf )
√

log((K − 1)L)((K−1)L)−1/2 ≤ κM1σf
√

log(KL)(KL)−1/2,

(12)

E(ψ(Ŷŵ)) + C∗n−min` p` ≥ E(ψ(Ŷw̃)), where E is taken over S.

σf is a metric to measure the heterogeneity across studies since the only differ-

ence of one study to the other, based on our model assumption, is E(yi,k|xi,k) =

f(xi,k). Note that (K − 1) log(KL)/(K log((K − 1)L)) increases as K increases

when K is small and starts to decrease to 1 when K gets large. Therefore, if

8
√
e(2M2

1 +M1σf )

κM1σf
≤ 1,

then Eψ(w̃) is always smaller than Eψ(ŵ) up to a term C∗n−min` p` . If the ratio

is larger than 1, only K that is small enough to satisfy (12) can guarantee the

superiority of w̃. We also note that 8
√
e(2M2

1 +M1σf )/(κM1σf ) is a decreasing

function in σf . This means if σf is large, the upper bound for K such that

Eψ(w̃) ≤ Eψ(ŵ) will increase.

The proposition provides a rough guideline to select between stacking with

and without data reuse. If the number of studies are relatively small, we would

prefer stacking without data reuse to stacking with data reuse, as the former

outperforms the latter even with low σf . On the other hand, when K is large, we

might turn to stacking with data reuse more often unless there is strong evidence

indicating σf is extremely high.

In Figure 6, we examine the relative performance of two stacking approaches

across a range of K and cross-study heterogeneity with a simulation study. We

can see stacking without data reuse outstrips stacking with data reuse exclu-

sively when τ is above a threshold defined by a function of
√
K. Only when σ
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is small with moderate K, stacking with data reuse shows significant advantage

over stacking without data reuse.

A more clear-cut recommendation based on Proposition 3 can be challenging

sinceM1 and κ are unknown and σf is also not observed. However, one can adapt

a non-parametric model to approximate fk within each study and estimate these

quantities to refine the rough guideline above, which might only be appropriate

if nk is large.

5 Simulation studies

In this section, we first illustrate the effectiveness of the technique in Section 3,

proposed for specialist predictions of small studies, through simulated datasets.

We then examine the analytical results in Section 4 using numerical examples. We

investigate empirically whether the error bound of the estimated stacking predic-

tors in Proposition 2 is tight, and verify that the preferable region of stacking with

NDR in comparison to with DR is aligned with our theoretical characterization.

We conclude this section with an example illustrating how to extend generalist

predictions to non-exchangeable studies.

5.1 Specialist predictions for small studies

We specify the following generative model for the simulated dataset to examine the

performance of the specialist predictor derived from the modified utility function

(9). In addition, we also consider the performance of the generalist predictor

derived based on the utility function Û(Ŷw; 1/K1K) and the specialist predictor

without small-sample based penalization.

yi,k = βᵀkxi,k + εi,k,

βk ∼ N(1p, Ip), εi,k ∼ N(0, 25),

where p is the number of covariates, 1p is a p-vector of ones and Ip is the p × p

identity matrix. We set p = 10 and K = 5 with nk = 100 for k = 2, . . . , 5 and

n1 varying from 10 to 50. In Figure 4, we illustrate the RMSEs of the three

predictors in consideration when applied to predict new samples in study 1. We

set Dt to be all data from study t, t = 1, . . . ,K and ordinary least square (OLS)
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Figure 4: RMSE of the specialist predictor, the generalist model and the penalized
specialist predictor on future samples in study 1.

regression is the single-set learner. We use negative squared loss as u(·, ·) and set

w(n) = 100/n.

From the results we can see that when n1 is small (< 40), the generalist

predictor outperforms unpenalized specialist predictor. This is as expected since

all five studies are similar to each other. The penalized specialist predictor, on the

other hand, is not sensitive to n1 and has the lowest RMSE (except for n1 = 10)

among all three predictors.

5.2 Error bound of generalist stacking predictors

We illustrate the difference in the prediction error, E

(

ψ(Ŷŵg
)
)

− E

(

ψ(Yw0
g
)
)

,

considered in Proposition 1 with a numeric example and compare the actual dif-

ference to the analytic upper bound as nk and K change. We use a similar

generative model specification as in Section 5.1 but specify that each component

of βk follows U [0, 1] and each component of xi,k follows U [−1, 1]. In addition, we

assume that εi,k ∼ U [−1, 1]. The reason to replace the normal distributions with

uniform distributions is to satisfy the boundedness assumption for gk and f̂k. We

set nk = n for all k and calculate with Monte Carlo simulation the difference

E

(

ψ(Ŷŵg
)
)

− E

(

ψ(Yw0
g
)
)

for n = 100, 200, 400 as K increases from 5 to 50 with
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increment 1 and for K = 5, 15, 20 as n increases from 20 to 100 with increment

5. We use the same constraint on w, i.e. ‖w‖1 ≤ 1 as in the proposition. The

results are derived from 1000 simulation replicates and shown in Figure 5.
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Figure 5: E(ψ(Ŷŵg
)− ψ(Yw0

g
)) as a function of K and n. Note that the values on

X-axis in both plots increase as K or n decreases.

From the figures we can find except for small K and n, the difference in ψ

is approximately a linear function of both
√

logK/K or n−1/2 when fixing n or

K. This indicates that the actual difference in ψ changes at the same order as

the upper bound we discovered in Proposition 1. Indeed, under this simulation

scenario, the above results implies the upper bound is probably tight and we

cannot improve the results about the convergence rate of Ŷŵg
to Yw0

g
.

5.3 Comparison between stacking with and without data reuse

We also perform a simulation analysis to check if the transition bound provided

in Proposition 2 correctly delimits the region where stacking without data reuse

supersedes stacking with data reuse. We use the same simulation scenario as in

Section 5.2 but vary the variance of βk by changing the range of the corresponding

uniform distributions and number of studies K. We then calculate the prediction

accuracy on future studies of the generalist predictors derived with stacking with

and without data reuse under the constraint that ‖w‖1 ≤ 1.

5.4 Non-exchangeable studies

To conclude the simulation study section, we present a numeric experiment where

we illustrate the flexibility of the stacking approach to incorporate non-exchangeable

studies. Specifically, we assume that K studies are collected at time point tk = k
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with ‖w‖1 ≤ 1. The dash line indicates the upper bound on K within which
stacking without data reuse has better prediction accuracy.

and the study-specific regression coefficients βk follows an AR1 model.

βk = ρβk−1 +
√

1− ρ2εk,

where ρ is a constant between 0 and 1, which indicates the dependence between

studies that are collected at close proximity in time. εk are independent normal

noise with mean zero and covariance matrix Ip. Once we simulate βk, we use the

same generative model for xi,k and yi,k as in Section 5.1.

To account for the non-exchangeability between studies, we set the study-

specific weight νk based on the distance between study k and the future study,

which is assumed to be collected at time K + 1. Specifically, we assume νk =

1/(K + 1 − k). The choice here is rather arbitrary but it incorporates the fact

that most recent studies will be emphasized when training the generalist predictors

for study K + 1. The performance of this particular choice of stacking weights in

the simulated dataset is shown in Figure 7. We consider three different values of

ρ, correpsonding to high, medium and no dependence between studies.
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Figure 7: Comparsions of methods when studies are generated using an AR-1
model. ρ indicates the correlation between βk of two adjacent time points.

6 Application

We apply our generalist predictors on an environmental health dataset containing

observed mortality rate (person-year) across 31,414 unique zip codes in the entire

U.S. For each ZIP code, the mortality rate is available from 1999 to 2016. The

exposure to air pollution agents, such as PM2.5, is calculated for each ZIP code

as the average observed levels from 1998 to 1999. In addition to the measurement

of air pollution agents and the outcome, we also have access to ZIP code-level

demographic covariates. All these covariates are measured before 1999. Demo-

graphic covariates consists of temperature, humidity, percentage of ever smokers,

black population, median household income, median value of housing, percentage

below the poverty level, percentage less than high school education, percentage of

owner-occupied housing units, and population density.

We define the generalist prediction task in this dataset as the prediction of ZIP

code-level mortality for a state based on data from other states and the specialist

prediction task as the prediction for a specific state based on all available data.

For generalist predictions, we randomly select 10 states to train an ensemble

of state-specific prediction models and use our stacking approaches to combine

these models to predict mortality rate for the rest of states. The metric we use

to evaluate the performance of the stacked model is the average RMSE across all

40 testing states. We repeat this procedure 20 times. We consider two different
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Figure 8: Comparisons of the performance of stacking-based methods to merging.
Stacking-based methods are derived with L1 penalty with or without data reuse.
Each boxplot illustrates the variability of the prediction accuracy, evaluated with
RMSE, of a specific method. The variability for generalist predictions is estimated
through 20 replicates of random partitioning of training and testing states. The
variability for specialist predictions is estimated through 10-fold cross-validation.

approaches for generalist problems: stacking with DR and stacking with NDR.

The same analysis is then performed for the county-level dataset from California.

For this dataset, the number of testing counties are 48. The results are shown in

8.

From the figure we can find that when the dataset contains all states, sup-

posedly with higher between studies heterogeneity, the performance of NDR is

slightly better than that of DR, whereas if the dataset contains only county-level

studies in California, which has smaller cross-study heterogeneity than the na-

tionwide dataset, the advantage of NDR disappears and DR now has a smaller

RMSE than NDR. This result is consistent with what we find in Proposition 3,

which indicates for a fixed K, NDR only outperforms DR when the cross-study

hetergeneity is large.
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A Proof of Proposition 1

Partition each study evenly intoM pieces and denote the covariate matrix for the

m-th piece in study k as Xk,m, the corresponding responses as Yk,m. Let Xk,−m

and Yk,−m denote the entire covariate matrix and outcome vector for study k,

excluding Xk,m and Yk,m. At iteration m, CVcs with study-specific D fits an OLS

model to each study based on (Xk,−m, Yk,−m). We denote the estimated regression

coefficients as

β̂k,m = (Xᵀ
k,−mXk,−m)−1Xᵀ

k,−mYk,−m.

The utility function for CVws can be written as

Ûws(w;K
−11K) = (Kn)−1

K∑

k=1

M∑

m=1

∥
∥
∥
∥
∥
Yk,m −

K∑

k′=1

wk′Xk,mβ̂k′,m

∥
∥
∥
∥
∥

2

2

= wᵀΣ1w−2bᵀ1w+
∑

k

‖Yk‖22.

The utility function for data reuse stacking is

Û(w;K−11K) = (Kn)−1
K∑

k=1

∥
∥
∥
∥
∥
Yk −

K∑

k′=1

wk′Xkβ̂k′

∥
∥
∥
∥
∥

2

2

= wᵀΣ2w− 2bᵀ2w+
∑

k

‖Yk‖22,

where β̂k = (Xᵀ
kXk)

−1Xᵀ
kYk is the OLS estimate of regression coefficients based

on all data from study k.
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Σ1 and Σ2 are both K ×K matrices and the (i, i′)-th element of them are

Σ1(i, i
′) = (Kn)−1

K∑

k=1

M∑

m=1

β̂ᵀi,mX
ᵀ
k,mXk,mβ̂i′,m

Σ2(i, i
′) = (Kn)−1

K∑

k=1

β̂ᵀiX
ᵀ
kXkβ̂i′ .

b1 and b2 are K-dimensional vectors with the i-th elements

b1(i) = (Kn)−1
K∑

k=1

M∑

m=1

β̂ᵀi,mX
ᵀ
k,mYk,m, b2(i) = (Kn)−1

K∑

k=1

β̂ᵀiX
ᵀ
kYk.

Note that we have the following relationship between β̂k,m and β̂k:

β̂k,m = β̂k + (Xᵀ
kXk)

−1Xᵀ
k,m(I − Pk,m)−1(Xk,mβ̂k − Yk,m), (13)

where Pk,m = Xk,m(Xᵀ
kXk)

−1Xᵀ
k,m. With the assumptions about the distribution

of data and central limit theorem, we have the following characterization:

1

n
Xᵀ

kXk = Ip +Op(1/
√
n)

1

n
Xᵀ

m,kXm,k =
1

M
Ip +Op(1

√
n)

1

n
Xᵀ

m,kYm,k =
1

M
βk +Op(1

√
n)

β̂k = βk +Op(1/
√
n)

β̂k,m = β̂k +Op(1/
√
n)

Pk,m = Op(1/n).

(14)

Define δβ̂k,m = β̂k,m − β̂k. We have

n−1β̂ᵀi,mX
ᵀ
k,mXk,mβ̂i′,m =β̂i(n

−1Xᵀ
k,mXk,m)β̂i′ + δβ̂ᵀi,m(n−1Xᵀ

k,mXk,m)β̂i′

+β̂ᵀi (n
−1Xᵀ

k,mXk,m)δβ̂i′,m +Op(1/n).

Note that by (13) and (14)

β̂ᵀi (n
−1Xᵀ

k,mXk,m)δβ̂i′,m =βᵀi (n
−1Xᵀ

k,mXk,m)δβ̂i′,m +Op(n
−1)

=βᵀi (n
−1Xᵀ

k,mXk,m)(Xᵀ
i′Xi′)

−1Xᵀ
i′,m(In/M − Pi′,m)−1(Xi′,mβ̂i′ − Yi′,m) +Op(n

−1)

=βᵀi (I +Op(1/
√
n))(Xᵀ

i′Xi′)
−1Xᵀ

i′,m(Xi′,mβ̂i′ − Yi′,m) +Op(1/n).
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Therefore

∑

m

β̂ᵀi (n
−1Xᵀ

k,mXk,m)δβ̂i′,m = βᵀi (I+Op(1/
√
n))(Xᵀ

i′Xi′)
−1
(

(Xᵀ
i′Xi′)β̂i′ −Xᵀ

i′Yi′
)

+Op(1/n) = Op(1/n),

by the definition of β̂i′ . Similarly, we get
∑

m δβ̂
ᵀ
i,m(n−1Xᵀ

k,mXk,m)β̂i′ = Op(1/n).

And |Σ1(i, i
′) − Σ2(i, i

′)| = Op(1/n) for every i, i′ ≤ K. The same procedure

can be applied to prove |b1(i)− b2(i)| = Op(1/n) by noting that n−1Xᵀ
k,mYk,m =

1/Mβk + Op(1/
√
n). Since w is defined on a bounded set: ‖w‖ ≤ C and K is

fixed and finite, we immediately get that for all w ∈W

|wᵀ(Σ1 − Σ2)w − 2(b1 − b2)
ᵀw| ≤ COp(1/n).

B Proof of Proposition 2

Define ψ̂(w) as

ψ̂(w) = Û(w;K−11K)−
∑

k Y
ᵀ
k Yk

nkK
+

∫

y
y2dP0(y).

Similarly, define ψ̃(w) = Ũ(w;K−11K)−K−1
∑

k n
−1
k Y ᵀ

k Yk +
∫

y y
2dP0(y).

We first note the following lemma for the upper bounds of two differences

|ψ(ŵ)− ψ(w0
g)| and |ψ(ŵ)− ψ(w0

g)|.

Lemma 1. |ψ(ŵ)− ψ(w0
g)| and ψ(w̃)− ψ(w0

g) can be bounded as follows.

|ψ(ŵ)− ψ(w0
g)| ≤ 2 sup

w∈W
|ψ(w)− ψ̂(w)|,

|ψ(w̃)− ψ(w0
g)| ≤ 2 sup

w∈W
|ψ(w)− ψ̃(w)|.

Proof. We prove the inequality for ŵ and similar steps can be followed to verify

the other inequality. Note that

ψ(ŵ)− ψ(w0
g) = ψ(ŵ)− ψ̂(ŵ) + ψ̂(ŵ)− ψ̂(w0

g) + ψ̂(w0
g)− ψ(w0

g).
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By definition ψ(ŵ)− ψ(w0
g) ≥ 0 and ψ̂(ŵ)− ψ̂(w0

g) ≤ 0, therefore

|ψ(ŵ)− ψ(w0
g)| ≤ |ψ(ŵ)− ψ̂(ŵ)|+ |ψ̂(w0

g)− ψ(w0
g)| ≤ 2 sup

w∈W
|ψ(w)− ψ̂(w)|.

When W = {w : ‖w‖1 ≤ 1}, we have

sup
w∈W

|ψ(w)− ψ̂(w)| ≤ ‖vec(Σ− Σ̂)‖∞ + ‖b− b̂‖∞,

where ‖·‖∞ is the L∞-norm of a vector and vec(·) is the vectorization of a matrix.

With Lemma 1, it follows

E[ψ(ŵ)− ψ(w0
g)] ≤ 2E‖vec(Σ− Σ̂)‖∞ + 2E‖b− b̂‖∞. (15)

The following lemma provides an upper bound for E‖vec(Σ−Σ̂)‖ and E‖vec(Σ−

Σ̃)‖.

Lemma 2. If assumption A1 and A2 hold, we have the following bounds for

E‖vec(Σ− Σ̂)‖∞ and E‖vec(Σ− Σ̃)‖∞.

E‖vec(Σ− Σ̂)‖∞ ≤ 4
√
2eM2

1

√

log(KL)/K + 2M1M2(min
k
nk)

−min`p` ,

E‖vec(Σ− Σ̃)‖∞ ≤ 8
√
2eM2

1

√

log(KL)/K + 4M1M2(min
k
nk)

−min`p` .

Proof. First note that

Âk,`;k′,`′−Ak,`;k′,`′ = K−1
K∑

i=1

n−1
s

ns∑

i=1

(

Ŷ `
k (xs,i)Ŷ

`′

k′ (xs,i)−
∫

x
Y `
k (x)Y

`′

k′ (x)dFX(x)

)

.

Denote
∫

x Y
`
k (x)Y

`′

k′ k
′`

′

(x)dFX(x) as 〈Y `
k , Y

`′

k′ 〉, we have

‖Σ̂− Σ‖∞ ≤K−1
∑

s

n−1
s

∑

i

∥
∥
∥

(

Ŷ `
k (xs,i)

(

Ŷ `′

k′ (xs,i)− Y `′

k′ (xs,i)
)

; k, k′ ≤ K, l, l′ ≤ L
)∥
∥
∥
∞

+K−1
∑

s

n−1
s

∑

i

∥
∥
∥

(

Y `′

k′ (xs,i)
(

Ŷ `
k (xs,i)− Y `

k (xs,i)
)

; k, k′ ≤ K, l, l′ ≤ L
)∥
∥
∥
∞

+K−1

∥
∥
∥
∥
∥

(
∑

s

n−1
s

∑

i

(

Y `
k (xs,i)Y

`′

k′ (xs,i)− 〈Y `
k , Y

`′

k′ 〉
)

; k, k′ ≤ K, l, l′ ≤ L

)∥
∥
∥
∥
∥
∞

(16)
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By assumption A1, we have

∣
∣
∣Ŷ `

k (xs,i)
(

Ŷ `′

k′ (xs,i)− Y `′

k′ (xs,i)
)∣
∣
∣ ≤M1|Ŷ `′

k′ (xs,i)− Y `′

k′ (xs,i)|, a.e.

Combined with assumption A2, we have

E

∥
∥
∥

(

Ŷ `
k (xs,i)

(

Ŷ `′

k′ (xs,i)− Y `′

k′ (xs,i)
)

; k, k′ ≤ K, l, l′ ≤ L
)∥
∥
∥
∞

≤M1M2(min
k
nk)

−min` p` .

The same upper bound holds the second term to the right-hand side of (16).

Define vector αs,i =
(

Y `
k (xs,i)Y

`′

k′ (xs,i)− 〈Y `
k , Y

`′

k′ 〉; k, k′ ≤ K, l, l′ ≤ L
)

. Invoke

Lemma 2.1 in Juditsky and Nemirovski (2000), we have

W

(
K∑

s=1

n−1
s

ns∑

i=1

αs,i

)

≤W
(

K−1∑

s=1

n−1
s

ns∑

i=1

αs,i

)

+ (n−1
K

nK∑

i=1

αK,i)
ᵀ∇W

(
K−1∑

s=1

n−1
s

∑

i

αs,i

)

+c∗(M)‖n−1
K

∑

i

αK,i‖2∞,

where M = K2L2, c∗(M) = 4e logM , W (z) = 1/2‖z‖2q : R
M → R and q =

2 logM . It follows that

E

[

W

(
K∑

s=1

n−1
s

ns∑

i=1

αs,i

)]

≤ E

[

W

(
K−1∑

s=1

n−1
s

ns∑

i=1

αs,i

)]

+c∗(M)E‖n−1
K

∑

i

αK,i‖2∞,

(17)

since αk,i and αk′,i are independent when k 6= k′ and E(αk,i) = 0. The inequality

in (17) implies a recursive relationship and repeatedly apply it for K times we get

E

[

W

(
K∑

s=1

n−1
s

ns∑

i=1

αs,i

)]

≤ c∗(M)
K∑

s=1

n−1
s E‖

∑

i

αs,i‖2∞.

By assumptions A1 and A2 again, we have
∣
∣
∣Y `

k (xs,i)Y
`′

k′ (xs,i)− 〈Y `
k , Y

`′

k′ 〉
∣
∣
∣ ≤

2M2
1 , a.e. Therefore,

E

[

W

(
K∑

s=1

n−1
s

ns∑

i=1

αs,i

)]

≤ c∗(M)4KM4
1 = 32e log(KL)KM4

1 .

Since W (z) ≥ 1/2‖z‖2∞, it follows

K−1
E‖
∑

s

n−1
s

∑

i

αs,i‖∞ ≤ K−1
√

32e log(KL)KM4
1 = 4

√
2eM2

1

√

log(KL)/K.
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The above steps also apply for the bound on E‖Σ̃− Σ‖∞ by noting that

K

∥

∥

∥

∥

∥

∑

s 6=k,k′
n−1
s

∑

i

(

Ŷ `
k
(xs,i)Ŷ

`′

k′
(xs,i)−〈Y `

k
,Y `′

k′
〉
)

∥

∥

∥

∥

∥

∞

(K−1)2
≤ 2

∥

∥

∥

∥

∥

∑

s 6=k,k′
n−1
s

∑

i

(

Ŷ `
k
(xs,i)Ŷ

`′

k′
(xs,i)−〈Y `

k
,Y `′

k′
〉
)

∥

∥

∥

∥

∥

∞

K−1−I(k 6=k′) .

We then prove similar bounds for E‖b− b̂‖∞ and E‖b− b̃‖∞.

Lemma 3. If assumption A1 and A2 hold, we have the following bounds for

E‖b− b̂‖∞ and E‖b− b̃‖∞.

E‖b− b̂‖∞ ≤ (M1 + σ)M2(min
k
nk)

−min` p` + 8
√
e(2M2

1 +M1σ)
√

log(KL)/K,

E‖b− b̃‖∞ ≤ (M1 + σ)M2(min
k
nk)

−min` p` + 8
√
e(2M2

1 +M1σ)
√

log((K − 1)L)/(K − 1).

Proof. Note that

‖b̂k,` − bk,l‖∞ =K−1

∥
∥
∥
∥
∥

∑

s

n−1
s

∑

i

Ŷ `
k (xs,i)ys,i − Y `

k (xs,i)ys,i

∥
∥
∥
∥
∥
∞

+K−1

∥
∥
∥
∥
∥

∑

s

n−1
s

∑

i

Y `
k (xs,i)ys,i − Y `

k (xs,i)f0(xs,i)

∥
∥
∥
∥
∥
∞

+K−1

∥
∥
∥
∥
∥

∑

s

n−1
s

∑

i

Y `
k (xs,i)f0(xs,i)− 〈Y `

k , f0〉
∥
∥
∥
∥
∥
∞

.

Follow the same step as in the proof of Lemma 2 with assumption A1 and A2,

as well as Lemma 2.1 in Juditsky and Nemirovski (2000), we have

E‖b̂− b‖∞ ≤(M1 + σ)M2(min
k
nk)

−min` p` + (2M2
1 +M1σ)

(

1 +
√

4e log(KL)(K − 1)
)

K−1

+4M2
1K

−1/2
√

e log(KL)

≤(M1 + σ)M2(min
k
nk)

−min` p` + 8
√
e(2M2

1 +M1σ)
√

log(KL)K−1/2

The proof is completed by noting that

K

K − 1



K−1
∑

s 6=k

n−1
s

∑

i

Ŷ `
k (xs,i)ys,i − Y `

k (xs,i)ys,i





=
1

K − 1




∑

s 6=k

n−1
s

∑

i

Ŷ `
k (xs,i)ys,i − Y `

k (xs,i)ys,i



 .
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Combining the results in Lemma 2 and Lemma 3 we get the results in Propo-

sition 2.

C Proof of Proposition 3

Let limn→∞ Û(w;K−11K) = Û0(w) and limn→∞ Ũ(w;K−11K) = Ũ(w). The

quadratic and linear coefficients for Û0 and Ũ0 are

Σ̂0 = lim
n→∞

Σ̂ =
[

〈Y `
k , Y

`′

k′ 〉; k, k′ ≤ K, `, `′ ≤ L
]

,

Σ̃0 = lim
n→∞

Σ̃ =
K

(K − 1)2

[

(K − 1− I(k 6= k′))〈Y `
k , Y

`′

k′ 〉; k, k′ ≤ K, `, `′ ≤ L
]

,

b̂0 = lim
n→∞

b̂ = (〈Y `
k , Ȳ

`〉; k ≤ K, ` ≤ L),

b̂0 = lim
n→∞

b̂ = (〈Y `
k , Ȳ

`
−k〉; k ≤ K, ` ≤ L),

where Ȳ ` = K−1
∑

k Y
`
k and Ȳ `

−k = (K − 1)−1
∑

k′ 6=k Y
`
k′ . With assumption A2

along with the proof for Lemma 2, we know that

E

∣
∣
∣Û(ŵ;K−11K)− Û0(ŵ)

∣
∣
∣ ≤ Cn−min` p` .

Since both Û and Ũ are smooth with respect to w, with Taylor expansion and

assumptions A1 and A2, we have

|ψ(ŵ)− ψ(ŵ0)| ≤ C∗n−min` p` ,

where ŵ0 = argmaxw∈W Û0(w). The same bound applies for |ψ(w̃) − ψ(w̃0)|.

Therefore, we can focus on study the difference ψ(ŵ0)− ψ(w̃0).

Using results from Lemma 3, we can find an upper bound for ψ(w̃0)− ψ(w0
g):

E
(
ψ(w̃0)− ψ(w0

g)
)
≤ 8

√
e(2M2

1 +M1σf )
√

log((K − 1)L)(K − 1)−1/2,

here σ2f =
∫

f

(∫

x f(x)dFX(x)−
∫

x f0(x)dFX(x)
)2
dF (f).

We now find a lower bound for E(ψ(ŵ0) − ψ(w0
g)). Invoking Theorem 3.1 in

Juditsky and Nemirovski (2000) by noting that Û0 is induced with a stacking

problem with KL samples observed and the noise associated with the observation
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is the deviation of fk to f0. With an appropriately chosen large constant κ, the

theorem indicates that

E(ψ(ŵ0))− E(ψ(w0
g)) ≥ κM1σf

√

log(KL)(KL)−1/2.

Therefore, if

8
√
e(2M2

1 +M1σf )
√

log((K − 1)L)((K−1)L)−1/2 ≤ κM1σf
√

log(KL)(KL)−1/2,

we can find E (ψ(ŵ0)− ψ(w̃0)) + C∗n−min` p` ≥ 0.

40


	1 Introduction
	2 Generalist and Specialist Predictions
	2.1 Notation
	2.2 Generalist prediction
	2.3 Specialist prediction

	3 Generalist and specialist stacking
	3.1 Stacking with data reuse
	3.2 Stacking without data reuse
	3.2.1 Within-set CV
	3.2.2 Cross-set CV and stacking with no data reuse

	3.3 Penalization in stacking

	4 Properties of generalist prediction models
	4.1 Generalist models and oracle ensembles
	4.2 Generalist predictions with and without data reuse

	5 Simulation studies
	5.1 Specialist predictions for small studies
	5.2 Error bound of generalist stacking predictors
	5.3 Comparison between stacking with and without data reuse
	5.4 Non-exchangeable studies

	6 Application
	A Proof of Proposition 1
	B Proof of Proposition 2
	C Proof of Proposition 3

