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Abstract

We consider the problem of estimating the parameters of a d-dimensional rectified
Gaussian distribution from i.i.d. samples. A rectified Gaussian distribution is
defined by passing a standard Gaussian distribution through a one-layer ReLU
neural network. We give a simple algorithm to estimate the parameters (i.e., the
weight matrix and bias vector of the ReLU neural network) up to an error ε‖W‖F
using Õ(1/ε2) samples and Õ(d2/ε2) time (log factors are ignored for simplicity).
This implies that we can estimate the distribution up to ε in total variation distance
using Õ(κ2d2/ε2) samples, where κ is the condition number of the covariance
matrix. Our only assumption is that the bias vector is non-negative. Without
this non-negativity assumption, we show that estimating the bias vector within
any error requires the number of samples at least exponential in the infinity norm
of the bias vector. Our algorithm is based on the key observation that vector
norms and pairwise angles can be estimated separately. We use a recent result
on learning from truncated samples. We also prove two sample complexity lower
bounds: Ω(1/ε2) samples are required to estimate the parameters up to error ε,
while Ω(d/ε2) samples are necessary to estimate the distribution up to ε in total
variation distance. The first lower bound implies that our algorithm is optimal for
parameter estimation. Finally, we show an interesting connection between learning
a two-layer generative model and non-negative matrix factorization. Experimental
results are provided to support our analysis.

1 Introduction

Estimating a high-dimensional distribution from observed samples is a fundamental problem in
machine learning and statistics. A popular recent generative approach is to model complex distri-
butions by passing a simple distribution (typically a standard Gaussian) through a neural network.
Parameters of the neural network are then learned from data. Generative Adversarial Networks
(GANs) [GPAM+14] and Variational Auto-Encoders (VAEs) [KW13] are built on this method of
modeling high-dimensional distributions.

Current methods for learning such deep generative models do not have provable guarantees or sample
complexity bounds. In this paper we obtain the first such results for a single-layer ReLU generative
model. Specifically, we study the following problem: Assume that the latent variable z is selected
from a standard Gaussian which then drives the generation of samples from a one-layer ReLU
activated neural network with weights W and bias b. We observe the output samples (but not the
latent variable realizations z) and we would like to provably learn the parameters W and b. More
formally:
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Definition 1. Let W ∈ Rd×k be the weight matrix, and b ∈ Rd be the bias vector. We define D(W, b)
as the distribution1 of the random variable x ∈ Rd generated as follows:

x = ReLU(Wz + b), where z ∼ N (0, Ik). (1)

Here z is a standard Gaussian random variable in Rk, and Ik is a k-by-k identity matrix.

Given n samples x1, x2, ..., xn from some D(W, b) with unknown parameters W and b, the goal is
to estimate W and b from the given samples. Since the ReLU operation is not invertible2, estimating
W and b via maximum likelihood is often intractable.

In this paper, we make the following contributions:

• We provide a simple and novel algorithm to estimate the parameters of D(W, b) from i.i.d.
samples, under the assumption that b is non-negative. Our algorithm (Algorithm 1) takes two
steps. In Step 1, we estimate b and the row norms of W using a recent result on estimation
from truncated samples (Algorithm 2). In Step 2, we estimate the angles between any two
row vectors of W using a simple geometric result (Fact 1).

• We prove that the proposed algorithm needs Õ(1/ε2) samples and Õ(d2/ε2) time, in order to
estimate the parameter WWT (reps. b) within an error ε‖W‖2F (resp. ε‖W‖F ) (Theorem 1).
This implies that (for the non-degenerate case) the total variation distance between the
learned distribution and the ground truth is within an error ε given Õ(κ2d2/ε2) samples,
where κ is the condition number of WWT (Corollary 1).

• Without the non-negativity assumption on b, we show that estimating the parameters of
D(W, b) within any error requires Ω(exp(‖b‖2∞)) samples (Claim 2). Even when the bias
vector b has negative components, our algorithm can still be used to recover part of the
parameters with a small amount of samples (Section H.1).

• We prove two lower bounds on the sample complexity. The first lower bound (Theorem 2)
says that Ω(1/ε2) samples are required in order to estimate b up to error ε‖W‖F , which
implies that our algorithm is optimal in estimating the parameters. The second lower bound
(Theorem 3) says that Ω(d/ε2) samples are required to estimate the distribution up to total
variation distance ε.

• We empirically evaluate our algorithm in terms of its dependence over the number of
samples, dimension, and condition number (Figure 1). The empirical results are consistent
with our analysis.

• We provide a new algorithm to estimate the parameters of a two-layer generative model (Al-
gorithm 4 in Appendix H). Our algorithm uses ideas from non-negative matrix factorization
(Claim 3).

Notation. We use capital letters to denote matrices and lower-case letters to denote vectors. We use
[n] to denote the set {1, 2, · · · , n}. For a vector x ∈ Rd, we use x(i) to denote its i-th coordinate.
The `p norm of a vector is defined as ‖x‖p = (

∑
i |x(i)|p)1/p. For a matrix W ∈ Rd×k, we use

W (i, j) to denote its (i, j)-th entry. We use W (i, :) ∈ Rk and W (:, j) ∈ Rd to the denote the i-th
row and the j-th column. The dot product between two vectors is 〈x, y〉 =

∑
i x(i)y(i). For any

a ∈ R, we use R>a to denote the set R>a := {x ∈ R : x > a}. We use Ik ∈ Rk×k to denote an
identity matrix.

2 Related Work

We briefly review the relevant work, and highlight the differences compared to our paper.

Estimation from truncated samples. Given a d-dimensional distribution D and a subset S ⊆ Rd,
truncation means that we can only observe samples from D if it falls in S. Samples falling outside
S (and their counts in proportion) are not revealed. Estimating the parameters of a multivariate

1It is also called as a rectified Gaussian distribution, and can be used in non-negative factor analysis [HK07].
2If the activation function σ (e.g., sigmoid, leaky ReLU, etc.) is invertible, then σ−1(X) ∼ N (b,WWT ).

In that case the problem becomes learning a Gaussian from samples.
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normal distribution from truncated samples is a fundamental problem in statistics and a breakthrough
was achieved recently [DGTZ18] on this problem. This is different from our problem because our
samples are formed by projecting the samples of a multivariate normal distribution onto the positive
orthant instead of truncating to the positive orthant. Nevertheless, a single coordinate of D(W, b) can
be viewed as a truncated univariate normal distribution (Definition 2). We use this observation and
leverage on the recent results of [DGTZ18] to estimate b and the row norms of W (Section 4.2).

Learning ReLU neural networks. A recent series of work, e.g., [GMOV19, GKLW19, GKM18,
LY17, ZSJ+17, Sol17], considers the problem of estimating the parameters of a ReLU neural network
given samples of the form {(xi, yi)}ni=1. Here (xi, yi) represents the input features and the output
target, e.g., yi = ReLU(Wxi + b). This is a supervised learning problem, and hence, is different
from our unsupervised density estimation problem.

Learning neural network-based generative models. Many approaches have been proposed to
train a neural network to model complex distributions. Examples include GAN [GPAM+14] and
its variants (e.g., WGAN [ACB17], DCGAN [RMC15], etc.), VAE [KW13], autoregressive mod-
els [OKK16], and reversible generative models [GCB+18]. All of those methods lack theoretical
guarantees and explicit sample complexity bounds. A recent work [NWH18] proves that training an
autoencoder via gradient descent can possibly recover a linear generative model. This is different
from our setting, where we focus on non-linear generative models. Arya and Ankit [MR19] also con-
sider the problem of learning from one-layer ReLU generative models. Their modeling assumption
is different from ours. They assume that the bias vector b is a random variable whose distribution
satisfies certain conditions. Besides, there is no distributional assumption on the hidden variable z.
By contrast, in our model, both W and b are deterministic and unknown parameters. The randomness
only comes from z which is assumed to follow a standard Gaussian distribution.

3 Identifiability

Our first question is whether W is identifiable from the distribution D(W, b). Claim 1 below implies
that only WWT can be possibly identified from D(W, b).

Claim 1. For any matrices satisfying W1W
T
1 = W2W

T
2 , and any vector b, D(W1, b) = D(W2, b).

Proof. Since W1W
T
1 = W2W

T
2 , there exists a unitary matrix Q ∈ Rk×k that satisfies W2 = W1Q.

Since z ∼ N (0, Ik), we have Qz ∼ N (0, Ik). The claim then follows.

Identifying the bias vector b from D(W, b) can be impossible in some cases. For example, if W is a
zero matrix, then any negative coordinate of b cannot be identified since it will be reset to zero after
the ReLU operation. For the cases when b is identifiable, our next claim provides a lower bound on
the sample complexity required to estimate the bias vector to be within an additive error ε.

Claim 2. For any value δ > 0, there exists one-dimensional distributions D(1, b1) and D(1, b2) such
that: (a) |b1 − b2| = δ; (b) at least Ω(exp(b21/2)) samples are required to distinguish them.

Proof. Let b1 < 0 and b2 = b1 − δ. It is easy to check that (a) holds. To show (b), note that
the probability of observing a positive (i.e., nonzero) sample from D(1, b1) is upper bounded by
P[ReLU(z − |b1|) > 0] = P[z > |b1|] ≤ exp(−b21/2), where the last step follows from the standard
Gaussian tail bound [Wai19]. The same bound holds for D(1, b2). To distinguish D(1, b1) and
D(1, b2), we need to observe at least one nonzero sample, which requires Ω(exp(b21/2)) samples.

Claim 2 indicates that in order to estimate the parameters within any error, the sample complexity
should scale at least exponentially in ‖b‖2∞. This is true if b is allowed to take negative values.
Intuitively, if b has large negative values, then most of the samples would be zeros. To avoid this
exponential dependence, we now assume that the bias vector is non-negative. In Section 4, we give an
algorithm to provably learn the parameters of D(W, b) with a sample complexity that is polynomial
in 1/ε and does not depend on the values of b. In Section H.1, we show that even when the bias
vector has negative coordinates, our algorithm can still be able to recover part of the parameters with
a small number of samples.
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4 Algorithm

In this section, we describe a novel algorithm to estimate WWT ∈ Rd×d and b ∈ Rd from i.i.d.
samples ofD(W, b). Our goal is to estimateWWT instead ofW sinceW is not identifiable (Claim 1).
Our only assumption is that the true b is non-negative. As discussed in Claim 2, this assumption
can potentially avoid the exponential dependence in the values of b. Note that our algorithm does
not require to know the dimension k of the latent variable z. Omitted proofs can be found in the
appendix.

4.1 Intuition

Let W (i, :) ∈ Rk be the i-th row (i ∈ [d]) of W . For any i < j ∈ [d], the (i, j)-th entry of WWT is

〈W (i, :),W (j, :)〉 = ‖W (i, :)‖2‖W (j, :)‖2 cos(θij), (2)

where θij is the angle between vectors W (i, :) and W (j, :). Our key idea is to estimate the norms
‖W (i, :)‖2, ‖W (j, :)‖2, and the angles θij separately, as shown in Algorithm 1.

Estimating the row norms3 ‖W (i, :)‖2 as well as the i-th coordinate of the bias vector b(i) ∈ R can
be done by only looking at the i-th coordinate of the given samples. The idea is to view the problem
as estimating the parameters of a univariate normal distribution from truncated samples4. This part of
the algorithm is described in Section 4.2. To estimate θij ∈ [0, π) for every i < j ∈ [d], we use a
simple fact that the angle between any two vectors can be estimated from their inner products with a
random Gaussian vector. Details of this part can be found in Section 4.3.

Algorithm 1: Learning a single-layer ReLU generative model

Input: n i.i.d. samples x1, · · · , xn ∈ Rd from D(W ∗, b∗), b∗ is non-negative.
Output: Σ̂ ∈ Rd×d, b̂ ∈ Rd.

1 for i← 1 to d do
2 S ← {xm(i),m ∈ [n] : xm(i) > 0};
3 b̂(i), Σ̂(i, i)← NormBiasEst(S);

4 b̂(i)← max
(

0, b̂(i)
)

;

5 end
6 for i < j ∈ [d] do
7 θ̂ij ← π − 2π

n

(∑n
m=1 1(xm(i) > b̂(i))1(xm(j) > b̂(j))

)
;

8 Σ̂(i, j)←
√

Σ̂(i, i)Σ̂(j, j) cos(θ̂ij);

9 Σ̂(j, i)← Σ̂(i, j);
10 end

4.2 Estimate ‖W (i, :)‖2 and b(i)

Without loss of generality, we fix i = 1 and describe how to estimate ‖W (1, :)‖2 ∈ R and b(1) ∈ R
by looking at the first coordinate of the given samples.

The starting point of our algorithm is the following observation. Suppose x ∼ D(W, b), its first
coordinate can be written as

x(1) = ReLU(W (1, :)T z + b(1)) = ReLU(y), where y ∼ N (b(1), ‖W (1, :)‖22). (3)

Because of the ReLU operation, we can only observe the samples of y when it is positive. Given
samples of x(1) ∈ R, let us keep the samples that have positive values (i.e., ignore the zero samples).

3Without loss of generality, we can assume that ‖W (i, :)‖2 6= 0 for all i ∈ [d]. If W (i, :) is a zero vector,
one can easily detect that and figure out the corresponding non-negative bias term.

4Another idea is to use the median of the samples to estimate the i-th coordinate of the bias vector. This
approach will give the same sample complexity bound as that of our proposed algorithm.
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Now the problem of estimating b(1) and ‖W (1, :)‖2 is equivalent to estimating the parameters of a
one-dimensional normal distribution using samples falling in the set R>0 := {x ∈ R : x > 0}.
Recently Daskalakis et al. [DGTZ18] gave an efficient algorithm for estimating the mean and
covariance matrix of a multivariate Gaussian distribution from truncated samples. We adapt their
algorithm for the specific problem described above. Before describing the details, we start with a
formal definition of the truncated (univariate) normal distribution.

Definition 2. The univariate normal distribution N (µ, σ2) has probability density function

N (µ, σ2;x) =
1√

2πσ2
exp

(
− 1

2σ2
(x− µ)2

)
, for x ∈ R. (4)

Given a measurable set S ⊆ R, the S-truncated normal distribution N (µ, σ2, S) is defined as

N (µ, σ2, S;x) =

{
N (µ,σ2;x)∫

S
N (µ,σ2;y)dy

if x ∈ S
0 if x 6∈ S

. (5)

We are now ready to describe the algorithm in [DGTZ18] applied to our problem. The pseudocode is
given in Algorithm 2. The algorithm is essentially maximum likelihood by projected stochastic gradi-
ent descent (SGD). Given a sample x ∼ N (µ∗, σ∗2, S), let `(µ, σ;x) be the negative log-likelihood
that x is from N (µ, σ2, S), then `(µ, σ;x) is a convex function with respect to a reparameterization
v = [1/σ2, µ/σ2] ∈ R2. We use `(v;x) to denote the negative log-likelihood after this reparameter-
ization. Let ¯̀(v) = Ex[`(v;x)] be the expected negative log-likelihood. Although it is intractable
to compute ¯̀(v), its gradient ∇¯̀(v) with respect to v has a simple unbiased estimator. Specifically,
define a random vector g ∈ R2 as

g = −
[
−x2/2
x

]
+

[
−z2/2
z

]
, where x ∼ N (µ∗, σ∗2, S), z ∼ N (µ, σ2, S). (6)

We have that∇¯̀(v) = Ex,z[g], i.e., g is an unbiased estimator of∇¯̀(v).

Eq. (6) indicates that one can maximize the log-likelihood via SGD, however, in order to efficiently
perform this optimization, we need three extra steps.

First, the convergence rate of SGD depends on the expected gradient norm E[‖g‖22] (Theorem 14.11
of [SSBD14]). In order to maintain a small gradient norm, we transform the given samples to a
new space (so that the empirical mean and variance is well-controlled) and perform optimization
in that space. After the optimization is done, the solution is transformed back to the original space.
Specifically, given samples x1, · · · , xn ∼ N (µ∗, σ∗2,R>0), we transform them as

xi →
xi − µ̂0

σ̂0
, where µ̂0 =

1

n

n∑
i=1

xi, σ̂
2
0 =

1

n

n∑
i=1

(xi − µ̂0)2. (7)

In the transformed space, the problem becomes estimating parameters of a normal distribution with
samples truncated to the set R>−µ̂0/σ̂0

= {x ∈ R : x > −µ̂0/σ̂0}.
Second, we need to control the strong-convexity of the objective function. This is done by pro-
jecting the parameters onto a domain where the strong-convexity is bounded. The domain Dr is
parameterized by r > 0 and is defined as

Dr = {v ∈ R2 : 1/r ≤ v(1) ≤ r, |v(2)| ≤ r}. (8)

According to [DGTZ18, Section 3.4], r = O(ln(1/α)/α2) is a hyper-parameter that only depends
on α =

∫
S
N (µ∗, σ∗2; y)dy (i.e., the probability mass of original truncation set S). In our setting,

we have α ≥ 1/2. This is because the original truncation set is R>0 and µ∗ = b(1) ≥ 0. A large
value of r would lead to a small strong-convexity parameter. In our experiments, we set r = 3.

Third, a single run of the projected SGD algorithm only guarantees a constant probability of success.
To amplify the probability of success to 1 − δ/d, a standard procedure is to repeat the algorithm
O(ln(d/δ)) times. This procedure is illustrated in Step 2-5 in Algorithm 2.
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Algorithm 2: NormBiasEst
Input: Samples from N (µ, σ2,R>0).
Output: µ̂ ∈ R, σ̂2 ∈ R.

1 Shift and rescale the samples using (7);
2 Split the samples into B = O(ln(d/δ))

batches;
3 For batch i ∈ [B], run ProjSGD to get

vi ∈ R2;
4 S ← {v1, · · · , vB};
5 v̂ ← arg minvi∈S

∑
j∈[B]‖vi − vj‖2;

6 Transform v̂ back to the original space;
7 µ̂← v̂(2)/v̂(1), σ̂2 ← 1/v̂(1);

Algorithm 3: ProjSGD

Input: T = Õ(ln(d/δ)/ε2), λ > 0.
Output: v ∈ R2.

1 Initialize v(0) = [1, 0] ∈ R2;
2 for t← 1 to T do
3 g(t) ← Estimate the gradient using (6);
4 v(t) ← v(t−1) − g(t)/(λ · t);
5 v(t) ← Project v(t) to the domain in

(8);
6 end
7 v ←

∑T
t=1 v

(t)/T ;

Lemma 1. For any ε ∈ (0, 1) and δ ∈ (0, 1), Algorithm 1 takes n = Õ
(

1
ε2 ln(dδ )

)
samples from

D(W ∗, b∗) (for some non-negative b∗) and outputs b̂(i) and Σ̂(i, i) for all i ∈ [d] that satisfy

(1− ε)‖W ∗(i, :)‖22 ≤ Σ̂(i, i) ≤ (1 + ε)‖W ∗(i, :)‖22, |̂b(i)− b∗(i)| ≤ ε‖W ∗(i, :)‖2 (9)

with probability at least 1− δ.

4.3 Estimate θij

To estimate the angle between any two vectors W ∗(i, :) and W ∗(j, :) (where i 6= j ∈ [d]), we will
use the following result.
Fact 1. (Lemma 6.7 in [WS11]). Let z ∼ N (0, Ik) be a standard Gaussian random variable in Rk.
For any two non-zero vectors u, v ∈ Rk, the following holds:

P
z∼N (0,Ik)

[uT z > 0 and vT z > 0] =
π − θ

2π
, where θ = arccos

(
〈u, v〉
‖u‖2‖v‖2

)
. (10)

Fact 1 says that the angle between any two vectors can be estimated from the sign of their inner
products with a Gaussian random vector. Let x ∼ D(W ∗, b∗), since b∗ is assumed to be non-negative,
Fact 1 gives an unbiased estimator for the pairwise angles.
Lemma 2. Suppose that x ∼ D(W ∗, b∗) and that b∗ ∈ Rd is non-negative, for all i 6= j ∈ [d],

P
x∼D(W∗,b∗)

[x(i) > b∗(i) and x(j) > b∗(j)] =
π − θ∗ij

2π
, (11)

where θ∗ij is the angle between vectors W ∗(i, :) and W ∗(j, :).

Proof. Since x(i) = ReLU
(
W ∗(i, :)T z + b∗(i)

)
and b∗ is non-negative, we have

LHS = P
z∼N (0,Ik)

[W ∗(i, :)T z > 0 and W ∗(j, :)T z > 0] =
π − θ∗ij

2π
= RHS, (12)

where the second equality follows from Fact 1.

Lemma 2 gives an unbiased estimator of θ∗ij , however, it requires knowing the true bias vector b∗.
In the previous section, we give an algorithm that can estimate b∗(i) within an additive error of
ε‖W ∗(i, :)‖2 for all i ∈ [d]. Fortunately, this is good enough for estimating θ∗ij within an additive
error of ε, as indicated by the following lemma.

Lemma 3. Let x ∼ D(W ∗, b∗), where b∗ is non-negative. Suppose that b̂ ∈ Rd is non-negative and
satisfies |̂b(i)− b∗(i)| ≤ ε‖W ∗(i, :)‖2 for all i ∈ [d] and some ε > 0. Then for all i 6= j ∈ [d],∣∣∣P

x
[x(i) > b̂(i) and x(j) > b̂(j)]− P

x
[x(i) > b∗(i) and x(j) > b∗(j)]

∣∣∣ ≤ ε. (13)
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Let 1(·) be the indicator function, e.g., 1(x > 0) = 1 if x > 0 and is 0 otherwise. Given samples
{xm}nm=1 of D(W ∗, b∗) and an estimated bias vector b̂, Lemma 2 and 3 implies that θ∗ij can be
estimated as

θ̂ij = π − 2π

n

n∑
m=1

1(xm(i) > b̂(i) and xm(j) > b̂(j)). (14)

The following lemma shows that the estimated θ̂ij is close to the true θ∗ij .

Lemma 4. For a fixed pair of i 6= j ∈ [d], for any ε, δ ∈ (0, 1), suppose b̂ satisfies the condition in
Lemma 3, given 80 ln(2/δ)/ε2 samples, with probability at least 1− δ, | cos(θ̂ij)− cos(θ∗ij)| ≤ ε.

4.4 Estimate WWT and b

Our overall algorithm is given in Algorithm 1. In the first for-loop, we estimate the row norms of W ∗
and b∗. In the second for-loop, we estimate the angles between any two row vectors of W ∗.

Theorem 1. For any ε ∈ (0, 1) and δ ∈ (0, 1), Algorithm 1 takes n = Õ
(

1
ε2 ln(dδ )

)
samples from

D(W ∗, b∗) (for some non-negative b∗) and outputs Σ̂ ∈ Rd×d and b̂ ∈ Rd that satisfy

‖Σ̂−W ∗W ∗T ‖F ≤ ε‖W ∗‖2F , ‖b̂− b∗‖2 ≤ ε‖W ∗‖F (15)

with probability at least 1− δ. Algorithm 1 runs in time Õ
(
d2

ε2 ln(dδ )
)

and space Õ
(
d
ε2 ln(dδ ) + d2

)
.

Theorem 1 characterizes the sample complexity to achieve a small parameter estimation error. We
are also interested in the distance between the estimated distribution and the true distribution. Let
TV(A,B) be the total variation (TV) distance between two distributions A and B. Note that in order
for the TV distance to be meaningful5, we restrict ourselves to the non-degenerate case, i.e., when W
is a full-rank square matrix. The following corollary characterizes the number of samples used by our
algorithm in order to achieve a small TV distance.
Corollary 1. Suppose that W ∗ ∈ Rd×d is full-rank. Let κ be the condition number of W ∗W ∗T . For
any ε ∈ (0, 1/2] and δ ∈ (0, 1), Algorithm 1 takes n = Õ

(
κ2d2

ε2 ln(dδ )
)

samples from D(W ∗, b∗)

(for some non-negative b∗) and outputs a distribution D(Σ̂1/2, b̂) that satisfies

TV
(
D(Σ̂1/2, b̂), D(W ∗, b∗)

)
≤ ε, (16)

with probability at least 1− δ. Algorithm 1 runs in time Õ
(
κ2d4

ε2 ln(dδ )
)

and space Õ
(
κ2d3

ε2 ln(dδ )
)

.

5 Lower Bounds

In the previous section, we gave an algorithm to estimate W ∗W ∗T and b∗ using i.i.d. samples from
D(W ∗, b∗), and analyzed its sample complexity. In this section, we provide lower bounds for this
density estimation problem. More precisely, we want to know: how many samples are necessary if
we want to learn D(W ∗, b∗) up to some error measure ε?

Before stating our lower bounds, we first formally define a framework for distribution learning6.
Let S be a class of distributions. Let d be some distance function between the two distributions (or
between the parameters of the two distributions). We say that a distribution learning algorithm learns
S with sample complexity m(ε) if for any distribution p ∈ S, given m(ε) i.i.d. samples from p, it
constructs a distribution q such that d(p, q) ≤ ε with success probability at least 2/37.

5The TV distance between two different degenerate distributions can be a constant. As an example, let
N (0,Σ1) and N (0,Σ2) be two Gaussian distributions in Rd. If both Σ1,Σ2 have rank smaller than d, then
TV(N (0,Σ1),N (0,Σ2)) = 1 as long as Σ1 6= Σ2.

6This can be viewed as the standard PAC-learning framework [Val84].
7We focus on constant success probability here as standard techniques can be used to boost the success

probability to 1− δ with an extra multiplicative factor ln(1/δ) in the sample complexity.
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We have analyzed the performance of Algorithm 1 in terms of two distance metrics: the distance
in the parameter space (Theorem 1), and the TV distance between two distributions (Corollary 1).
Accordingly, we will provide two sample complexity lower bounds.
Theorem 2. (Lower bound for parameter estimation). Let σ > 0 be a fixed and known scalar. Let
Id be the identity matrix in Rd. Let S := {D(W, b) : W = σId, b ∈ Rd non-negative} be a class
of distributions in Rd. Any algorithm that learns S to satisfy ‖b̂ − b∗‖2 ≤ ε‖W ∗‖F with success
probability at least 2/3 requires Ω(1/ε2) samples.

Theorem 3. (Lower bound for distribution estimation). Let S := {D(W, 0) : W ∈ Rd×d full rank}
be a set of distributions in Rd. Any algorithm that learns S within total variation distance ε and
success probability at least 2/3 requires Ω(d/ε2) samples.

Comparing the sample complexity achieved by our algorithm (Theorem 1 and Corollary 1) and the
above lower bounds, we can see that 1) our algorithm matches the lower bound (up to log factors) for
parameter estimation; 2) there is a gap between our sample complexity and the lower bound for TV
distance. There are two possible reasons why this gap shows up.

• The lower bound given in Theorem 3 may be loose. In fact, since learning a d-dimensional
Gaussian distribution up to TV distance ε requires Θ̃(d2/ε2) samples (this is both sufficient
and necessary [ABDH+18]), it is reasonable to guess that learning rectified Gaussian
distributions also requires at least Ω(d2/ε2) samples. It is thus interesting to see if one can
show a better lower bound than Ω(d/ε2).

• Our sample complexity of learning D(W, b) up to TV distance ε also depends on the condi-
tion number κ of WWT . Intuitively, this κ dependence shows up because our algorithm
estimates WWT entry-by-entry instead of estimating the matrix as a whole. Besides, our
algorithm is a proper learning algorithm, meaning that the output distribution belongs to
the family D(W, b). By contrast, the lower bound proved in Theorem 3 considers any
non-proper learning algorithm, i.e., there is no constraint on the output distribution. One
interesting direction for future research is to see if one can remove this κ dependence.

6 Experiments

In this section, we provide empirical results to verify the correctness of our algorithm as well as
the analysis. Code to reproduce our result8 can be found at https://github.com/wushanshan/
densityEstimation.

We evaluate three performance metrics, as shown in Figure 1. The first two metrics measure
the error between the estimated parameters and the ground truth. Specifically, we compute the
estimation errors analyzed in Theorem 1: ‖Σ̂−W ∗W ∗T ‖F /‖W‖2F and ‖b̂− b‖2/‖W‖F . Besides
the parameter estimation error, we are also interested in the TV distance analyzed in Corollary 1:
TV
(
D(Σ̂1/2, b̂), D(W ∗, b∗)

)
. It is difficult to compute the TV distance exactly, so we instead

compute an upper bound of it. Let KL(A||B) denote the KL divergence between two distributions.
Let Σ∗ = W ∗W ∗T . Assuming that both Σ∗ and Σ̂ are full-rank, we have

TV
(
D(Σ̂1/2, b̂), D(W ∗, b∗)

)
≤ TV

(
N (̂b, Σ̂),N (b∗,Σ∗)

)
≤
√

KL
(
N (̂b, Σ̂)||N (b∗,Σ∗)

)
/2.

The first inequality follows from the data-processing inequality given in Lemma 7 of Appendix F
(see also [ABDH+18, Fact A.5]): for any function f and random variables X,Y over the same space,
TV(f(X), f(Y )) ≤ TV(X,Y ). The second inequality follows from the Pinsker’s inequality [Tsy09,
Lemma 2.5].

Sample Efficiency. The left plot of Figure 1 shows that both the parameter estimation errors and
the KL divergence decrease when we have more samples. Our experimental setting is simple: we
set the dimension as d = k = 5 and the condition number as 1; we generate W ∗ as a random
orthonormal matrix; we generate b∗ as a random normal vector, followed by a ReLU operation (to
ensure non-negativity). This plot indicates that our algorithm is able to accurately estimate the true
parameters and obtain a distribution that is close to the true distribution in TV distance.

8The hyper-parameters are B = 1 (in Algorithm 2), r = 3 and λ = 0.1 (in Algorithm 3).
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Figure 1: Best viewed in color. Empirical performance of our algorithm with respect to three
parameters: number of samples n, dimension d, and the condition number κ. Left: Fix d = 5 and
κ = 1. Middle: Fix n = 5× 105 and κ = 1. Right: Fix n = 5× 105 and d = 5. Every point shows
the mean and standard deviation across 10 runs. Each run corresponds to a different W ∗ and b∗.

Dependence on Dimension. In the middle plot of Figure 1, we use 5× 105 samples and keep the
condition number to be 1. We then increase the dimension (d = k) from 5 to 25. Both W ∗ and b∗
are generated in the same manner as the previous plot. As shown in the middle plot, the parameter
estimation errors maintain the same value while the KL divergence increases as the dimension
increases. This is consistent with our analysis, because the sample complexity in Theorem 1 is
dimension-free (ignoring the log factor) while the sample complexity in Corollary 1 depends on d2.

Dependence on Condition Number. In the right plot of Figure 1, we keep the dimension d = k = 5
and the number of samples 5 × 105 fixed. We then increase the condition number κ of W ∗W ∗T .
This plot shows the same trend as the middle plot, i.e., the parameter estimation errors remain the
same while the KL divergence increases as κ increases, which is again consistent with our analysis.
The number of samples required to achieve an additive estimation error (Theorem 1) does not depend
on κ, while the sample complexity to guarantee a small TV distance (Corollary 1) depends on κ2.

7 Conclusion

A popular generative model nowadays is defined by passing a standard Gaussian random variable
through a neural network. In this paper we are interested in the following fundamental question:
Given samples from this distribution, is it possible to recover the parameters of the underlying neural
network? We designed a new algorithm to provably recover the parameters of a single-layer ReLU
generative model from i.i.d. samples, under the assumption that the bias vector is non-negative. We
analyzed the sample complexity of the proposed algorithm in terms of two error metrics: parameter
estimation error and total variation distance. Sample complexity lower bounds and experimental
results are provided to support our analysis.

There are many questions that one could ask here. For example, what happens if the bias vector has
negative values? What if the generative model has two layers? What if the samples are noisy? We
summarized our thoughts on some problems in Appendix H. In particular, we showed an interesting
connection between learning a two-layer generative model and non-negative matrix factorization.

While our focus here is parameter recovery, one interesting direction for future work is to see whether
one can directly estimate the distribution in some distance without first estimating the parameters.
Another interesting direction is to develop provable learning algorithms for the agnostic setting
instead of the realizable setting. Besides designing new algorithms, analyzing the existing algorithms,
e.g., GANs, VAEs, and reversible generative models, is also an important research direction.
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