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Abstract
Generative adversarial networks (GANs) are a
widely used framework for learning generative
models. Wasserstein GANs (WGANs), one of
the most successful variants of GANs, require
solving a minmax optimization problem to global
optimality, but are in practice successfully trained
using stochastic gradient descent-ascent. In this
paper, we show that, when the generator is a one-
layer network, stochastic gradient descent-ascent
converges to a global solution with polynomial
time and sample complexity.

1. Introduction
Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) are a prominent framework for learning gen-
erative models of complex, real-world distributions given
samples from these distributions. GANs and their variants
have been successfully applied to numerous datasets and
tasks, including image-to-image translation (Isola et al.,
2017), image super-resolution (Ledig et al., 2017), domain
adaptation (Tzeng et al., 2017), probabilistic inference (Du-
moulin et al., 2016), compressed sensing (Bora et al., 2017)
and many more. These advances owe in part to the suc-
cess of Wasserstein GANs (WGANs) (Arjovsky et al., 2017;
Gulrajani et al., 2017), leveraging the neural net induced
integral probability metric to better measure the difference
between a target and a generated distribution.

Along with the aforementioned empirical successes, there
have been theoretical studies of the statistical properties of
GANs—see e.g. (Zhang et al., 2018; Arora et al., 2017;
2018; Bai et al., 2018; Dumoulin et al., 2016) and their
references. These works have shown that, with an appro-
priate design of the generator and discriminator, the global
optimum of the WGAN objective identifies the target distri-
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bution with low sample complexity. However, these results
cannot be algorithmically attained via practical GAN train-
ing algorithms.

On the algorithmic front, prior work has focused on the
stability and convergence properties of gradient descent-
ascent (GDA) and its variants in GAN training and more
general min-max optimization problems; see e.g. (Nagara-
jan & Kolter, 2017; Heusel et al., 2017; Mescheder et al.,
2017; 2018; Daskalakis et al., 2017; Daskalakis & Panageas,
2018a;b; Gidel et al., 2019; Liang & Stokes, 2019; Mokhtari
et al., 2019; Jin et al., 2019; Lin et al., 2019; Lei et al., 2020;
2019; 2017) and their references. These works have studied
conditions under which GDA converges to a globally opti-
mal solution in the convex-concave objective, or local sta-
bility in the non-convex non-concave setting. These results
do not ensure convergence to a globally optimal generator,
or in fact even convergence to a locally optimal generator.

Thus a natural question is whether:

Are GANs able to learn high-dimensional distributions in
polynomial time and polynomial/parametric sample

complexity, and thus bypass the curse of dimensionality?

The aforementioned prior works stop short of this goal due
to a) the intractability of min-max optimization in the non-
convex setting, and b) the curse of dimensionality in learning
with Wasserstein distance in high dimensions (Bai et al.,
2018).

A notable exception is Feizi et al. (2017) which shows that
for WGANs with a linear generator and quadratic discrimi-
nator GDA succeeds in learning a Gaussian using polyno-
mially many samples in the dimension.

In the same vein, we are the first to our knowledge to study
the global convergence properties of stochastic GDA in
the GAN setting, and establishing such guarantees for non-
linear generators. In particular, we study the WGAN for-
mulation for learning a single-layer generative model with
some reasonable choices of activations including tanh, sig-
moid and leaky ReLU.

Our contributions. For WGAN with a one-layer genera-
tor network using an activation from a large family of func-
tions and a quadratic discriminator, we show that stochastic
gradient descent-ascent learns a target distribution using
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polynomial time and samples, under the assumption that
the target distribution is realizable in the architecture of the
generator. This is achieved by simultaneously satisfying the
following two criterion:

1. Proving that stochastic gradient-descent attains a glob-
ally optimal generator in the metric induced by the
discriminator,

2. Proving that appropriate design of the discriminator
ensures a parametric O( 1√

n
) statistical rate (Zhang

et al., 2018; Bai et al., 2018) that matches the lower
bound for learning one-layer generators as shown in
(Wu et al., 2019).

2. Related Work
We briefly review relevant results in GAN training and learn-
ing generative models:

2.1. Optimization viewpoint

For standard GANs and WGANs with appropriate regu-
larization, (Nagarajan & Kolter, 2017), (Mescheder et al.,
2017) and (Heusel et al., 2017) establish sufficient condi-
tions to achieve local convergence and stability properties
for GAN training. At the equilibrium point, if the Jacobian
of the associated gradient vector field has only eigenvalues
with negative real-part, GAN training is verified to converge
locally for small enough learning rates. A follow-up paper
by (Mescheder et al., 2018) shows the necessity of these
conditions by identifying a counterexample that fails to con-
verge locally for gradient descent based GAN optimization.
The lack of global convergence prevents the analysis from
yielding any guarantees for learning the real distribution.

The work of (Feizi et al., 2017) described above has similar
goals as our paper, namely understanding the convergence
properties of basic dynamics in simple WGAN formula-
tions. However, they only consider linear generators, which
restrict the WGAN model to learning a Gaussian. Our work
goes a step further, considering WGANs whose generators
are one-layer neural networks with a broad selection of
activations. We show that with a proper gradient-based al-
gorithm, we can still recover the ground truth parameters of
the underlying distribution.

More broadly, WGANs typically result in nonconvex-
nonconcave min-max optimization problems. In these prob-
lems, a global min-max solution may not exist, and there are
various notions of local min-max solutions, namely local
min-local max solutions (Daskalakis & Panageas, 2018b),
and local min solutions of the max objective (Jin et al.,
2019), the latter being guaranteed to exist under mild con-
ditions. In fact, (Lin et al., 2019) show that GDA is able
to find stationary points of the max objective in nonconvex-

concave objectives. Given that GDA may not even converge
for convex-concave objectives, another line of work has
studied variants of GDA that exhibit global convergence to
the min-max solution (Daskalakis et al., 2017; Daskalakis &
Panageas, 2018a; Gidel et al., 2019; Liang & Stokes, 2019;
Mokhtari et al., 2019), which is established for GDA vari-
ants that add negative momentum to the dynamics. While
the convergence of GDA with negative momentum is shown
in convex-concave settings, there is experimental evidence
supporting that it improves GAN training (Daskalakis et al.,
2017; Gidel et al., 2019).

2.2. Statistical viewpoint

Several works have studied the issue of mode collapse. One
might doubt the ability of GANs to actually learn the dis-
tribution vs just memorize the training data (Arora et al.,
2017; 2018; Dumoulin et al., 2016). Some corresponding
cures have been proposed. For instance, (Zhang et al., 2018;
Bai et al., 2018) show for specific generators combined with
appropriate parametric discriminator design, WGANs can
attain parametric statistical rates, avoiding the exponential
in dimension sample complexity (Liang, 2018; Bai et al.,
2018; Feizi et al., 2017).

Recent work of (Wu et al., 2019) provides an algorithm
to learn the distribution of a single-layer ReLU generator
network. While our conclusion appears similar, our focus
is very different. Our paper targets understanding when
a WGAN formulation trained with stochastic GDA can
learn in polynomial time and sample complexity. Their
work instead relies on a specifically tailored algorithm for
learning truncated normal distributions (Daskalakis et al.,
2018).

3. Preliminaries
Notation. We consider GAN formulations for learning a
generator GA : Rk → Rd of the form z 7→ x = φ(Az),
where A is a d × k parameter matrix and φ some activa-
tion function. We consider discriminators Dv : Rd → R
or DV : Rd → R respectively when the discriminator
functions are parametrized by either vectors or matrices.
We assume latent variables z are sampled from the nor-
mal N (0, Ik×k), where Ik×k denotes the identity matrix
of size k. The real/target distribution outputs samples
x ∼ D = GA∗(N (0, Ik0×k0)), for some ground truth pa-
rameters A∗, where A∗ is d × k0, and we take k ≥ k0 for
enough expressivity, taking k = d when k0 is unknown.

The Wasserstain GAN under our choice of generator and
discriminator is naturally formulated as:

min
A∈Rd×k

max
v∈Rd

f(A,v), 1

1We will replace v by matrix parameters V ∈ Rd×d when
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for f(A,v) ≡ Ex∼DDv(x)− Ez∼N (0,Ik×k)Dv(GA(z)).

We use ai to denote the i-th row vector ofA. We sometimes
omit the 2 subscript, using ‖x‖ to denote the 2-norm of
vector x, and ‖X‖ to denote the spectral norm of matrix X
when there is no ambiguity. Sn ⊂ Rn×n represents all the
symmetric matrices of dimension n×n. We useDf(X0)[B]
to denote the directional derivative of function f at pointX0

with direction B: Df(X0)[B] = limt→0
f(X0+tB)−f(X0)

t .

3.1. Motivation and Discussion

To provably learn one-layer generators with nonlinear acti-
vations, the design of the discriminator must strike a delicate
balance:

1. (Approximation.) The discriminator should be large
enough to be able to distinguish the true distribution
from incorrect generated ones. To be more specific, the
max function g(A) = maxx f(A, V ) captures some
distance from our learned generator to the target gener-
ators. This distance should only have global minima
that correspond to the ground truth distribution.

2. (Generalizability.) The discriminator should be small
enough so that it can be learned with few samples. In
fact, our method guarantees an O(1/

√
n) parametric

rate that matches the lower bound established in (Wu
et al., 2019).

3. (Stability.) The discriminator should be carefully de-
signed so that simple local algorithms such as gradient
descent ascent can find the global optimal point.

Further, min-max optimization with non-convexity in either
side is intractable. In fact, gradient descent ascent does not
even yield last iterate convergence for bilinear forms, and it
requires more carefully designed algorithms like Optimistic
Gradient Descent Ascent (Daskalakis & Panageas, 2018b)
and Extra-gradient methods (Korpelevich, 1976). In this
paper we show a stronger hardness result. We show that for
simple bilinear forms with ReLU activations, it is NP-hard
to even find a stationary point.

Theorem 1. Consider the min-max optimization on the
following ReLU-bilinear form:

min
x

max
y

{
f(x,y) =

n∑
i=1

φ(Aix + bi)
>y

}
,

where x ∈ Rd, Ai ∈ RO(d)×d and φ is ReLU activation.
As long as n ≥ 4, the problem of checking whether f has
any stationary point is NP-hard in d.

necessary.

We defer the proof to the Appendix where we show 3SAT is
reducible to the above problem. This theorem shows that in
general, adding non-linearity (non-convexity) in min-max
forms makes the problem intractable. However, we are able
to show gradient descent ascent finds global minima for
training one-layer generators with non-linearity. This will
rely on carefully designed discriminators, regularization and
specific structure that we considered.

Finally we note that understanding the process of learning
one-layer generative model is important in practice as well.
For instance, Progressive GAN (Karras et al., 2017) pro-
poses the methodology to learn one-layer at a time, and grow
both the generator and discriminator progressively during
the learning process. Our analysis implies further theoretical
support for this kind of progressive learning procedure.

4. Warm-up: Learning the Marginal
Distributions

As a warm-up, we ask whether a simple linear discriminator
is sufficient for the purposes of learning the marginal distri-
butions of all coordinates ofD. Notice that in our setting, the
i-th output of the generator is φ(x) where x ∼ N (0, ‖ai‖2),
and is thus solely determined by ‖ai‖2. With a linear dis-
criminator Dv(x) = v>x, our minimax game becomes:

min
A∈Rd×k

max
v∈Rd

f1(A,v), (1)

for f1(A,v) ≡ Ex∼D
[
v>x

]
− Ez∼N (0,Ik×k)

[
v>φ(Az)

]
.

Notice that when the activation φ is an odd function, such
as the tanh activation, the symmetric property of the Gaus-
sian distribution ensures that Ex∼D[v>x] = 0, hence the
linear discriminator in f1 reveals no information about A∗.
Therefore specifically for odd activations (or odd plus a con-
stant activations), we instead use an adjusted rectified linear
discriminator Dv(x) ≡ v>R(x−C) to enforce some bias,
where C = 1

2 (φ(x) + φ(−x)) for all x, and R denotes the
ReLU activation. Formally, we slightly modify our loss
function as:

f̄1(A,v) ≡Ex∼D
[
v>R(x− C)

]
− Ez∼N (0,Ik×k)

[
v>R(φ(Az)− C)

]
. (2)

We will show that we can learn each marginal of D if the
activation function φ satisfies the following.

Assumption 1. The activation function φ satisfies either
one of the following:
1. φ is an odd function plus constant, and φ is monotone
increasing;
2. The even component of φ, i.e. 1

2 (φ(x) + φ(−x)), is
positive and monotone increasing on x ∈ [0,∞).

Remark 1. All common activation functions like (Leaky)
ReLU, tanh or sigmoid function satisfy Assumption 1.
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Lemma 1. Suppose A∗ 6= 0. Consider f1 with activation
that satisfies Assumption 1.2 and f̄1 with activation that
satisfies Assumption 1.1. The stationary points of such f1
and f̄1 yield parameters A satisfying ‖ai‖ = ‖a∗i ‖,∀i ∈
[d].

To bound the capacity of the discriminator, WGAN adds an
Lipschitz constraint: ‖Dv‖ ≤ 1, or simply ‖v‖2 ≤ 1. To
make the training process easier, we instead regularize the
discriminator. For the regularized formulation we have:

Theorem 2. In the same setting as Lemma 1, alternating
gradient descent-ascent with proper learning rates on

min
A

max
v
{f1(A,v)− ‖v‖2/2},

or respectively min
A

max
v
{f̄1(A,v)− ‖v‖2/2},

recovers A such that ‖ai‖ = ‖a∗i ‖,∀i ∈ [d].

All the proofs of the paper can be found in the appendix.
We show that all local min-max points in the sense of (Jin
et al., 2019) of the original problem are global min-max
points and recover the correct norm of a∗i ,∀i. Notice for
the source data distribution x = (x1, x2, · · ·xd) ∼ D with
activation φ, the marginal distribution of each xi follows
φ(N (0, ‖a∗i ‖2)) and is determined by ‖a∗i ‖. Therefore we
have learned the marginal distribution for each entry i. It
remains to learn the joint distribution.

5. Learning the Joint Distribution
In the previous section, we utilize a (rectified) linear dis-
criminator, such that each coordinate vi interacts with the
i-th random variable. With the (rectified) linear discrimi-
nator, WGAN learns the correct ‖ai‖, for all i. However,
since there’s no interaction between different coordinates
of the random vector, we do not expect to learn the joint
distribution with a linear discriminator.

To proceed, a natural idea is to use a quadratic discrimina-
tor DV (x) := x>V x = 〈xx>, V 〉 to enforce component
interactions. Similar to the previous section, we study the
regularized version:

min
A∈Rd×k

max
V ∈Rd×d

{f2(A, V )− 1

2
‖V ‖2F }, (3)

where

f2(A, V )

=Ex∼DDV (x)− Ez∼N (0,Ik×k)DV (φ(Az))

=
〈
Ex∼D

[
xx>

]
− Ez∼N (0,Ik×k)

[
φ(Az)φ(Az)>

]
, V
〉
.

By adding a regularizer on V and explicitly maximizing

over V :

g(A) ≡ max
V

{
f2(A, V )− 1

2
‖V ‖2F

}
=

1

2

∥∥Ex∼D
[
xx>

]
−Ez∼N (0,Ik×k)

[
φ(Az)φ(Az)>

]∥∥2
F
.

In the next subsection, we first focus on analyzing the
second-order stationary points of g, then we establish that
gradient descent ascent converges to second-order stationary
points of g .

5.1. Global Convergence for Optimizing the
Generating Parameters

We first assume that both A and A∗ have unit row vectors,
and then extend to general case since we already know how
to learn the row norms from Section 4. To explicitly com-
pute g(A), we rely on the property of Hermite polynomials.
Since normalized Hermite polynomials {hi}∞i=0 forms an
orthonomal basis in the functional space, we rewrite the
activation function as φ(x) =

∑∞
i=0 σihi, where σi is the

i-th Hermite coefficient. We use the following claim:

Claim 1 ((Ge et al., 2017) Claim 4.2). Let φ be a func-
tion from R to R such that φ ∈ L2(R, e−x2/2), and let its
Hermite expansion be φ =

∑∞
i=1 σihi. Then, for any unit

vectors u,v ∈ Rd, we have that

Ex∼N (0,Id×d)

[
φ(u>x)φ(v>x)

]
=

∞∑
i=0

σ2
i (u>v)i.

Therefore we could compute the value of f2 explicitly using
the Hermite polynomial expansion:

f2(A, V ) =

〈 ∞∑
i=0

σ2
i

(
(A∗(A∗)>)◦i − (AA>)◦i

)
, V

〉
.

Here X◦i is the Hadamard power operation where
(X◦i)jk = (Xjk)i. Therefore we have:

g(A) =
1

2

∥∥∥∥∥
∞∑
i=0

σ2
i

(
(A∗(A∗)>)◦i − (AA>)◦i

)∥∥∥∥∥
2

F

We reparametrize with Z = AA> and define g̃(Z) =
g(A) with individual component functions g̃jk(z) ≡
1
2 (
∑∞
i=0 σ

2
i ((z∗jk)i − zi))2. Accordingly z∗jk = 〈a∗j ,a∗k〉

is the (j, k)-th component of the ground truth covariance
matrix A∗(A∗)>.

Assumption 2. The activation function φ is an odd function
plus constant. In other words, its Hermite expansion φ =∑∞
i=0 σihi satisfies σi = 0 for even i ≥ 2. Additionally we

assume σ1 6= 0.
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Remark 2. Common activations like tanh and sigmoid sat-
isfy Assumption 2.

Lemma 2. For activations including leaky ReLU and func-
tions satisfying Assumption 2, g̃(Z) has a unique stationary
point where Z = A∗(A∗)>.

Notice g̃(Z) =
∑
jk g̃jk(zjk) is separable across zjk, where

each g̃jk is a polynomial scalar function. Lemma 2 comes
from the fact that the only zero point for g̃′jk is zjk = z∗jk,
for odd activation φ and leaky ReLU. Then we migrate this
good property to the original problem we want to solve:

Problem 1. We optimize over function g when ‖a∗i ‖ =
1,∀i:

min
A

g(A) ≡ 1

2

∥∥∥∥∥
∞∑
i=0

σ2
i

(
(A∗(A∗)>)◦i − (AA>)◦i

)∥∥∥∥∥
2

F


s.t. a>i ai = 1,∀i.

Existing work (Journée et al., 2008) connects g̃(Z) to the
optimization over factorized version for g(A) (g(A) ≡
g̃(AA>)). Specifically, when k = d, all second-order sta-
tionary points for g(A) are first-order stationary points for
g̃(Z). Though g̃ is not convex, we are able to show that
its first-order stationary points are global optima when the
generator is sufficiently expressive, i.e., k ≥ k0. In real-
ity we won’t know the latent dimension k0, therefore we
just choose k = d for simplicity. We get the following
conclusion:

Theorem 3. For activations including leaky ReLU and func-
tions satisfying Assumption 2, when k = d, all second-order
KKT points for problem 1 are global minima. Therefore
alternating projected gradient descent-ascent on Eqn. (3)
converges to A such that AA> = A∗(A∗)>.

The extension for non-unit vectors is straightforward, and
we defer the analysis to the Appendix.

This main theorem demonstrates the success of gradient
descent ascent on learning the ground truth generator. This
result is achieved by analyzing two factors. One is the geo-
metric property of our loss function, i.e., all second-order
KKT points are global minima. Second, all global minima
satisfy AA> = A∗(A∗)>, and for the problem we consid-
ered, i.e., one-layer generators, retrieving parameter AA>

is sufficient in learning the whole generating distribution.

6. Finite Sample Analysis
In the previous section, we demonstrate the success of using
gradient descent ascent on the population risk. This leaves
us the question on how many samples do we need to achieve

small error. In this section, we analyze Algorithm 1, i.e.,
gradient descent ascent on the following empirical loss:

f̃ (t)m,n(A, V )

=

〈
1

m

m∑
i=1

φ(Az
(t)
i )φ(Az

(t)
i )> − 1

n

n∑
i=1

xix
>
i , V

〉

− 1

2
‖V ‖2.

Notice in each iteration, gradient ascent with step-size 1
finds the optimal solution for V . By Danskin’s theorem
(Danskin, 2012), our min-max optimization is essentially
gradient descent over g̃(t)m,n(A) ≡ maxV f̃

(t)
m,n(A, V ) =

1
2‖

1
m

∑m
i=1 φ(Az

(t)
i )φ(Az

(t)
i )>− 1

n

∑n
i=1 xix

>
i ‖2F with a

batch of samples {z(t)
i }, i.e., stochastic gradient descent for

fn(A) ≡ Ezi∼N (0,Ik×k),∀i∈[m][g̃m,n(A)].

Therefore to bound the difference between fn(A) and the
population risk g(A), we analyze the sample complexity
required on the observation side (xi ∼ D, i ∈ [n]) and the
mini-batch size required on the learning part (φ(Azj), zj ∼
N (0, Ik×k), j ∈ [m]). We will show that with large enough
n,m, the algorithm specified in Algorithm 1 that optimizes
over the empirical risk will yield the ground truth covariance
matrix with high probability.

Our proof sketch is roughly as follows:

1. With high probability, projected stochastic gradient de-
scent finds a second order stationary point Â of fn(·) as
shown in Theorem 31 of (Ge et al., 2015).

2. For sufficiently large m, our empirical objective, though
a biased estimator of the population risk g(·), achieves good
ε-approximation to the population risk on both the gradient
and Hessian (Lemmas 4&5). Therefore Â is also an O(ε)-
approximate second order stationary point (SOSP) for the
population risk g(A).

3. We show that any ε-SOSP Â for g(A) yields an O(ε)-
first order stationary point (FOSP) Ẑ ≡ ÂÂ> for the semi-
definite programming on g̃(Z) (Lemma 6).

4. We show that any O(ε)-FOSP of function g̃(Z) induces
at most O(ε) absolute error compared to the ground truth
covariance matrix Z∗ = A∗(A∗)> (Lemma 7).

6.1. Observation Sample Complexity

For simplicity, we assume the activation and its gradient
satisfy Lipschitz continuous, and let the Lipschitz constants
be 1 w.l.o.g.:

Assumption 3. Assume the activation is 1-Lipschitz and
1-smooth.

To estimate observation sample complexity, we will bound
the gradient and Hessian for the population risk and empiri-



SGD Learns One-Layer Networks in WGANs

Algorithm 1 Online stochastic gradient descent ascent on WGAN

1: Input: n training samples: x1,x2, · · ·xn, where each xi ∼ φ(A∗z), z ∼ N (0, Ik×k), learning rate for generating
parameters η, number of iterations T .

2: Random initialize generating matrix A(0).
3: for t = 1, 2, · · · , T do
4: Generate m latent variables z(t)

1 , z
(t)
2 , · · · , z(t)

m ∼ N (0, Ik×k) for the generator. The empirical function becomes

f̃ (t)m,n(A, V ) =

〈
1

m

m∑
i=1

φ(Az
(t)
i )φ(Az

(t)
i )> − 1

n

n∑
i=1

xix
>
i , V

〉
− 1

2
‖V ‖2

5: Gradient ascent on V with optimal step-size ηV = 1:

V (t) ← V (t) − ηV∇V f̃ (t)m,n(A(t−1), V (t−1)).

6: Sample noise e uniformly from unit sphere
7: Projected Gradient Descent on A, with constraints C = {A|(AA>)ii = (A∗A∗>)ii} :

A(t) ← ProjC(A(t−1) − η(∇Af̃ (t)m,n(A(t−1), V (t)) + e)).

8: end for
9: Output: A(T )(A(T ))>

cal risk on the observation samples:

g(A)

≡1

2

∥∥Ex∼D
[
xx>

]
− Ez∼N (0,Ik×k)

[
φ(Az)φ(Az)>

]∥∥2
F
,

gn(A)

≡1

2

∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i − Ez∼N (0,Ik×k)

[
φ(Az)φ(Az)>

]∥∥∥∥∥
2

F

.

We calculate the gradient estimation error due to finite sam-
ples.

Claim 2.

∇g(A)−∇gn(A)

= 2Ez

[
diag(φ′(Az))(X −Xn)φ(Az)z>

]
,

where X = Ex∼D[xx>], and Xn = 1
n

∑n
i=1 xix

>
i . The

directional derivative with arbitrary direction B is:

D∇g(A)[B]−D∇gn(A)[B]

=2Ez

[
diag(φ′(Az))(Xn −X)φ′(Az) ◦ (Bz)z>

]
+ 2Ez

[
diag(φ′′(Az) ◦ (Bz))(Xn −X)φ(Az)z>

]
Lemma 3. Suppose the activation satisfies Assumption 3.
We get

Pr[‖X −Xn‖ ≤ ε‖X‖] ≥ 1− δ,

for n ≥ Θ̃(d/ε2 log2(1/δ))2.

2We will use Θ̃ throughout the paper to hide log factors of d
for simplicity.

Bounding the relative difference between sample and popu-
lation covariance matrices is essential for us to bound the
estimation error in both gradient and its directional deriva-
tive. We can show the following relative error:

Lemma 4. Suppose the activation satisfies Assumption 2&3.
With samples n ≥ Θ̃(d/ε2 log2(1/δ)), we get:

‖∇g(A)−∇gn(A)‖2 ≤ O(εd‖A‖2),

with probability 1− δ. Meanwhile,

‖D∇g(A)[B]−D∇gn(A)[B]‖2 ≤ O(εd3/2‖A‖2‖B‖2),

with probability 1− δ.

6.2. Bounding Mini-batch Size

Normally for empirical risk for supervised learning, the
mini-batch size can be arbitrarily small since the estimator
of the gradient is unbiased. However in the WGAN setting,
notice for each iteration, we randomly sample a batch of
random variables {zi}i∈[m], and obtain a gradient of

g̃m,n(A) ≡ 1

2

∥∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i −

1

m

m∑
j=1

φ(Azj)φ(Azj)
>

∥∥∥∥∥∥
2

F

,

in Algorithm 1. However, the finite sum is inside the Frobe-
nius norm and the gradient on each mini-batch may no
longer be an unbiased estimator for our target

gn(A) =
1

2

∥∥∥∥∥ 1

n

n∑
i=1

xix
>
i − Ez

[
φ(Az)φ(Az)>

]∥∥∥∥∥
2

F

.



SGD Learns One-Layer Networks in WGANs

In other words, we conduct stochastic gradient descent over
the function f(A) ≡ Ez g̃m,n(A). Therefore we just need
to analyze the gradient error between this f(A) and gn(A)
(i.e. g̃m,n is almost an unbiased estimator of gn). Finally
with the concentration bound derived in last section, we get
the error bound between f(A) and g(A).

Lemma 5. The empirical risk g̃m,n is almost an unbiased
estimator of gn. Specifically, the expected function f(A) =
Ezi∼N (0,Ik×k),i∈[m][g̃m,n] satisfies:

‖∇f(A)−∇gn(A)‖ ≤ O(
1

m
‖A‖3d2).

For arbitrary direction matrix B,

‖D∇f(A)[B]−D∇gn(A)[B]‖ ≤ O(
1

m
‖B‖‖A‖3d5/2).

In summary, we conduct concentration bound over the obser-
vation samples and mini-batch sizes, and show the gradient
of f(A) that Algorithm 1 is optimizing over has close gra-
dient and Hessian with the population risk g(A). Therefore
a second-order stationary point (SOSP) for f(A) (that our
algorithm is guaranteed to achieve) is also an ε approxi-
mated SOSP for g(A). Next we show such a point also
yield an ε approximated first-order stationary point of the
reparametrized function g̃(Z) ≡ g(A),∀Z = AA>.

6.3. Relation on Approximate Optimality

In this section, we establish the relationship between g̃ and
g. We present the general form of our target Problem 1:

min
A∈Rd×k

g(A) ≡ g̃(AA>) (4)

s.t. Tr(A>XiA) = yi, Xi ∈ S, yi ∈ R, i = 1, · · · , n.

Similar to the previous section, the stationary property might
not be obvious on the original problem. Instead, we could
look at the re-parametrized version as:

minZ∈S g̃(Z) (5)
s.t. Tr(XiZ) = yi, Xi ∈ S, yi ∈ R, i = 1, · · · , n,

Z � 0,

Definition 1. A matrix A ∈ Rd×k is called an ε-
approximate second-order stationary point (ε-SOSP) of Eqn.
(4) if there exists a vector λ such that:

Tr(A>XiA) = yi, i ∈ [n]
‖(∇Z g̃(AA>)−

∑n
i=1 λiXi)ãj‖ ≤ ε‖ãj‖,

({ãj}j span the column space of A)
Tr(B>D∇AL(A, λ)[B]) ≥ −ε‖B‖2,

∀B s.t. Tr(B>XiA) = 0

Here L(A, λ) is the Lagrangian form g̃(AA>) −∑n
i=1 λi(Tr(A>XiA)− yi).

Specifically, when ε = 0 the above definition is exactly the
second-order KKT condition for optimizing (4). Next we
present the approximate first-order KKT condition for (5):

Definition 2. A symmetric matrix Z ∈ Sn is an ε-
approximate first order stationary point of function (5) (ε-
FOSP) if and only if there exist a vector σ ∈ Rm and a
symmetric matrix S ∈ S such that the following holds:

Tr(XiZ) = yi, i ∈ [n]
Z � 0,
S � −εI,
‖Sãj‖ ≤ ε‖ãj‖,

({ãj}j span the column space of Z)
S = ∇Z g̃(Z)−

∑n
i=1 σiXi.

Lemma 6. Let latent dimension k = d. For an ε-SOSP of
function (4) with A and λ, it infers an ε-FOSP of function
(5) with Z, σ and S that satisfies: Z = AA>, σ = λ and
S = ∇Z g̃(AA>)−

∑
i λiXi.

Now it remains to show an ε-FOSP of g̃(Z) indeed yields a
good approximation for the ground truth parameter matrix.

Lemma 7. If Z is an ε-FOSP of function (5), then ‖Z −
Z∗‖F ≤ O(ε). Here Z∗ = A∗(A∗)> is the optimal solu-
tion for function (5).

Together with the previous arguments, we finally achieve
our main theorem on connecting the recovery guarantees
with the sample complexity and batch size3:

Theorem 4. For arbitrary δ < 1, ε, given small enough
learning rate η < 1/poly(d, 1/ε, log(1/δ)), let sample size
n ≥ Θ̃(d5/ε2 log2(1/δ)), batch size m ≥ O(d5/ε), for
large enough T=poly(1/η, 1/ε, d, log(1/δ)), the output of
Algorithm 1 satisfies

‖A(T )(A(T ))> − Z∗‖F ≤ O(ε),

with probability 1− δ, under Assumptions 2 & 3 and k = d.

Therefore we have shown that with finite samples of
poly(d, 1/ε), we are able to learn the generating distribution
with error measured in the parameter space, using stochastic
gradient descent ascent. This echos the empirical success
of training WGAN. Meanwhile, notice our error bound
matches the lower bound on dependence of 1/ε, as sug-
gested in (Wu et al., 2019).

7. Experiments
In this section, we provide simple experimental results to
validate the performance of stochastic gradient descent as-
cent and provide experimental support for our theory.

3The exact error bound comes from the fact that when diagonal
terms of AA> are fixed, ‖A‖2 = O(

√
d).
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Figure 1: Recovery error (‖AA> − Z∗‖F ) with different observed sample sizes n and output dimension d.

(a) leaky ReLU activation (α = 0.2) (b) tanh activation

Figure 2: Comparisons of different performance with leakyReLU and tanh activations. Same color starts from the same
starting point. For both cases, parameters always converge to true covariance matrix. Each arrow indicates the progress of
500 iteration steps.

We focus on Algorithm 1 that targets to recover the param-
eter matrix. We conduct a thorough empirical studies on
three joint factors that might affect the performance: the
number of observed samples m (we set n = m as in general
GAN training algorithms), the different choices of activation
function φ, and the output dimension d.

In Figure 1 we plot the relative error for parameter esti-
mation decrease over the increasing sample complexity.
We fix the hidden dimension k = 2, and vary the out-
put dimension over {3, 5, 7} and sample complexity over
{500, 1000, 2000, 5000, 10000}. Reported values are aver-
aged from 20 runs and we show the standard deviation with
the corresponding colored shadow. Clearly the recovery
error decreases with higher sample complexity and smaller
output dimension. From the experimental results, we can see
that our algorithm always achieves global convergence to
the ground truth generators from any random initialization
point.

To visually demonstrate the learning process, we also in-

clude a simple comparison for different φ: i.e. leaky ReLU
and tanh activations, when k = 1 and d = 2. We set the
ground truth covariance matrix to be [1, 1; 1, 1], and there-
fore a valid result should be [1, 1] or [−1,−1]. From Figure
2 we could see that for both leaky ReLU and tanh, the
stochastic gradient descent ascent performs similarly with
exact recovery of the ground truth parameters.

8. Conclusion
We analyze the convergence of stochastic gradient descent
ascent for Wasserstein GAN on learning a single layer gen-
erator network. We show that stochastic gradient descent
ascent algorithm attains the global min-max point, and prov-
ably recovers the parameters of the network with ε absolute
error measured in Frobenius norm, from Θ̃(d5/ε2) i.i.d sam-
ples.
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