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Abstract— This paper aims to develop time-varying virtual
constraint controllers that allow stable and agile bounding
gaits for full-order hybrid dynamical models of quadrupedal
locomotion. As opposed to state-based nonlinear controllers,
time-varying controllers can initiate locomotion from zero
velocity. Motivated by this property, we investigate the sta-
bility guarantees that can be provided by the time-varying
approach. In particular, we systematically establish necessary
and sufficient conditions that guarantee exponential stability
of periodic orbits for time-varying hybrid dynamical systems
utilizing the Poincaré return map. Leveraging the results of
the presented proof, we develop time-varying virtual constraint
controllers to stabilize bounding gaits of a 14 degree of
freedom planar quadrupedal robot, Minitaur. A framework
for choosing the parameters of virtual constraint controllers
to achieve exponential stability is shown, and the feasibility
of the analytical results is numerically validated in full-order
simulation models of Minitaur.

I. INTRODUCTION

Recent advances in control synthesis for dynamic,
quadrupedal locomotion have shown great potential and close
similarities to their biological counterparts, but controller
synthesis approaches that address agile gaits for full-order
dynamical models of quadrupeds are still developing. Our
motivation is to design nonlinear controllers that can stabilize
highly agile and dynamic motions with a particular focus on
bounding gaits. By exploiting the potential of time-varying
virtual constraints, we arrive at an exponentially stabilizing
nonlinear controller for quadrupedal bounding. The choice of
time as a gait phasing variable provides advantages such as
allowing the system to start from zero velocity. We extend the
Poincaré sections analysis to study the exponential stability
properties of periodic gaits for hybrid dynamical models of
legged locomotion with periodic and time-varying nonlinear
controllers. We then demonstrate the effect of the parameters
of the virtual constraint controllers on exponential stability
and present an informed approach to guide the selection
of outputs. The strength of the analytical results is finally
demonstrated by numerical simulations of the full-order
hybrid model for a quadrupedal test-bed.
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Fig. 1.
[1]. A full-order hybrid dynamical model is considered for the development
of the controllers as well as the numerical studies.

Planar quadrupedal robot, Minitaur, designed by Ghost Robotics

A. Related Work and Motivation

The control of robotic legged locomotion was first for-
malized by the zero moment point (ZMP) control strategy,
which stabilizes locomotion by driving the defined ZMP to
remain within the support polygon made by the contact feet
[2]. While this strategy has seen success on both bipedal
[3]-[5] and quadrupedal [6] platforms, this method of control
requires full actuation unlike the inherently underactuated lo-
comotion of biological gaits. More recently, model predictive
control (MPC) strategies which serve to predict the optimal
sequence of control inputs to a finite time horizon have been
used to control more robust and dynamic gait patterns, but
are limited by the constraints of online computation, see
e.g., [7]-[12]. Of the increasing variety of approaches that
have become available to model locomotion problems, one
such method gaining popularity in the legged locomotion
community is that of the hybrid systems approach, see
e.g., [13]-[23]. By casting the problem into continuous and
discrete domains, it becomes possible to capture the evolu-
tion of the system over time through Lagrangian dynamics
and to encode different physical and unilateral constraints
that arise due to impacts. The hybrid nature of locomotion
models has been addressed by a multitude of cutting-edge
control approaches such as hybrid zero dynamics (HZD)
[24], [25], transverse linearization [20], [26], hybrid reduc-
tion [27], [28], and controlled symmetries [19]. Of these
methods, HZD and transverse linearization broadly address
underactuation. HZD 1is an extension of zero dynamics to
hybrid models of legged locomotion. In this approach, the
coordination of the links is based on the description of output
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Fig. 2.

An overview of Minitaur and the hybrid model of the bounding gait. (a) The floating base B and leg numbering convention for Minitaur. (b)

Illustration of the directed cycle G = (V, £) to represent the bounding gait with 4 continuous-time domains.

functions, known as virtual constraints, which are imposed
via the action of a feedback controller (e.g., input-output
(I-O) linearization). Virtual constraint controllers have been
successfully implemented in simulation and practice on a
wide variety of 2D and 3D bipedal robots [14], [15], [17],
[29]-[32], lower-extremity prosthesis [33], [34], reduced-
order models of quadrupedal locomotion [35], and full-order
models of trotting, ambling, and walking gaits [36], [37].
Below, we summarize the advantages and disadvantages of
two primary choices of the gait phasing parameter (i.e., state-
based or time-based) utilized by HZD controllers to generate
periodic orbits.

State-based parameterization is the widely used technique
for HZD motion planning and control that considers a
combination of state variables to define a strictly monotonic
quantity, referred to as the phasing variable, to represent the
progress of the robot on the gait. While asymptotic tracking
and exponential stability of the gait are theoretically assured
by state-based HZD controllers, they are frequently criticized
for their reliance on highly accurate models and precise
sensor measurements [38], [39]. In practice, the state-based
controllers fail to account for sensor aggravations induced
by impacts. This is further amplified for dynamic gaits such
as bounding due to large impulse effects. Additionally, the
method requires perturbation of the robot to induce velocity
in the vicinity of the gait’s domain of attraction, which may
be practically infeasible for dynamic gaits. Alternatively,
periodic orbits can be generated by choosing the time-
varying parameterization [38], [39]. The key advantage of
this approach is allowing the system to start from zero initial
velocity, so long as the initial state is within the domain
of attraction of the limit cycle. However, development of
time-varying feedback controllers necessitates the use of the
Poincaré sections analysis to validate orbital and exponential
stability [40], [41].

The lack of a closed form solution for the Poincaré return
map adds further difficulty to the construction of exponen-
tially stabilizing HZD controllers for agile and dynamic gaits
such as running and bounding. This observation has led
to the use of event-based controllers, see e.g., [25], [35],
[42], [43]. In this approach, a multi-level control strategy is
adopted to execute the event-based controllers, wherein the

low-level HZD controllers are implemented with adjustable
parameters which are kept constant within the continuous-
time domains and are then modified by the higher-level
event-based controllers during the discrete transitions (i.e.,
in an event-based manner) such that all eigenvalues of the
Jacobian linearizeation of the Poincaré return map becomes
a Hurwitz matrix. One drawback of utilizing event-based
controllers for addressing exponential stability of agile ma-
neuvers is the potentially large delay between the occurrence
of a disturbance and the event-based control effort.

In this paper, we aim to answer the following funda-
mental questions: 1) How can we design time-varying and
exponentially stabilizing HZD controllers for bounding gaits
without event-based actions? and 2) How can we choose
the parameters of time-varying virtual constraints for stable
bounding gaits?

B. Objectives and Contributions

We aim to systematically address the synthesis of a single-
level exponentially stabilizing and time-varying HZD con-
troller for highly dynamic bounding gaits without any higher-
level event-based controllers. In what follows, we enumerate
out significant contributions: 1) The paper presents necessary
and sufficient conditions to analyze exponential stability of
periodic orbits for hybrid dynamical systems with time-
varying nonlinear controllers through the Poincaré sections
analysis. 2) The paper addresses the development of time-
varying HZD controllers to achieve stable bounding gaits
for full-order hybrid models of quadrupedal locomotion. It
studies the effects of the virtual constraints choice on stability
and presents an approach to guide the output selections.
3) Analytical results of the paper are numerically verified
on a full-order simulation model of a bounding gait for a
quadrupedal platform, Minitaur (see Fig. 1), with 14 degrees
of freedom (DOFs).

II. HYBRID MODELS OF LOCOMOTION

A. Robot Model

Minitaur is a 7.18kg quadrupedal robot developed by
Ghost Robotics. Each leg, by design, is sagittaly constrained
with two motors affixed to the ends of a four-bar linkage,
resulting in 8 internal DOFs, that are encoded in the vector
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Fig. 3.
time-varying HZD control. The value ¢t1 represents the value of ¢ at the
end of the previous domain so the initial value of 7 is zero.

Tlustration of the single-level feedback control algorithm based on

Gm. Each motor pair in ¢, is further parameterized by g;1
and ¢;o for all 7 € {0, 1,2, 3}, where i denotes the leg num-
ber. Additionally, a base frame B is attached to the geometric
center of the robot (see Fig. 2 (a)). The position and orien-
tation of the frame 53 with respect to an inertial world frame
is then represented by g, := COI(Q% 4y 9z qroll; dpitch, anw),
in which col(gy, gy, ¢-) and col(gro, Gpitch, Gyaw) denote the
Cartesian coordinates and absolute orientation of the robot,
respectively. In our notation, “col” represents the column
vector.

Four-bar legs are affixed to each of the motor pairs at
the four corners of the base frame, consisting of two shorter
upper bars and two longer lower bars which extend to the
respective foot. Each motor in the pair rotates a respective
upper bar, while the motion of the lower bars are determined
from the closed kinematic chain. As the closed kinematic
chain of the four-bar linkage leg structure produces modeling
complexities, similar to [44], we use a coordinate transfor-
mation which maps the states of the motor pairs ¢;; and
q;2 to respective hip and knee coordinates of an equivalent
two-bar structure for leg ¢ € {0,1,2,3}. For each two-bar
leg, the bars closest to the base frame are removed and
rotation actuators are placed at the original motor location
(the “hip”) and the intersection of the remaining two links
(the “knee”). After performing the linear transformations
ani = (g + ¢i2) and gx; = 3(qi1 — qi2), where the
subscripts “H” and “K” denote the hip and knee joints,
respectively, we can introduce the generalized coordinates
vector as follows:

q = col{qp, qui, qxi |1 = 0,1,2,3} € Q (D

for some configuration space @ C R'“. The state vector of
the robot is taken as x := col(q, §) € TQ := Q x R,

B. Hybrid Dynamical Model of Locomotion

The hybrid model of locomotion is described by the
following tuple as [36], [37]

Y= (Q,X,M,D,S,A,fg), (2)

where G = (V, £) represents the directed graph of the loco-
motion pattern with the vertex set V denoting the continuous-
time domains and the edge set £ C V x V representing
the discrete-time transitions between continuous-time do-
mains. The state manifolds and set of admissible controls
are represented by X = {X,},ey and U = {U,}vev,

respectively, with X, C R™ and U, C R™, where n = 28
and m = 8. Moreover, D := {D, },ey with D, C X, X U,
denotes the domains of admissibility on which 1) the ground
reaction forces are feasible and 2) the unilateral constraints
are satisfied. The evolution of the mechanical system during
the continuous-time domain v € V can be described by the
input-affine state equation & = f, ()4 g, () u. In particular,
the equations of motion for the domain v can be expressed
as follows:

D(q)§ +H(q,4) =Bu+J/](q)\ 3)
Jv(Q)d"'jiJ (qu')q':(),

where D(q) € R'**4 is the mass-inertia matrix, H(q,q) €
R'* represents the Coriolis, centrifugal, and gravitational
terms, and B is the input distribution matrix with the property
rank B = 8. In addition, A, and .J,,(¢) represent the Lagrange
multipliers (i.e., ground reaction forces) and Jacobian matrix
of the corresponding holonomic constraints, respectively. The
set of guards in (2), i.e., S := {S. }cce, then defines the set of
states and controls (x,u) € D on which the state trajectories
encounter a discrete transition for the edge e = (v — v + 1).
Furthermore, the set of discrete-time dynamics can be given
by A := {A.}cce, where upon intersection with S, the
state vector x evolves according to the discrete dynamics
xT = A.(z7) [45]. The set of continuous-time dynamics is
finally denoted by the set G := {(f,, gv) }vev-

In this paper, the hybrid model of a bounding gait is repre-
sented by a four-domain directed cycle of alternating stance
and flight phases. Figure 2(b) illustrates the corresponding
graph G with two stance and two flight phases.

Remark 1: Since Minitaur is a planar robot, we are inter-
ested in studying the bounding gaits in the sagittal dynamics.
For this purpose, we need to consider the Lagrangian dy-
namics (3) subject to some additional holonomic constraints
arising from the confinement of the motion in the frontal
and transversal planes. These conditions are expressed as
Gy = Groll = Gyaw = 0 and can be augmented to the Jacobian
matrix J,(¢) for all domains.

III. EXPONENTIAL STABILITY ANALYSIS OF PERIODIC
GAITS UNDER TIME-VARYING CONTROLLERS

The objective of this section is to investigate the exponen-
tial stability of dynamic gaits under time-varying and peri-
odic feedback laws via the Poincaré sections analysis. This
mathematical tool will help us to validate the convergence of
state trajectories to a stable limit cycle and/or to synthesize
real-time controllers that induce exponentially stable periodic
solutions.

We will consider robot gaits as periodic solutions of the
hybrid system X in (2). We investigate time-varying feedback
controllers as follows:

u="T,(r,x) 4

during the continuous-time domain v € V. Here, 7 denotes
the gait timing (i.e., phasing) variable which represents the
progress of the robot on the gait. In particular, it is taken



as zero at the beginning of each domain (i.e., 7™ = 0) and
evolves according to )
.1 5
=T 4)

where T, is the desired elapsed time for the domain v. In
(4), T, is a continuously differentiable (i.e., C!) state law in
terms of (7,x). We assume that by employing the feedback
controller (4), there is a periodic orbit for the closed-loop
hybrid system. In particular, O = {z = ¢*(t)|0 < ¢t <
T} denotes a periodic orbit for ¥, for some fundamental
period T > 0 and some periodic solution ¢*(t) with the
property ¢*(t +T) = p*(¢) for all ¢ > 0. According to the
construction procedure, the state feedback law (4) is assumed
to be periodic in 7 with the period taken as 1, that is,

L,(r+1,z)=T,(r,2) (6)

forall 7 > 0, x € X, and v € V. In what follows, we study
the dynamic stability of the periodic orbit O for the closed-
loop hybrid system. For future purposes, we assume that O,
denotes the projection of O onto the state manifold of the
domain v.

The evolution of the closed loop system during the domain
v € V can be described by the time-varying and periodic
ordinary differential equation (ODE) & = fd(r,z) :=
fo(@) + gu(z)Ty(7,x). Let ,(t, o) represent the state
solution of & = f¢(,z) with the initial condition x( for
all ¢ > 0 in the maximal interval of existence. From [25,
Theorem 4.3], one can present an equivalent single-domain
hybrid model for the closed-loop hybrid system as follows:

=[5, e

+ al
ECI Ty 7
S _[AE] v
7_+ = 0 ’ T € 867
where e = (v — v + 1) is the discrete transition after

the domain v. Furthermore, AY represents the equivalent
discrete-time dynamics that are composed of the flows of the
remaining continuous-time domains as well as the discrete-
time transitions. We note that since 7 resets at the beginning
of each domain, A%(z) does not depend on 7. In order to
maintain compact notation, we define the augmented state
variables as z, := col(z,7) € X, := X X RT. Using this
notation, the augmented hybrid system can be represented
by

e O R A

szACI( <) z, € Sq,

where f<!(z,) := col(f(r, z), T—), AY(x,) = col(AY(x),
0), and S, := S, x RT represént the augmented closed-
loop vector field, augmented discrete-time transition, and
augmented switching surface, respectively. We are now in
a position to define the Poincaré map for the augmented
system as P, : S, — S, by

Po(24) = ¢a (T1 (AL (24)) , A% (24)) 9)

where ¢, is the flow of the augmented ODE and T} (z,(0)) is
the time elapsed for the augmented state solution to intersect

Sa- As per the above construction, there is a fixed point
corresponding to the periodic orbit of the augmented system,
that is,

P,(x}) =z, (10)

a

where x} = col(z*,1), and z* is the intersection of the
closure of the periodic orbit with the switching surface,
ie., {z*} := O N S.. The local exponential stability of
the periodic orbit for the augmented system is equivalent
to having all the eigenvalues of the Jacobian matrix of the
Poincaré map inside the complex unit circle, i.e.,

. fOP,
eig { 5% (a2) |

The augmented Poincaré map defined in (9) can be con-
sidered as an n + 1-dimensional discrete-time system. The
following theorem reduces the exponential stability problem
of time-varying systems into that of an n-dimensional sys-
tem.

Theorem 1: (Poincaré Analysis for Periodic Orbits of
Time-Varying Hybrid Systems): Consider the time-varying
state feedback laws (4), in which the time-based phasing
variable evolves according to (5) and resets on the switching
manifolds as 7+ = 0. Then, the following statements hold.

1) The Jacobian linearization of the Poincaré map for the

augmented system takes the following structure

<1 (11)

0P, , . daP (x 1) 0
= | SN G

a Sr(xz*,1) 0
where P, = col(P,, P;) is a decomposition corre-

sponding to (x,7), i.e., P, € R™ and P, € R.
2) The periodic orbit O is orbitally exponentially stable
for the closed-loop hybrid system, if, and only if,

P,
eig{aa;(x*,l)}‘ < 1.

Proof: From [46, Theorem D.1] and chain rule, the
Jacobian linearization of the Poincaré map can be expressed
in a closed-form solution as follows:

opP, . . Folay) goo (x3)
8 (.’L'a) - In+1 - 054 *8 Zl * éa
La Oxq (xa) a (‘ra)

=I(ay)

(13)

dAg
(TU)T%(xa)’

(14)
where I,y is the identity matrix of dimension n+ 1, II(z})
is referred to as the saltation matrix, and

represents the trajectory sensitivity matrix. In addition, the
augmented switching surface S, = S, x R™ can be con-
sidered as a zero-level set of a differential function s,(x,)
that only depends on x, that is, sq(xq) = sq(x). As
F(s) = col( (), ) and 9= (a%) = [2 () 0], one
can simplify the saltatlon matnx H (z*) as follows:

)=
e R [fdasa *( o

D,(t) := (15)

0
(16)

1
T



which can be decomposed into (x,7) coordinates as

" II,, O
H(wa) = |:H7'z 1:|

From the variational equation [46, Appendix B], the state
trajectory sensitivity matrix satisfies the following matrix
differential equation

A7)

(PG(O) = In+1 (18)
o cl
Aalt): = L2 1),

in which ¢} (t) denotes the augmented periodic trajectory.
The trajectory sensitivity matrix as well as the Jacobian
linearization of the augmented vector field along the periodic
trajectory can be decomposed into (x,7) coordinates as
follows:

19)
Equation (19) reduces the variational equation into the fol-
lowing matrix differential equations

Dy (t) = Aue(t) au(t), D.,(0) = I, (20)
Bor(t) = Aga(t) Dor(t) + Aur(t), @ur(0)=0  (21)
Q(t) =0 (22)
(1) = 1. (23)

Combining (17) and (20)-(23), we can simplify the Jacobian
linearization of the Poincaré map as follows:

OPa ey _ [Mas 0] [cbm(TU) <I>N(Tv>] [Dm 0}

Oz, Iz 1 0 1 0 0
224 (a3)
N HTa: CD:Jc:v (Tv) Da::r 0]’
i (24)

cl
in which D, = aaAw < (x*). This completes the proof of Part

(1). With the above structure of the Jacobian matrix, the
eigenvalues become

cig { or : (xZ)} = eig{IL,,, ®,,(T}) D,u} U {0}
—eig{ G2 fu 0}

which completes the proof of Part (2). |

(25)

IV. DESIGN OF PARAMETERIZED AND TIME-VARYING
VIRTUAL CONSTRAINTS FOR BOUNDING GAITS

The objective of this section is to present virtual constraint
controllers that allow exponentially stable agile and dynamic
bounding gaits. Virtual constraints are kinematic constraints
that are defined to coordinate the motion of links. We

consider a set of parameterized virtual constraint controllers
and will then utilize Theorem 1 to study the effect of
parameters on the stability of bounding gaits. We will also
present a guide on how to choose the stabilizing parameters.

In this paper, the virtual constraints are defined as follows:

yo(T,2) := H{ (g — q2(7)), (26)

where H{ is an output matrix to be determined and ¢%(7)
represents the desired evolution of the configuration variables
during the continuous-time domain v. For later purposes,
h§(q) == H{ g is referred to as the controlled variables. Our
previous work in HZD [23], [47] has shown that the proper
selection of the controlled variables h{(g) directly affects the
stability of dynamic gaits.

To choose the controlled variables or equivalently the
output matrices, we first start with controlling the internal
and actuated DOFs of the robot. Section V will show that
this cannot stabilize the bounding gait. To stabilize the gait,
we then modify the controlled variables by adding terms that
correspond to the pitch angle gpich. This will let the HZD
controller take into account the deviation from the desired
pitch angles in the stance and flight phases. It will also allow
the robot to land at proper angles at the end of flight phases
to recover from instability. This procedure is mathematically
done by adding the pitch angle to the internal controlled
variables via some weighting factors «, and (3, that will
be tuned in Section V through Theorem 1. Additionally,
the dimension of the virtual constraints for stance phases
is reduced from R™ to R™~2 due to the closed kinematic
chain formed by the two front or the two rear stance legs,
therefore the outputs associated with the stance hips and
knees respectively are averaged. To make this notion more
precise, the controlled variables for the first stance and flight
phases are chosen as follows:

_%QHO + %QH2 + @1 Qpitch
qu1
Hlg = qu3
04 %QKO + %%2 + B1Gpiteh
gK1
gK3

; 27)

quo + Q2Qpitch
qu2 + 2Qpitch
qH1
2 . qH3
Hoq:= qko + B2Gpitch
qr2 + B2Gpitch
gK1
gK3

(28)

In (27), we control the average knee and hip angles for the
front stance legs, while allowing feedback from the pitch
angle via the coefficients o7 and /31 respectively. The angles
of the rear legs (i.e., swing legs) are controlled individually
and without influence from the pitch angle. Equation (28)
addresses the controlled variables for the flight phase. Here,
each hip angle of the rear legs—which will land at the end
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Fig. 4. (a) Limit cycles of gpienh and gko for the periodic bounding gait.

(b) Phase portraits for the motions of gpich and ggo over 20 cycles starting
from a perturbed initial condition. Convergence to the limit cycle is clear.

of the phase—experiences identical pitch feedback via o,
and the rear knee angles are controlled in the same manner
with respect to 35. The controlled variables of the front legs
are uninfluenced by the pitch angle. Similar parametrization
can be presented for domains 3 and 4 with different «
and (3 values. Differentiating the holonomic outputs along
the continuous-time dynamics of domain v results in the
following output dynamics

Yo = ‘Cgv’cfuyv (Tv :,C) u+ C?‘vyv(Tv 1’)

= —Kpyo — Kqyy (29)

in which “£L” denotes the Lie derivative, and K, and K
are positive definite matrices and hence, the origin is expo-
nentially stable for (29). From the output dynamics, one can
solve for the minimum 2-norm (i.e., minimum power) I-O
linearizing controller as follows:

u="T, (7, )
= (Egvﬁfvyv)T(L%,yv + Kpyy + Ka Z)v),

where the superscript “t” represents the pseudoinverse oper-
ator as the decoupling matrix L4, Ly, y, is 6 X 8 during the
stance phases.

(30)

V. NUMERICAL SIMULATIONS

This section provides details of numerical simulations
which validate the performance of the proposed time-
varying, single-level HZD controller on the full-order hybrid
model of locomotion.

A. Direct Collocation-Based HZD Gait Planning

The complexity associated with generating a feasible
periodic orbit O for the nonlinear and full-order hybrid
model of a quadruped bounding gait is addressed with a
direct collocation-based HZD gait planning method [48]
which converts the path planning into a nonlinear pro-
gramming (NLP) problem that can be effectively solved
by IPOPT [49]. The resulting gait is ensured to satisfy

position, velocity, and torque limits while taking into account
the unilateral and friction cone conditions. A cost function
J= fOT u ' (t) Ru(t) dt is minimized to ensure the efficiency
of the resulting gait. The NLP has 8208 decision variables,
3996 equality constraints, and 6684 inequality constraints
and produces a feasible gait trajectory in 282.27 seconds
on a 64-bit installation of Windows 10 with 16GB of RAM
and an 8-core Intel i7-9800X 3.8GHz processor. The gait
has an average speed of 0.36 (m/s). Figure 4 (a) depicts the
corresponding limit cycles for two degrees of freedom of the
robot. Color denotes different domains of the bounding gait.

B. Poincaré Sections Analysis

As a direct result of Theorem 1, the exponential stability of
the periodic orbit O for the time-varying closed-loop hybrid
system can be verified via the proposed Poincaré sections
analysis. The Poincaré section is taken at 7 = 1 for the
anterior stance phase. We remark that the results of Theorem
1 consider the Poincaré map as an n + 1-dimensional map to
simplify the presentation, but it is indeed an n-dimensional
partial map from S, back to S,. To take this point into
account, one would need to remove a dependent coordinate
from the state vector. Without loss of generality, we eliminate
the g, component which represents the height of the base
frame 5. We also remark that as the robot travels in the
z-direction, it lacks periodicity in the ¢, component and
thus, there will be an eigenvalue 1 for the Jacobian matrix
OF; (2%). Consequently, to achieve exponential stability, all

ox
the remaining eigenvalues must lie inside the unit circle.

C. Tuning HZD Controllers and Closed-Loop Simulations

We now employ the parameterized virtual constraints
controller to stabilize the bounding gait generated by the
NLP. Without tuning (i.e., a,=8,=0 for all v € V), the
dominant eigenvalues and spectral radius of the Jacobian of
the Poincaré map about the fixed point are {15.015, 1.0000,
0.0898 + 0.2418¢} and 15.015, respectively, and thus the
gait is unstable. In order to achieve exponential stability,
we employ our previously developed algorithm that is an
iterative sequence of optimization problems including bi-
linear matrix inequalities (BMIs) [23], [47] to the results
of Theorem 1. The BMI algorithm iteratively updates the
HZD controller parameters {«,,3,} until all eigenvalues
of the Jacobian matrix ‘981; = (z*) are within the unit circle.
The algorithm successfully converges to a set of stabilizing
parameters {«, },cy = {0.8072, 2.7925, —0.9384, 1.1633}
and {0,},ey = {-0.1027, —1.8087, —0.0005, 0.7405}
after a finite number of iterations for which the domi-
nant eigenvalues of the Jacobian matrix become {1.0000,
—0.0509 £ 1.6145¢, —0.0621}. As expected, the eigenvalue
of 1 corresponds to the non-periodic evolution of ¢, while all
of the remaining eigenvalues are well within the unit circle.
Hence, the gait is exponentially stable. Figure 4 (b) depicts
the phase portraits for the motion of gpich and ggo initialized
off of the limit cycle obtained from the direct collocation
optimization. Figure 5 illustrates the time profile of the
virtual constraints and torque inputs versus time. We remark
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Fig. 5. Simulated outputs y,, and torques w over 15 cycles from a perturbed
initial condition. Outputs are also shown converging to zero during each
stance phase. The discontinuities in the plotted outputs arise due to the fact
that only the active outputs as defined by H? are plotted for each domain v.
The practical feasibility of the torques is displayed by the bounded operating
range of approximately 10 Nm.

that the Minitaur platform makes use of direct-drive motors
with no gear reduction system. Figure 6 finally displays
snapshots of the simulated gait trajectory. Animations of
these simulations can be found online.!

VI. CONCLUSIONS

This paper presented a methodology for the design and
analysis of single-level and time-varying HZD controllers
that exponentially stabilize agile and dynamic gaits for full-
order hybrid dynamical models of quadrupedal locomotion.
The Poincaré sections approach was extended to provide
necessary and sufficient conditions that guarantee exponen-
tial stability of periodic gaits under time-varying nonlinear
controllers. A set of parameterized virtual constraints is
proposed to address agile bounding gaits. A formal approach
is presented to tune the parameters of the virtual constraint
controllers. To demonstrate the power of the approach, the
analytical results were used to synthesize a stabilizing and
time-varying HZD controller for a full-order hybrid model
that describes bounding gaits of the quadrupedal robot Mini-
taur with 28 state variables and 8 control inputs.

For future work, we will investigate the design of robust-
optimal time-varying HZD controllers that can address robust
and agile quadrupedal locomotion over rough terrains. Addi-
tional simulations will address controller response to unex-
pected disturbances and modeling errors and gaits which a
zero velocity initial condition within their respective domains
of attraction. We will also experimentally validate the HZD-
based bounding gait for the Minitaur platform.

Thttps://youtu.be/CosR7cd1eVo
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Fig. 6. Simulation snapshots illustrating the bounding sequence of Minitaur
as a result of the proposed HZD controller. (a) Anterior Stance (b) First
Flight Phase (c) Posterior Stance Phase (d) Second Flight Phase.

U3

REFERENCES

[11 Ghost Robotics, https://www.ghostrobotics.io/.

[2] M. Vukobratovi¢, B. Borovac, and D. Surla, Dynamics of Biped
Locomotion. Springer, 1990.

[3] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development
of Honda humanoid robot,” in Robotics and Automation. Proceedings
IEEE International Conference on, vol. 2, May 1998, pp. 1321-1326
vol.2.

[4] H.-O. Lim, Y. Yamamoto, and A. Takanishi, “Control to realize

human-like walking of a biped humanoid robot,” in Systems, Man,

and Cybernetics, IEEE International Conference on, vol. 5, 2000, pp.

3271-3276 vol.5.

J. Yamaguchi, E. Soga, S. Inoue, and A. Takanishi, “Development of

a bipedal humanoid robot-control method of whole body cooperative

dynamic biped walking,” in Robotics and Automation. Proceedings

IEEE International Conference on, vol. 1, 1999, pp. 368-374 vol.1.

[6] T. Akbas, S. Eskimez, S. Ozel, Adak, K. Fidan, and K. Erbatur, ‘“Zero

moment point based pace reference generation for quadruped robots

via preview control,” International Workshop on Advanced Motion

Control, AMC, 03 2012.

F. Borrelli, A. Bemporad, and M. M., Predictive Control for Linear

and Hybrid Systems. Cambridge University Press, 2017.

[8] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the MIT Cheetah 3 through convex model-predictive
control,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct 2018, pp. 1-9.

[91 Y. Ding, A. Pandala, and H. Park, “Real-time model predictive
control for versatile dynamic motions in quadrupedal robots,” in 2019
International Conference on Robotics and Automation (ICRA), May
2019, pp. 8484-8490.

[10] O. Villarreal, V. Barasuol, P. Wensing, and C. Semini, “MPC-based
controller with terrain insight for dynamic legged locomotion,” arXiv
preprint arXiv:1909.13842, 2019.

[117] M. Neunert, M. Stduble, M. Giftthaler, C. D. Bellicoso, J. Carius,
C. Gehring, M. Hutter, and J. Buchli, “Whole-body nonlinear model
predictive control through contacts for quadrupeds,” IEEE Robotics
and Automation Letters, vol. 3, no. 3, pp. 1458-1465, July 2018.

[12] G. Bledt, P. M. Wensing, and S. Kim, “Policy-regularized model
predictive control to stabilize diverse quadrupedal gaits for the mit
cheetah,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Sep. 2017, pp. 4102-4109.

[13] J. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable walking for
biped robots: Analysis via systems with impulse effects,” Automatic
Control, IEEE Transactions on, vol. 46, no. 1, pp. 51-64, Jan 2001.

[14] A. Ames, K. Galloway, K. Sreenath, and J. Grizzle, “Rapidly ex-
ponentially stabilizing control Lyapunov functions and hybrid zero
dynamics,” Automatic Control, IEEE Transactions on, vol. 59, no. 4,
pp. 876-891, April 2014.

[15] K. Sreenath, H.-W. Park, I. Poulakakis, and J. W. Grizzle, “Compliant
hybrid zero dynamics controller for achieving stable, efficient and fast
bipedal walking on MABEL,” The International Journal of Robotics
Research, vol. 30, no. 9, pp. 1170-1193, Aug. 2011.

[5

=

—
;‘



[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

H. Dai and R. Tedrake, “Optimizing robust limit cycles for legged
locomotion on unknown terrain,” in Decision and Control, IEEE 51st
Annual Conference on, Dec 2012, pp. 1207-1213.

C. O. Saglam and K. Byl, “Meshing hybrid zero dynamics for rough
terrain walking,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), May 2015, pp. 5718-5725.

A. M. Johnson, S. A. Burden, and D. E. Koditschek, “A hybrid systems
model for simple manipulation and self-manipulation systems,” The
International Journal of Robotics Research, vol. 35, no. 11, pp. 1354—
1392, 2016.

M. Spong and F. Bullo, “Controlled symmetries and passive walking,”
Automatic Control, IEEE Transactions on, vol. 50, no. 7, pp. 1025—
1031, July 2005.

I. Manchester, U. Mettin, F. Tida, and R. Tedrake, “Stable dynamic
walking over uneven terrain,” The International Journal of Robotics
Research, vol. 30, no. 3, pp. 265-279, 2011.

R. Vasudevan, Hybrid System Identification via Switched System
Optimal Control for Bipedal Robotic Walking. =~ Cham: Springer
International Publishing, 2017, pp. 635-650.

K. Akbari Hamed and R. D. Gregg, “Decentralized event-based con-
trollers for robust stabilization of hybrid periodic orbits: Application to
underactuated 3d bipedal walking,” IEEE Transactions on Automatic
Control, pp. 1-16, July 2018.

K. Akbari Hamed, B. Buss, and J. Grizzle, “Exponentially stabilizing
continuous-time controllers for periodic orbits of hybrid systems:
Application to bipedal locomotion with ground height variations,” The
International Journal of Robotics Research, vol. 35, no. 8, pp. 977—
999, 2016.

E. Westervelt, J. Grizzle, and D. Koditschek, “Hybrid zero dynamics
of planar biped walkers,” Automatic Control, IEEE Transactions on,
vol. 48, no. 1, pp. 42-56, Jan 2003.

E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi, and B. Morris,
Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor &
Francis/CRC, 2007.

A. Shiriaev, L. Freidovich, and S. Gusev, “Transverse linearization
for controlled mechanical systems with several passive degrees of
freedom,” Automatic Control, IEEE Transactions on, vol. 55, no. 4,
pp. 893-906, April 2010.

A. D. Ames, R. D. Gregg, E. D. B. Wendel, and S. Sastry, “On the
geometric reduction of controlled three-dimensional bipedal robotic
walkers,” in Lagrangian and Hamiltonian Methods for Nonlinear
Control 2006. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 183-196.

R. D. Gregg and M. W. Spong, “Reduction-based control of three-
dimensional bipedal walking robots,” The International Journal of
Robotics Research, vol. 29, no. 6, pp. 680-702, May 2010.

C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. Westervelt,
C. Canudas-de Wit, and J. Grizzle, “RABBIT: A testbed for advanced
control theory,” Control Systems Magazine, IEEE, vol. 23, no. 5, pp.
57-79, Oct 2003.

A. Ramezani, J. Hurst, K. Akbai Hamed, and J. Grizzle, “Performance
analysis and feedback control of ATRIAS, a three-dimensional bipedal
robot,” Journal of Dynamic Systems, Measurement, and Control De-
cember, ASME, vol. 136, no. 2, December 2013.

A. Hereid, C. M. Hubicki, E. A. Cousineau, and A. D. Ames,
“Dynamic humanoid locomotion: A scalable formulation for HZD gait
optimization,” IEEE Transactions on Robotics, pp. 1-18, 2018.

A. E. Martin, D. C. Post, and J. P. Schmiedeler, “The effects of
foot geometric properties on the gait of planar bipeds walking under
HZD-based control,” The International Journal of Robotics Research,
vol. 33, no. 12, pp. 1530-1543, 2014.

R. Gregg and J. Sensinger, “Towards biomimetic virtual constraint
control of a powered prosthetic leg,” Control Systems Technology,
IEEE Transactions on, vol. 22, no. 1, pp. 246-254, Jan 2014.

H. Zhao, J. Horn, J. Reher, V. Paredes, and A. D. Ames, “Multicontact
locomotion on transfemoral prostheses via hybrid system models
and optimization-based control,” IEEE Transactions on Automation
Science and Engineering, vol. 13, no. 2, pp. 502-513, 2016.

Q. Cao and I. Poulakakis, “Quadrupedal running with a flexible
torso: control and speed transitions with sums-of-squares verification,”
Artificial Life and Robotics, vol. 21, no. 4, pp. 384-392, Dec 2016.
K. A. Hamed, W. Ma, and A. D. Ames, “Dynamically stable 3d
quadrupedal walking with multi-domain hybrid system models and
virtual constraint controllers,” in 2019 American Control Conference
(ACC), July 2019, pp. 4588-4595.

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

W. Ma, K. A. Hamed, and A. D. Ames, “First steps towards full
model based motion planning and control of quadrupeds: A hybrid
zero dynamics approach,” in 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Nov 2019, pp. 5498-5503.
S. Kolathaya, A. Hereid, and A. D. Ames, “Time dependent control
Lyapunov functions and hybrid zero dynamics for stable robotic
locomotion,” in 2016 American Control Conference (ACC), July 2016,
pp. 3916-3921.

W. Ma, S. Kolathaya, E. R. Ambrose, C. M. Hubicki, and A. D. Ames,
“Bipedal robotic running with DURUS-2D: Bridging the gap between
theory and experiment,” in Proceedings of the 20th International
Conference on Hybrid Systems: Computation and Control. ~ACM,
2017, pp. 265-274.

B. Morris and J. Grizzle, “Hybrid invariant manifolds in systems with
impulse effects with application to periodic locomotion in bipedal
robots,” Automatic Control, IEEE Transactions on, vol. 54, no. 8, pp.
1751-1764, Aug 2009.

S. Veer, Rakesh, and I. Poulakakis, “Input-to-state stability of periodic
orbits of systems with impulse effects via poincaré analysis,” IEEE
Transactions on Automatic Control, vol. 64, no. 11, pp. 4583-4598,
Nov 2019.

K. Sreenath, H.-W. Park, I. Poulakakis, and J. Grizzle, “Embedding
active force control within the compliant hybrid zero dynamics to
achieve stable, fast running on MABEL,” The International Journal
of Robotics Research, vol. 32, no. 3, pp. 324-345, 2013.

K. Akbari Hamed, N. Sadati, W. Gruver, and G. Dumont, “Exponential
stabilisation of periodic orbits for running of a three-dimensional
monopedal robot,” Control Theory Applications, IET, vol. 5, no. 11,
pp. 1304-1320, July 2011.

J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” in Robotics: Science and Systems (RSS), 2018.

Y. Hurmuzlu and D. B. Marghitu, “Rigid body collisions of planar
kinematic chains with multiple contact points,” The International
Journal of Robotics Research, vol. 13, no. 1, pp. 82-92, 1994.

T. Parker and L. Chua, Practical Numerical Algorithms for Chaotic
Systems. Springer, 1989.

K. Akbari Hamed and R. D. Gregg, “Decentralized feedback con-
trollers for robust stabilization of periodic orbits of hybrid systems:
Application to bipedal walking,” Control Systems Technology, IEEE
Transactions on, vol. 25, no. 4, pp. 1153-1167, July 2017.

A. Hereid and A. D. Ames, “Frost: Fast robot optimization and sim-
ulation toolkit,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Vancouver, BC, Canada: IEEE/RSJ, Sep.
2017.

A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25-57, 2006.



	INTRODUCTION
	Related Work and Motivation
	Objectives and Contributions

	Hybrid Models of Locomotion
	Robot Model
	Hybrid Dynamical Model of Locomotion

	Exponential Stability Analysis of Periodic Gaits Under Time-Varying Controllers
	Design of Parameterized and Time-Varying Virtual Constraints for Bounding Gaits
	Numerical Simulations
	Direct Collocation-Based HZD Gait Planning
	Poincaré Sections Analysis
	Tuning HZD Controllers and Closed-Loop Simulations

	Conclusions
	References

