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Abstract. Domain adaptation approaches seek to learn from a source
domain and generalize it to an unseen target domain. At present, the
state-of-the-art unsupervised domain adaptation approaches for subjective
text classification problems leverage unlabeled target data along with
labeled source data. In this paper, we propose a novel method for domain
adaptation of single-task text classification problems based on a simple
but effective idea of diversity-based generalization that does not require
unlabeled target data but still matches the state-of-the-art in performance.
Diversity plays the role of promoting the model to better generalize and
be indiscriminate towards domain shift by forcing the model not to
rely on same features for prediction. We apply this concept on the most
explainable component of neural networks, the attention layer. To generate
sufficient diversity, we create a multi-head attention model and infuse a
diversity constraint between the attention heads such that each head will
learn differently. We further expand upon our model by tri-training and
designing a procedure with an additional diversity constraint between the
attention heads of the tri-trained classifiers. Extensive evaluation using the
standard benchmark dataset of Amazon reviews and a newly constructed
dataset of Crisis events shows that our fully unsupervised method matches
with the competing baselines that uses unlabeled target data. Our results
demonstrate that machine learning architectures that ensure sufficient
diversity can generalize better; encouraging future research to design
ubiquitously usable learning models without using unlabeled target data.

Keywords: Text Classification - Unsupervised Domain Adaptation -
Natural Language Processing - Neural Networks

1 Introduction

In natural language processing, domain adaptation of sequence classification
problems has several applications ranging from sentiment analysis [4] to classifying
social media posts during crisis events [1]. Knowledge learned from one domain,
book reviews for instance, can be adapted to predict examples from a different
domain such as reviews of electronics. Similarly, information about resource-
need events learned from one natural disaster can be adapted to predict events
from an ongoing crisis [20]. With the publication of Amazon reviews dataset [4]
consisting of around 25 different domains, cross-domain sentiment analysis became
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a common way to evaluate machine learning models for domain adaptation in
text.

The top performing models in this line of research largely remain dependent
on unlabeled target data. Although unlabeled data from the target domain tends
to help, it is imperative to realize the extent of performance gain that source
data alone can bring. We consider that the ideal criterion for no supervision in
domain adaptation is having zero knowledge about the target domain beforehand;
even if it is unlabeled. Our work can be viewed either as a strong baseline for
future unsupervised cross-domain research that utilizes unlabeled target data
or as a new direction in fully unsupervised domain adaptation without using
any target data at all; which is necessary for tasks such as relevancy prediction
for actionable information filtering in domains such as natural disasters that
require timely and efficient methods. We scope our work to the following setting:
a) single-task transfer, b) single source and target, and c) without labeled and
unlabeled target data available during training. We compare and contrast our
unsupervised methods to the existing counterparts. We do not consider any
supervised or minimally supervised approaches in this work.

Contributions: a) We present a novel diversity-based generalization method
using a multi-head attention model for domain adaption in unsupervised text
classification tasks. b) To further improve the generalizability of our model
and utilize additionally available unlabeled source data, we design a tri-training
procedure with an additional diversity constraint between the attention heads of
the tri-trained classifiers. ¢) Addressing the existing evaluation gap in component-
level performance analysis, we show a systematic and incremental creation of our
models by creating strong unsupervised baselines and improving upon existing
work.

2 Related Work

Early works on domain adaptation such as Structural Correspondence Learning [5]
make use of unlabeled target data to find a joint representation by automatically
inducing correspondences among features from different domains. The importance
of a good feature representation was later formally analyzed with a generaliza-
tion bound by Ben-David et al. [3]. These studies realized the importance of
finding commonality in features or pivots and minimizing the difference between
the domains. Pan et al. [19] proposed a spectral feature alignment method to
align domain-specific and domain-independent words into unified clusters via
simultaneous co-clustering in a common latent space. Later, introduction of
deep learning and neural networks helped remedy the problems of manual pivot
selection and discrete feature representations. In order to learn better higher level
representations, Stacked Denoising Autoencoders (SDA) [25] were introduced.
Along with SDA, a more efficient version called marginalized SDA [6] with low
computational cost and scalability has been utilized successfully in cross-domain
tasks [10, 11]. Domain-Adversarial training of Neural Networks (DANN) [9] was
proposed to effectively utilize unlabeled target data to create a classifier that is
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indiscriminate toward different domains. In their work a negative gradient (gradi-
ent reversal) from a domain classifier branch is back-propagated to promote the
features at the lower layers of the network incapable of discriminating domains.
DANN became an essential component in many works that followed. Recent
works such as Adversarial Memory Network (AMN) [15] bring interpretability by
using attention to capture the pivots. Along with attention, they effectively use
gradient reversal to learn domain indiscriminate features. Hierarchical Attention
Network (HATN) [14] expands upon AMN by first extracting pivots and then
jointly training pivot and non-pivot networks. Interactive Attention Transfer
Network (IATN) [26], another closely related work to AMN and HATN, showed
the importance of attending ‘aspect’ information. Another line of research, that
approached domain adaption through innovation in training procedure, is tri-
training [22, 28]. Tri-training utilizes three independently trained classifiers; of
which one is trained only on unlabeled target data, pseudo-labeled by the other
two. The final prediction is done by majority voting. Multi-task tri-training
(MT-Tri) [21], on the other hand, introduced an orthogonality constraint between
the two classifiers such that it can be trained jointly, reducing the compute time.
This constraint is one of the inspirations for our work. Although diversity could
be achieved through other means, we also focus on ‘orthogonality’. All of these
recent works used unlabeled target data for training classifiers. Our goal is to
show that similar performance is achievable without using any target data at all.

Based on how the dataset is used, approaches to domain adaptation can vary
from minimally-supervised to unsupervised. Minimally-supervised approaches
such as Aligned Recurrent Transfer [7] utilize some labeled data from the target
domain, while unsupervised approaches such as DANN, AMN, HATN, or IATN
utilize only unlabeled target data making it a more realistic scenario in terms of
usability where collecting labeled target data is expensive. However, many state-
of-the-art unsupervised domain adaptation methods, strikingly, never compare
with strong fully-unsupervised baselines where no target data is used. Newer
methods have started using word vectors [18] for their input word representations.
However, the baselines they compare with, utilize large 5000-dimension feature
vector of the most frequent unigrams and bigrams as the input representation.
In addition, many recent works present a complex system without conducting a
component-wise analysis which makes it unclear as to how much each component
(word vectors, gradient reversal, or attention) contributed to the performance
boost as compared to a simple DANN architecture. To address these evaluation
gaps, we perform a systematic and incremental construction of architectures such
that individual performance gain is realized.

Advantages and Practical Utility: a) Our methods do not require any
target data for training; making it out-of-the-box adaptable to any domain. b) We
provide a method to utilize additionally available unlabeled source data. ¢) Our
models are computationally cheaper (training converges quickly) when compared
to the existing state-of-the-art models. d) Diversified attention can provide better
quality of attended words which can be used for various downstream tasks such
as knowledge graph construction.
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Fig. 1. Complete architecture of the multi-head attention model with diversity.

3 Methodology

3.1 Problem Definition and Notations

Given a source (D;) and a target (D;) domain, the goal is to train a classifier
using data only from D, and predict examples from the completely unseen D;.
X, and X, represent the set of labeled data from source and target domains
respectively with their corresponding ground truth labels y; and y;. X; and y;
are used for testing purposes only. X and X}* represent unlabeled data available
from the source and target domain respectively. X/ (used in all of our competing
models either for adversarial training or tri-training) is never used in our models.
Finally, [.]?! represents data that is pseudo-labeled by the classifier. To summarize:
Input: X, yS (and XY for tri-training)

Output: 7" «— predict(X;)
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3.2 Diversity-based Models

We introduce 4 models with one integral concept: diversity. Figure 1 provides an
overview of the first two models and Figure 2 provides an overview of the last
two. First is a multi-head attention baseline created to understand the naturally
occurring diversity when multiple attention heads are connected. The second
model enforces this diversity as a constraint such that all heads learn different
features. The third model puts together three diversity-based classifiers and
tri-trains them. Tri-training procedure in itself consists of an additional diversity
constraint which forces two of the classifiers to learn differently. This is a one-step
tri-training procedure intended for scenarios where no unlabeled source data is
additionally available. When it is available, a full tri-training can be done until
convergence, which is the fourth model.

Multi-Head Attention for Sequence Classification (BiLSTM+MHA):
BiLSTM+ATT is a standard baseline attention architecture constructed using
BiLSTM [12, 23] and attention mechanism [2, 16]. Bidirectional Long Short-Term
Memory (BiLSTM) units have been successfully used in sequence modeling tasks
because of their effectiveness in representing forward and backward dependencies
in a sequence. For example, meanings of words like ‘good’ and ‘bad’ can be
changed when they are prefixed with ‘not’ or suffixed with ‘but’. Attention, on
the other hand, provides task-specific benefits by attending the most relevant
words such as ‘excellent’ or ‘poor’ in sentiment analysis. Attention and BiLSTM
have been successfully combined previously for tasks such as relation extraction
[27] to capture important semantic information in a sentence.

BiLSTM+MHA is an extension of the BILSTM+ATT baseline by adding
multiple attention heads as shown in Figure 1. This is similar to machine-
translation-like architecture [16] where each attention head leads to an LSTM cell
with memory carried from previous cells to predict the next word. To customize
it to classification purpose, we simply use the output from the final LSTM cell.
Setting the classification task this way gives more leniency for the model to learn,
remember, and generalize. Multiple attention heads can learn differently and
what is learned from the previous heads is transferred to the next. However, this
does not guarantee diversity as we do not know if the attention heads will in fact
learn differently. In order to enforce diversity, we introduce the following models.

Multi-Head Attention with Diversity (BiILSTM-+MHAD): In order
to guarantee that these attention heads learn differently and forcing the model
not to rely on the same features, we create a diversity constraint, an additional
loss term shown below.

Ty,g Ty—l
1 .
Ly = - E E ||A§FA]H% ; where i #£ j (1)

i=1 j=i+1

where k = W, the total number of combinations. T}, is the total

number of attention heads. A; and A; are i'" and j'* attention heads and ||.||%
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is the squared Frobenius norm, similar to the orthogonality constraint used in
[21]. We leave the last attention head from this loss term so that we have one
layer that learns freely without any constraints. The complete architecture of
this diversity-based model is shown in Figure 1. Resulting overall loss function,
consisting of a binary cross entropy loss term and the diversity loss term, for NV
training examples is shown below.

N
Z yilogy; + 1 - yz) IOg(l - yz)] +vLa (2)

where 7 is the hyperparameter to control how much diversity to be enforced
within the model.

One-Step Diversity Tri-training (BiLSTM+MHAD-Tri-I): To fur-
ther expand the concept of diversity, we tri-train the BILSTM+MHAD models
by adapting the multi-task tri-training procedure by [21]. In addition to applying
the diversity constraint within each classifiers, an additional orthogonality loss is
enforced between first two models m; and ms. The third model ms is left out
from the joint training. The loss term is shown below.

T, T,

ZZI\A ma); A(ma);ll% 3)

11]1

where k = (TIJ}% A(m1) and A(ms2) are the attention heads for models

my and my respectively. T}, is the total number of attention heads of each model.
The total tri-training diversity loss is given below.

Ldtm’ = aLo + BLd (4)

where a and 3 are the hyperparameters to control how much diversity to be
enforced within and between the models.

For one-step diversity tri-training shown in Algorithm 1, we jointly train
mq and mo with tri-training diversity loss Lg:-;. m3 is separately trained as a
BiLSTM+MHAD model. For predictions, a majority voting rule is applied over
the three classifiers. The overall loss function for NV training examples is given
below.

N
Z yilog g + (1 — yi) log(1 — ;)] + Latri (5)

Algorithm 1: One-Step Diversity Tri-training
Input: X,
Output: my, ma, ms
my,me < joint_diversity_train_models(Xs)
mg < diversity_train_model(Xy)
apply majority vote over m;
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Tri-training until Convergence (BiLSTM + MHAD-Tri-II): Full tri-
training, shown in Algorithm 2 and Figure 2, utilizes additionally available
unlabeled source data. While the first two classifiers m; and msy are jointly
trained on labeled source data, the third classifier mg is solely dedicated to the
training over unlabeled data that is pseudo-labeled by m; and msy. Similar to
[21], we define a threshold value 7 such that at least one out of the two models
should predict with probability greater than 7 to be considered successfully
pseudo-labeled. We set 7 to be 0.7. Starting with second iteration, m; is trained
jointly with mso using a combination of labeled source data and unlabeled source
data pseudo-labeled by ms and mg. During joint-training, we give priority to
the primary model by setting the loss weights accordingly. For example, while
joint-training my with ms, losses for the models can be minimized in a 2 : 1 ratio,
giving priority to my. We continue this process until a convergence condition is
met: mi =~ mo X ms.

Algorithm 2: Tri-training [21] - Modified
Input: X, X
Output: my, mg, ms
while convergence condition is not met do
forte€1..3 do
XPl ()
for x € X! do
if pi(z) = pr(2)(j, k # i) then
| XP e XU (s ()
end

end

if i = 3 then

| ms « diversity_train(X?") // Eq. 2
else if i =1 then

‘ my + joint_diversity train(X, U XP my) ; // Eq. 5
else

‘ my < joint_diversity train(X, U XP' my) ; // Eq. 5
end

end

end
apply majority vote over m;

4 Experimental Evaluation

4.1 Benchmark Dataset: Amazon Reviews

We use the standard benchmark Amazon reviews dataset! [4] which is widely
used for cross-domain sentiment analysis. We consider four domains: Books

! ttp://www.cs. jhu.edu/~mdredze/datasets/sentiment/
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Fig. 2. Tri-training BILSTM+MHAD models

(B), Kitchen (K), DVD (D), and Electronics (E). For a fair evaluation of the
architectures, we use the exact same raw dataset? used by our top competitor
model HATN [14], which is a part of Blitzer’s original raw dataset. We also use
the same 300-dimensional word vectors® [18]. Table 1 summarizes this dataset.

4.2 Crisis Dataset (Tweets)

Additionally, we construct a new dataset consisting of Twitter posts (tweets)
collected during three hurricane crises by CitizenHelper [13] system: Harvey and
Irma in 2017, and Florence in 2018. Similar to sentiment classification, our goal
here is to classify whether a tweet text indicates an event or not. Using the
crowd-sourcing platform Figure-Eight*, three workers at minimum were assigned
to give a binary label to each tweet. We define events to be actions that involve
at least one noun/entity. Events could be past, present, or future actions. It could
also be questions, news, or instructions about actions. Some examples are: ‘A
rescues B’, ‘A is sending food to B’, ‘A will mowve to location B’, and so on. Table
1 summarizes this dataset. Unfortunately, the labeled dataset for Florence and
Irma consists of very low number of positive events. Consequently, we set up the
experiments such that we train only on Harvey and test on Florence and Irma.

4.3 Experimental Setup

We follow the traditional cross domain sentiment classification set up where each
experiment consists of a source domain (S) and a target domain (7"). A model

2 https://github.com/hsqmlznol/HATN/tree/master/raw_data
3 https://code.google.com/archive/p/word2vec/
4 https://www.figure-eight.com now https://appen.com/
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will be trained on source data and tested on target data, represented as S — T.
We use all available labeled target data for testing. Crisis dataset is balanced
before training and testing.

Positive |Negative |Unlabeled |Average Number|Vocabulary
of Tokens
Books 3000 3000 9750 182.0 105920
DVD 3000 3000 11843 197.5 117619
Kitchen [3000 3000 13856 102.0 52972
Elec. 3000 3000 17009 119.3 72458
Harvey (1122 960 10001 17.2 23562
Florence 201 1475 10001 17.1 26380
Irma 313 596 10001 15.3 20764

Table 1. Dataset Statistics

4.4 Implementation Details

We use Keras deep learning library with Adam optimizer (Ir = 0.005, beta; = 0.9,
betas = 0.999, decay = 0.01) for our implmentations. Maximum epoch is 40 with
an early stopping patience of 3. Batch size is 32 and validation split is 0.15.

We set the number of attention heads, T, = 5 and number of words from
each review, T, = 200. To keep the model simple, we do not change this further.
Dropouts are kept at 0.4. 7 is kept at 0.7 and tri-training is stopped at 85%
agreement. We set v = 0.01, a = 0.05 and 8 = 0.01. These values are obtained
by performing a basic hyperparameter tuning using grid search.

4.5 Baselines and Modifications

Adversarial Learning Based Methods: DANN [9] introduced adversarial
training by making use of unlabeled target domain data. Earlier layers of the
deep neural network architecture are made domain invariant through back-
propagating a negative gradient using a jointly trained domain classifier. It uses
a 5000-dimensional feature vector of the most frequent unigrams and bigrams
as the input representation. DAmSDA [10], on the other hand, uses mSDA [6]
representation instead. We report the scores for DAmSDA and DANN from HATN
[14]. For DANN, additionally, we create a customized implementation (DANNT)
using BiLSTM and word vectors. This modified architecture simply consists of a
shared BiLSTM layer followed by a dense layer for sentiment classification and
the same BiLSTM layer followed by a gradient reversal layer and a dense layer
for domain classification. Note that the accuracy for DANNT (our improved
DANN) is +3.2% higher than what is reported in HATN.
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Tri-training Based Methods: Multi-task tri-training (MT-Tri) [21] con-
ducts tri-training on a multilayer perceptron model with an orthogonality loss
between the final layers to enforce diversity between the jointly trained models.
Unlabeled target data pseudo-labeled by the first two classifiers are fed to the
third classifier. Three classifiers are optimized until none of the models’ predic-
tions change. We improve upon this model (MT-Tri™) by using word vectors
and BiLSTM.

Attention Based Methods: Recent works such as AMN [15], HATN [14],
and TATN [26] use attention to identify sentiment pivots. Utilizing unlabeled
target data, gradient reversal is an essential component in their models for
domain classification. AMN expands DANN to an attention-based model. HATN
improves AMN further by building pivot and non-pivot networks. The pivot
network (P-Net) performs the same task as AMN by extracting pivots. The
non-pivot network (NP-Net) takes a transformed input that hides previously
extracted pivots, which is then jointly trained with P-Net. IATN incorporates
‘aspect’ information in addition to the sentence attentions. At the time of writing
of this paper, the open source code® for IATN is still being prepared by its
authors. We include the reported scores for reference purpose. IATN reports
a 0.8% increase in performance as compared to HATN (85.9% versus 85.1%).
IATN uses the same input settings and the dataset as HATN with one difference:
200-dimensional word vectors instead of 300. Meanwhile, we use the exact same
dataset and GoogleNews word vectors used by HATN for all our experiments for
both reproducibility as well as blind comparison.

Strong Unsupervised Baselines: To study component-wise performance,
we construct two strong unsupervised baselines from standard neural network
architectures: BiLSTM and BiLSTM+ATT. BiLSTM consists of traditional
BIiLSTM units with the final unit making the prediction. BILSTM+ATT, as
shown in Figure 1, adds a single attention layer on top of BiLSTM and the
prediction is based on the output from the attention layer. Note that these
two baselines still produce strong results and provide a reference for how much
improvement following models make.

5 Results & Discussion

Tables 2, 3, and 4 show the competitive nature of our fully unsupervised methods
when compared with the existing unsupervised counterparts that use unlabeled
target data. Our experiments showed incrementally improving results when each
component is added to the baselines. Attention with diversity improved the
single-attention baseline and tri-training with diversity improved it even further.
Using additionally available unlabeled source data proved to be fruitful for most
of the domains. Note that for crisis dataset we only use Harvey for training
because labeled data for Florence and Irma was just too low.

An implication of the diversity-based attention heads is shown in Figure
3. Diversity pushes the model not to rely on the same features. First exam-

® https://github.com/1146976048qq/TATN
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Table 2. Classification accuracy scores showing that unlabeled target data is not
necessary to achieve strong performance. +: improved implementations, <{: reproduced
implementations, #: strong unsupervised baselines constructed from standard neural
network architectures, *: reported scores from [14,26] (see description). Our scores
are averaged over 5 independent runs. Note that only the models in the bottom
table do not use any unlabeled target data.

S — T|[DANN* DAmSDA* IATN* DANNT MT-Tri™ AMN® HATN
/P-Net
B — DJ| 83.42 86.12 86.80 82.85 84.67 87.07 87.70
B — E|| 76.27 79.02 86.50 81.03 84.62 82.98 86.20
B — K| 77.90 81.05 85.90 82.01 84.78 84.85 87.08
K — BJ| 74.17 80.55 84.70  79.38 80.98 83.50 84.83
K — D|| 75.32 82.18 84.40 79.04 78.89 82.83 84.73
K — E|| 85.53 88.00 87.60 86.00 85.87 86.72 89.08
E — B||l 73.53 79.92 81.80 78.92 80.64 83.28 83.62
E — K|| 84.53 85.80 88.70  86.43 89.62 89.80 90.12
E — D|| 76.27 82.63 84.10 77.83 79.97 83.37 83.87
D — BJ| 80.77 85.17 87.00 84.32 85.67 87.85 88.02
D — E|| 76.35 76.17 86.90 81.74 84.48 84.65 86.78
D — K|l 78.15 82.60 85.80 83.29 85.05 84.28 87.00
AVG 78.52 82.43 85.90 81.78 83.77 85.10 86.59

S — T[[BILSTM* BiLSTM BiLSTM BiLSTM BiLSTM BiLSTM
+ATT* +MHA +MHAD +MHAD-Tri-I +MHAD-Tri-II

B — D|84.19 87.44 87.29 87.54 87.76 87.46

B — E||83.61 83.90 85.36 85.63 85.75 86.08

B — K||83.87 85.21 86.04 87.06 87.34 87.68

K — B||80.52 82.15 83.11 83.70 84.19 84.23

K — D||78.28 80.17 81.50 82.27 82.11 83.34

K — E|86.33 87.30 88.60 88.81 88.98 89.22

E — B|80.58 82.10 83.55 83.67 83.96 84.33

E — K||88.07 88.19 89.61 89.96 90.07 91.05

E — D||78.08 81.93 82.77 82.93 82.87 82.81

D — B||83.93 87.72 87.77 88.22 88.51 88.74

D — E||82.98 84.57 84.75 85.93 85.79 86.21

D — K||84.38 85.45 86.50 86.73 86.74 87.37
AVG 182.90 84.68 85.57 85.98 86.17 86.54

Table 3. Classification accuracy scores for crisis dataset.

S — T|HATN BiLSTM BiLSTM BiLSTM BiLSTM BiLSTM
+ATT +MHA +MHAD +MHAD-Tri-I +MHAD-Tri-II

H — F||80.01 74.88 74.32 75.69 76.00 78.11

H — 1]|58.63 63.84 64.32 65.10 65.02 64.38

Table 4. Training time in d-hh:mm:ss for H—F on a Dual Intel(R) Xeon(R) Gold 5120
CPU@2.2GHz with 28 cores and 1.5TB RAM.

HATN ||BiLSTM+MHA|BiLSTM+MHAD |BiLSTM+MHAD-Tri-I|BiILSTM+MHAD-Tri-IT

1-08:31:09 00:50:31 01:29:28 2:07:23 6:21:18
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Review Text: Vornado Vortex Heat. I just had to post after reading the re-
views. I have had a Vornado Vortex Heater since 1994, I paid twice what this
one costs and it has been excellent. y4,.,. = +ve
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|

BiLSTM + MHAD with 5 diverse attention layers: y,,..q = +ve

I

e 2 YU B H 0o @ O g 0 ¥ H Q- g Q8 e u «x 5 @ o =
T g8 2sf8ggEsS5E z=g g E§E28f£EsSsz =S85
Eg:l: = Q-«’g -E A & 8 8 3 Q“EBH 8 o =
8= O o 5 &> T 9
< b= = = 5
= 3]

Review Text: Butter dish not tall enough. It looks nice but the lid touches the
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Fig. 3. Two examples of kitchen review predictions by BiLSTM + ATT and BiLSTM
+ MHAD models trained on book reviews. When a single attention head fails to attend

key words like ‘excellent’ or ‘but’, at least one of the diverse heads tends to make up
for it.

ple shows misclassification by a single attention model that attends incorrect
sentiment words like ‘Vortex’ and ‘Heat’. However, with diversity, the model
is lenient and look for alternate features. At least one of the T}, diverse heads
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tends to find important words like ‘excellent’. These examples also show that
placing diversity on attention layers, rather than on any other hidden layers,
provides an explainable understanding of which words the model deems to be
important and can be used for subsequent pivot extraction like in AMN or HATN.

Computational Performance: To show that our work is practically useful
for all communities alike, experiments are run on a CPU. A sample training
time comparison is shown in Table 4. HATN needs gradient reversal to utilize
unlabeled target data for the domain classifier branch and pivot extraction for
joint training; subsequently making it much slower.

Gradient Reversal: To study the impact of gradient reversal procedure with
BiLSTM, we conducted experiments with unlabeled target data. The performance
of BILSTM versus DANN™ (improved DANN) models in Table 2 showed that,
with a good dropout value for the BiLSTM units, gradient reversal did not help
much. On a similar note, domain adversarial loss was found not to be helpful
in tri-training experiments [21]. In our context, we speculate that this might be
because the dropout in the BiLSTM layer drops individual words that can lead
to a better generalization which is essentially the purpose of gradient reversal.
This will be studied in our future work.

Table 5. Classification accuracy scores for three distinct combinations.

S—T P-Net |BILSTM
H-MHAD-Tri-I1
Electronics — Yelp |88.45 |89.15

Kitchen — IMDb 76.38 [78.33

Yelp — IMDb 78.75 |77.28

Additional Analysis: Generalizability of our models is further tested with
three randomly selected experiments using very divergent domains such as Yelp®
restaurant reviews and IMDb [17] movie reviews in addition to Amazon reviews;
Electronics (Amazon) — Yelp, Kitchen (Amazon) — IMDb, and Yelp — IMDb.
We randomly selected 2000 positive and negative reviews from Yelp and IMDb.
Their accuracy scores on our final model when compared to PNet” of HATN is
shown in Table 5. Once again, this shows that unlabeled target data is not always
necessary; thus providing us with a fully unsupervised and computationally
efficient alternative for domain adaptation in text classification tasks.

5 https://www.yelp.com/dataset/challenge
7 PNet is the first component of HATN which is computationally faster and within
~ 1.5% accuracy of HATN
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6 Future Work

Experiments shown in the additional analysis section can be expanded to a lot
more datasets and divergent domains; particularly applying to domains where
unlabeled target data is not readily available such as during an onset of a natural
or man-made disaster event. A careful empirical study of several existing complex
architectures that employ adversarial training using the gradient reversal strategy
is another direction. It is crucial to understand how much of the gain claimed
by the adversarial training approach can actually be brought through by good
generalization of the model without using any unlabeled data from the target
domain. Recent progress in deep learning and natural language processing has seen
impressive performance gain across various domains by using the transformer [8,
24] based models. Leveraging such models and studying the effect of encouraging
diversity among the architectures appear to be a promising future direction.

7 Conclusion

Our study shows that machine learning architectures designed for achieving
sufficient diversity in learning can generalize better for domain adaptation. Fur-
ther, unlabeled target data, used often by state-of-the-art models, is not always
necessary to produce strong performance for domain adaptation in subjective
text classification problems. We introduced a novel diversity-based generalization
approach for the domain shift problem using a multi-head attention model where
attention heads are constrained to learn differently such that the classifier can
leverage on alternative features. Experiments on the standard benchmark dataset
of Amazon reviews and a newly constructed dataset of Crisis events showed that
our fully unsupervised methods that completely avoid target data can indeed
match the competing unsupervised baselines.

Reproducibility: Code, datasets, and documentation are available at -
https://github.com/jitinkrishnan/Diversity-Based-Generalization
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