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Abstract: A Task Decomposition method for iterative learning Model Predictive Control
(TDMPC) for linear time-varying systems is presented. We consider the availability of state-
input trajectories which solve an original task 71, and design a feasible MPC policy for
a new task, 72, using stored data from 7 1. Our approach applies to tasks 72 which are
composed of subtasks contained in 71. In this paper we formally define the task decomposition
problem, and provide a feasibility proof for the resulting policy. The proposed algorithm reduces
the computational burden for linear time-varying systems with piecewise convex constraints.
Simulation results demonstrate the improved efficiency of the proposed method on a robotic

path-planning task.
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1. INTRODUCTION

Classical Tterative Learning Controllers (ILCs) aim to
improve a system’s closed-loop reference tracking perfor-
mance at each iteration of a repeated task (Bristow et al.
(2006); Lee and Lee (2007)). Recent work has also explored
reference-free ILC for applications whose goals are more
appropriately defined via a performance metric, rather
than a reference trajectory to track. Examples include au-
tonomous racing tasks (e.g. “minimize lap time”) (Rosolia
et al. (2017); Kabzan et al. (2019)), or optimizing flight
paths for tethered energy-harvesting systems (e.g. “maxi-
mize average power generation”) (Cobb et al. (2019)).

In both classical and reference-free ILC, the controller uses
data from previous iterations to improve future closed-loop
performance with respect to the appropriate performance
metric. At the very first iteration, these methods require
either a reference trajectory to track or a feasible trajec-
tory with which to initialize the control algorithm. If the
task changes, a new trajectory must be designed, which
can be difficult for complex tasks.

A variety of model-based methods have been suggested
for finding feasible trajectories or policies for new tasks
using stored data from related tasks. One approach relies
on building and adapting trajectory libraries. For example,
Nguyen et al. (2016) design a walking gait across stepping
stones for a bipedal robot by linearly interpolating tra-
jectories from a library of asymptotically stable periodic
walking gaits. The authors of Yang et al. (2019) consider
a set of actions and corresponding motion primitives for
iterative teleoperative tasks. Given a new user-provided
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input, probabilistic inferences are made over the respective
set of locally feasible trajectories. Similar approaches con-
sidering probabilistic distributions over trajectory libraries
are proposed for robotic manipulators and autonomous
vehicles in Paraschos et al. (2013) and Zhi et al. (2019),
respectively. In Stolle and Atkeson (2010), environment
features are used to divide a task and create a library
of local trajectories in relative state space frames. These
trajectories are then pieced back together according to
the features of the new task environment. The authors
in Berenson et al. (2012) propose running a desired path
planning method in parallel with a retrieve and repair
algorithm that adapts a reference trajectory from a pre-
vious task to the constraints of a new task. While these
methods decrease planning time, they require verifying or
interpolating saved trajectories at each new time step, and
cannot a priori guarantee constraint satisfaction.

Other approaches learn generalizable policies from stored
task data. The authors of Dai and Sznaier (2018) con-
sider linear hybrid systems. Data is collected in individ-
ual modes, and a polynomial optimization problem is
formulated to find a stabilizing controller for arbitrary
switching sequences. In Pereida et al. (2018), a fixed map
is learned between a given reference trajectory and the
input sequence required to track the trajectory with a
linear system. This defines a policy given a new refer-
ence trajectory, but does not provide the trajectory itself.
The authors of Fitzgerald et al. (2019) learn a mapping
between a robot gripper pose performing the same task
with different tools, based on online human corrections.
This method was effective in demonstrations, but required
human supervision and cannot guarantee safety.

In this paper, our objective is to efficiently find a feasi-
ble trajectory to smartly initialize an Iterative Learning



Model Predictive Controller (ILMPC) (Rosolia and Bor-
relli (2017)) for a new task. ILMPC is a reference-free
ILC that uses a safe set to design an MPC policy for an
iterative control task. This safe set is initialized using a
feasible task trajectory, and collects states from which the
task can be completed. In Vallon and Borrelli (2019), a
Task Decomposition for ILMPC (TDMPC) algorithm was
introduced for nonlinear, constrained dynamical systems.
TDMPC is data-efficient, requires no human supervision,
and, if the algorithm converges, produces trajectories that
are guaranteed to satisfy all constraints for the new task.
TDMPC decomposes an initial task 71 into different
modes of operation, called subtasks, and adapts stored 71
trajectories to a new task 72 only at points of subtask
transition, by solving one-step controllability problems.
The main contributions of this paper are as follows:

1. We present an extension to the TDMPC algorithm in
Vallon and Borrelli (2019). We introduce a new formula-
tion for linear time-varying systems with piecewise con-
vex state and input constraints. The new formulation
further reduces the computational burden of finding
feasible trajectories for a new task 72 by formulating
the goal as a convex optimization problem, and simul-
taneously increases the size of the resulting 72 safe set.

2. We prove that the induced safe set based MPC policy
is feasible for 72. This policy can be used to initialize
an iterative learning control algorithm, or to directly
obtain a suboptimal execution of T2.

2. PROBLEM DEFINITION
2.1 Tasks and Subtasks

Consider a discrete-time system with linear, time-varying
dynamics

Tp1 = Arwr + Brug, (1)
subject to state and input constraints
rr € X, up €U, (2)

where the vectors xp and uy collect the states and inputs
at time step k. We define a set P C X to be the target
set for an iterative task 7, performed repeatedly by the
system and defined by the tuple

T={X,U,P}.
In this work we consider tasks 7 that can be decomposed
into an ordered sequence of subtasks with piecewise linear

dynamics and convex constraint sets. Specifically, the i-th
subtask S; is the tuple

Si ={4;,B;, X;,U;, R;} . (3)
Within §;, the system is subject to linear dynamics
Tr+1 = Az + Biug, (4)
and convex state and input constraints
T € X, uk € U;, (5)

where X; C X and U; C U are convex sets. R; is the set
of transition states from S; into the next subtask S;41:
Ri QXZ:{{EGX,L :du e U;, Alx—l—BzueXzH} (6)

A successful subtask execution E(S;) of a subtask S; is a
trajectory of states and inputs evolving according to (4),
respecting state and input constraints (5), and ending in

the subtask transition set (6). We define the j-th successful
execution of subtask S; as

Ej(SZ-)_ = ;,ug}, | | (7a)
x! = [z}, o], ..al,], 2k € X VE€(0,T/),
x{ﬂ S Ri, (7b)

w = [ul), ], ...,u;j], up € Us Yk €1[0,T7), (7c)

where xfﬂ and ui denote the system state and the control

input at time & of subtask execution j. T/ is the duration
of the j-th execution of subtask i. Fig. 1 depicts three
feasible subtask executions from a robotic path-planning
example detailed in Sec. 4. Again, the final state of each
successful subtask execution is in the subtask transition set
R;, from which it can evolve into the subsequent subtask.
In order to keep notation simple, we have written all
subtask executions as beginning at time step k£ = 0.

Let task 7 be an ordered sequence of M subtasks,
T = {S;}M,. The j-th successful task execution is the
concatenation of the corresponding subtask executions:

FEI(T) = [E(81), B/ (Ss), ..., B/ (Spr)] = [x7, 7],  (8)

x) = [x{,xg, ...,xg\/[],
uw = [u],ul, ... u,],
zl € Ry, ie[l,M—1],

Aﬁg‘ + Bzufl € Xi+1; xS [1,M — 1],

where a = T[J1 i) is the duration of the first i subtasks
during the j-th task iteration. When the state reaches a
subtask transition set, the system has completed subtask
S;, and it transitions into the following subtask S;i1.
The task is completed when the system reaches the last
subtask’s transition set, P = Ry, the task’s target set.

Definition: A set P C X is a control invariant set for the
system (1) subject to the constraints (2) if:
2 €EP = Jup €U : Agxp + Brug € P, VE>0. (9)

Assumption 1: P is a control invariant set (9).

The optimal task 7 completion problem is given by:
T

min
sUQs-- o UT —1 -

Voo (@o) = h(zk, ug) (10)
0
s.t. Tht1 = f(-rk7uk))

T € X,ur €U szo,

xr € P,

where Vi, 1(x0) is the optimal cost-to-go from the initial
state g, and h(zk,ur) is a chosen stage cost.

2.2 Safe Set Based ILMPC

In Rosolia and Borrelli (2017), a data-driven formulation
for approximating the optimal control task (10) for a
linear time-invariant system with convex constraints (2)
is introduced. Here we propose a formulation for linear
time-varying systems with piecewise convex constraints.

Each execution of task 7 is referred to as an iteration.
After J number of task iterations, we define the time-
indexed sampled subtask safe set of subtask S; as:



J

KSin= 3 Uzp_, (- ke 0max/ -1 (11)
. i J
Jj=1

For given k and 1, x;j_k is the k-to-last state visited

in §; during the j-th task iteration. Thus the set (11)
is the collection of states from which the system reaches
the subtask transition set R; in exactly k steps during a
previously recorded task iteration, while satisfying subtask
constraints (5). We similarly define a time-indexed sampled
subtask input set of subtask S; as:

J
KU, 1, = U ufﬁ_k , k€ [O,mJaxTij —1].
j=t '

Because X; and U; are convex, there also exists a feasible
k-step input sequence to R; for each convex combination
of elements in ICS;],,C. We define convex subtask safe sets
and conver subtask input sets as:

IKSi 1l ISkl
Cik =13 D MpzpiAp >0, Y A=1,2€KSix;,
p=1 p=1
[Kthi, x| KU,k
ClUin =13 > Npwp: X >0, > N=1w, € KUy
p=1 p=1

(12)
where |KS; | is the cardinality of KS; . Fig. 1 depicts
these sets for three trajectories (J = 3) through a subtask
from a robotic path-planning detailed in Sec. 4. We define
a barycentric cost-to-go over the convex subtask safe sets:

IKS1, K|
v(z) = \ >I£1i111 . Z AV (2p) (13)
pZY, L, p=0
IKS1, k|
s.t. Z Ap =1,

p=0

IKS1 Kl

Z Ap2p =2, 2p € KSr K,

p=0

where V() is the realized cost-to-go from state z, during
a past execution. At time step k of iteration J + 1, we
approximate the optimal control problem (10) by solving:

V(g™ = (14)
k+N—1
uk\kw”vul;cr}rij{ll—l\k-vi ; h(@yk, uepr) + v(Tptnx)
s.t. Typapk = f(@p, wyp, 1), VE € [k, B+ N — 1],
Ty € X, uy €U, VEE [k E+ N 1],
Tk = fﬂi’

Tk+Nlk S CK:]’K UP,

which searches for an input sequence over a horizon N that
controls the system (1) to the state in a convex subtask
safe state set or task target set P with the lowest cost-to-go
(13). We use a receding horizon strategy:

u(ay) = 7P (a]) = g (15)

At the first iteration of a new task, the ILMPC (14) re-
quires non-empty sets CK. . containing at least one feasible
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Fig. 1. Convex subtask safe sets contain states from which
the transition set can be reached in a certain number
of steps.

execution of the task. Next we present a computationally
efficient approach for creating such sets using data from
executions of a different, previous task. This new compu-
tationally efficient formulation of TDMPC for tasks with
piecewise linear, convex modes is the main contribution of
this work compared to Vallon and Borrelli (2019). We will
require the following definition of controllability.

Definition: For a given target set R C X, the N-step con-
trollable set IKCn(R) of a system (1) subject to constraints
(2) is defined recursively as:

K5 (R) = Pre(K,_1(R)) N X, Ko(R) =R,

j G {17 b N} )

Pre(R)={z:3uecl: Ayx + Bru € R}.
For all states in the N-step controllable set to R there
exists a feasible input sequence such that the system will
be driven into R in NN steps.

Proposition 1. In general, not all states belonging to the
convex hull of stored subtask executions are controllable
to the subtask transition set (6).

Proof. Proof in Appendix.

Proposition 2. All states in the time-indexed convex sub-
task safe sets (12) are controllable to the subtask transition
set (6).

Proof. Proof follows from Thm. 1 in Sec. 3.2.

Propositions 1 and 2 motivate the approach proposed
in this paper of storing task executions in time-indexed
convex subtask safe sets (12).

3. TASK DECOMPOSITION FOR ILMPC

Let Task 1 and Task 2 be different ordered sequences of
the same M subtasks:

T1= {Sl}f\ila T2= {Slz zzvil’ (16)
where the sequence [l1,ls,...,In] is a reordering of the

sequence [1,2, ..., M]. Assume non-empty subtask safe sets
KSp—a (11) containing task data from Task 1.



Our goal is to use stored subtask safe sets (11) from Task 1
in order to find convex subtask safe sets (12) for Task 2.
These sets can then be used to initalize a controller for
the new task. The key intuition of TDMPC is that all
successful subtask executions (7a) from Task 1 are also
successful subtask executions for Task 2, as this definition
only depends on properties (7b-7c) of each individual
subtask, not the subtask sequence. With this notion, Alg. 1
proceeds backwards through the new subtask sequence.

3.1 TDMPC Algorithm

The notation (Ips,-) or (i,-) indicates that the described
action is undertaken for all appropriate second arguments.

Algorithm 1 TDMPC algorithm

1: input lCS[laM]a /CU[lHM], [T1, 02,0y Laa]

2: do CKpy_,pp) = convexify(KSp—a) (12)
3: do §G; = guard set clustering(KS[_ ) (17)
4: initialize empty ICS, ICAL{, C7C, cu

5: CA/CZM,. — CKyyy ooy C?/{ZMV. — CUzM,.

6: fori € [lpy—1:—1:1;] do

. KSi. « KSi.

8: /CAUZ". — ICUL.

9: initialize empty ICAZ/{Z',Q

10: for x € SG; do

11: check (¢*,u*) = Ctrb(z,CKi11..) (18)
12: if infeasible then

13: KSi. + KS; \trajectory(z)

14: KU, <+ KU;_\trajectory (u*)

15: else

16: Kid; o + u*

17 CK;. + convexify(KS;,.) (12)
18: CU,; . + convexify(KU;.) (12)

19: Return ClC[llﬁlM] — Ck, CU[[IHZM] «—cu

e Consider the last subtask, S;,,. By definition, for any
state in CK;,, . there exists a stored input sequence
in CU;,,,. that can be applied such that the system
evolves into R;,,. (Algorithm 1, Lines 2-5).

e Prune the convex safe sets of the preceding subtask
81y, to contain only states which can also be con-
trolled to R;,,. We verify this property only for states
in the sampled guard set of &;,,_,, defined as:

SglM—l = ]CSZIM—MO' (17)

The sampled guard set for subtask [j;_1 contains the
states in &j,, , from which the system transitioned
into another subtask during a past execution of 71
(Algorithm 1, Line 10).

e Determine which points in §G;,, , are one-step con-
trollable to CK;,, r for some time index k. This
problem can be solved using a variety of numerical
approaches. In the results presented in this paper, we
check controllability for each k, and choose the input
u to minimize the cost of the resulting state according

o (13). Specifically, for each point = € S§G,,, , and

index k, we solve (¢*,u*) = Ctrb(x,CAlClM,k), where:

u* =argminv(z) (18)
st.z=A4;,, v+ By, _,u
uel,, ,
S CA/ClM,k,
q* = U(AIM—1I + BlM—lu*)' (19)

If (18) is feasible, the previously stored 71 cost-to-go
(13) from the state x is replaced by ¢*, the cost to
reach the goal set of 72. (Algorithm 1, Line 11)

e For all states z in SG;,, , not controllable to any
convex safe set in §j,,, we remove the stored subtask
execution ending in z out of the set of subtask safe
sets for Sj,,. (Algorithm 1, Lines 12-16)

e After checking the entire sampled guard set, all re-
maining convex subtask safe sets for S;,, , are con-
trollable to convex subtask safe sets in Sj,,, and
therefore also to R;,,. (Algorithm 1, Lines 17-19)

Alg. 1 iterates backwards through the remaining subtasks,
verifying the controllability of points in sampled guard sets
to a convex subtask safe set in the following subtask. The
algorithm returns convex subtask safe sets for Task 2 that
can be used to initialize an ILMPC (14 - 15) for Task 2.

TDMPC offers a computationally efficient, data-driven
method of initializing an ILMPC for new tasks. In contrast
to multi-step or set-based methods that are common for
model-based or hybrid systems, Alg. 1 only solves con-
trollability problems from discrete points in the sampled
guard set to already verified feasible sets. Furthermore,
TDMPC directly provides a robust policy for solving the
task associated with the verified trajectories.

Note the reformulation of the stored Task 1 executions (8)
into convex sets (12). We can thus replace the point-to-
point controllability verification from Vallon and Borrelli
(2019) with point-to-set controllability in Alg. 1. This
allows for three major improvements to the procedure:

1. (18) is a convex optimization problem, which is, in
general, much faster to solve than the non-convex point-
to-point controllability.

2. By using the convex hull of stored states (12) as a
target set in (18), rather than individual states, more
points in the sampled guard sets (17) can potentially
be demonstrated to lead to feasible Task 2 executions.

3. We increase the number of points for which we know a
feasible Task 2 policy, since we implicitly consider all
points in the time-indexed convex hulls of Task 1 tra-
jectories (12), rather than only the Task 1 trajectories.

3.2 Feasibility

We prove the feasibility of ILMPC policies (15) initialized
using Alg. 1.

Assumption 2: Task 1 and Task 2 are defined as in (16),
with each subtask defined by linear dynamics (4) and
convex constraints (5).

Theorem 1. Let Assumptions 1-2 hold. Assume Alg. 1
outputs non-empty sets CIC([)I1 1y for Task 2. Then, if
xo € CIC?llHlM}, the policy W[IZIII\EZS]’ as defined in (15),

produces a feasible execution of Task 2.



Proof. We will use induction to prove the feasibility.
First, we show that the ILMPC (14-15) is feasible at
time step kK = 0 of the j-th execution of Task 2. By
assumption CIC[ZI%ZM] is not empty. From (12) we have

that CIC[l i) © CKl~ V5 > 1, and consequently

l—>l M)
CIC{Z 1 . is not empty. Therefore, zo € CKO, Sin ©
CIC{Z Ll l’ and there exist I*, K*, and multipliers A} such
that
ekt ,
To = Z AsTp, Tp EC/CI* K
p=1
We define

u = A\ju, € Ur- (20)
Where up is the input associated with the state z, €
CKIL K* in a previous task execution of Task 1. Now, note
that we have

Jj—1
‘CK:I* JK*—1

.f:AI* —|—B[*’1TL: E )\;.’IIP,
p=1 (21)
. Kb |, K*>1;
X )
: C’C]I*+1,K** K* =0,

for some K**. The second case (K* = 0) follows directly
from Alg. 1. This procedure (20-21) can be repeated N
times in order to find a feasible input sequence for the
initial state z( satisfying (14). Therefore there exists a
feasible solution to the ILMPC (14 - 15) at time step k =0
of the j-th execution of Task 2.

Next, we show that the policy is recursively feasible.
Assume that at time step k of the j-th iteration the ILMPC
(14 - 15) is feasible, and let x77 , v\, and iy, v, be the
optimal trajectory and input sequence according to (14).
From (15), the realized state and input at time k of the
j-th iteration are given by

J o k]

.
T = Thjkes uk

Uk
and. the terminal constraint in (14)' enforces xZﬁle €
CIC}fIl(, for some I’, K’, where C/CJIT;(, contains states
from the previous j — 1 trajectories. As in (20-21), define
an input and corresponding state

u' = Asup, € Up

= ApkarN‘k + Bpu' € CICI, K1
We therefore have

J %0
Tht1 = Trgak:

It follows that at time step k 4+ 1 of the j-th Task 2

execution, the input sequence and related feasible state

trajectory
*3J *5J *,J /
[uk+1|k’ Upt ok ""uk+N—1|k7u] (22)
[w*’j 57 ) ']
k+1lk Ttk o T N—1]k
satisfy input and state constraints in (14). Therefore, (22)
is a feasible solution for (14) at time step k + 1.

We have shown that at the j-th iteration of Task 2, Vj > 1,
the ILMPC is feasible at time step & = 0 and that if the
ILMPC is feasible at time step k, it must also be feasible

[

R

Fig. 2. Topview of the path planning task. Each subtask
corresponds to a pair of upper and lower obstacles.

at time step k + 1. We can conclude by induction that (14
- 15) is feasible Vj > 1 and k € Zo4 when initialized with
sets output by Alg. 1. [ |

It follows from the same arguments (20-21) that the

ILMPC policy (14-15) will eventually bring any zo € CK’
to the task target set R;,,.

4. RESULTS: ROBOT PATH PLANNING
4.1 Task Formulation

We demonstrate the effectiveness of Alg. 1 in a robotic
path planning example. Consider a UR5e! robotic arm
tasked with maneuvering through six sets of obstacles
modeled as extruded disks of varying heights above and
below the robot. Each set of upper and lower obstacles
leaves a workspace between the disks for the robot to
move between. Here, each subtask S; corresponds to the
workspace between a pair of lower and upper obstacles.
Different subtask orderings correspond to a rearranging of
the obstacle locations, indicated by ©; in Fig. 2.

The URbe has high end-effector reference tracking accu-
racy, allowing us to use a simplified end-effector model in
place of a discretized second-order model as in Spong and
Vidyasagar (1989). We solve the task in the reduced state
space:

T = [qo,, do, 2k 2]

ur = [Go, 2]
where ¢qp, is the angle of the robot’s base joint along
the © direction and zj is the height of the robot end-
effector at time step k, calculated from the six joint angles
via forward kinematics. qo, and Zj; are the corresponding
velocities. We control o, and Z, the accelerations of gg
and z, respectively. This reduced state space allows us to
formulate the task as a concatenation of M = 6 subtasks
with piecewise affine dynamics and convex constraints,
according to (3).

Subtask Dynamics A;, B;  We model the base-and-end-
effector system as a quadruple integrator:

Tpar1 = Ajxg + Biug (24a)
1dt00 00
0100 dt 0 .
0001 0 dt

1 https://www.universal-robots.com/products/ur5-robot,/



where dt = 0.01 seconds is the sampling time. This
simplified model holds as long as we operate within the
region of high end-effector reference tracking accuracy,
characterized in previous experiments.

Subtask Constraints X;;

@i,1 rad qo 61 rad
—x rad/s j m rad/s
X; = 5] < o) < /
Omin,; 11 2k Omax,; 11
Zmin,i M/ 2 Zmax,i M/S

where ©;_; and ©; mark the cumulative angle to the
beginning and end of the i-th obstacle, as in Fig. 2. The
robot end-effector is constrained to remain in the space
between the upper and lower obstacles, bounded by omin,i
and omax,i- The base’s rotational velocity ¢or and zj are
constrained to lie in the experimentally determined region
of high end-effector tracking accuracy. Specifically, we take

. . Omin,i
Zmax,s = C1sin | arccos )
1

Zmin,i = —<max,i)

where the constants C; and d; depend on setup parameters
and joint limits provided by the manufacturer.

Subtask Input Space U;

_ 2 . 2
e e I"ad/s2 < |Gor] |7 rad/s s
Zmin,i M/8 Zk Zmax,i M/8
where §or and Z; are constrained to lie in the experi-
mentally determined region of high end-effector tracking

accuracy. Specifically,
Omin,i
+ —_—
)

. . Omin,i

Zmax.s = Cosin | arccos

’ ( ( d >
2:min,i = _émax,h

where Cs, dy and d3 depend on setup parameters and joint

limits provided by the manufacturer.

Subtask Transition Set, R;  We define the subtask tran-
sition set to be the states along the subtask border where
the next obstacle begins:
Ri:{ZGXiIHUGUi,S.t. qaL > 0; },

where 27 = A;x + B;u (4). The task target set is the end
of the last mode:

Re = {33 *qo = 967 Omin,6 <z< Omax,ﬁ} .
The task goal is to reach the target set as quickly as
possible:
0, a1 € Rg
1, otherwise.

on - |

4.2 Ezperimental Results

We evaluate the efficiency of Alg. 1 by comparing its run-
time with the the run-time of the point-to-point controlla-
bility analysis for task decomposition introduced in Vallon
and Borrelli (2019) for nonlinear systems.

First, an ILMPC (14)-(15) is used to complete five execu-
tions of five different training tasks, where each training
task is a different reordering of the six obstacles. Each
ILMPC is initialized with a suboptimal state and input
trajectory that tracks the center-height of each subtask

Point-to-Point Reachablility Analysis: 2879 [s]
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08" Vo
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Convex Set Reachability Analysis: 246 [s]
091 i

0.8+

z [m]

Fig. 3. Alg. 1 produces a significantly larger set of feasible
states for 72 in 10% of the time as the algorithm in
Vallon and Borrelli (2019). The sampled guard sets
for each subtask are plotted in black.

while the robot arm rotates at a low base velocity qo.
In each task, the ILMPC tries to reach the target set
as quickly as possible while avoiding the obstacles. The
iterations are completed in simulation using the simplified
model (24), and the corresponding subtask executions are
saved as convex subtask safe sets (12). The new task 72
is configured from another new reshuffling of the obsta-
cles. Fig. 3 depicts the 72 workspace in light blue, along
with the T2 safe sets returned by the two versions of
the TDMPC algorithm. The top image plots in red the
feasible safe states for 72 output from the point-to-point
controllability method from Vallon and Borrelli (2019).
The bottom image shows in red the feasible safe sets
output by the efficient point-to-convex-set controllability
method from Alg. 1.

In the example shown, our improved method was an order
of magnitude faster at finding safe states for 72 than the
point-to-point method, requiring 246 seconds of processing
instead of 2879 seconds, using a 2017 Mac Book Pro with
2.8 GHz Quad-Core Intel Core i7. Indeed, the efficient
reformulation of Alg. 1 for linear systems resulted in an
average eleven fold speed-up for five different trials of the
described setup and testing procedure. In Tab. 1, each trial
corresponds to a newly shuffled 72.



Table 1. Controllability Analysis Run-Time

Trial Convex Set Analysis Pointwise Analysis

1 246 s 2879 s
2 312's 5561 s
3 219 s 1618 s
4 212's 1810 s
5 264 s 2806 s

For each state in a subtask’s sampled guard set, the point-
to-point controllability method solves a mixed-integer pro-
gram to try to find an input that controls the system to
the last state of a subsequent subtask trajectory. Therefore
the complexity of both controllability methods depend on
the state dimension and number of trajectories through
the subsequent subtask (as this provides an upper bound
for the size of the subtask safe set). The efficiency improve-
ment results from replacing the mixed-integer constraint
in point-to-point controllability with a convex constraint
of equal complexity, which is typically easier to compute.

Remark 2. The convex reachability safe sets in Fig. 3
demonstrate the implications of Prop. 1. Within each
subtask, the time-indexed convex safe sets do not entirely
contain the previous time step’s convex safe set.

Remark 3. As is clear from Fig. 3, the convex set con-
trollability analysis outputs a significantly larger set of
feasible states for 72 than the pointwise method. This
results from two main phenomena. First, more states from
the 71 sampled guard sets remain in 72 when using the
convex set controllability than point-to-point controllabil-
ity. This follows since the new controllability analysis (18)
considers a larger one-step target set than the pointwise
controllablity analysis (i.e. a convex hull of states in the
next subtask rather than individual states). So more points
in the sampled guard set can be shown to lead to fea-
sible executions of 72. Second, while the point-to-point
controllability analysis only checks for 72 feasibility of
the actual subtask trajectories from 71, the new convex
set controllability analysis automatically also provides a
policy for the convex subtask safe sets induced by the
trajectories. All safe states found using the point-to-point
controllability method are thus also found using the convex
set controllability method. Accordingly, an ILMPC (14 -
15) initialized with safe sets returned from Alg. 1 will also
lead to a faster first execution of 72.

5. CONCLUSION

In this paper, an extension to the Task Decomposition
for iterative learning Model Predictive Control (TDMPC)
is presented. The algorithm uses stored state and input
trajectories from executions of a task, and efficiently
designs set-based policies for executing variations of that
task. The algorithm is designed for linear time-varying
systems with piecewise convex constraint sets, and is
shown to significantly reduce the computational burden
associated with the TDMPC algorithm. We prove that
the resulting policies are guaranteed to be feasible for
the new task. Finally, we evaluate the effectiveness of the
proposed algorithm on a robotic path planning tasks, and
demonstrate the reduced computational burden compared
with TDMPC for nonlinear systems.
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Appendix A. PROOF OF PROPOSITION 1

We know that all states in a feasible subtask execution
(7a) are controllable to a point in the subtask transition
set (7b). A sufficient condition for all states in the convex
hull of feasible subtask executions to also be controllable
to the convex hull of corresponding points in the subtask
transition set is for latter to be a control invariant set.

By definition of a feasible task execution (8) and the proof
of Thm. 1, any point in the convex hull of stored states in
the transition set is also controllable to the task’s control
invariant goal set. For linear time-invariant systems, states
that are controllable to an invariant set are also invariant
(Borrelli et al. (2017)). However, for linear time-varying
systems these states are only stabilizable to the invariant.
Therefore the convex hull of the points in the transition
set is not inherently an invariant.

We recognize that the convex hull of states in the transi-
tion set is a control invariant set if its backward control-
lable sets grow to contain each other, i.e. if for all scalar
values N, Kny_1 C K. Unfortunately, this property does
not generally hold for linear systems. Consider for example
the double integrator system

10 0
Tr+1 = [0 1:| TE + |:1:| Uk, <A1>
subject to the state and input constraints
€ X, up € [72,2]. (AQ)

Define a target set, R, to be the convex hull of three points:

e [} (]}

The 1-step, 2-step, and 3-step controllable sets to R are
plotted in Fig. A.1. We also plot C, the convex hull of R
and the controllable sets. It is clear from the plot that R is
not an invariant set. This means it is possible that states
in the convex hull of trajectories leading into R are not
N-step controllable to R for any value of N. In Fig. A.1,
this corresponds to states who are in C, but not in any

Kn(R).

Thus, we have shown that the convex hull of stored subtask
executions is not generally controllable to the subtask
transition set. |

(A.3)
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A.1. For the double integrator system (A.1 - A.2),
the chosen target set (A.3) is not an invariant set,
as the N-step controllable sets are not subsets of the
(N + 1)-step controllable sets.



