
Learning Robustness with Bounded Failure:
An Iterative MPC Approach

Monimoy Bujarbaruah,†,∗ Akhil Shetty,†,∗

Kameshwar Poolla,∗ and Francesco Borrelli∗

May 6, 2020

Abstract

We propose an approach to design a Model Predictive Controller (MPC) for con-
strained Linear Time Invariant systems performing an iterative task. The system is
subject to an additive disturbance, and the goal is to learn to satisfy state and in-
put constraints robustly. Using disturbance measurements after each iteration, we
construct Confidence Support sets, which contain the true support of the disturbance
distribution with a given probability. As more data is collected, the Confidence Sup-
ports converge to the true support of the disturbance. This enables design of an MPC
controller that avoids conservative estimate of the disturbance support, while simulta-
neously bounding the probability of constraint violation. The efficacy of the proposed
approach is then demonstrated with a detailed numerical example.

1 Introduction

As data-driven decision making and control becomes ubiquitous [1–3], system identification
methods are being integrated with control algorithms for control of uncertain dynamical
systems. The uncertainty in these systems can be typically attributed to two factors: (i)
model uncertainty (eg. modeling mismatch and inaccuracies), and (ii) exogenous distur-
bances (eg. sensor noise). For such uncertain systems subject to state and input constraints,
Model Predictive Control (MPC) [4–6] is a commonly used approach for ensuring robust
constraint satisfaction.

The field of Adaptive MPC [7–11] deals with learning the model uncertainty to improve
controller performance over time. These methods rely upon Set Membership approaches,
which assume known set based bounds on the exogenous disturbances. As these disturbance
supports are actually unknown in practice, conservative over-approximations are used for
control design. This results in the controller either being infeasible, or incurring higher
costs by following highly sub-optimal trajectories. This motivates learning the disturbance
support over time in order to improve controller performance. In such cases, it is necessary

∗† authors contributed equally to this work. The authors are with University of California Berkeley,
Berkeley, CA, USA; E-mails: {monimoyb, shetty.akhil, poolla, fborrelli}@berkeley.edu.

1

ar
X

iv
:1

91
1.

09
91

0v
2

 [
ee

ss
.S

Y
]

 4
 M

ay
 2

02
0

to allow the possibility of failure, i.e, violation of imposed constraints. Such violations are
acceptable for certain non safety critical robotic applications.

To that end, numerous works in MPC literature have considered constructing prob-
abilistic approximations of both the model uncertainty and disturbance support [12–16],
allowing room for violations of imposed constraints with a certain probability. Methods
such as [13–16], utilize Gaussian Process (GP) Regression to model and update the un-
certainty in the system. However, they have no theoretical bounds for rate of constraint
violations by the closed loop system over time.

Assuming the presence of only exogenous disturbances, [12] addresses this issue by con-
structing disturbance support sets offline using the scenario approach [17, Chapter 12]. This
approach involves solving a scenario program with potentially large number of samples,
which is computationally expensive. Moreover, the rate of constraint violation is dependent
on the number of disturbance samples available offline. In certain settings (for eg., iterative
tasks), it is often the case that one starts the controller having observed no samples apriori.
While learning the disturbance support over time in such cases, it is desirable to have a
user-specified upper bound for probability of failure over all time. The approach in [12] is
unable to satisfy such an upper bound at all times, since the required number of samples
could be unavailable during operation.

In this paper, we present an approach to design an MPC controller for constrained LTI
systems performing an iterative task [18]. Like [12] we consider an additive disturbance in
the system, under no uncertainty in the system matrices. Instead of considering a conserva-
tive over-approximation of the disturbance support such as [7, 8, 19], we learn this set from
observed disturbance samples. While doing so, we guarantee a user-specified upper bound
on the probability of failure over all iterations. Our main contributions can be summarized
as:

• We introduce the notion of a Confidence Support, which is guaranteed to contain the
true disturbance support with a specified probability. Constructing and updating the
Confidence Supports after each iteration is computationally cheap, unlike [12].

• Using these Confidence Supports, we attempt robust MPC design and demonstrate
satisfaction of desired upper bound on probability of failure in each iteration. For
any value of user-specified upper bound on probability of failure, the controller is able
to learn robust satisfaction of imposed constraints asymptotically, without suffering
conservatism that is inherent to existing approaches [7, 8, 19].

2 Problem Formulation

We consider uncertain linear time-invariant systems of the form:

xt+1 = Axt +But + wt, (1)

where xt ∈ Rd is the state at time step t, ut ∈ Rm is the input, and A and B are known
system matrices of appropriate dimensions. At each time step t, the system is affected by

an independently and identically distributed (i.i.d.) random disturbance wt
iid∼ P with a

2

convex and compact support W ⊂ Rd. We aim to satisfy state and input constraints on the
system robustly. We define Hx ∈ Rs×d, hx ∈ Rs, Hu ∈ Ro×m and hu ∈ Ro. We can then
write the imposed constraints for all time steps t ≥ 0 as:

Z := {(x, u) : Hxx ≤ hx, Huu ≤ hu}. (2)

Throughout the paper, we assume that system (1) performs the same task repeatedly for
J number of times. Each task execution is referred to as iteration. Our goal is to design a
controller that, at each iteration j, solves the finite horizon robust optimal control problem:

V j,?(xS) =

min
uj0,u

j
1(·),...

T−1∑
t=0

`
(
x̄jt , u

j
t

(
x̄jt
))

s.t. xjt+1 = Axjt +Bujt(x
j
t) + wjt ,

x̄jt+1 = Ax̄jt +Bujt(x̄
j
t),

Hxx
j
t ≤ hx,

Huu
j
t ≤ hu,

∀wjt ∈W,

xj0 = xS, t = 0, 1, . . . , (T − 1),

(3)

where xjt , u
j
t and wjt denote the realized system state, control input and disturbance at time

t of the jth iteration respectively, and (x̄jt , u
j
t(x̄

j
t)) denote the disturbance-free nominal state

and corresponding nominal input. Notice that (3) minimizes the nominal cost over a time
horizon of length T � 0 in any jth iteration with j ∈ [J]. Here we use [J] to denote the set
{1, 2, . . . , J}. We point out that, as system (1) is uncertain, the optimal control problem
(3) consists of finding [uj0, u

j
1(·), uj2(·), . . .], where ujt : Rd 3 xjt 7→ ujt = ujt(x

j
t) ∈ Rm are

state feedback policies. As task duration T � 0, for computational tractability we try to
approximate a solution to the optimal control problem (3), by solving a simpler constrained
optimal control problem with prediction horizon N � T in a receding horizon fashion.

In this work, we consider the support W of disturbance wjt to be an unknown convex and
compact set. We estimate W using observed disturbance samples. At the start of iteration
j, the estimated support is Ŵj.

3 Iterative MPC Problem

The MPC controller solves a finite horizon optimal control problem at each time step t in
the jth iteration. Since the disturbance support W is unknown and is estimated with Ŵj

built from data, robust satisfaction of (2) along the iteration is not guaranteed. This implies
that the closed loop task execution might fail. We will formally define this notion of failure
after defining the closed loop controller in this section.

We attempt to design a robust MPC controller in the jth iteration with our best estimate

3

Ŵj of disturbance support W, by solving the following optimal control problem:

V MPC,j
t→t+N(xjt , Ŵj, X̂ j

N) :=

min
Uj
t (·)

t+N−1∑
k=t

`(x̄jk|t, v
j
k|t) +Q(x̄jt+N |t)

s.t xjk+1|t = Axjk|t +Bujk|t + wjk|t,

x̄jk+1|t = Ax̄jk|t +Bvjk|t,

ujk|t =
k−1∑
l=t

M j
k,l|tw

j
l|t + vjk|t,

Hxx
j
k|t ≤ hx,

Huu
j
k|t ≤ hu,

xjt+N |t ∈ X̂
j
N ,

∀wjk|t ∈ Ŵj,

∀k = {t, . . . , t+N − 1},
xjt|t = x̄jt|t = xjt ,

(4)

where in the jth iteration, xjt is the measured state at time t, xjk|t is the prediction of

state at time k, obtained by applying predicted input policies U j
t (·) = [ujt|t, . . . , u

j
k−1|t] to

system (1) and {x̄jk|t, v
j
k|t} with vjk|t = ujk|t(x̄

j
k|t) denote the disturbance-free nominal state

and corresponding input respectively. The MPC controller minimizes the cost over the

predicted disturbance free nominal trajectory
{
{x̄jk|t, v

j
k|t}

t+N−1
k=t , x̄jt+N |t

}
, which comprises

of the positive definite stage cost `(·, ·), and the terminal cost Q(·). Notice, the above uses
affine disturbance feedback parametrization [20] of input policies. We use state feedback
to construct terminal set X̂ j

N = {x ∈ Rd : Ŷ jx ≤ ẑj, Ŷ j ∈ Rrj×d, ẑj ∈ Rrj}, which is the
(T −N) step robust reachable set [6, Chapter 10] to set of state constraints in (2), obtained
with a state feedback controller u = Kx, dynamics (1) and constraints (2). This set has the
properties:

X̂ j
N ⊆ {x|(x,Kx) ∈ Z},

Hx((A+BK)ix+
i−1∑
ĩ=0

(A+BK)i−ĩ−1wĩ) ≤ hx,

Hu(K((A+BK)ix+
i−1∑
ĩ=0

(A+BK)i−ĩ−1wĩ)) ≤ hu,

∀x ∈ X̂ j
N , ∀wi ∈ Ŵj, ∀i = 1, 2, . . . , (T −N).

(5)

After solving (4), in closed loop, we apply

ujt = vj,?t|t (6)

to system (1). We then resolve the problem (4) again at the next (t + 1)-th time step,
yielding a receding horizon strategy.

4

Remark 1. Computing sets such as (5) can become expensive in certain scenarios, where
for example the number of constraints in Z, or the dimension d of states is too large. In
such cases one may opt for data driven methods such as [18,21] to construct these terminal
sets.

Assumption 1 (Well Posedness). We assume that given an initial state xS, optimization
problem (4) is feasible at all times 0 ≤ t ≤ T − 1 with true uncertainty support Ŵj = W for
all iterations j ∈ [J].

Since W is unknown and is being estimated with Ŵj in the jth iteration, we might lose
the feasibility of (4) during 0 ≤ t ≤ T − 1. We formalize this with the following definition:

Definition 1 (State Constraint Failure). A State Constraint Failure at time step t in iter-
ation j is the event

[SCF]jt : Hxx
j
t > hx. (7)

That is, a State Constraint Failure implies the violation of imposed constraints (2) by system
(1) in closed loop with MPC controller (6).

Remark 2. Let T j < T denote the time step in the jth iteration when a State Constraint
Failure occurs. In that case, problem (4) becomes infeasible at T j. We then stop the jth

iteration and update Ŵj update−→ Ŵj+1. When T j = T , it denotes a successful iteration without
any State Constraint Failure.

The probability of State Constraint Failure [SCF]jt is a function of the sets Ŵj. In
certain safety critical applications, it is necessary to keep the probability of [SCF]jt very
low, whereas in other applications a higher probability can be tolerated. However, it is not
enough to focus on probability of [SCF]jt alone. For example, a low probability of [SCF]jt can
be achieved by considering worst-case apriori estimates for W but it results in deteriorated
controller “performance”. Thus, it is desirable to not only keep probability of [SCF]jt low,
but also maintain satisfactory controller performance during successful iterations (as defined
in Remark 2). Let the closed loop cost of a successful iteration j be denoted by

V̂j(xS, w1:j) =
T−1∑
t=0

`(xjt , v
j,?
t|t). (8)

where notation w1:j denotes the set
j
∪
i=1

T−1
∪
t=0

wit. We use average closed loop cost E[V̂j(xS, w1:j)]

to quantify controller performance. The goal is to lower the performance loss defined as

[PL]j = E[V̂j(xS, w1:j)]− E[V?(xS, w1:j)], (9)

where E[V?(xS, w1:j)] denotes the average closed loop cost of the jth iteration if W had been
known, i.e., Ŵj = W for all j ∈ [J].

In the next section, we introduce two design specifications (D1) and (D2) to formalize this
joint focus on lowering probability of State Constraint Failure and maintaining satisfactory
controller performance. We then show how the sets Ŵj are constructed according to these
specifications.

5

4 Learning Robustness with Bounded Failure

We consider the following design specifications:

(D1) Closed loop MPC control law (6) ensures that system (1) in the jth iteration satisfies
a user specified upper bound α on probability of State Constraint Failure (Definition
1),

(D2) Minimize [PL]j (as defined in (9)) over all iterations j ∈ [J] while satisfying (D1).

For satisfaction of (D1) we require,

P(Hxx
j
t > hx) ≤ α. (10)

Since the above probability is difficult to compute, we consider an alternative notion of
failure in order to upper bound the probability of State Constraint Failure.

Definition 2 (Disturbance Support Failure). A Disturbance Support Failure at time step t
in iteration j is the event

[DSF]jt : wjt /∈ Ŵj. (11)

As the MPC controller (4) is robust to all wjt ∈ Ŵj, we have [SCF]jt ⊆ [DSF]jt . There-
fore, probability of Disturbance Support Failure is an upper bound for probability of State
Constraint Failure, i.e., P([SCF]jt) ≤ P([DSF]jt). Therefore, we focus on the following speci-
fication:

P(wjt /∈ Ŵj) ≤ α. (12)

In the next few sections, we discuss how such sets Ŵj can be constructed based on distur-
bance samples observed during the iterative task.

4.1 Need for Distributional Assumption on P
Consider i.i.d. samples Z1:n = (Z1, . . . , Zn) from an unknown distribution P . All we know
about the distribution is that its support S is convex and compact. Our objective is to find
an estimate Ŝ(Z1:n) for the support S such that for a user specified failure probability α,

P(Z̄ /∈ Ŝ(Z1:n)) ≤ α, (13)

where Z̄ is an i.i.d. draw from P . The convex hull Chull(Z1:n) of observed samples
(Z1, . . . , Zn) is an intuitive estimator for the support S. It is clear that Chull(Z1:n) ⊆ S.
Let A\B denote the set {y | y ∈ A and y /∈ B}. It turns out that P(S \Chull(Z1:n))→ 0 as
n→∞ [22], i.e., Chull(Z1:n) asymptotically converges to the support S. However, Chull(Z1:n)
may not satisfy (13) for an arbitrary user specified failure probability α. In order to do so,
Chull(Z1:n) may need to be scaled up in a suitable manner. We illustrate through a simple ex-
ample that an upper bound on failure probability cannot be guaranteed without additional
assumptions on the distribution P .

6

Consider an unknown univariate distribution P with support S ⊂ R. Suppose we observe
i.i.d. samples Z1:4 = {−1, 0.5, 1,−0.2} from this distribution. The objective is to find Ŝ(Z1:4)
that satisfies (13) with α = 0.1. As we know that S is convex and compact, it is clear that
Chull(Z1:4) = [−1, 1] ⊆ S. However, it is unclear whether Ŝ = Chull(Z1:4) would satisfy
(13) with α = 0.1. Consider two potential distributions P1,P2 with densities p1(·), p2(·)
respectively such that

p1(z) = 0.4I{|z| ≤ 1}+ 0.1I{1 ≤ |z| ≤ 2},
p2(z) = 0.4I{|z| ≤ 1}+ 0.01I{1 ≤ |z| ≤ 11},

where I{·} denotes the indicator function. Note that both these distributions are equally
likely to generate the observed samples as they have the same distribution on Chull(Z1:4) =
[−1, 1]. Observe that Ŝ = 1.5Chull(Z1:4) satisfies (13) for P1, whereas Ŝ has to be set to
6Chull(Z1:4) to get the same probability of failure for P2. Thus, without any additional
assumption about the distribution, it is not possible to give any probability of failure guar-
antees just based on sets constructed from observed samples.

Assumption 2. We assume that the unknown distribution P defined in Section 2 belongs
to a finite dimensional parametric family {Pθ : θ ∈ Θ,Θ ⊆ Rl}.

We next explore how to construct the sets Ŵj using Assumption 2, so that design
specification (D1) is satisfied. For that purpose, we introduce the notion of Confidence
Supports which are closely related to the notion of confidence intervals in classical statistics.
Subsequently in Section 4.3 we present our algorithm.

4.2 Confidence Support of a Distribution

Consider i.i.d. samples Z1:n = (Z1, . . . , Zn) from a distribution Pθ parametrized by θ ∈ R,

i.e., Zi
iid∼ Pθ. In classical statistics, the notion of confidence interval provides a convenient

way to characterize the uncertainty of parameter θ from the observed samples Z1:n.

Definition 3 (Confidence Interval). A set C(Z1:n) is a (1 − α)-confidence interval for the
parameter θ of distribution Pθ if

P(θ /∈ C(Z1:n)) ≤ α. (14)

If θ ∈ Rd, d > 1, then the term confidence region is used for the set C(Z) as defined
above.

Remark 3. Note that C(Z) is a random set as it is a function of the collection of random
samples Z1:n, whereas θ is an unknown deterministic parameter. We refer the reader to
[23, Chapter 9] for an introduction to confidence intervals and methods to compute them.

We now introduce an analogous definition for the support of a distribution.

Definition 4 (Confidence Support). A set S(Z1:n) is a (1 − α)-Confidence Support of a
distribution Pθ with support Sθ if

P(Sθ ⊆ S(Z1:n)) ≥ 1− α, (15)

i.e., S(Z1:n) contains the support Sθ of Pθ with probability greater than or equal to (1− α).

7

Using the above notion of Confidence Supports, we now demonstrate how the disturbance
support estimates Ŵj (as defined in iterative MPC problem (4)) can be computed based on
observed disturbance samples.

4.3 Computing Ŵj

Consider i.i.d. disturbance samples wjt ∼ Pθ, θ ∈ Rl with support W. Let wjt (q) denote the

qth element of wjt ∈ Rd. Let w1:j denote the set
j
∪
i=1

T i

∪
t=0

wit. Recall that [d] denotes the set

{1, 2, . . . , d}. We make the following simplifying assumption:

Assumption 3. The elements of random vector wit ∈ Rd are independently distributed,

wjt (q) ∼ P
q
θq
, q ∈ [d], (16)

where θ = (θ1, . . . , θd) and {Pqθq : θq ∈ Θq, Θq ⊂ Rl/d} is the corresponding parametric

family for the qth element. Remark 4 contains a discussion about the general case.

At the start of the jth iteration, the collection of samples w1:j−1 would have been ob-
served. As the uncertainty distribution Pθ is completely specified by θ, we can compute a
(1− α)-Confidence Support Ŵj

(
w1:j−1

)
by computing confidence regions for the individual

parameters (θ1, . . . , θd). Note that the confidence regions and supports are functions of the
observed disturbance samples w1:j−1. For notational convenience, we represent such sets
without explicitly showing this dependence.

Lemma 1. Let Θ̂j
q be a (1−αq)-confidence region for θq. Consider Ŵj

q =
⋃
θ̄q∈Θ̂j

q
Supp(Pq

θ̄q
),

where Supp(Pq
θ̄q

) denotes the support of distribution Pq
θ̄q

. Then, Ŵj = Ŵj
1 × · · · × Ŵj

d is a

(1−
∑

q αq)-Confidence Support of Pθ.

Proof. By definition, W = Supp(P1
θ1

)× · · · × Supp(Pdθd). As Ŵj = Ŵj
1 × · · · × Ŵj

d, we have

P(W 6⊆ Ŵj) = P(
d
∪
q=1

Supp(Pqθq) 6⊆ Ŵj
q)

= P(
d
∪
q=1

θq /∈ Θ̂j
q),

≤
d∑
q=1

P(θq /∈ Θ̂j
q), (17)

≤
d∑
q=1

αq, (18)

where (17) follows from the union bound and (18) follows from Θ̂j
q being a (1−αq)-confidence

region for θq.

Thus, a (1−α)-Confidence Support can be constructed using (1−αq)-confidence regions
by setting αq = α

d
. We now show that such a Confidence Support has a bounded probability

of Disturbance Support Failure, as defined in (11).

8

Proposition 1. Let Ŵj be a (1 − α)-Confidence Support of Pθ computed using samples
w1:j−1. Then, we have

P(wjt /∈ Ŵj) ≤ α, 0 ≤ t ≤ T − 1. (19)

Proof. Note that both wjt and Ŵj are random. Using the law of total probability, we have

P(wjt /∈ Ŵj) = P(wjt /∈ Ŵj|W ⊆ Ŵj)P(W ⊆ Ŵj)

+ P(wjt /∈ Ŵj|W 6⊆ Ŵj)P(W 6⊆ Ŵj),

= P(wjt /∈ Ŵj|W 6⊆ Ŵj)P(W 6⊆ Ŵj),

≤ P(W 6⊆ Ŵj), (20)

≤ α, (21)

where (21) follows from the fact that Ŵj is a (1− α)-Confidence Support of Pθ.

Remark 4. The Confidence Supports constructed in this section also hold in the case that
the elements of wjt are dependent. However, as we are not exploiting the correlations across
dimensions, the above approach would yield a hyper-rectangle outer-approximation to the
actual support as iteration j goes to infinity. Confidence regions for the parameter θ rather
than individual elements θq are needed in such a case to converge to the true support, but
such regions are in general difficult to compute.

Remark 5. As long as the confidence regions Θ̂j
q converge to the true parameter θq in

probability, the Confidence Supports asymptotically converge to the true uncertainty support,
i.e., Ŵj → W in probability. The MPC controller (6) thus asymptotically learns to satisfy
(2) robustly.

4.4 The LRBF Algorithm

We present our Learning Robustness from Bounded Failure (LRBF) algorithm which uses
Confidence Supports Ŵj from Section 4.3 in MPC optimization problem (4). This guaran-
tees satisfaction of (10) (i.e., design requirement (D1)) by system (1) in closed loop with
controller (6).

Remark 6. We assume that for all iterations j ∈ [J], at time step t = 0, MPC problem (4)
is feasible with disturbance supports Ŵj constructed in Algorithm 1. This guarantees that we
are able to collect at least one data point in each iteration to update Confidence Support Ŵj

while satisfying (10). In case such an assumption is not satisfied, Ŵj can be scaled down
(for eg., by increasing α).

Remark 7. The convergence of Ŵj to the true support W can be sped up by keeping the
iteration running until time step T despite State Constraint Failure. This can be done by
introducing slack variables in MPC problem (4). Details can be found in the Appendix.

4.5 Case Studies

We now demonstrate our approach for two parametric distribution families: (i) uniform
distribution, and (ii) truncated normal distribution.

9

Algorithm 1: Learning Robustness with Bounded Failure (LRBF)

Inputs: Z, Ŵ1, xS.
for j = 2, . . . , J do

Computing Confidence Support Ŵj

for q = 1, . . . , d do
Compute (1− α

d
)-confidence region Θ̂j

q for θq

Compute Ŵj
q = ∪θ̄q∈Θ̂q

Supp(Pq
θ̄q

)

end for
Set Ŵj = Ŵj

1 × · · · × Ŵj
d

Solving MPC problem (4) using Ŵj

for t = 0,1, . . . , T − 1 do
Apply vj,?t|t from (6) with Ŵj as uncertainty

end for
end for

4.5.1 Uniform Distribution.

Consider the uniform distribution with hyper-rectangle support W = [−θ1, θ1] × · · · ×
[−θd, θd]. Then we have,

Pqθq = Unif(−θq, θq), q ∈ [d].

Let w̄j(q) = maxw̄∈w1:j−1 |w̄|, q ∈ [d] and let T j =
∑j−1

i=1 T
i. The following set turns out to

be a (1− α
d
)-confidence interval for θq,

Θ̂j
q =

[
w̄j(q),

w̄j(q)(
α
d

)1/T j

]
.

A derivation of the above confidence interval can be found in the Appendix. Using Lemma 1,
we have the (1− α)-Confidence Support Ŵj = Ŵj

1 × · · · × Ŵj
d, where

Ŵj
q =

[
− w̄j(q)(

α
d

)1/T j ,
w̄j(q)(
α
d

)1/T j

]
. (22)

Remark 8. This can be extended to the asymmetric case with Pqθq = Unif(−θ1
q , θ

2
q). In this

case, there is no analytical expression for the Confidence Support but it can be computed
numerically.

4.5.2 Truncated Normal Distribution.

Consider the truncated normal distribution with mean µq, variance σ2
q , and support [µq −

3σq, µq + 3σq], i.e.,

Pqθq = Ntrunc(µq, σ
2
q , 3), q ∈ [d].

10

As the distribution is fully specified by µq and σq, we have θq = [µq, σq]
>. Although it is

difficult to derive exact confidence intervals in this case, approximate confidence intervals
for µq and σq can be computed via the Bootstrap [24, Chapter 13]. Let [µjmin(q), µjmax(q)]
and [σjmin(q), σjmax(q)] denote the (1 − α

2d
)-Bootstrap confidence intervals for µq and σq re-

spectively. By union bound, we have the following approximate (1− α
d
)-confidence interval

for θq,

Θ̂j
q = {[µ, σ]>| µ ∈ [µjmin(q), µjmax(q)],

σ ∈ [σjmin(q), σjmax(q)]},

which gives us an approximate (1− α)-Confidence Support Ŵj = Ŵj
1 × · · · × Ŵj

d, where

Ŵj
q = [µjmin(q)− 3σjmax(q), µjmax(q) + 3σjmax(q)]. (23)

5 Numerical Simulations

In this section we find approximate solutions to the following iterative optimal control
problem in receding horizon:

V j,?(xS) =

min
uj0,u

j
1(·),...

T−1∑
t=0

10
∥∥x̄jt − xref

∥∥2

2
+ 2

∥∥ujt(x̄jt)∥∥2

2

s.t.

xjt+1 = Axjt +Bujt(x
j
t) + wjt ,

x̄jt+1 = Ax̄jt +Bujt(x̄
j
t),−30

−30
−40

 ≤ [xjt
ujt(x

j
t)

]
≤

30
30
40

 ,∀wjt ∈W,

xj0 = xS, t = 0, 1, . . . , T − 1.

We consider two parametric distributions:

Pqθq = Unif(−3, 3), (24a)

Pqθq = Ntrunc(0, 1, 3), (24b)

with q ∈ {1, 2}. In both cases, W = [−3, 3] × [−3, 3]. We construct Bootstrap confidence
intervals for the truncated normal case by resampling 1000 times. System matrices A =[
1.2 1.3
0 1.5

]
and B = [0, 1]> are known. We solve the above optimization problem with the

initial state xS = [0, 0]> and reference point xref = [27, 27]> for task duration T = 20 steps
over J = 30 iterations. Algorithm 1 is implemented with a control horizon of N = 4, and
the feedback gain K in (6) is chosen to be the optimal LQR gain for system x+ = (A+BK)x
with parameters QLQR = 10I2×2 and RLQR = 2. The goal is to show:

11

• Design specification (D1) is satisfied. Consequently, a lower probability of Disturbance
Support Failure across all iterations using support Ŵj from Algorithm 1, compared
to that from the convex hull support estimate Chull(w1:j−1).

• The performance loss [PL]j rapidly approaches 0 within the first few iterations. How-
ever, in the initial iterations, there is a significant trade-off between a desired up-
per bound α on probability of State Constraint Failure and average closed loop cost
E[V̂j(xS, w1:j)] (defined in (8)). That is, lower the upper bound α, higher is the aver-
age closed loop cost in the initial iterations. This suggests the need for tailoring the
confidence level (1− α) in Algorithm 1 according to the application at hand.

5.1 Bounding the Probability of Failure (D1)

In this section, we demonstrate satisfaction of design specification (D1) by Algorithm 1
and compare the probability of Disturbance Support Failure P(wjt /∈ Ŵj) for any timestep
t in the jth iteration, with Ŵj obtained using Algorithm 1 and Ŵj = Chull(w1:j−1). This
probability is estimated by averaging over 100 Monte Carlo draws of disturbance samples
w1:J , i.e.,

P(wjt /∈Wj) ≈ 1

100

100∑
m̃=1

(1F(wjt))
?m̃,

where

(1F(wjt))
?m̃ =

{
1, if wjt /∈ (Ŵj)?m̃|(w1:j−1)?m̃,

0, otherwise,

and (·)?m̃ represents the m̃th Monte Carlo sample. Fig. 1 shows this comparison for uniformly
distributed disturbance (24a). Using LRBF to construct Confidence Supports Ŵj allows
for lowering P(wjt /∈ Ŵj), i.e., probability of [DSF]jt as defined in (11) below a user specified

bound α, as opposed to simply utilizing Ŵj = Chull(w1:j−1). We plot the probability of
[DSF]jt for 2 different values of α = 0.05 and α = 0.70. We see that for α = 0.05 the

probability of [DSF]jt with LRBF is on average 94% smaller than that from the convex hull

support estimate for all iterations j ∈ [30]. Similarly for α = 0.70, the probability of [DSF]jt
is on average 61% lower than that with the convex hull support estimate across all j ∈ [30].

The same trend is seen in Fig. 2 for truncated normal distribution (24b), where probabil-
ity of [DSF]jt is at least 99% and 96% lower than convex hull support estimate for α = 0.05
and α = 0.70 respectively until iteration j = 3, and reaches a value of 0 for both values
of α afterwards. The above trend in probability of [DSF]jt is explained by Proposition 1,

which relates the desired confidence (1 − α) for support Ŵj to the probability of [DSF]jt .

Moreover, from Fig. 1 and Fig. 2 we see that in practice probability of [DSF]jt is always at
least 60% − 80% lower than corresponding chosen α. This highlights satisfaction of (D1)
and also the conservatism in Proposition 1 arising from the upper bound in (20).

12

0 5 10 15 20 25 30

Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro

b
a

b
il

it
y

 o
f

D
is

tu
rb

a
n

c
e

 S
u

p
p

o
rt

 F
a

il
u

re

Figure 1: Probability of Disturbance Support Failure vs Iteration Number for Uniformly
Distributed Disturbance on W.

5.2 Performance Loss Reduction Over Iterations

In Fig. 3 and Fig. 4, we approximate the average closed loop cost E[V̂j(xS, w1:j)] of the jth

iteration by taking an empirical average over 100 Monte Carlo draws of w1:J as,

E[V̂j(xS, w1:j)] ≈ 1

100

100∑
m̃=1

V̂j(xS, (w1:j)?m̃), (25)

for α = 0.05, and α = 0.70. The cost values are normalized by V?(xS), which denotes the
empirical average closed loop cost of the jth iteration if W had been known, i.e., Ŵj = W.
For both cases of α, we see that in Fig. 3 and Fig. 4 the average closed loop cost rapidly
approaches V?(xS). For (24a) in Fig. 3, cost (25) approaches to within 0.5% of V?(xS) after
just 5 iterations whereas for (24b) in Fig. 4, it is within 3% of V?(xS) in the same duration.

However, the average closed loop cost incurred in earlier iterations has a trade-off with
desired α. This trade-off is also highlighted in Fig. 3 and Fig. 4 for (24a) and (24b) re-
spectively. We see from Fig. 3 and Fig. 4 that for lower value of probability of [SCF]jt
with α = 0.05, we pay a maximum of 13% higher average closed loop cost for (24a), and
a maximum of 10% higher average closed loop cost for (24b) compared to V?(xS) until
iteration j = 5. Allowing for higher probability of [SCF]jt with α = 0.70 proves to be cost-
efficient, where we only pay a maximum of 0.3% higher average closed loop cost for (24a),
and a maximum of 4% higher average closed loop cost for (24b) compared to V?(xS) in the
same duration. This essentially reflects the key trade-off between specifications (D1) and

13

0 5 10 15 20 25 30

Number of Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

P
ro

b
a

b
il

it
y

 o
f

D
is

tu
rb

a
n

c
e

 S
u

p
p

o
rt

 F
a

il
u

re

1 1.5 2 2.5 3

0

0.02

0.04

0.06

0.08

Figure 2: Probability of Disturbance Support Failure vs Iteration Number for Truncated
Normal Distribution of Disturbance on W.

(D2) in the initial iterations. Thus, the upper bound α of [SCF]jt must be chosen in an
application-specific manner.

Acknowledgement

We thank Hamidreza Tavafoghi for helpful discussions and reviews. This work was par-
tially funded by Office of Naval Research grant ONR-N00014-18-1-2833, National Science
Foundation under grants EAGER-1549945 and CPS-1646612, and by the National Research
Foundation of Singapore under a grant to the Berkeley Alliance for Research in Singapore.

References

[1] B. Recht, “A tour of reinforcement learning: The view from continuous control,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 2, pp. 253–279, 2019.

[2] M. Tanaskovic, L. Fagiano, C. Novara, and M. Morari, “Data-driven control of nonlin-
ear systems: An on-line direct approach,” Automatica, vol. 75, pp. 1–10, 2017.

[3] U. Rosolia, X. Zhang, and F. Borrelli, “Data-driven predictive control for autonomous
systems,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, pp.
259–286, 2018.

14

0 5 10 15 20 25 30

Number of Iterations

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

A
v

g
.

C
lo

s
e

d
 L

o
o

p
 C

o
s

t
N

o
rm

a
li

z
e

d

Figure 3: Normalized Average Closed Loop Cost (25): Uniform Disturbance.

[4] M. Morari and J. H. Lee, “Model predictive control: past, present and future,” Com-
puters & Chemical Engineering, vol. 23, no. 4, pp. 667–682, 1999.

[5] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, “Constrained model
predictive control: Stability and optimality,” Automatica, vol. 36, no. 6, pp. 789–814,
2000.

[6] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and hybrid
systems. Cambridge University Press, 2017.

[7] M. Tanaskovic, L. Fagiano, R. Smith, and M. Morari, “Adaptive receding horizon
control for constrained MIMO systems,” Automatica, vol. 50, no. 12, pp. 3019–3029,
2014.

[8] M. Lorenzen, M. Cannon, and F. Allgwer, “Robust MPC with recursive model update,”
Automatica, vol. 103, pp. 461 – 471, 2019.

[9] J. Köhler, E. Andina, R. Soloperto, M. A. Müller, and F. Allgöwer, “Linear robust adap-
tive model predictive control : Computational complexity and conservatism,” arXiv
preprint arXiv:1909.01813, 2019.

[10] M. Bujarbaruah, S. Nair, and F. Borrelli, “A semi-definite programming ap-
proach to robust adaptive MPC under state dependent uncertainty,” arXiv preprint
arXiv:1910.04378, 2019.

15

0 5 10 15 20 25 30

Number of Iterations

1

1.02

1.04

1.06

1.08

1.1

1.12

A
v

g
.

C
lo

s
e

d
 L

o
o

p
 C

o
s

t
N

o
rm

a
li

z
e

d

Figure 4: Normalized Average Closed Loop Cost (25): Truncated Normal Disturbance.

[11] J. Köhler, P. Kötting, R. Soloperto, F. Allgöwer, and M. A. Müller, “A robust adaptive
model predictive control framework for nonlinear uncertain systems,” arXiv preprint
arXiv:1911.02899, 2019.

[12] X. Zhang, K. Margellos, P. Goulart, and J. Lygeros, “Stochastic model predictive con-
trol using a combination of randomized and robust optimization,” in IEEE Conference
on Decision and Control (CDC), Florence, Italy, 2013.

[13] L. Hewing and M. N. Zeilinger, “Cautious model predictive control using gaussian
process regression,” arXiv preprint arXiv:1705.10702, 2017.

[14] R. Soloperto, M. A. Müller, S. Trimpe, and F. Allgöwer, “Learning-based robust model
predictive control with state-dependent uncertainty,” in IFAC Conference on Nonlinear
Model Predictive Control, Madison, Wisconsin, USA, Aug. 2018.

[15] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based model pre-
dictive control for safe exploration,” in 2018 IEEE Conference on Decision and Control
(CDC). IEEE, 2018, pp. 6059–6066.

[16] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Learning-based nonlinear model
predictive control to improve vision-based mobile robot path-tracking in challenging
outdoor environments,” in 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA), May 2014, pp. 4029–4036.

16

[17] R. Tempo, G. Calafiore, and F. Dabbene, Randomized algorithms for analysis and
control of uncertain systems: with applications. Springer Science & Business Media,
2012.

[18] U. Rosolia and F. Borrelli, “Learning model predictive control for iterative tasks. a
data-driven control framework.” IEEE Transactions on Automatic Control, 2017.

[19] X. Lu and M. Cannon, “Robust adaptive tube model predictive control,” in 2019
American Control Conference (ACC), Jul. 2019, pp. 3695–3701.

[20] P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski, “Optimization over state feedback
policies for robust control with constraints,” Automatica, vol. 42, no. 4, pp. 523–533,
2006.

[21] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety certification for
learning-based control,” in 2018 IEEE Conference on Decision and Control (CDC),
Dec 2018, pp. 7130–7135.

[22] V.-E. Brunel et al., “Methods for estimation of convex sets,” Statistical Science, vol. 33,
no. 4, pp. 615–632, 2018.

[23] R. W. Keener, Theoretical statistics: Topics for a core course. Springer, 2011.

[24] B. Efron and R. Tibshirani, “Bootstrap methods for standard errors, confidence inter-
vals, and other measures of statistical accuracy,” Statistical science, pp. 54–75, 1986.

Appendix

Derivation of Confidence Support (22)

Consider wjt (q)
iid∼ Unif(−θq, θq). This implies that

|wj
t (q)|
θq

iid∼ Unif(0, 1). Let w̄j(q) =

maxw̄∈w1:j−1 |w̄|. Then, for any c ∈ [0, 1] we have,

P

(
w̄j(q)

θq
≤ c

)
= P

(⋂
w̄∈w1:j−1

|w̄|
θq
≤ c

)
,

= Πw̄∈w1:j−1P

(
|w̄|
θq
≤ c

)
, (26)

= cT
j

,

where (26) follows as disturbance samples w̄ ∈ w1:j−1 are independent. Setting c = αq, we
have

P

(
w̄j(q)

θq
≤ α

1

T j
q

)
= αq.

17

Therefore, we have

P

(
α

1

T j
q ≤

w̄j(q)

θq
≤ 1

)
= 1− αq,

which gives us

P

(
w̄j(q) ≤ θq ≤

w̄j(q)

α
1

T j
q

)
= 1− αq.

Setting αq = α
d

and using Lemma 1 completes the derivation.

Speeding up Convergence of Ŵj

In order to speed up convergence of Ŵj in Algorithm 1 to the true support W, the following
MPC optimization problem with slack variables is solved:

Ṽ MPC,j
t→t+N(xjt , Ŵj, X̂ j

N) :=

min
Uj
t (·)

t+N−1∑
k=t

`(x̄jk|t, v
j
k|t) +Q(x̄jt+N |t) + Λ‖sjt‖2

2

s.t xjk+1|t = Axjk|t +Bujk|t + wjk|t,

x̄jk+1|t = Ax̄jk|t +Bvjk|t,

ujk|t =
k−1∑
l=t

M j
k,l|tw

j
l|t + vjk|t,

Hxx
j
k|t ≤ hx + sjt ,

Huu
j
k|t ≤ hu,

Ŷ jxjt+N |t ≤ ẑj + ŝjt ,

with X̂ j
N = {x : Ŷ jx ≤ ẑj},

sjt = [(sjt)
>, (ŝjt)

>]> ≥ 0,

∀wjk|t ∈ Ŵj,

∀k = {t, . . . , t+N − 1},
xjt|t = x̄jt|t = xjt ,Λ� 0,

(27)

with sj0 = 0 (from Remark 6), and then closed loop control law ujt = vj,?t|t is applied to system

(1). By solving the relaxed optimization problem (27) which is feasible for all timesteps
0 ≤ t ≤ T − 1 in the jth iteration, we ensure that after each iteration, a set of T additional

samples are obtained for the update Ŵj update−→ Ŵj+1. From Section 4.3 we can infer that
this speeds up the convergence of Ŵj.

18

	1 Introduction
	2 Problem Formulation
	3 Iterative MPC Problem
	4 Learning Robustness with Bounded Failure
	4.1 Need for Distributional Assumption on P
	4.2 Confidence Support of a Distribution
	4.3 Computing j
	4.4 The LRBF Algorithm
	4.5 Case Studies
	4.5.1 Uniform Distribution.
	4.5.2 Truncated Normal Distribution.

	5 Numerical Simulations
	5.1 Bounding the Probability of Failure (D1)
	5.2 Performance Loss Reduction Over Iterations

