Input matters in the modeling of early phonetic learning
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Abstract

In acquiring language, differences in input can greatly affect
learning outcomes, but which aspects of language learning are
most sensitive to input variations, and which are robust, remains
debated. A recent modeling study successfully reproduced a
phenomenon empirically observed in early phonetic learning—
learning about the sounds of the native language in the first
year of life—despite using input that differed in quantity and
speaker composition from what a typical infant would hear. In
this paper, we carry out a direct test of that model’s robustness
to input variations. We find that, despite what the original result
suggested, the learning outcomes are sensitive to properties of
the input and that more plausible input leads to a better fit with
empirical observations. This has implications for understanding
early phonetic learning in infants and underscores the impor-
tance of using realistic input in models of language acquisition.
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Introduction

Early experience with language can vary widely across chil-
dren. The consequences of these variations for language ac-
quisition remain under debate. Variability in the linguistic
input that children are exposed to has been associated with
differences in learning outcomes in some cases (Hart & Risley,
1995; Cristia, 2011; Hoff, 2006; Song, Demuth, & Morgan,
2018), but learning has been argued to be robust to input vari-
ations in others (Bergmann & Cristia, 2018; Cristia, 2018).

A recent modeling study by Schatz, Feldman, Goldwater,
Cao, and Dupoux (2019) appears to support the idea that a spe-
cific aspect of language learning—early phonetic learning—is
robust across a range of input variations. Schatz et al. focused
on the finding that English-learning infants become better at
discriminating [1]-[1], as in “lock” and “rock,” but Japanese
infants—whose native language does not distinguish between
these two sounds—do not (Kuhl et al., 2006; Werker & Tees,
1984). They used a distributional learning algorithm (Maye,

Werker, & Gerken, 2002) operating on low-level auditory rep-
resentations of unsegmented speech, and showed that models
trained on English performed significantly better on discrim-
inating the [1]-[1] contrast than models trained on Japanese.
This was true even though the training data consisted of a
roughly even mix of speech from more than 20 speakers that
was balanced across gender, and even when the model was
trained on as little as one hour of speech. Those training char-
acteristics do not match input conditions expected for a typical
infant in the behavioral literature in terms of either the number
of speakers (Bergmann & Cristia, 2018), the duration of input,
or the composition of the input by speaker and by speaker gen-
der (Bergelson et al., 2019). The model’s successful prediction
of infants’ discrimination of [1] and [1] despite this atypical
input raises the possibility that early phonetic learning could
be robustly supported across a wide range of input conditions.

In this paper, we directly examine the sensitivity of Schatz
et al.’s (2019) learning model to variations in input, and find
that while the model is robust to some variations in input, it is
highly sensitive to others. Specifically, we look at the effect of
varying the duration, speaker composition, and speaker gen-
der of the input. To obtain enough speech data to manipulate
these input parameters, we assemble a corpus based on public-
domain audiobooks, which provide abundant data separable
by speaker (up to 900 hours per speaker). The large size of
public-domain audiobooks allows us to control the speaker
distribution or select a single speaker to train the model, which
makes it an ideal resource to answer questions about how
the distribution of speakers in a model’s input affects what
the model learns. We find that differences in input affect the
model learning outcome substantially, and that training on
more plausible input leads to predicted learning outcomes that
better fit empirical observations. Our study suggests that if the



model from Schatz et al. (2019) is an accurate model of early
phonetic learning, then early phonetic learning may be more
sensitive to input conditions than had been previously realized.
More broadly, our results underscore the importance of crit-
ically assessing input assumptions when modeling language
acquisition.

Methods

We simulate the phonetic learning process from corpora of un-
segmented raw speech and examine the ability of the resulting
model representations to discriminate between pairs of speech
sounds in the ‘native’ (i.e. training) language or in a ‘foreign’
language. To examine the learning outcomes predicted by our
models under different input data, we use two kinds of input to
train speech learning models. The first type of input consists
of speech from 10+ individuals, similar to the input in Schatz
et al. (2019); the second type of input comes from an individ-
ual speaker, such that each model learns from one speaker’s
speech. We focus on whether the amount and speaker gen-
der of the input speech affects the learning outcome, using
the cross-linguistic difference between models’ discrimination
performance as the measure of learning outcomes. Specifi-
cally, we train models on English and Japanese, representing
infants learning English or Japanese as their native languages.
Then, we test them on English contrasts. Based on the empiri-
cal results from Kuhl et al. (2006), we expect English models
to perform better as they are trained on more data!, but do not
expect Japanese models to improve. We also expect the differ-
ence between English and Japanese performance to increase
as the models are trained on more data.

Corpus construction

We assembled an audiobooks corpus containing read speech in
English and Japanese using (untranscribed) speech recordings
from LibriVox (https://librivox.org) and the Internet
Archive (https://archive.org/), two public domain media
repositories. For each language, the corpus contains speech
from 6 males and 5 females. The total duration of the corpus
is more than 2000 hours of speech, and the duration for each
speaker ranges between 2.9 and 918 hours. Code to assemble
the corpus can be found at https://osf.io/9fnxa/.

Input representation

Following Schatz et al. (2019), we use Mel-frequency cepstral
coefficients (MFCCs) as the input representation to our models
(Mermelstein, 1976). They take the form of 13-dimensional
descriptors of the short-term auditory spectrum of the speech
input, with added first and second derivatives. They are ob-
tained at regular intervals of 10ms along the speech stream
and are computed over 25ms-long (overlapping) stretches of
signal. See Schatz et al. (2019) for further motivation for using
MFCC:s as input to models of early phonetic learning.

'We do not assume an exact mapping between the model training
duration and the actual number of hours of speech that an infant hears,
but we do assume that the increase in training duration reflects the
learning trajectory as infants have access to more speech data.

Learning model

Following Schatz et al. (2019), we train Dirichlet process
Gaussian mixture models on the input MFCCs. This genera-
tive model assumes that each datapoint was generated from
a multidimensional Gaussian cluster, and learns the number
of clusters as well as the parameters (weight, mean and co-
variance matrix) of each cluster. The means and covariance
matrices are assumed to be generated from a normal-inverse-
Wishart prior. We set the hyperparameters in the Dirichlet
process as follows: o to 1, tg and Ag to the average and in-
verse of the covariance of all input MFCCs, A to 1, and v to
42. The Dirichlet process (Ferguson, 1973) allows the model
to learn the number of Gaussian clusters from the data.

The model is trained through an efficient parallel MCMC
sampling scheme (Chang & Fisher III, 2013). Each model is
trained for 1501 iterations, sampling through every datapoint
in the training data in each iteration. From the number of
Gaussian categories and the test error rate, it appears that most
models converge before the training is finished: the number of
categories usually stabilizes between 100 and 1000 iterations,
and the error rate in testing also stabilizes at about the same
point in training. The two models (out of 84) that failed to
converge according to these metrics are excluded from the
analysis and results.

Discrimination test

After training, we extract the models’ representations of the
test stimuli, which is transformed into MFCCs like the training
data. We take the posterior probability distributions over the
learned Gaussian clusters as the models’ representations at
each time point of the speech stimuli. The posterior probability
distributions are calculated based on Bayes’ Rule, where G,
denotes the n'" Gaussian category, and y, denotes the datapoint
at time ¢,

P(Gn | 1) =< p(yt | Gn)p(G) ¢))

As p(G, | y) is calculated for every Gaussian category, the
posterior of each datapoint is a vector [p(G; | y),p(G; |
¥),...,p(Gn | y)], where N is the number of Gaussians.
Model testing uses the machine ABX task (Schatz et al.,
2013; Schatz, 2016). This task evaluates a model’s ability to
discriminate two sounds. Specifically, it takes occurrences” of
two sound categories in an annotated and time-aligned speech
corpus, and compares triplets of three tokens at a time (A, B,
and X, where A and X are taken from the same phonetic cate-
gory, e.g., [1], and B is taken from the other category, e.g., [1])
to see whether the model correctly predicts a greater similarity
between A and X, or incorrectly predicts a greater similar-
ity between B and X. The similarity for each token pair is
calculated as the average KL-divergence between the two rep-
resentations aligned by dynamic time warping. KL-divergence
is a measure of the difference between two probability dis-
tributions, and the dynamic time warping algorithm allows
representations of two speech segments of different temporal

2Qccurrences are controlled by phonetic context and subsampled,
in the same way as Schatz et al. (2019).
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Figure 1: The effect of input amount on ABX discrimination errors, for models trained with multiple speakers. For each
duration, 10 models are trained. Each dot represents a model; the lines represent means of the ten models, and the error bands
represent 95% confidence intervals. The two rows represent the two testing corpora. Statistical significance is obtained from
permutation tests, in which the training language is permuted 10,000 times for each training duration, test corpus and consonant
pair. One-tailed tests are performed against the null hypothesis that English models do not have smaller error rates than Japanese
models. Significance is assessed with Benjamini-Yekutieli correction for multiple comparisons (Benjamini & Yekutieli, 2001).
One, two and three stars indicate p < 0.05, p < 0.01 and p < 0.001 respectively, n.s. stands for non-significant.

lengths to be compared (Vintsyuk, 1968). After the model’s
choice (correct vs. incorrect) is obtained via the method above,
we collapse across all triplets and all environments (phonetic
neighbors) to obtain an overall error rate for the pair of sound
categories, e.g., [1]-[1]. We denote this measure as the ABX
error rate. The lower the ABX error rate is, the better the
model is able to discriminate between the target sound pair,
where chance performance is 50%.

Training and Testing

For each speaker, models are trained on speech that varies in
duration along a log 10 scale, starting at 6 minutes (6 min-
utes, 1 hour, 10 hours, 100 hours, etc.). Up to 10 models are
trained on each training duration when enough speech data
are available. Additionally, one model is trained on the full
duration of the speech data (e.g., for the speaker with 8.5 hours
of data, in addition to the 8 models that are trained on 1 hour of
speech, one model is trained on all 8.5 hours of speech). This
is to ensure that we have models trained on the full range of
input durations without sacrificing statistical power for shorter
durations.

The testing is carried out on the Buckeye Corpus (Pitt, John-
son, Hume, Kiesling, & Raymond, 2005), which consists
of conversational, spontaneous speech, and the Wall Street
Journal Corpus (Paul & Baker, 1992), which consists of read
speech. The ABX error rate is obtained for each test speaker,
and then averaged in the main results. Following Schatz et

al. (2019), we look at [1]-[1] and two controls: [w]-[j], which
is contrastive in both Japanese and American English, and
the average over all American English consonants. While
[1]-[1] is critical for the observation of perceptual attunement,
the average across American English consonants offers an
overview of how the model performs in general on the ABX
task; and the [w]-[j] pair is used as a control pair, which the
model is expected to discriminate well regardless of its train-
ing language. For [1]-[1], if the gap between the English and
Japanese models’ performance increases as the models are
trained on more data, it would suggest that the models are
showing cross-linguistic differences in discrimination that re-
sult from exposure to speech input in their native language,
and in this way behaving like infants.

Results
Models trained on multiple speakers

We first replicate Schatz et al. (2019) in order to ensure that
possible confounds in our audiobooks, such as lower-quality
microphones or uncontrolled recording environments, do not
impact the results. Following their gender-balanced input
distribution of speakers with a roughly equal amount of speech
per speaker, we look at the results of models trained on an
equal distribution of 11 speakers.

The replication is successful: On all American English con-
sonants as well as [1]-[1], the Japanese models perform worse
than English models, and this difference increases with the
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Figure 2: The effect of training duration on ABX discrimination errors, for models trained on a single speaker. Each blue dot
shows one American English model, and each red dot shows one Japanese model. The colored lines correspond to smoothing
splines fitted to the results of models trained on each language, and the error bands around each colored line represent 95%
confidence intervals. For significance testing, the continuum of training durations is divided into four blocks: [0, 6min], (6min,
1hr], (1hr, 10hrs], (10hrs, 100hrs]. Models trained on more than 100hrs of data (n = 3) are not included in a block, since they
are all English models and lack a Japanese counterpart to compare with. These English models are still shown in the figure for
visualization purposes. For each block, permutation tests are performed to test statistical significance, in the same way as in

Figure 1.

amount of input (Figure 1). While we observe no signifi-
cant cross-linguistic difference on [1]-[1] when the models are
trained on 0.1 hours of data, there are significant differences
with 1 hour and 10 hours of input data, which indicates that
the models show a cross-linguistic difference with greater in-
put amounts. The effect size also increases with more input
amounts; this increase in the effect along the learning trajec-
tory is similar to the patterns observed in infants (Kuhl et al.,
2006). On the [w]-[j] pair, no significant difference is found.’

Models trained on single speakers

Figure 2 gives results for the models trained on single-speaker
data. We can observe that the simulated English infants have
lower error, i.e., better performance on American English
consonants overall, than the simulated Japanese infants. As
expected, while models trained on more input showed signifi-
cant cross-linguistic difference between [1] and [1], there is no

3There is a trend in the other direction in Figure 1, such that the
blue (English) line lies above the red (Japanese) line. However, a
two-tailed test on [w]-[j] results did not find a significant difference
between languages in either direction. The trend may be attributable
to the recording settings: a large part of the Japanese corpus came
from a professional recording, while all English speakers except one
are LibriVox contributors who record by themselves, using whatever
equipment is available to them. This may have allowed the Japanese
models to learn the [w]-[j] contrast better due to possibly clearer
recordings. This point would only strengthen our observation on the
[1]-[1] contrast, as the models are able to capture the cross-linguistic
effects despite the input data for English being harder to learn from.

significant cross-linguistic difference in the discrimination of
[w]-[j] for any amount of training data.

Discrimination of ‘native’ contrasts (here for ‘American
English’ models) appears to improve as the amount of input
increases, even when the input amounts are already relatively
large (e.g., 10 vs. 100 hours). Since the amount of relevant
linguistic input to a child might be even larger than even the
largest training sets considered here (Bergelson et al., 2019),
this suggests that large databases of naturalistic recordings
might prove necessary to model early phonetic learning.

In all panels of Figure 2, the ABX error rate of the Japanese
models increases after an initial decrease. However, this ob-
servation appears to be driven by the single datapoint with 67
hours of input, which is the only model trained on more than
15 hours of Japanese data. After the removal of this datapoint,
this observation disappears.

Due to the small amount of Japanese speech data, there are
only two models trained on 10-100 hours input range, and
no model is trained on more than 100 hours of Japanese data.
This made the statistical tests on 10—100 hours unstable and
thus unlikely to be informative.

Overall, our results on single speaker models are similar to
those on multiple speaker models in Figure 1. As expected, the
models demonstrate cross-linguistic differences in discrimina-
tion on all American English consonants and [1]-[1], whereas
there is no significant difference on [w]-[j].
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Figure 3: The effect of gender match or mismatch between
training and test speakers on [I]-[1] ABX discrimination er-
ror. Each blue dot shows one American English model, and
each red dot shows one Japanese model. The colored lines
correspond to smoothing splines fitted to the results of models
trained on each language, and the colored bands represent 95%
confidence intervals. Permutation tests are performed in the
same way as Figure 1.

Effect of speaker gender

Schatz et al. (2019) used input data from a gender-balanced set
of multiple speakers. As a result, their models encountered dif-
ferent genders in training. However, the current single speaker
models do not have access to this variation between speakers
during training, and that lack of variation in model input might
lead the models to generalize not as well as model trained
on data with greater variations. Here, by analyzing the effect
of speaker gender, we examine whether the model’s general-
ization ability is affected by this difference in the input data.
Using the models trained on single speakers from the previous
section, we separately analyze performance on test speakers
who have the same gender as the training speaker (gender-
matching) and test speakers who do not (gender-mismatch).

Figure 3 shows the difference between these two conditions.
The cross-linguistic difference is not significant at any training
duration in the gender mismatch condition, while this differ-
ence is significant in the gender matching condition, and the
difference between native and nonnative models increases with
longer input amounts. We used one-tailed permutation tests
(one per test corpus and duration block) to compare these data
against the null hypothesis that the average cross-linguistic dif-
ference in [1]-[1] discrimination errors between ‘Japanese’ and
‘American English’ models is not larger in the gender-matching
condition than in the gender-mismatch condition, and found

a significant difference in all cases,* showing that matching
gender facilitates the cross-linguistic effect. Interestingly, the
crosslinguistic differences in discrimination abilities observed
in the gender matching condition in Figure 3 are quite larger
than those observed with models trained on multiple speakers
(Figure 1). In addition, the same change in learning trajectory
observed in Figure 2, where Japanese models’ discrimina-
tion gets worse between intermediate and large quantities of
training data, appears on Figure 3. In the gender-mismatch
group, the change is still driven by the 67-hour outlier, and
permutation tests permuting the input amount (10 vs. more
than 10 hours of input) on Japanese speakers does not show a
reliable change in learning trajectory (p = 1 for both testing
corpora). In the gender-matching group, however, there is a
reliable increase in error rate when comparing models with
10 hours of input and those with more than 10 hours of input,
with permutation tests yielding p-values of 0.0251 and 0.0234
for Buckeye and Wall Street Journal as the testing corpus, re-
spectively.’. This result suggests that in the gender-matching
condition, while the performance on native sound discrim-
ination improves further with more input, the performance
on nonnative sound discrimination deteriorates with more in-
put: Japanese models, in successfully learning properties of
their “native” language, become worse at discriminating the
nonnative contrasts of [1]-[1].

Discussion

In this study, we asked how outcomes of phonetic learning
models are affected by differences in the input, and con-
tributed a large public-domain corpus in American English and
Japanese that is suitable for addressing this question. We first
replicated earlier results of phonetic learning models (Schatz
et al., 2019) on much larger, single speaker data. We found that
models trained on single speaker inputs and models trained
on multiple speakers both reproduce cross-linguistic patterns
of phone discrimination similar to those observed in infants.
While this result suggests that different (multi- and single-
speaker) input could lead to similar learning outcomes, a sub-
sequent gender-specific analysis showed that the similarity
in learning outcomes can be modulated by additional factors.
Specifically, we found that for single-speaker models, the
expected cross-linguistic difference is found only when the
gender of the test speakers matches the gender of the training
speaker. This illustrates the importance of critically assessing
input assumptions when modeling language acquisition.

Our results also provide evidence that models trained on
more naturalistic input lead to a tighter fit to the learning out-
comes observed empirically, underscoring the benefits of using
naturalistic input in phonetic learning models. Compared to
the conditions considered in (Schatz et al., 2019), a typical

4Using Benjamini- Yekutieli correction for multiple comparisons;
p-values fell between < 0.0001 and 0.018.

5The training speaker leading to the outlier is excluded in this
test to ensure the outliers are not driving the statistical significance.
The results are significant (p < 0.05) when this training speaker is
included in the testing as well.



infant is likely to get a larger amount of input (Bergelson et al.,
2019), and that input is likely to come mostly from a limited
number of speakers with a skewed gender balance (Bergmann
& Cristia, 2018). The large, single speaker training sets we
consider are thus likely to better reflect naturalistic learning
conditions than the balanced multi-speaker training sets in
(Schatz et al., 2019). We find that this more naturalistic input
predicts larger crosslinguistic differences in discrimination
abilities, and—similar to infants (Tsushima et al., 1994)—
a worsening of [1]-[1] discrimination for models trained on
Japanese, which was not found when training on the multi-
speaker input.

While it is virtually impossible to test the entire range of
inputs that infants could be learning from, since infants receive
a wide range of inputs depending on the culture, SES, and
even gender of the child (Hoff, 2006), our work represents a
step in that direction. Admittedly, audiobooks are not the most
naturalistic type of data for modeling infant phonetic learning,
since infants primarily hear spontaneous speech, and since in
many cultures, infant-directed speech has different acoustic
properties from adult conversational speech (Fernald et al.,
1989). In this study, we used audiobook data instead of infant-
directed speech because no existing corpus of infant-directed
speech is both long enough for training the current models,
and labeled by speaker to allow us to control the distribution of
speakers in the models’ input. However, since the audiobooks
data we used were naturalistic in many ways—we made direct
use of speech recordings, unlabeled and unsegmented—the
learning outcomes from audiobook data should be more gen-
eralizable to infant phonetic learning outcomes than previous
modeling studies (De Boer & Kuhl, 2003; Feldman, Griffiths,
Goldwater, & Morgan, 2013; McMurray, Aslin, & Toscano,
2009; Vallabha, McClelland, Pons, Werker, & Amano, 2007).

Our replication of the cross-linguistic effect originally found
in multiple speakers (Figure 1) on models trained on single
speakers (Figure 2) is compatible with the empirical literature.
Bergmann and Cristia (2018) studied the relationship between
number of talkers in infants’ speech input and the infants’
ability to discriminate native phonetic contrasts. Their overall
results do not show an effect of the number of input speakers
on the infants’ ability to discriminate vowels in their native
language. This is supported by our modeling results showing
that models trained on one or 11 speakers are both successful
in demonstrating phonetic learning of their native language.

Regarding infants’ ability to generalize speech learning
outcomes to different speakers, the literature does not give a
conclusive answer. Kuhl (1979) and Kuhl (1983) found that
6-month-olds trained on one gender and tested on another
can successfully generalize the task to the other gender on a
phonetic discrimination task, whereas Houston and Jusczyk
(2000) found that infants’ ability to generalize across genders
on a word segmentation task improved substantially between
7.5 and 10.5 months. While Kuhl (1979) and Kuhl (1983)
examined vowel discriminability, which is closer to the current
work than the word segmentation task in Houston and Jusczyk

(2000), the vowel discrimination studies did not control for, or
collect data on, the speaker distribution in the infants’ speech
learning environment. It is difficult to tell from these data
whether sensitivity to phonetic contrasts would be modulated
by speaker gender match between infants’ input and the test
stimuli used in laboratory studies.

If our model of how infants learn is correct, then in the set-
ting that American children are most often in (Bergelson et al.,
2019)—few speakers and mostly female—one might expect to
see the same learning outcomes found in the gender-mismatch
models, which is a lack of cross-linguistic difference in dis-
criminating ability. However, the effect might not be as strong
as it was in our models, since infants typically hear more
than one speaker, and encounter speech from males at least
sometimes. A direct behavioral test of whether infants’ phone
discrimination performance is affected by whether the gender
of the speaker who recorded the experiment stimuli matches
the gender of the primary speakers in their environment could
be carried out. The presence of such an effect would suggest
that early phonetic learning is more sensitive to input condi-
tions than had been previously realized. Its absence might
indicate that infants have strong enough generalization abili-
ties capable of correcting for variability due to gender in the
speech input, and that our phonetic learning model should be
augmented with speaker normalization algorithms that reduce
the between-speaker variability of the acoustic input.

In conclusion, our work shows that the properties in the
speech input matter in training models of early phonetic learn-
ing. This highlights the importance of using naturalistic input
for such models, and of testing different types of input when
simulating the way in which children learn.
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