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We are interested in testing general linear hypotheses in a high-dimensional multivariate linear
regression model. The framework includes many well-studied problems such as two-sample tests
for equality of population means, MANOVA and others as special cases. A family of rotation-
invariant tests is proposed that involves a flexible spectral shrinkage scheme applied to the
sample error covariance matrix. The asymptotic normality of the test statistic under the null
hypothesis is derived in the setting where dimensionality is comparable to sample sizes, assuming
the existence of certain moments for the observations. The asymptotic power of the proposed
test is studied under various local alternatives. The power characteristics are then utilized to
propose a data-driven selection of the spectral shrinkage function. As an illustration of the
general theory, we construct a family of tests involving ridge-type regularization and suggest
possible extensions to more complex regularizers. A simulation study is carried out to examine

the numerical performance of the proposed tests.
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1. Introduction

In multivariate analysis, one of the fundamental inferential problems is to test a hy-
pothesis involving a linear transformation of regression coefficients under a linear model.
Suppose Y is a p x N matrix of observations modeled as

Y = BX + 2’7, (1.1)
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where (i) B is a p x k matrix of regression coefficients; (ii) X is a k x N design matrix
of rank k; (iii) Z is a p x N matrix with i.i.d. entries having zero mean and unit variance;
and (iv) X,, a p x p nonnegative definite matrix, is the population covariance matrix
) ()T

of the errors, with X, Y2 A “square-root” of ¥, so that ¥, = X . General linear

hypotheses involving the linear model (1.1) are of the form
Hy: BC =0 VS. H,: BC #0, (1.2)

for an arbitrary k£ x g “constraints matrix” C, subject to the requirement that BC' is
estimable. Without loss of generality, C is taken to be of rank g. Throughout, we assume
that ¢ and k are fixed, even as observation dimension p and sample size N increase to
infinity. Henceforth, n = N — k is used to denote the effective sample size, which is also
the degree of freedom associated with the sample error covariance matrix.

With various choices of X and C', the testing formulation incorporates many hypothe-
ses of interest. For example, multivariate analysis of variance (MANOVA) is a special
case. When the sample size N is substantially larger than the dimension p of the obser-
vations, this problem is well-studied. Anderson (1958) and Muirhead (2009) are among
standard references. Various classical inferential procedures involve the matrices

o 1

S, =—Y([I - XT(xxT)xX)YT, (1.3)
n

H, =lYXT(XXT)—lc[CT(XXT)—lc]—1CT(XXT)—1XYT, (1.4)
n

so that flp is the residual covariance of the full model, an estimator of EW while ﬁp
is the hypothesis sums of squares and cross products matrix, scaled by n™". In a one-
way MANOVA set-up, E and H are, respectively, the within-group and between-group
sums of squares and products matrlces, scaled by n~!. In the rest of the paper, we shall
refer to 3, as the sample covariance matrix.

The testing problem (1.2) is well-studied in the classical multivariate analysis litera-
ture. Three standard test procedures are the likelihood ratio test (LR), Lawley—Hotelling
trace test (LH) and Bartlett—-Nanda—Pillai trace (BNP) test. They are called invariant
tests, since under Gaussianity the null distributions of the test statistics are invariant
with respect to ¥,. One common feature is that all test statistics are linear functionals
of the spectrum of ﬁpr; L. Since this matrix is asymmetric, for convenience, a standard
transformation is applied, giving the expressions of the invariant tests as follows. Define

Qn = X"(XXT)re[cT(XxT) o1, (1.5)
1 ~
M, = EQ,TZYTEzjlYQn.

The matrix Q,, Q7 is the “hat matrix” of the reduced model under the null hypothesis.

Note that the non-zero eigenvalues of ﬁ,,f);l = nilYQnQZYTﬁgl are the same as
those of M. The test statistics for the LR, LH and BNP tests can be expressed as

TLR — ijl log{1 + \; (M)},
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T(}JH = Zj:l /\1(M0)a
TENP = 37 (M) /{1 + Ai (M)}

The symbol A;(+) denotes the i-th largest eigenvalue of a symmetric matrix, further using
the convention that Apax(-) and Amin(+) indicate the largest and smallest eigenvalue.

In contemporary statistical research and applications, high-dimensional data whose
dimension is at least comparable to the sample size is ubiquitous. In this paper, focus
is on the interesting boundary case when dimension and sample sizes are comparable.
Primarily due to inconsistency of conventional estimators of model parameters — such as
3, —, classical test procedures for the hypothesis (1.2) — such as the LR, LH and BNP
tests — perform poorly in such settings. When the dimension p is larger than the degree
of freedom 7, the invariant tests are not even well-defined because 3, is singular. Even
when p is strictly less than n, but the ratio v,, = p/n is close to 1, these tests are known
to have poor power behavior. Asymptotic results when ~,, — v € (0, 1) were obtained in
Fujikoshi, Himeno and Wakaki (2004) under Gaussianity of the populations, and more
recently in Bai, Choi and Fujikoshi (2017) under more general settings that only require
the existence of certain moments. LR, LH and BNP tests can be generalized as linear
spectral statistics of large-dimensional F-matrices, whose CLT is studied in Zheng (2012);
Zheng, Bai and Yao (2017); Bodnar, Dette and Parolya (2017).

Pioneering work on modifying the classical solutions in high dimension is in Bai et al.
(2013), who corrected the scaling of the LR statistic when n = p but p, k and ¢ are propor-
tional to n. The corrected LR statistic was shown to have significantly more power than
its classical counterpart. In contrast, in this paper, we focus on the setting where k and ¢
are fixed even as n,p — o so that v, = p/n — v € (0,00). In the multivariate regression
problem, this corresponds to a situation where the response is high-dimensional, while the
predictor is finite-dimensional. In the MANOVA problem, this framework corresponds to
high-dimensional observations belonging to one of a finite number of populations.

To the best of our knowledge, when n < p, the linear hypothesis testing problem has
been studied in depth only for specific submodels of (1.1), primarily for the important
case of two-sample tests for equality of population means. For the latter tests, a widely
used idea is to construct modified statistics based on replacing 3, ! with an appropri-
ate substitute. This approach was pioneered in Bai and Saranadasa (1996) and further
developed in Chen and Qin (2010). Various extensions to one-way MANOVA (Srivas-
tava and Fujikoshi, 2006; Yamada and Himeno, 2015; Srivastava and Fujikoshi, 2006; Hu
et al., 2017) and a general multi-sample Behrens—Fisher problem under heteroscedastic-
ity (Zhou, Guo and Zhang, 2017) exist. Other notable works for the two-sample problem
include Biswas and Ghosh (2014); Chang et al. (2017); Chen, Li and Zhong (2014);
Guo and Chen (2016); Lopes, Jacob and Wainwright (2011); Srivastava, Li and Ruppert
(2016); Wang, Peng and Li (2015). A second approach aims to regularize flp to address
the issue of its near-singularity in high dimensions; see Chen et al. (2011) and Li et al.
(2016) for ridge-type penalties in two-sample settings. Finally, another alternative line of
attack consists of exploiting sparsity; see Cai, Liu and Xia (2014); Cai and Xia (2014).
Other related works include Zhu and Bradic (2018).



4 H. Li, A. Aue and D. Paul

In this paper, we seek to regularize the spectrum of f)p by flexible shrinkage functions.
For a symmetric p x p matrix A and a function g(-) on R, define

9(A) = Radiag(g(M1(A)), ..., 9(\p(A))) RE,

where R4 is the matrix of eigenvectors associated with the ordered eigenvalues of A.
Now, consider any real-valued function f(-) on R that is analytic over a specific domain
associated with the limiting behavior of the eigenvalues of flp, as elaborated in Section 2.
The proposed statistics are functionals of eigenvalues of the regularized quadratic forms

1 ~
M(f) = —QIYT F(,)YQn.
Specifically, we propose regularized versions of LR, LH and BNP test criteria, namely

TER(f) = 37 log{l + \(M(f))},
T () = 3 A(M(f),

=1

TPNP(F) = D0 MM /AL + A(M()}-

These test statistics are designed to capture possible departures from the null hypothesis,
when ¥, is replaced by f(X,), while suitable choices of the regularizer f allow for getting
around the problem of singularity or near-singularity when p is comparable to n.

Notice that M(f) has the same non-zero eigenvalues as f(X,)H,. Thus, the proposed
test family is a generalization of the classical statistics based on i; 1ﬁp. Importantly,
M(f) — and consequently the proposed statistics — is rotation-invariant, which means if
a linear transformation is applied to the observations with an arbitrary orthogonal matrix,
the statistic remains unchanged. It is a desirable property when not much additional
knowledge about ¥, and BC is available. It should be noted that the two-sample mean
tests by Bai and Saranadasa (1996) and Li et al. (2016), together with their generalization
to MANOVA, are special cases of the proposed family with f(x) = 1 and f(z) = 1/(z+)),
A > 0, respectively.

The present work builds on the work by Li et al. (2016). The theoretical analysis also
involves an extension of the analytical framework adopted by Pan and Zhou (2011) in
their study of the asymptotic behavior of Hotelling’s T2 statistic for non-Gaussian ob-
servations. However, the current work goes well beyond the existing literature in several
aspects. We highlight these as the key contributions of this manuscript: (a) We propose
new families of rotation-invariant tests for general linear hypotheses for multivariate re-
gression problems involving high-dimensional response and fixed-dimensional predictor
variables that incorporate a flexible regularization scheme to account for the dimension-
ality of the observations growing proportional to the sample size. (b) Unlike Li et al.
(2016), who assumed sub-Gaussianity, here only the existence of finite fourth moments
of the observations is required. (c¢) Unlike Pan and Zhou (2011), who assumed X, = I,,,
Yp is allowed to be fairly arbitrary and subjected only to some standard conditions on
the limiting behavior of its spectrum. (d) We carry out a detailed analysis of the power
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characteristics of the proposed tests. The proposal of a class of local alternatives enables a
clear interpretation of the contributions of different parameters in the performance of the
test. (e) We develop a data-driven test procedure based on the principle of maximizing
asymptotic power under appropriate local alternatives. This principle leads to the defini-
tion of a composite test that combines the optimal tests associated with a set of different
kinds of local alternatives. The latter formulation is an extension of the data-adaptive
test procedure designed by Li et al. (2016) for the two-sample testing problem.

The rest of the paper is organized as follows. Section 2 introduces the asymptotics
of the proposed test family both under the null hypothesis and under a class of local
alternatives. Using these local alternatives, in Section 3 a data-driven shrinkage selection
methodology based on maximizing asymptotic power is developed. In Section 4, an ap-
plication of the asymptotic theory and the shrinkage selection method is given for the
ridge-regularization family. An extension of ridge-regularization to higher orders is also
discussed. The results of a simulation study are reported in Section 5. In the Appendix,
a proof outline of the main theorem is presented, while technical details and proofs of
other theorems are collected in the Supplementary Material.

2. Asymptotic theory

After giving necessary preliminaries on Random Matriz Theory (RMT), the asymptotic
theory of the proposed tests under the null hypothesis and under various local alternative
models is presented in this section. For any p X p symmetric matrix A, define the Empirical
Spectral Distribution (ESD) F4 of A by

— P
FA(T) = p 121:1 1{A7(A)ST}

In the following, ||- |max stands for the maximum absolute value of the entries of a matrix.
The following assumptions are employed.
C1 (Moment conditions) Z has i.i.d. entries z;; such that Ez;; = 0, Ezizj =1, Ezfj < o0;
C2 (High-dimensional setting) k and ¢ are fixed, while p, n — oo such that ~,, = p/n —
v € (0,00) and /|y, — | — 0;
C3 (Boundedness of spectral norm) %, is non-negative definite; lim sup,, Amax(2p) < 00;
C4 (Asymptotic stability of ESD) There exists a distribution L* with compact support
in [0, 0), non-degenerate at zero, such that /nDy (F*»,L*) — 0, as n,p — o,

where Dy (F1, F») denotes the Wasserstein distance between distributions Fy and
F5, defined as

Dy (Fy, Fy) = sup{) / fdF, — / dez‘: fis 1—Lipschitz}.
f

C5 (Asymptotically full rank) X is of full rank and n~! X X7T converges to a positive
definite k& x k matrix. Moreover, limsup,,_, o, | X |max < 90;
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C6 (Asymptotically estimable) liminf,, o Amin(CT (R 71X XT)~1C) > 0.

Remark 2.1 The conditions are mild: C5 and C6 are commonly made in multivari-
ate analysis for asymptotic results of regression models under non-Gaussianity. The
o(n=Y?) convergence rate in C2 and C4 is unnecessary for proving the asymptotic nor-
mality of the proposed tests introduced in Section 2.2 and 2.3. The assumption can be

dropped if m(z) introduced in (2.1) is replaced by the solution to the equation mj(z) =

J{T(1 =y = ynzml)(2)) — 2z}~ 'dF>r (7). However, such a modification will significantly
complicate mathematical expressions. In order to emphasize readability and succinctness,
the o(n_l/Q) convergence rate is adopted. Moreover, for the purpose of deriving validity
of the data-driven selection of shrinkage functions introduced in Section 3, the o(n=/?)
convergence rate is mecessary. Notably, the convergence rate assumption is practically
not overly restrictive. First, it imposes little constraint on the observations. Secondly, we
always use v, and F>r to estimate v and L* in the proposed inferential procedure.

2.1. Preliminaries on random matrix theory

Recall that the Stieltjes transform mg(-) of any function G of bounded variation on R
is defined by

mG(Z):/OO dG(z)7 ze Ct == {u+iv: v > 0}.

w T—2Z

Minor modifications of a standard RMT result imply that, under Conditions C1-C86,

the ESD F=» converges almost surely to a nonrandom distribution F* at all points of
continuity of . This limit is determined in such a way that for any z € C*, the Stieltjes
transform m(-) = mpge(-) of F is the unique solution in C* of the equation

B dL*(1)
= [ @ (1)

Equation (2.1) is often referred to as the Marcenko—Pastur equation. Moreover, pointwise
almost surely for z € C*, m_s (z) converges to mp=(z). The convergence holds even
when z € R_ (negative reals) with a smooth extension of mp« to R_. Readers may refer
to Bai and Silverstein (2004) and Paul and Aue (2014) for more details. From now on,
for notational simplicity, we shall write mp=(z) as m(z) and write m s (z) as mn,,(2).
Note that R

M p(z) = p~ (%), — z1,) 7!

and define
O(z,7) = {1 =y —yzm(2)} . (2.2)

It is known that (ﬁp —zI,)7 !, for any fixed z € CT, has a deterministic equivalent (Bai
and Silverstein (2004); Liu, Aue and Paul (2015); Li et al. (2016)), given by

{@_1(2’ ’V)Ep - ZI}_I’
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in the sense that for symmetric matrices A bounded in operator norm, as n — o0,
piltr[(f]p —21,) YAl — p'r[{© 7 (z,7)E, —zI} ' A] — 0, with probability 1.

Resolvent and deterministic equivalent will be used frequently in this paper. They will
appear for example as Cauchy kernels in contour integrals in various places.

2.2. Asymptotics under the null hypothesis
To begin with, for ¢ > 1, denote by W = [wij];jzjzl the Gaussian Orthogonal Ensemble
(GOE) defined by (1) w;; = wji; (2) wii ~ N0, 1), wij ~ N(0,1/2), i # j; (3) wi;’s

are jointly independent for 1 < ¢ < j < ¢. Throughout this paper, f() is assumed to be
analytic in an open interval containing

X = 1[0, Hmsup, ,, Amax(Zp) (1 + 7))

Let C to be a closed contour enclosing X’ such that f(-) has a complex extension to the
interior of C. Further use C? to denote C ® C = {(z1,22): 71,22 € C}.

Theorem 2.1 Suppose C1-C6 hold. Under the null hypothesis Hy: BC = 0,

VI{M(f) = Q(f, 1)1} = A (f,7)W,

where = denotes weak convergence and Q(f,~) and A(f,7) are as follows.
-1
Q = — (C] — 1)dz.
(1) = 532 § F@(O() — 1)ds
See (2.2) for the definition of O(z,~). For any two analytic functions fi and fa,

A(f1, fa,7) = ﬁ ﬁgg f1(z1) f2(z2)0(21, 22, 7)dz1 dz2,

and A(f, f,v) is written as A(f,~y) for simplicity. The kernel 6(z1,z2,7) is such that

(21, 72.7) = (21, 7)O(aa, )| ZAELN =207 _y),

Z1 — Z2
6(17277) = ZEH}Z(S(Z,ZQ,"}/) = @2(177)[W _ 1:|

= {1 +2m(2)}0°(z.7) + vz{m(z) + zm' (2)}0" (2, 7).
The contour integral is taken counter-clockwise.

Using knowledge of the eigenvalues of the GOE leads to the following statement.
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Corollary 2.1 Under the conditions of Theorem 2.1, assume further that A(f,7) > 0.

Let 7
N n
Ni = T N (M(S)) = Q)4 i=1,...,q.
AR M) ) =L
Then, the limiting joint density function of (5\1, cee :\q) atyy = yo = -+ =y, is given by

—1

(2q/2;jr<i/2>) [T = mre (- ;Z ?).

Although without closed forms, Q(f,~) and A(f,~) do not depend on the choice of C
used to compute the contour integral. With the resolvent as kernel M(f) can be expressed
as the integral of f(z)n_lQZYT(flp—zIp)_lYQn on any contour C, up to a scaling factor.
The quadratic form nilQEYT(f}p —21,)7'YQ,, is then shown to concentrate around
[©(z,y) — 1]1,4, which consequently serves as the integral kernel in Q(f,~). The kernel
0(z1,2z2,7) of A(f,~) is the limit of E[n‘ltr{(ip - zllp)_lEp(flp —2z21,)7 18, .

Remark 2.2 Two sufficient conditions for A(f,~) > 0 are
(1) f(x) >0 forzeX;
(2) f(x) =0 for x e X, with f(z) # 0 for some x € X, and liminf A\pin(X,) > 0.

It would be convenient if Q(f,v) and A(f,7) had closed forms in order to avoid
computational inefficiencies. Closed forms are available for special cases as shown in the
following lemma.

Lemma 2.1 When f(z,0) = (z — £)~! with £ € R™, the contour integrals in Theorem
2.1 have closed forms, namely, for j, ji1, jo =0,1,2,...,

& f(z,0) N _ ey -1
27T'L c agj (6(2)7) 1)dZ - 6»6-7 )
J1 J2 71 +72
1. 5 # a f(l.hgl) a f(z.2’€2)(5(21,12, )ledZQ = —a 5.(£1,.€2,’7).
(2mi)? Jle2 ot oty oLy oty

The results continue to hold when ¢ € C\X.

Lemma 2.1 indicates that it is possible to have convenient and accurate estimators of
the asymptotic mean and variance of M(f) under ridge-regularization. The result easily
generalizes to the setting when f(x) is a linear combination of functions of the form
(x — £;)~!, for any finite collection of ¢;’s. We elaborate on this in Section 4.

To conduct the tests, consistent estimators of Q(f,~) and A(f,~) are needed.

Lemma 2.2 Let O(z,,) and g(m,@,’yn) be the plug-in estimators of ©(z,v) and 6(z1,
z2,7), with (m(z),v) estimated by (mp p(z),vn). For general f, fi, f2, we can esti-
mate Q(f,y) and A(f1, f2,7y) by replacing ©(z,v) and 6(z1,z2,7) with (:)(27%) and
3(21,22,771). Denote the resulting estimators by (Al(f7 Yn) and A(fl, f2y7n). Then,

ValQ(f, ) — Qf, 1) - 0,
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\/ﬁ|£(flaf277n) — A(f1, f2,7)] Lo,

where -2 indicates convergence in probability. Again, we write A(f7 fom) as A(f, Tn)-
For the special case of fU)(x,0) = &7 (x—0)~'/ot7, j =0,1,2,... and £ € C\X, using

Lemma 2.1, natural estimators in closed forms are

(04, ) — 1)
oI ’

~ , aj1+j228(g1 2, vn)
A(FU) z,01), f92) (2, 05),vn) = 2 In)
(fI @, &), [V (2, 42), ) T

ﬁ(f(]) (l‘, K)v 771) =

In particular, for j, ji,72 = 0,

~

(f(xvg)aﬁyn) = G(Ea’)/n) - 17
(f(x, 00), f(@,02),70) = 26(1, L2, 7).

> 2

The estimators are consistent, for any fized j and £. Given the eigenvalues of flp, the
computational complexity of calculating the above estimators is O(p).

Recall the definitions of TR (f), TM(f) and TBNP(f) from Section 1.
Theorem 2.2 Suppose C1-C6 hold and A(f,~) > 0. Under Hy: BC =0,

2 o \/ﬁ{l +§(f77n)} o O —
Fin(g) o LELL IR ) glogf1 + 807 Hl—AT0.1)

P ;
TU(f) = m{TLH(f) — QU f, ) =N (0,1),
= Vn{l + ﬁ(ﬁ Yn)}? (BNP ﬁ(f’ o)
TBNP(f) = ~ T —g— A== N(0,1).
) qYEAYV2(f, ) { ) 1+ Q(f,vn) } 0.0

For any of the three tests, the null hypothesis is rejected at asymptotic level «, if
T(f) > &, where &, is the 1 — v quantile of the standard normal distribution.

2.3. Asymptotic power under local alternatives

This subsection deals with the behavior of the proposed family of tests under a host
of local alternatives. We start with deterministic alternatives, a framework commonly
used in the literature to study the asymptotic power of inferential procedures. Next, we
consider a Bayesian framework, using a class of priors that characterize the structure of
the alternatives. Because the results to follow simultaneously hold for TR (f), TVH(f)
and fBNP(f)7 the unifying notation f(f) will be used to refer to each of the test statistics.
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2.8.1. Deterministic local alternatives

Consider a sequence of BC such that, on an open subset of C containing X,
VnCTBT{©7(2,7)8, — 2} 'BC — D(z,7) pointwise, as n,p — 0. (2.3)

Observe that YQ,, = v/nBC[CT (n"1XXT)"1C]~V/2 + %}/*ZQ,, and define

—1
H(D, f) = T‘l/Q[% ?é f(z)D(z,v)dz]T_l/Q, where (2.4)
T = lim cT(n txxT)~'c. (2.5)

Note that T exists and is non-singular under C5 and C6. If further f(x) > 0 for any
x e X, H(D, f) is non-negative definite.

Theorem 2.3 Suppose C1-C6 and (2.3) hold, and A(f,~) > 0. Then, as n — o0,

Vo
AL (f,7)

H(D, [)

{M(f) = Qf, ) }=W + AVZ(f )"

Denote the power functions of f( f) at asymptotic level a, conditional on BC, by
T(BC., f) = P(T(f) > & | BO).

The asymptotic behavior of the power functions is described in the following corollary.

Corollary 2.2 Under the assumptions of Theorem 2.3, as n — o0,

tr(H(D, f)) )
) )

T(BC,f) —> @(*ﬁa + m

where ® is the standard normal CDF.

Remark 2.3 Corollary 2.2 indicates the three proposed statistics have identical asymp-
totic powers under the assumed local alternatives. This is because the first-order Taylor
expansions of x, log(1+x) and x/(1+x) coincide at 0. However, the respective empirical
powers may differ considerably for moderate sample sizes.

The following remark provides a sufficient condition under which (2.3) is satisfied.
Denoting the columns of BC by [u1, ..., tq], it follows that
q
VnCTBT{07 (z2,7)%, —zI}'BC = \/ﬁ[uiT{G_l(z,'y)Zp - zlp}_l,uj] .
ij=1
Remark 2.4 (a) Let E,, , denote the eigen-projection associated with A, p = A (Ep).
Suppose that there erists a sequence (in p) of mappings [Bijpli ;) from [0,0)7" to
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2 L ‘
[0,00)7, satisfying Bij.p(Amp) = pul By ppj, m = 1,....p, and a mapping
[EBij;oo]ijl continuous on [0,00)9 such that, as p — o and for 1 <i,j < g,

/|%ij;p(17) — Bijioo (2)[dF > () — 0.

Then, under C4, it follows that (2.3) holds with D(z,~) = [dij(z,7)]{ ;—, and

Bijsoo (2)dL> (2) B, oo (x)dLE ()
dij(z,7) = = = ,
1O~ 1(z,7) —z x{l —~v—~vyzm(z)} —z
(b) If 3, , then (2.8) is satzsﬁed if \/nul p; — Kij, for some constants Kij,

1<14,5<q. In thzs case, D(z,v) = (07 Y(z,v) — z) 7 [K; ],j 1-

2.3.2. Probabilistic local alternatives

While deterministic local alternatives provide useful information, they are somewhat
restrictive for the purpose of a systematic investigation of the power characteristics.
Therefore, probabilistic alternatives are considered in the form of a sequence of prior
distributions for BC'. This has the added advantage of providing flexibility for incorpo-
rating structural information about the regression parameters and the constraints matri-
ces. The proposed formulation of probabilistic alternatives can be seen as an extension
of the proposal adopted by Li et al. (2016) in the context of two-sample tests for equal-
ity of means. One challenge associated with formulating meaningful alternatives to the
hypothesis (1.2), when compared to the two-sample testing problem, is that there are
many more plausible ways in which the null hypothesis can be violated. Considering
this, we propose a class of alternatives, that on one hand can incorporate a multitude of
structures of the parameter BC', while on the other hand retains analytical tractability
in terms of providing interpretable expressions for the local asymptotic power.
Assume the following prior model of BC' with separable covariance

BC =n~ Y4 1PRYST, (2.6)

where V is a p x m stochastic matrix (m > 1 fixed) with independent elements v;; such
that E[v;;] = 0, E[|v;;]?] = 1 and max;; E[|v;;|*] < p® for some ¢, € (0,1); Risap x p
deterministic matrix and S is a fixed ¢ x m matrix. Moreover, let |R|2 < K1 < o0 and
suppose there is a nonrandom function h(z,~) such that, as p — 00, on an open subset
of C containing X,

p1tr{(07Y(z,7)%, — zI) 'RRT} — h(z,7) pointwise. (2.7)

Recalhng that (©71(z,7)%, — zI)~! is the deterministic equivalent of the resolvent
(Z —zI)~!, existence of the limit (2.7) also implies that p_ltr{( —zI)7*RRT} con-
verges p01ntw1se in probability to h(z,v). Notice also that piltr{( »—z)TIRRTY} is
the Stieltjes transform of a measure supported on the eigenvalues of ip.
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Model (2.6) leads to a fairly broad covariance design for multi-dimensional random
elements, encompassing structures commonly encountered in many application domains,
especially in spatio-temporal statistics. We give some representative examples by consid-
ering various functional forms of the matrix S. Denote by j; the columns of BC and by
V; the columns of V.

Example 2.1 In all that follows j takes values in 1,...,q
(a) Independent: yj; = n~4p= 2RV,
(b) Longitudinal: p; = n~'/4 _1/2R(V1 + Voj+ oo+ Vg™ 1)
(c) Moving average: p; = n*1/4 P VPR[Vis + 01V]+t 1+ -+ + 6,V}] for constants
0,,....0,.

Taking the MANOVA problem to illustrate, suppose that the columns of B represent
group mean vectors, and suppose C' is the matrix that determines successive contrasts
among them. Then, p; is the difference between the means of group j and group j +
1. Parts (a)—(c) of Example 2.1 correspond then to p,..., 1, respectively following
an independent, a longitudinal and a moving average process. The row-wise covariance
structure is assumed to be such that each p; has a covariance matrix proportional to
n~12p~'RRT. The factor n='/2p~! provides the scaling for the tests to have non-trivial
local power.

A sufficient condition that leads to (2.7), similar to Remark 2.4, is to postulate the
existence of functions % satisfying B »(Njp) = tr{E; ,RRT}, j =1,...,p, and

/ B (@) — Bg (2)|dF (2) — 0

for some function B, continuous on [0,00), where A;, is the jth eigenvalue of ¥, and
E; , is the eigen-projection associated with A;,. Then

B B (z)dL> ()
Mz, 7) = / {1l =y —~vzm(z)} —

(2.8)

Equations (2.7) and (2.8) indicate that h(z,~) effectively captures the distribution of the
total spectral mass of RRT across the spectral coordinates of Yy, also taking into account
the dimensionality effect through the aspect ratio 7. Later, we shall discuss specific
classes of the matrices R that lead to analytically tractable expressions for h(z, ), with
the structure of R linking the parameter BC under the alternative through (2.6) to the
structure of X,.

Another important feature of the probabilistic model is that it incorporates both dense
and sparse alternatives through different specifications of the innovation variables v;;. We
consider two special cases.

1. Dense alternative: v;; ~ N(0,1);
2. Sparse alternative: v;; ~ G, for some n € (0, 1), where G,, is the discrete probability
distribution assigning mass 1 —p~" to 0 and mass (1/2)p~" to the points +p"/2,
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Note that the usual notion of sparsity corresponds to the setting where in addition,
R = I,. More generally, the second specification above formulates a prior model for BC
that is sparse in the coordinate system determined by R. In particular, if RR” is a
polynomial in ¥, (see Section 3.2 for a discussion), BC' can be seen as sparse in the
spectral coordinates of X,.

Theorem 2.4 Suppose that C1-C6 hold and A(f,~) > 0. Also suppose that, under H,,
BC has a prior distribution given by (2.6). Then, the power function of each of the three
test statistics satisfies

r(SSTT-1 —
Y(BC, f) =4 ¢>( Sy (M 7% 271% f(2)h(z, v)dz), (2.9)

as n — o, where T is as in (2.5) and L1, indicates Li-convergence (with respect to the

prior measure of BC').

Remark 2.5 Even if the quantity h,(z,v) = p~1tr{(07(z,7)X, —zI) "'RRT} does not
converge, it can be verified that the difference between the left- and right-hand sides of
(2.9) still converges to zero in Ly if h(z,~) is replaced by hy(z,7).

Observe that the matrices R and S decouple in the expression (2.9) for the asymptotic
power. Dependence on the unknown error covariance matrix ¥,, besides AY2(f,7), is
only through the function h(z,v), which incorporates the structure of the matrix RRY.
It is also noticeable that distributional characteristics of the variables v;; do not affect
the asymptotic power. Indeed, the proposed tests have the same local asymptotic power
under both sparse and dense alternatives.

3. Data-driven selection of shrinkage

In this section, we introduce a data-driven procedure to select the “optimal” f from a
parametric family § of shrinkage functions. The strategy is to maximize the local power
function Y(BC, f) over f, given a class of probabilistic local alternatives as in (2.6). In
designing the classes of alternatives, we focus our attention only on the specification of
R. This is because, as the expression (2.9) shows, the dependence on the matrix S is
only through a multiplier involving a “known” matrix 7', while the effect of the unknown
covariance ¥, (and its interaction with R) manifests itself through the function h(z,~).
Another reason for focusing on R is that the choice of S is closely related to the specific
type of linear model being considered, while the choice of R is associated with the
structure of the error distribution.

We present some settings of BC' for which h(z,7) can be computed explicitly. We
also verify that the standardized test statistic with the data-driven selection of f is still
asymptotically standard normal under suitable conditions. Hence, the Type 1 error rate
of the tests is asymptotically not inflated, although the same data is used for both shrink-
age selection and testing. Lastly, we present a composite test procedure that combines
the optimal tests corresponding to different prior models of BC and thereby improves
adaptivity to various kinds of alternatives.
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3.1. Shrinkage family
Suppose the family of shrinkage functions is such that

S:{f£2£€£},

(i) L is a compact subset of R", r € N*;

(ii) There is a closed, connected subset Z of C such that X = [0, limsup, Amax(Xp)(1+
V7)?] © Z, and the third-order partial derivatives of f, with respect to ¢ are
continuous on L ® Z;

(iii) The gradient V,f, and the Hessian VZf, of f, with respect to ¢ have analytic
extensions to Z for all £ € L;

(iv) infrec A(fe,v) > 0.

Under the probabilistic prior model (2.6) with h(z,~y) in (2.7) given, define

= e S 2Vh(z 7
H(&hﬁ) - 27T’iA1/2(fg,’y) éf@( )h( 7’7)d .

Theorem 2.4 suggests that ¢ should be chosen such that Z(¢, h, v) is maximized, that is,

Copt = 2(¢, h, ).
pr = argmax (¢, h, )

The test with the selected shrinkage will then be the locally most powerful test under
the alternatives specified by (2.6) and (2.7) for any given choice of S. Since E(¢, h,~) is
continuous with respect to ¢ under condition (i)—(iv), fop+ exists. Importantly, =(¢, h, )
does not rely on S. In other words, different column-wise covariance structures of BC
are uniform in terms of selecting the optimal shrinkage. This significantly simplifies the
selection procedure.

Recall that h(z, ) is the limit of p~ltr{(©~1(z,7)X, — zI) "'RRT}. We next present
two possible settings of RRT under which h(z,v) and consequently Z(¢,h,v) can be
accurately estimated:

(1) Suppose RRT is specified. Then, h(z,7v) is estimated by lAz(z,*yn) = piltr{(ip —
zI)7IRRT} and

~ -1
Eﬁ,h7 n 3:,\—% ZhZ, n)dz
(£ 7 vn) 2 A (fy) Cfe() (z,7m)

is a consistent estimator of Z(f, h,v). As an example of this scenario, assume that
the p components of ;1; admit a natural ordering such that the dependence between
their coordinates is a function of the difference between their indexes. Then we may
set RRT to be a Toeplitz matrix (stationary auto-covariance structure).

(2) Only the spectral mass distribution of RR” in the form of B, described in (2.8)
is specified.

The remainder of this section is devoted to dealing with the second scenario.
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3.2. Polynomial alternatives

Even if B, is given, the estimation of h(z,7) is still challenging since it involves the
unknown limiting spectral distribution L*. In order to estimate h(z, ), it is convenient
to have it in a closed form. It is feasible if B, is a polynomial, which is true if RR” is
a matrix polynomial in ¥,. Since any smooth function can be approximated by polyno-
mials, this formulation is quite flexible and practically beneficial. Assume therefore that

J=p»

RRT = Z::O t;% (3.1)

where to, ..., ts are pre-specified weights such that »}7_, ;%7 is nonnegative definite.
Under the model,

h(z,7) = ]}Lrgop‘ltr[(@_l(l, NEp —2I)7! ZFO t;2] = ZFO tipj(z.7),

where the functions p;(z,~) satisfy the recursive formula (see Ledoit and Péché, 2011)

poE) = (@), pyale) = O] [PALa) + 25027

For any j € N, [2/dL*(x), and consequently p;(z,7), can be estimated consistently
(Bai, Chen and Yao, 2010, Lemma 1). Specifically, p_ltr(flp) is a consistent estimator
of [zdL*(x).

In practice, we restrict to the case s = 2. There are several considerations that guided
this choice of s as stated in Li et al. (2016). First, for s = 2, all quantities involved
can be computed explicitly without requiring knowledge of higher-order moments of the
observations. Also, the corresponding estimating equations for h(z,~) are more stable as
they do not involve higher-order spectral moments. Second, the choice of s = 2 yields
a significant, yet nontrivial, concentration of the prior covariance of u;, 7 = 1,...,q,
(that is RRT up to a scaling factor) in the directions of the leading eigenvectors of ¥,,.
Finally, the choice s = 2 allows for both convex and concave shapes of the spectral mass
distribution B, since the latter becomes a quadratic function.

With s = 2, we estimate po(z,7), p1(z,7), p2(z,7), and h(z,v) by

b\O(Za 'Yn) = mn,p(z)a

~

p1(z,7n) = O(z,7n)[1 + Zmn,p(z)]v
p2(2, %) = O(z, ) [P t1(5,) + 251(z, 7],

~

2 ~
h(Z, ’Yn) = Zj=0 tjpj (Zv 77L)-

(3.2)

The algorithm for the data-driven shrinkage selection is stated next.

Algorithm 3.1 (Data-driven shrinkage selection)
1. Specify prior weights t = (tg,t1,t2). The canonical choices are (1,0,0), (0,1,0),
(0,0,1);
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~ 9 R
2. Compute h(z,vn) = 25 tjPj(2,n);
3. For any ¢ € L, numerically compute the integral

(g,;\l,’}/n) = Z)?l(lv%ﬁdl;

(1

~1
i

4. Select Loy (t) = argmaxyer é(ﬁ,h,vn).

The behavior of the tests applied with the data-driven shrinkage selection is described
in the following theorem.

Theorem 3.1 Suppose C1-C6 hold and § satisfies conditions (i)-(iv). Then,

(1) SUpges VAIZ(C by ) = Z(6, 7, 7)) = 0 as n — .

(2) Let £* be any local mazimizer of Z(¢, h,~y) in the interior of L. Assume there exists
a neighborhood of £* such that for all feasible points £ € L within the neighborhood,
there exists a constant K > 0 such that

E(6h,y) = E(E*, hyy) < —K|[0 = ]3. (3-3)

Then, there exists a sequence (£%: n € N) of local mazimizers of (é((7 h, Yn): n€N)
satisfying
WAy = 0p(1) (o). (3.4)

Further, recalling notation in Section 2, under the null hypothests,

o
AV2(fpse, ym)
(8) Let £* be any local mazimizer of Z(€, h,~y) on the boundary of L. Assume there exists

a neighborhood of £* such that for all feasible points £ € L within the neighborhood,
there is a constant K' > 0 satisfying

M(f) = Qb 7)) = W. (3.5)

2 h,y) —EW* h,y) < —K'|[0 — 0%]. (3.6)

Then, (3.4) and (3.5) still hold.

The two conditions (3.3) and (3.6) ensure that the parameter ¢* is locally identifiable in
a neighborhood of ¢*. In general, the two conditions depend on the structure of L*.

3.3. Combination of prior models

An extensive simulation analysis revealed that there is considerable variation in the shape
of the power functions and the values of £ = (to,1,%2), especially when the condition
number of 3, is relatively large. In this subsection, we consider a convenient collection
of priors that are representative of certain structural scenarios. A composite test, called
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fmax, is defined as the maximum of the standardized statistics ZA“( fox) where £F is obtained
from Algorithm 3.1 under prior ;, i = 1,... ,m. The following strategy is applicable to
LR, LH and BNP. We therefore continue to use T'(f) to denote the general test statistic.
In summary, we propose to test the hypothesis by rejecting for large values of the statistic

Tmax = II}QLX T(fé* )7
tell !

where II = {t1,...,tm}, m = 1, is a pre-specified finite class of weights. A simple but

effective choice of II consists of the three canonical weights f; = (1,0,0), t2 = (0,1,0),
t3 = (0,0,1).

¥ = P Y = Ygen
k=3 k=5 k=3 k=5
n =300, p = 150 600 3000 150 600 3000 150 600 3000 150 600 3000
t1 5.4 5.2 51 5.2 5.1 5.1 4.9 4.4 4.7 4.4 3.3 4.2
LR;iage to 5.4 5.2 5.1 5.2 5.1 5.1 4.9 5.2 4.9 4.4 4.9 4.7
t3 5.3 5.2 51 5.2 5.1 5.1 5.8 5.9 5.1 5.3 5.2 4.9

t1 5.4 5.2 51 5.3 5.1 5.2 6.2 7.2 5.7 6.2 7.7 6.0
LH;iage ta 5.4 5.2 51 5.3 5.1 5.2 6.2 5.9 5.2 6.2 5.9 5.1
t3 5.3 5.2 51 5.3 5.1 52 5.8 5.9 52 54 5.2 5.0

t1 5.3 5.2 50 5.2 5.0 50 4.0 2.5 3.7 29 1.3 3.1

BNPiigge t2 5.4 5.2 50 5.2 5.0 50 4.0 4.7 46 29 3.9 4.4
i3 5.3 5.2 50 5.2 5.0 50 5.8 5.8 50 5.3 5.1 4.7

t1 6.5 6.3 5.3 6.5 5.3 5.5 6.0 5.8 51 6.5 5.9 4.5

LRhigh ta 6.5 6.3 5.3 6.5 5.3 5.5 8.3 6.8 55 84 7.2 5.2
t3 6.6 6.3 5.3 6.6 5.3 5.5 6.7 6.7 55 6.4 7.1 5.2

t1 6.7 6.4 54 6.8 5.5 57 6.1 5.9 57 6.7 6.2 5.5
LHnign ta 6.7 6.4 54 6.8 5.4 5.7 83 6.8 5.6 85 7.3 5.5
ts 6.7 6.4 54 6.8 5.4 5.7 6.7 6.7 56 6.5 7.2 5.5

t1 6.2 6.3 52 6.1 5.3 52 5.9 5.7 46 6.4 5.5 3.7
BNPhign ta 6.3 6.3 52 6.1 5.2 5.2 8.3 6.7 5.3 8.3 7.0 4.9
t3 6.3 6.3 51 6.1 5.2 5.2 6.6 6.6 53 6.4 6.9 4.9

LRcomp 5.1 5.1 50 54 5.3 50 6.0 5.1 55 5.6 5.0 5.1
LHcomp 5.1 5.1 51 5.5 5.3 51 6.7 5.8 59 6.9 6.2 5.7
BNPcomp 5.1 5.0 50 5.4 5.2 50 5.4 4.5 51 4.7 4.4 4.6
7GZ 5.6 5.7 52 5.6 4.8 52 5.9 5.5 54 5.4 5.4 5.3

CX (Oracle) 5.6 6.3 7.0 7.3 6.9 8.6 5.8 5.9 6.8 6.0 7.2 9.0
Table 1. Empirical sizes at level 5%. ¥ = ID and Z4e,; t1 = (1,0,0), t2 = (0,1,0), t3 = (0,0, 1).

Theorem 3.2 Suppose C1-C6 hold and § satisfies condition (i)-(iv). For each i =
1,...,m, assume that £}, is a sequence of local mazimizers of the empirical power function

é(@, iAz, Yn) under prior model with weight t; such that
n! s, — £F o = Op(1).
(See (3.4)). Then, under the null hypothesis Hy: BC = 0,

(f<féfn)7 oo 7f(f€,"§m>) = N(07 A*)a
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where Ay is an m X m matriz with diagonal entries 1 and (i, j)-th off-diagonal entry
A_1/2(fe:k P ’Y)A(fej‘ ) fe;“ ) ’Y)A_l/z(fé;!‘ 5 ’Y)

Theorem 3.2 shows that fmax has a non-degenerate limiting distribution under Hy. It
is worth mentioning that LR, LH and BNP share the covariance matrix A,. Theorem
3.2 can be used to determine the cut-off values of the test by deriving analytical formulas
for the quantiles of the limiting distribution. Aiming to avoid complex calculations, a
parametric bootstrap procedure is applied to approximate the cut-off values. Specifically,
Ay is first estimated by Ay, and then bootstrap replicates are generated by simulating
from N (0, A*), thereby providing an approximation of the null distribution of Tpax.
Replacing A(f@k,fe;g,'y) with A(f@k,fe;g,'yn) yields the natural estimator.

Remark 3.1 Observe that A* defined above may not be nonnegative definite even though
it is symmetric. If such a case occurs, the resulting estimator can be projected onto its
closest mon-negative definite matriz simply by setting the negative eigenvalues to zero.
This covariance matriz estimator is denoted by AL and it is used for generating the
bootstraps samples.

4. Ridge and higher-order regularizers

4.1. Ridge regularization

One of the most commonly used shrinkage procedures in statistics is ridge regularization,
corresponding to choosing fi(z) = 1/(x — £), £ < 0, so that fy(2,) = (£, —£I,)" . It is
an effective way to shift ZA)p away from singularity by adding a ridge term —¢I,. In this
subsection, we apply the results of Sections 2 and 3 using the ridge-shrinkage family

Sridge = {fe(@) = (@ — 07", Le[l, []}, —o<l<l<O.

In the literature, ridge-regularization was applied to high-dimensional one- and two-
sample mean tests in Chen et al. (2011) and Li et al. (2016). Hence, this subsection is a
generalization of their methods to general linear hypotheses.

From the aspect of population covariance estimation, ridge-regularization can be
viewed as an order-one estimation where X, is estimated by a weighted average of X,
and I, namely aol, + o pr. The estimator is equivalent to ridge-regularization with
{ = —ap/ay for testing purposes. Within a restricted region of (a1, as), the large eigen-
values of ip are shrunk down and the small ones are lifted upward. It is a desired
property since in high-dimensional settings, large sample eigenvalues are systematically
biased upward and small sample eigenvalues downwards.

An important advantage of ridge regularization is that the test procedure is com-
putationally efficient due to the fact that Q(fe,y) and A(f, ) admit closed forms as

~

shown in Lemma 2.1. These quantities can be estimated by Q(v,) = ©(¢,v,) — 1 and
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~

&g('yn) = 23(8,6,%1), respectively. A closed-form estimator ég(h,wn) is then also avail-
able for Z(¢, h, ). This leads to the following algorithm.
Algorithm 4.1 (Ridge-regularized test procedure)

1. Specify prior weights t = (to,t1,ts);

2. With my, ,(£) = p~tr(2, — £1,) "L, compute, for any £ € [£, ],

é(ﬁ’ Yn) = {1 =Y — 'Ynemmp(é)}ilv

Q(vn) = @(é, Yn) — 1,
Aé(%) =27, {1 + émn,p(é)}ég)(év Yn) + Q'Yng{mn,p(g) + ém;L,p(é)}@4(£7'7n);

3. For any L€ [€, 7], compute h((,~,) = Z?:o t;p; (6, vn) as defined in (3.2) and

[ ?7' ga’-}/n
Ee(h, ) = Aﬁ/zi);
AE (’Yn)

4. Select (* = argmax, ) ég(ﬁ,’yn);
5. Use one of the standardized statistics

P gy o= VL Qe Ol pam o) 10601 1 Qpn (7)),

G 2A1 ()
Py e NP g ()],
qV2A 1 ()
j\wBNP(E*) — Vil + Qs ()} [TBNP(E*) _ ng* () ]

2R () 1+ Qs (1)

where
q q q i

TERE) = 35 low(L+As), THI(E) = X0 ey TPNP() =30

and A1, ..., Aq are the eigenvalues of n_lQZYT(EAJp —0*1,)7'Y Q. Reject the null
at asymptotic level o if the test statistic value exceeds &, .

Although in theory any negative ¢* is allowed in the test procedure, in practice,
meaningful lower and upper bounds £ and ¢ are needed to ensure stability of the test
statistics when p ~ n or p > n and also to carry out the search for optimal /¢ at a
low computational cost. In our simulation settings we use ¢ = —p~'tr(3,)/100 and

~

£ = —20Amax(X,), which generally lead to quite robust performance.
The composite test procedure with ridge-regularization is summarized below.

Algorithm 4.2 (Composite ridge-regularized test procedure)

1. Select prior weights I = (t1,...,tm). The canonical choice is ((1,0,0),(0,1,0),
(0,0,1));
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2. For each t; in I, run Algorithm 4.1, get the standardized test statistic ZA“(E;“) and

compute fmax = maxi<j<m f(f}"),
3. With the selected tuning parameters ((5,05,0%) compute the matric A, whose di-

agonal elements are equal to one and whose (i,j)-th entry for i # j is

B ) B g () Bt (),

~

where Ayx (7)) is defined in Step 2 of Algorithm 4.1 and

~

Apr gx () = 20(CF,7n)O (L%, )

GO ) — O )
[ oF — 0 a 1]’

4. Project A* to its closest non-negative definite matrix A,,f by setting the negative
eigenvalues to zero. Generate €1,...,eq with €, = Maxi<i<m Zi(b) with Z(®) =

(2], ~ N(0,A)).

K2

5. Compute the p-value as G—1 ZbGzl 1{ep > fmax}.

4.2. Extension to higher-order regularizers

Through an extensive simulation study in a MANOVA setting, it is shown in Section 5
that the ridge-regularized tests compare favorably against a host of existing test proce-
dures. This is consistent with the findings in Li et al. (2016) in the two-sample mean
test framework. Ridge-shrinkage rescales ﬁp by (flp — (I,)~! instead of f]; L. Broader
classes of scaling matrices have been studied extensively (see Ledoit and Wolf, 2012, for
an overview). They can be set up in the form f (f]p). When f(-) is analytic, such scaling
falls within the class of the proposed tests.

The flexibility provided by a larger class of scaling matrices can be useful to design test
procedures for detecting a specific kind of alternative. The choice of the test procedure
may for example be guided by questions such as Which f leads to the best asymptotic
power under a specific sequence of local alternatives, if Hy is rejected based on large
eigenvalues of M(f)? While a full characterization of this question is beyond the scope
of this paper, a partial answer may be provided by restricting to functions f in the
higher-order class

Shigh = {fz(:lc) = [Z::o ljxj]ilz 0= (lo,...,l.)" € g},

where G is such that f; is uniformly bounded and monotonically decreasing on X', for
any ¢ € G. These higher-order shrinkage functions are weighted averages of ridge-type
shrinkage functions. To see this, suppose the polynomial Z;:o ljz7 has roots 11, ...,y €
C\X with multiplicity s1,...,ss, € NT. Via basic algebra, f; can be expressed as

folx) = [ijo zjzj]‘l _ Z:il S i — )~ (4.1)
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with some weights wj; € C. If all roots are simple, f, is a weighted average of ridge-
regularization with x different parameters. Heuristically, it is expected that a higher order
fe yields tests more robust against unfavorable selection of ridge shrinkage parameter.

The design of G is not easy when k is large. Here, we select x = 3, which is the
minimum degree that allows f[l to be both locally convex and concave. In this case,
the complexity of selecting the optimal regularizer is significantly higher than for ridge-
regularization. Due to space limitations, we move the design of G and the test procedure
when k = 3 to Section S.1 of the Supplementary Material.

5. Simulations

In this section, the proposed tests are compared by means of a simulation study to two
representative existing methods in the literature, Zhou, Guo and Zhang (2017) (ZGZ)
and Cai and Xia (2014) (CX). We focus on one-way MANOVA, a set-up for which both
competing methods are applicable. It is worth mentioning that CX requires a good esti-
mator of the precision matrix 3 ; 1) that is typically unavailable when both ¥, and X, 1
are dense. In the simulations, the true 3 ! js utilized for CX, thus making it an oracle pro-
cedure. In the following, LR igge, LHridge, and BNP iqec denote the ridge-regularized tests
presented in Algorithm 4.1. LRuigh, LHhigh, and BNPpig, denote the tests with higher-
order shrinkage introduced in Section 4.2 with £ = 3. LRcomp, LHcomp and BNPcomp
denote the composite ridge-regularized tests of Algorithm 4.2 with the canonical choice
of II = ((1,0,0),(0,1,0),(0,0,1)).

5.1. Settings

The observation matrix Y was generated as in (1.1) with normally distributed Z. Specifi-
cally, we selected k£ = 3 or 5, and N = 300. For k = 3, the three groups had 75,90 and 135
observations, respectively. For k = 5, the design was balanced with each group containing
60 observations. The dimension p was 150,600, 3000, so that ~, = p/n ~ 0.5,2 and 10.
The columns of B were the k& group mean vectors. Accordingly, the columns of X were
the group index indicators of observation subjects. We selected C' to be the successive
contrast matrix of order ¢ = k — 1. This is a standard one-way MANOVA setting.
Under the null, B is the zero matrix. Under the alternative, for each setting of the
parameters and each replicate, B is generated using one of the following models.

(i) Dense alternative: The entries of B are i.i.d. N'(0,c?) with ¢ = O(n="*p~1/2) used
to tune signal strength to a non-trivial level.

(ii) Sparse altenative: B = ¢RY with ¢ = O(n~Y*p~1/?), where R is a diagonal p x p
matrix with 10% randomly and uniformly selected diagonal entries being 4/10 and
the remaining 90% being equal to 0, and V is a p x p matrix with i.i.d. standard
normal entries.

The following four models for the covariance matrix ¥ = 3, were considered. All
models were further scaled so that tr(X,) = p.
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Figure 1: Size-adjusted power with ¥ = Y4.,,, k = 5. Rows (top to bottom): B = Dense and Sparse;
Columns (left to right): p = 150, 600, 3000. BNPcomp (red, solid); ZGZ (green, solid); oracle CX (purple,
solid); BNP,jgge (black, dashed) and BNPyigp (blue, dotted-dashed) with t=(1,0,0).

= z:dis Y= z:tocp
k=3 k=5 k=3 k=5

n =300,p = 150 600 3000 150 600 3000 150 600 3000 150 600 3000
3t 4.8 5.0 4.6 4.7 4.5 5.0 5.4 4.4 4.8 4.5 4.6 4.6

LRyiage ta 5.1 5.2 4.9 5.2 4.6 5.1 5.4 4.9 4.9 4.9 4.8 5.0
t3 5.6 5.5 5.1 5.7 5.3 53 5.8 5.2 5.0 5.7 5.4 5.1

t1 5.8 6.0 5.2 6.6 6.3 5.6 6.4 5.3 5.2 6.2 6.3 5.3

LH;iqge ty 5.7 5.7 5.1 6.3 5.6 5.5 5.9 5.3 5.0 5.8 5.6 5.3
i3 5.6 5.5 5.2 5.8 5.3 5.4 5.8 5.3 5.1 5.7 5.4 5.2

1 3.9 4.1 4.3 3.1 3.1 4.1 4.4 3.7 4.4 3.2 3.4 3.9

BNP.iqge ity 4.6 4.8 4.8 4.1 4.0 4.9 4.9 4.4 4.8 4.1 4.3 4.7
t3 5.5 5.5 50 5.7 5.2 5.1 5.8 5.2 50 5.6 5.4 5.1

t1 6.3 6.4 4.8 5.9 7.0 5.5 7.1 7.0 5.3 7.5 6.9 5.2

LRhigh ta 7.9 6.5 4.8 8.3 7.1 5.5 7.6 7.2 5.3 7.8 7.0 5.2
i3 6.1 5.6 4.8 6.4 6.1 5.5 6.7 6.5 5.3 6.6 6.4 5.2

151 6.6 6.5 50 6.2 7.2 5.7 7.2 7.2 55 7.7 7.0 5.5

LHhuign ta 8.0 6.6 50 &85 7.2 5.7 7.8 7.2 5.5 8.0 7.1 5.5
ts 6.2 5.6 50 6.5 6.2 5.7 6.7 6.5 5.5 6.7 6.5 5.5

t; 6.1 6.3 4.7 5.6 6.8 53 7.1 7.0 52 7.2 6.8 5.1

BNPuigh ta 7.9 6.4 4.7 8.2 7.0 5.3 7.5 7.1 5.2 7.7 7.0 5.1
t3 6.1 5.5 4.7 6.4 6.0 5.3 6.6 6.4 5.2 6.5 6.3 5.1

LRcomp 6.2 5.2 5.0 5.2 5.3 5.5 5.9 5.0 5.1 5.5 4.9 4.9
LHcomp 7.0 5.9 5.3 6.5 6.4 6.0 6.6 5.6 5.3 6.6 5.7 5.3
BNPcomp 5.5 4.6 4.8 4.4 4.6 5.0 5.4 4.6 4.9 4.8 4.4 4.6
7ZGZ 5.5 4.7 4.6 5.7 5.1 5.3 6.0 5.5 50 5.9 5.6 5.0
CX (Oracle) 5.3 5.9 6.6 6.8 7.2 86 5.3 6.2 6.8 6.8 7.2 8.4

Table 2. Empirical sizes at level 5%. ¥ = Sg;5 and Stoep; t1 = (1,0,0), t2 = (0,1,0), t3 = (0,0, 1).
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(i) Identity matriz (ID): ¥ = I,,.

(ii) Dense case ¥ger: Here ¥ = PE(l)PT with a unitary matrix P randomly generated
from the Haar measure and resampled for each different setting, and a diagonal
matrix ¥ ;) whose eigenvalues are given by \; = (0.1 + )% 4+ 0.05p°%, j = 1,...,p.
The eigenvalues of ¥ decay slowly, so that no dominating leading eigenvalue exists.

(ili) Toeplitz case Lioep: Here X is a Teoplitz matrix with the (7, j)-th element equal to
0.51"=31. Tt is a setting where X! is sparse but ¥ is dense.

(iv) Discrete case Xg;s: Here ¥ = PE(Q)PT with P generated in the same way as in
(i), and ¥(5) is a diagonal matrix with 40% eigenvalues 1, 40% eigenvalues 3 and
20% eigenvalues 10.

All tests were conducted at significance level v = 0.05. Empirical sizes for the various
tests are shown in Tables 1 and 2. Empirical power curves versus expected signal strength
n'/4pl/2¢ are reported in Figures 1-3. To better compare the power of each test, curves
are displayed after size adjustment where the tests utilize the size-adjusted cut-off values
based on the actual null distribution computed by simulations. Counterparts of Figures
1-3 that utilize asymptotic (approximate) cut-off values are reported in Section S.12 of
the Supplementary Material. The difference between the two types is limited. LR, LH
and BNP criteria behave similarly across simulation settings, as indicated by Theorem
2.4. Therefore, only one of them is displayed in each figure for ease of visualization. More
figures can be found in Section S.11 of the Supplementary Material. Note that, in some
of the settings, several of the power curves nearly overlap, creating an occlusion effect.
Then, power curves corresponding to the composite tests are plotted as the top layer.

5.2. Summary of simulation results

Tables 1 and 2 show the empirical sizes of the proposed tests are mostly controlled
under 7.5%. The slight oversize is caused by the fact that M(f) behaves like a quadratic
form, therefore the finite sample distribution is skewed. LR and BNP tests are more
conservative than LH tests because the former two calibrate the statistics by transforming
eigenvalues of M(f). Ridge-regularized tests are slightly more conservative under higher-
order shrinkage.

Note that in both simulation settings, B consists of independent entries. There-
fore, t; = (1,0,0) is considered as a correctly specified prior, while £, = (0,1,0) and
t3 = (0,0,1) are considered as moderately and severely misspecified, respectively. The
composite tests combine t1, t2 and t3, and are therefore considered as consistently cap-
turing the correct prior. We shall treat the composite tests as a baseline to study the
effect of prior misspecification, by comparing them to tests using a single £.

For each simulation configuration considered in this study, the proposed procedures
are as powerful as the procedure with the best performance, except for the cases when B
is sparse, p is small, and priors are severely misspecified in the proposed tests; see Figure
S.11.6 in the Supplementary Material. We highlight the following observations based on
the simulation results.
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Figure 2: Size-adjusted power with ¥ = Y4c,, kK = 5. Rows (top to bottom): B = Dense and Sparse;
Columns (left to right): p = 150,600, 3000. LHcomp (red, solid); ZGZ (green, solid); oracle CX (purple,
solid); LH,jqge (black, dashed) and LHygp, (blue, dotted-dashed) with ¢ = (0,0, 1).

(1)

The composite tests are slightly less efficient than BNP,jqge and BNPy;g, when the
correct prior ¢, is used, as in Figure 1. However, as in Figure 2, when the prior is
severely misspecified, the composite test is significantly more powerful. It suggests
that the composite tests are robust against prior misspecification, although losing
some efficiency against tests with correctly specified priors.
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Figure 3: Size-adjusted power with ¥ = Ytoep, k = 3. Rows (top to bottom): B = Dense and Sparse;
Columns (left to right): p = 150, 600, 3000. LRcomp (red, solid); ZGZ (green, solid); oracle CX (purple,
solid); LRyiqge (black, dashed) and LRpign (blue, dotted-dashed) with ¢ = (0, 1,0).

(2)

3)

Although ridge-shrinkage and higher-order shrinkage behave similarly under the
correct prior, the latter outperforms the former when the prior is misspecified; see
Figure 2. This provides evidence for the robustness of high-order shrinkage against
unfavorable ridge shrinkage parameter selection.

ZGZ is a special case of the proposed test family with f(z) = 1 for all z, which
amounts to replacing f]p with I,. When X, = I,,, ZGZ appears to be the reasonable
option at least intuitively. Note, both §riqge and §nigh contain functions close to
f(z) = 1. Figures for ¥, = I, displayed in Section S.11 of the Supplementary
Material show that the proposed tests perform as well as ZGZ in that case. It may
be viewed as evidence of the effectiveness of the data-driven shrinkage selection
strategy detailed in Section 3.
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(4) Comparing to ZGZ, when the eigenvalues of ¥, are disperse, the proposed tests are
significantly more powerful when p = 150 and 600, but behave similarly as ZGZ
when p = 3000. On the other hand, as in Figure 2, the ridge-regularized test with
a severely misspecified prior #3, is close to ZGZ.

(5) CX is a test specifically designed for sparse alternatives. The procedure shows
its advantage in favorable settings, especially when p = 150. Simulation results
suggest that the proposed tests are still comparable to CX even under sparse BC
and X 1 as long as the prior in use is not severely misspecified. When p is large,
the proposed tests are significantly better when ¥, = I,,. Evidence may be found
in Figures S.11.10, S.11.11 and S.11.12 of the Supplementary Material.
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Appendix: Proof of Theorem 2.1

This appendix contains a proof outline of Theorem 2.1. Additional proofs of supporting
lemmas and other theorems can be found in the Supplementary Material.
Recall Q, = XT(XXT)~1C[CT(XXT)~1C]~Y2. Introduce Q,, = U, V,, with

U, = XT(XXT)"Y% and V, = (XXT)"V2c[cT(xxT)~to)~Y2 .

This decomposition will aid the analysis of the correlation between Y @,, and f)p.

From now on, use ZZ;/ % to denote (Z;l,/ 2)T. Under the null hypothesis, the following
representations hold:

M(f) = n WIUTZTSI 2 f(8,)8Y220,V,,
s, =n 12221 - U, U ZT ST,

Observe that the joint asymptotic normality of entries in /nM(f) is equivalent to the
asymptotic normality of

n V2TV IUTZT ST §(8,)2Y 220, Vi

for arbitrary (but fixed) vectors o and n € R? .
Recall that X = [0, limsup, Amax(Xp)(1 + 4/7)*]. Let C be any contour enclosing X
such that f() is analytic on its interior. With slight modifications, all arguments in the
following hold for arbitrary such C. For convenience, select C as rectangle with vertices
u + vy and U =+ dvg, such that vo > 0; @ > limsup Apax(Ep)(1 + \ﬁ)Q; u < 0. Such a
rectangle must exist. ~
By Cauchy’s integral formula, if Apnax(XE,) < T,

n 2o VIUTZT SR F(5,) 822U, Van
-1

" 2mi

~ Al
55 f@)n V2 VIUTZ S (8, — 21) ' Y220, Vanda. (A1)
C

If /\max(ﬁp) > u, the above equality may not hold. However, if we can show that
> W) converges to 0, we can still acquire the weak limit of the left-hand
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side by deriving the weak limit of the right-hand side. Yin, Bai and Krishnaiah (1988,
Theorem 3.1) implies that
]P)()\max(zp) = ﬂ) — 0. (A2)

Hence, it suffices to show the asymptotic normality of the process
&n(z,aum) = nil/zaTVnTUgZTEg/Q(f]p - zI)flEé/QZUnVnn, zeC.

Clearly, £(z, i, m) is continuous with respect to z. All asymptotic results are derived in
the space of continuous functions on C with uniform topology. Results in Chapter 2 of
Billingsley (1968) apply with Euclidean distance replaced by Frobenius norm of a matrix,
that is Al r = (X2, X, laig|*)"/?, where A = [a;];;.

We may proceed to prove the asymptotic normality of &, (z,a,n) on z € C directly.
However, several technical challenges need to be addressed. First, in view of the spectral
norm of (X, —zI)~! being unbounded when z is close to the real axis and extreme eigen-
values of f]p exceed lim sup Amax(E,)(1 + ﬁ)2, the tightness of the process £, (z, a,n) is
unclear. Secondly, f]p is not a summation of independent terms, but contains ZU, U ZT
a component containing cross product terms between pairs of columns of Z. These terms
entangle the analysis of the correlation between X, and each single column of Z. For
these technical reasons, we avoid directly working on &,(z,«,n) under C1 on z € C,
but start with n_l/QUEZTZZ/Q(ip - z[)‘lﬂé/QZUn, a component of &,(z, a, n) with f]p
replaced by an uncentered counterpart

s 1
2y = NP2 (A.3)

The relationship between ¥, and 3, is given by %, = 3, — %Z}g/zZUnUnTZTZZ/z. Next,
we modify the process and the distribution of Z as follows.
Process smoothing. Select a sequence of p,, > 0 such that for some w € (1,2)

npn L0, pn=n"".
Let Ct =C n{u+iv: |v] = p,}. Define
0,(z) =n UL ZTSI?(8, - 2I)7'2V?20,, ifzeCt,

On(z) = Pn =Y VPG (w—ipy), ifzel\C*.

2, T,

To understand this definition better, note that if z is too close to the real axis, @n(z) is
modified to be the linear interpolation of its values at u+ip, and u—ip,. Observe that V,,
appearing in &,(z, a,n) was left out when defining Q,,(z). This trick helps transforming
back to f]p from f]p; see (A.5). Note also that V,, is a sequence of deterministic matrices
of fixed dimensions, having a limit under C5 and C6. The reason to smooth the process
is to guarantee a bound of order O(p;,!) on the spectral norm of (X, — zI,)~'. It is
crucial in the proof of tightness.
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Variable truncation. C1 will be temporarily replaced by the following truncated vari-
able condition. Select a positive sequence &, such that

en —0 and En

*4E[zill]l(|zu| > 5nn1/2)] — 0.

The existence of ¢,, is shown in Yin, Bai and Krishnaiah (1988). We then truncate z;;
to be 2;;1(|2i;] < €,n"/?). The truncated variable is then standardized to maintain zero
mean and unit variance. Since we will mostly work on the truncated variables in the
following sections, for notational simplicity, we shall use z;; to denote the truncated
random variables and Z;; to denote the original random variable satisfying C1. That is,

_ Z1(1%5] <ean'?) — EZi1(|Zy] < ean’’?)
{E[2:;1(1Z;5] < enn!/?) — EZ;1(|Z55] < ennt/2)]2}/2

Zij
For some constant K, when n is sufficiently large,

|zij| < Keon?, E[zi;] =0, E[z2]=1, E[z}] < . (A.4)

ij ij
The reason to truncate Z;; is to obtain a bound on the probability of extreme eigen-

values of flp exceeding lim sup, Amax(3,)(1 + 1/7)?, which is crucial to be able to prove
tightness of the smoothed random processes on C. Under the original condition C1, al-
though (A.2) holds, such a tail bound is not available. After the truncation, the following
lemma shown in Yin, Bai and Krishnaiah (1988); Bai and Silverstein (2004) holds.

Lemma A.1 Suppose the entries of Z satisfy (A.4). For any positive £ and any D €
(lim sup,, Amax(2p) (1 + ﬁ)Q, ),

P(Amax(Ep) = D) = o(n™b).

It is argued later that the process smoothing and variable truncation steps do not change
the weak limit of objects under consideration.

Theorem A.1 For arbitrary vectors a and b € R¥, define G, (z,a,b) = aT O, (z)b. Sup-
pose Z satisfies (A.4) and suppose C2-C6 in Section 2 hold. Then,

n{Gn(z,0,0) —a"b (1- 07 (z,9)} > ¥V (2),  zeC,

D . . . .
where — denotes weak convergence in C(C,R?), and W1 (2) is a Gaussian process with
zero mean and covariance function

TN (z1,25) = 8(21,22,7)07%(21,7)0 > (z2,7) [l al*b]* + (a)?].

See Section 5.3 of the Supplementary Material for proof of the theorem.
Next, transforming back to X, define

0,(z) = n WIZTST(E, — 21)'8Y?2U,, zecC™,
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0n(2) = " U8, (utipy) + PO (w—ipn), zeC\CH.

2pn 2pn
Using the identity (A.3), and Lemma S.6 in the Supplementary Material, we get
0 (2) = Cn(@)[I — Cn(2)] . (A.5)

Notably, (©(z,v) — 1)/0(z,~) is bounded away from 1 on C. Since @n(z) is a smooth
function of Q,,(z), applying the delta-method, the following result is an immediate con-
sequence of Theorem A.1.

Lemma A.2 Suppose Z satisfies (A.4) and suppose C2-C6 in Section 2 hold. Then,
n*(Qu(@) — {8(z.7) — 1} > ¥P(2),  zec,

where 2> denotes weak convergence in C(C,R?*”), and ¥ (z) = [¥P(2)];j isak x k
symmetric Gaussian matrix process with zero mean and covariance

E[0®)(21)]5[ 0 (22))is = 26(z1,22,7),
E[U®) (21)];;[¥P (22)]5 = 6(z1,22,7),  if i <],
E[0®)(21)]3;[0 P (22)]ij =0, ifi#i orj+j.

Define a smoothed version of &,(z, «,n) as

gﬂ(z « T/) = E’I’L(Z 04,77)7 zZ e C+,
fn(z « 77) p;p_vfn(u+ipnaaa77)+ U;—ppnfn(u_ipmavn)) ZEC\C+'

Lemma A.3 Suppose that Z satisfies (A.4) and C2-C6 hold. Then,
Enlz,a,n) —n'2(0(z,7) = Doy > 1P (),

where -2 denotes weak convergence in C(C,R?), and W) (2) is a Gaussian process with
zero mean and covariance function T'®)(zy,z5) = 8(z1, z2,7)[||e)|n]? + (aTn)?].

The following result is an immediate consequence of the foregoing:

fe §_n2fma ) gz — 2Q(f, 7)o =N (O, [Pl + (@ TPIA ). (A6)

To complete the proof of Theorem 2.1, we further need to show (A.6) still holds if (A.4)
is extended to C1 and &,(z, o, ) is replaced by &,(z, «,n). We present the extension of
(A.6) in Section S.9 of the Supplementary Material.

Supplementary Material

Supplementary Material includes additional simulation results and detailed proofs of the
main theoretical results presented in this paper.
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