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We are interested in testing general linear hypotheses in a high-dimensional multivariate linear

regression model. The framework includes many well-studied problems such as two-sample tests

for equality of population means, MANOVA and others as special cases. A family of rotation-

invariant tests is proposed that involves a flexible spectral shrinkage scheme applied to the

sample error covariance matrix. The asymptotic normality of the test statistic under the null

hypothesis is derived in the setting where dimensionality is comparable to sample sizes, assuming

the existence of certain moments for the observations. The asymptotic power of the proposed

test is studied under various local alternatives. The power characteristics are then utilized to

propose a data-driven selection of the spectral shrinkage function. As an illustration of the

general theory, we construct a family of tests involving ridge-type regularization and suggest

possible extensions to more complex regularizers. A simulation study is carried out to examine

the numerical performance of the proposed tests.
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1. Introduction

In multivariate analysis, one of the fundamental inferential problems is to test a hy-
pothesis involving a linear transformation of regression coefficients under a linear model.
Suppose Y is a pˆN matrix of observations modeled as

Y “ BX ` Σ1{2
p Z , (1.1)
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where (i) B is a pˆ k matrix of regression coefficients; (ii) X is a kˆN design matrix
of rank k; (iii) Z is a pˆN matrix with i.i.d. entries having zero mean and unit variance;
and (iv) Σp, a p ˆ p nonnegative definite matrix, is the population covariance matrix

of the errors, with Σ
1{2
p a “square-root” of Σp so that Σp “ Σ

1{2
p pΣ

1{2
p qT . General linear

hypotheses involving the linear model (1.1) are of the form

H0 : BC “ 0 vs. Ha : BC ‰ 0, (1.2)

for an arbitrary k ˆ q “constraints matrix” C, subject to the requirement that BC is
estimable. Without loss of generality, C is taken to be of rank q. Throughout, we assume
that q and k are fixed, even as observation dimension p and sample size N increase to
infinity. Henceforth, n “ N ´ k is used to denote the effective sample size, which is also
the degree of freedom associated with the sample error covariance matrix.

With various choices of X and C, the testing formulation incorporates many hypothe-
ses of interest. For example, multivariate analysis of variance (MANOVA) is a special
case. When the sample size N is substantially larger than the dimension p of the obser-
vations, this problem is well-studied. Anderson (1958) and Muirhead (2009) are among
standard references. Various classical inferential procedures involve the matrices

pΣp “
1

n
YpI ´XT pXXT q´1XqYT , (1.3)

pHp “
1

n
YXT pXXT q´1CrCT pXXT q´1Cs´1CT pXXT q´1XYT , (1.4)

so that pΣp is the residual covariance of the full model, an estimator of Σp, while pHp

is the hypothesis sums of squares and cross products matrix, scaled by n´1. In a one-
way MANOVA set-up, pΣp and pHp are, respectively, the within-group and between-group
sums of squares and products matrices, scaled by n´1. In the rest of the paper, we shall
refer to pΣp as the sample covariance matrix.

The testing problem (1.2) is well-studied in the classical multivariate analysis litera-
ture. Three standard test procedures are the likelihood ratio test (LR), Lawley–Hotelling
trace test (LH) and Bartlett–Nanda–Pillai trace (BNP) test. They are called invariant
tests, since under Gaussianity the null distributions of the test statistics are invariant
with respect to Σp. One common feature is that all test statistics are linear functionals

of the spectrum of pHp
pΣ´1
p . Since this matrix is asymmetric, for convenience, a standard

transformation is applied, giving the expressions of the invariant tests as follows. Define

Qn “ XT pXXT q´1CrCT pXXT q´1Cs´1{2, (1.5)

M0 “
1

n
QTnYT

pΣ´1
p YQn.

The matrix QnQ
T
n is the “hat matrix” of the reduced model under the null hypothesis.

Note that the non-zero eigenvalues of pHp
pΣ´1
p “ n´1YQnQ

T
nYT

pΣ´1
p are the same as

those of M0. The test statistics for the LR, LH and BNP tests can be expressed as

TLR
0 “

ÿq

i“1
logt1` λipM0qu,
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TLH
0 “

ÿq

i“1
λipM0q,

TBNP
0 “

ÿq

i“1
λipM0q{t1` λipM0qu.

The symbol λip¨q denotes the i-th largest eigenvalue of a symmetric matrix, further using
the convention that λmaxp¨q and λminp¨q indicate the largest and smallest eigenvalue.

In contemporary statistical research and applications, high-dimensional data whose
dimension is at least comparable to the sample size is ubiquitous. In this paper, focus
is on the interesting boundary case when dimension and sample sizes are comparable.
Primarily due to inconsistency of conventional estimators of model parameters — such as
pΣp —, classical test procedures for the hypothesis (1.2) — such as the LR, LH and BNP
tests — perform poorly in such settings. When the dimension p is larger than the degree
of freedom n, the invariant tests are not even well-defined because pΣp is singular. Even
when p is strictly less than n, but the ratio γn “ p{n is close to 1, these tests are known
to have poor power behavior. Asymptotic results when γn Ñ γ P p0, 1q were obtained in
Fujikoshi, Himeno and Wakaki (2004) under Gaussianity of the populations, and more
recently in Bai, Choi and Fujikoshi (2017) under more general settings that only require
the existence of certain moments. LR, LH and BNP tests can be generalized as linear
spectral statistics of large-dimensional F-matrices, whose CLT is studied in Zheng (2012);
Zheng, Bai and Yao (2017); Bodnar, Dette and Parolya (2017).

Pioneering work on modifying the classical solutions in high dimension is in Bai et al.
(2013), who corrected the scaling of the LR statistic when n ě p but p, k and q are propor-
tional to n. The corrected LR statistic was shown to have significantly more power than
its classical counterpart. In contrast, in this paper, we focus on the setting where k and q
are fixed even as n, pÑ8 so that γn “ p{nÑ γ P p0,8q. In the multivariate regression
problem, this corresponds to a situation where the response is high-dimensional, while the
predictor is finite-dimensional. In the MANOVA problem, this framework corresponds to
high-dimensional observations belonging to one of a finite number of populations.

To the best of our knowledge, when n ă p, the linear hypothesis testing problem has
been studied in depth only for specific submodels of (1.1), primarily for the important
case of two-sample tests for equality of population means. For the latter tests, a widely
used idea is to construct modified statistics based on replacing pΣ´1

p with an appropri-
ate substitute. This approach was pioneered in Bai and Saranadasa (1996) and further
developed in Chen and Qin (2010). Various extensions to one-way MANOVA (Srivas-
tava and Fujikoshi, 2006; Yamada and Himeno, 2015; Srivastava and Fujikoshi, 2006; Hu
et al., 2017) and a general multi-sample Behrens–Fisher problem under heteroscedastic-
ity (Zhou, Guo and Zhang, 2017) exist. Other notable works for the two-sample problem
include Biswas and Ghosh (2014); Chang et al. (2017); Chen, Li and Zhong (2014);
Guo and Chen (2016); Lopes, Jacob and Wainwright (2011); Srivastava, Li and Ruppert

(2016); Wang, Peng and Li (2015). A second approach aims to regularize pΣp to address
the issue of its near-singularity in high dimensions; see Chen et al. (2011) and Li et al.
(2016) for ridge-type penalties in two-sample settings. Finally, another alternative line of
attack consists of exploiting sparsity; see Cai, Liu and Xia (2014); Cai and Xia (2014).
Other related works include Zhu and Bradic (2018).
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In this paper, we seek to regularize the spectrum of pΣp by flexible shrinkage functions.
For a symmetric pˆ p matrix A and a function gp¨q on R, define

gpAq “ RAdiag
`

gpλ1pAqq, . . . , gpλppAqq
˘

RTA,

where RA is the matrix of eigenvectors associated with the ordered eigenvalues of A.
Now, consider any real-valued function fp¨q on R that is analytic over a specific domain

associated with the limiting behavior of the eigenvalues of pΣp, as elaborated in Section 2.
The proposed statistics are functionals of eigenvalues of the regularized quadratic forms

Mpfq “
1

n
QTnYT fppΣpqYQn.

Specifically, we propose regularized versions of LR, LH and BNP test criteria, namely

TLRpfq “
ÿq

i“1
logt1` λipMpfqqu,

TLHpfq “
ÿq

i“1
λipMpfqq,

TBNPpfq “
ÿq

i“1
λipMpfqq{t1` λipMpfqqu.

These test statistics are designed to capture possible departures from the null hypothesis,
when pΣp is replaced by fppΣpq, while suitable choices of the regularizer f allow for getting
around the problem of singularity or near-singularity when p is comparable to n.

Notice that Mpfq has the same non-zero eigenvalues as fppΣpq pHp. Thus, the proposed

test family is a generalization of the classical statistics based on pΣ´1
p

pHp. Importantly,
Mpfq— and consequently the proposed statistics — is rotation-invariant, which means if
a linear transformation is applied to the observations with an arbitrary orthogonal matrix,
the statistic remains unchanged. It is a desirable property when not much additional
knowledge about Σp and BC is available. It should be noted that the two-sample mean
tests by Bai and Saranadasa (1996) and Li et al. (2016), together with their generalization
to MANOVA, are special cases of the proposed family with fpxq “ 1 and fpxq “ 1{px`λq,
λ ą 0, respectively.

The present work builds on the work by Li et al. (2016). The theoretical analysis also
involves an extension of the analytical framework adopted by Pan and Zhou (2011) in
their study of the asymptotic behavior of Hotelling’s T 2 statistic for non-Gaussian ob-
servations. However, the current work goes well beyond the existing literature in several
aspects. We highlight these as the key contributions of this manuscript: (a) We propose
new families of rotation-invariant tests for general linear hypotheses for multivariate re-
gression problems involving high-dimensional response and fixed-dimensional predictor
variables that incorporate a flexible regularization scheme to account for the dimension-
ality of the observations growing proportional to the sample size. (b) Unlike Li et al.
(2016), who assumed sub-Gaussianity, here only the existence of finite fourth moments
of the observations is required. (c) Unlike Pan and Zhou (2011), who assumed Σp “ Ip,
Σp is allowed to be fairly arbitrary and subjected only to some standard conditions on
the limiting behavior of its spectrum. (d) We carry out a detailed analysis of the power
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characteristics of the proposed tests. The proposal of a class of local alternatives enables a
clear interpretation of the contributions of different parameters in the performance of the
test. (e) We develop a data-driven test procedure based on the principle of maximizing
asymptotic power under appropriate local alternatives. This principle leads to the defini-
tion of a composite test that combines the optimal tests associated with a set of different
kinds of local alternatives. The latter formulation is an extension of the data-adaptive
test procedure designed by Li et al. (2016) for the two-sample testing problem.

The rest of the paper is organized as follows. Section 2 introduces the asymptotics
of the proposed test family both under the null hypothesis and under a class of local
alternatives. Using these local alternatives, in Section 3 a data-driven shrinkage selection
methodology based on maximizing asymptotic power is developed. In Section 4, an ap-
plication of the asymptotic theory and the shrinkage selection method is given for the
ridge-regularization family. An extension of ridge-regularization to higher orders is also
discussed. The results of a simulation study are reported in Section 5. In the Appendix,
a proof outline of the main theorem is presented, while technical details and proofs of
other theorems are collected in the Supplementary Material.

2. Asymptotic theory

After giving necessary preliminaries on Random Matrix Theory (RMT), the asymptotic
theory of the proposed tests under the null hypothesis and under various local alternative
models is presented in this section. For any pˆp symmetric matrix A, define the Empirical
Spectral Distribution (ESD) FA of A by

FApτq “ p´1
ÿp

i“1
1tλipAqďτu.

In the following, }¨}max stands for the maximum absolute value of the entries of a matrix.
The following assumptions are employed.

C1 (Moment conditions) Z has i.i.d. entries zij such that Ezij “ 0, Ez2
ij “ 1, Ez4

ij ă 8;

C2 (High-dimensional setting) k and q are fixed, while p, nÑ8 such that γn “ p{nÑ
γ P p0,8q and

?
n|γn ´ γ| Ñ 0;

C3 (Boundedness of spectral norm) Σp is non-negative definite; lim supp λmaxpΣpq ă 8;

C4 (Asymptotic stability of ESD) There exists a distribution LΣ with compact support
in r0,8q, non-degenerate at zero, such that

?
nDW pFΣp , LΣq Ñ 0, as n, p Ñ 8,

where DW pF1, F2q denotes the Wasserstein distance between distributions F1 and
F2, defined as

DW pF1, F2q “ sup
f

!
ˇ

ˇ

ˇ

ˆ
fdF1 ´

ˆ
fdF2

ˇ

ˇ

ˇ
: f is 1-Lipschitz

)

.

C5 (Asymptotically full rank) X is of full rank and n´1XXT converges to a positive
definite k ˆ k matrix. Moreover, lim supnÑ8 }X}max ă 8;
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C6 (Asymptotically estimable) lim infnÑ8 λminpC
T pn´1XXT q´1Cq ą 0.

Remark 2.1 The conditions are mild: C5 and C6 are commonly made in multivari-
ate analysis for asymptotic results of regression models under non-Gaussianity. The
opn´1{2q convergence rate in C2 and C4 is unnecessary for proving the asymptotic nor-
mality of the proposed tests introduced in Section 2.2 and 2.3. The assumption can be
dropped if mpzq introduced in (2.1) is replaced by the solution to the equation m0

ppzq “´
tτp1´ γn ´ γnzm0

ppzqq ´ zu´1dFΣppτq. However, such a modification will significantly
complicate mathematical expressions. In order to emphasize readability and succinctness,
the opn´1{2q convergence rate is adopted. Moreover, for the purpose of deriving validity
of the data-driven selection of shrinkage functions introduced in Section 3, the opn´1{2q

convergence rate is necessary. Notably, the convergence rate assumption is practically
not overly restrictive. First, it imposes little constraint on the observations. Secondly, we
always use γn and FΣp to estimate γ and LΣ in the proposed inferential procedure.

2.1. Preliminaries on random matrix theory

Recall that the Stieltjes transform mGp¨q of any function G of bounded variation on R
is defined by

mGpzq “
ˆ 8
´8

dGpxq

x´ z
, z P C` :“ tu` iv : v ą 0u.

Minor modifications of a standard RMT result imply that, under Conditions C1–C6,

the ESD F
pΣp converges almost surely to a nonrandom distribution F8 at all points of

continuity of F8. This limit is determined in such a way that for any z P C`, the Stieltjes
transform mp¨q “ mF8p¨q of F8 is the unique solution in C` of the equation

mpzq “
ˆ

dLΣpτq

τp1´ γ ´ γzmpzqq ´ z
. (2.1)

Equation (2.1) is often referred to as the Marčenko–Pastur equation. Moreover, pointwise
almost surely for z P C`, m

F
xΣp
pzq converges to mF8pzq. The convergence holds even

when z P R´ (negative reals) with a smooth extension of mF8 to R´. Readers may refer
to Bai and Silverstein (2004) and Paul and Aue (2014) for more details. From now on,
for notational simplicity, we shall write mF8pzq as mpzq and write m

F
xΣp
pzq as mn,ppzq.

Note that
mn,ppzq “ p´1trppΣp ´ zIpq

´1

and define
Θpz, γq “ t1´ γ ´ γzmpzqu´1. (2.2)

It is known that ppΣp ´ zIpq´1, for any fixed z P C`, has a deterministic equivalent (Bai
and Silverstein (2004); Liu, Aue and Paul (2015); Li et al. (2016)), given by

tΘ´1pz, γqΣp ´ zIu´1,
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in the sense that for symmetric matrices A bounded in operator norm, as nÑ8,

p´1trrppΣp ´ zIpq
´1As ´ p´1trrtΘ´1pz, γqΣp ´ zIu´1As Ñ 0, with probability 1.

Resolvent and deterministic equivalent will be used frequently in this paper. They will
appear for example as Cauchy kernels in contour integrals in various places.

2.2. Asymptotics under the null hypothesis

To begin with, for q ě 1, denote by W “ rwijs
q
i,j“1 the Gaussian Orthogonal Ensemble

(GOE) defined by (1) wij “ wji; (2) wii „ N p0, 1q, wij „ N p0, 1{2q, i ‰ j; (3) wij ’s
are jointly independent for 1 ď i ď j ď q. Throughout this paper, fp¨q is assumed to be
analytic in an open interval containing

X :“ r0, lim suppÑ8 λmaxpΣpqp1`
?
γq2s.

Let C to be a closed contour enclosing X such that fp¨q has a complex extension to the
interior of C. Further use C2 to denote C b C “ tpz1, z2q : z1, z2 P Cu.

Theorem 2.1 Suppose C1–C6 hold. Under the null hypothesis H0 : BC “ 0,

?
ntMpfq ´ Ωpf, γqIqu ùñ ∆1{2pf, γqW,

where ùñ denotes weak convergence and Ωpf, γq and ∆pf, γq are as follows.

Ωpf, γq “
´1

2πi

˛
C
fpzqpΘpz, γq ´ 1qdz.

See (2.2) for the definition of Θpz, γq. For any two analytic functions f1 and f2,

∆pf1, f2, γq “
2

p2πiq2

‹
C2
f1pz1qf2pz2qδpz1, z2, γqdz1dz2,

and ∆pf, f, γq is written as ∆pf, γq for simplicity. The kernel δpz1, z2, γq is such that

δpz1, z2, γq “ Θpz1, γqΘpz2, γq
”z1Θpz1, γq ´ z2Θpz2, γq

z1 ´ z2
´ 1

ı

,

δpz, z, γq “ lim
z2Ñz

δpz, z2, γq “ Θ2pz, γq
”

BzΘpz, γq
Bz

´ 1
ı

“ γt1` zmpzquΘ3pz, γq ` γztmpzq ` zm1pzquΘ4pz, γq.

The contour integral is taken counter-clockwise.

Using knowledge of the eigenvalues of the GOE leads to the following statement.
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Corollary 2.1 Under the conditions of Theorem 2.1, assume further that ∆pf, γq ą 0.
Let

λ̃i “

?
n

∆1{2pf, γq
tλipMpfqq ´ Ωpf, γqu, i “ 1, . . . , q.

Then, the limiting joint density function of pλ̃1, . . . , λ̃qq at y1 ě y2 ě ¨ ¨ ¨ ě yq is given by

´

2q{2
q
ź

i“1

Γpi{2q
¯´1 ź

iăj

pyi ´ yjq exp
´

´
1

2

q
ÿ

i“1

y2
i

¯

.

Although without closed forms, Ωpf, γq and ∆pf, γq do not depend on the choice of C
used to compute the contour integral. With the resolvent as kernel Mpfq can be expressed

as the integral of fpzqn´1QTnYT ppΣp´zIpq´1YQn on any contour C, up to a scaling factor.

The quadratic form n´1QTnYT ppΣp ´ zIpq´1YQn is then shown to concentrate around
rΘpz, γq ´ 1sIq, which consequently serves as the integral kernel in Ωpf, γq. The kernel

δpz1, z2, γq of ∆pf, γq is the limit of Ern´1trtppΣp ´ z1Ipq
´1ΣpppΣp ´ z2Ipq

´1Σpus.

Remark 2.2 Two sufficient conditions for ∆pf, γq ą 0 are
(1) fpxq ą 0 for x P X ;
(2) fpxq ě 0 for x P X , with fpxq ‰ 0 for some x P X , and lim inf λminpΣpq ą 0.

It would be convenient if Ωpf, γq and ∆pf, γq had closed forms in order to avoid
computational inefficiencies. Closed forms are available for special cases as shown in the
following lemma.

Lemma 2.1 When fpx, `q “ px ´ `q´1 with ` P R´, the contour integrals in Theorem
2.1 have closed forms, namely, for j, j1, j2 “ 0, 1, 2, . . . ,

´1

2πi

˛
C

Bjfpz, `q
B`j

pΘpz, γq ´ 1qdz “
BjpΘp`, γq ´ 1q

B`j
,

1

p2πiq2

‹
C2

Bj1fpz1, `1q

B`j11

Bj2fpz2, `2q

B`j22
δpz1, z2, γqdz1dz2 “

Bj1`j2δp`1, `2, γq

B`j11 B`
j2
2

.

The results continue to hold when ` P CzX .

Lemma 2.1 indicates that it is possible to have convenient and accurate estimators of
the asymptotic mean and variance of Mpfq under ridge-regularization. The result easily
generalizes to the setting when fpxq is a linear combination of functions of the form
px´ `jq

´1, for any finite collection of `j ’s. We elaborate on this in Section 4.
To conduct the tests, consistent estimators of Ωpf, γq and ∆pf, γq are needed.

Lemma 2.2 Let pΘpz, γnq and pδpz1, z2, γnq be the plug-in estimators of Θpz, γq and δpz1,
z2, γq, with pmpzq, γq estimated by pmn,ppzq, γnq. For general f , f1, f2, we can esti-

mate Ωpf, γq and ∆pf1, f2, γq by replacing Θpz, γq and δpz1, z2, γq with pΘpz, γnq and
pδpz1, z2, γnq. Denote the resulting estimators by pΩpf, γnq and p∆pf1, f2, γnq. Then,

?
n|pΩpf, γnq ´ Ωpf, γq|

P
ÝÑ 0,
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?
n|p∆pf1, f2, γnq ´∆pf1, f2, γq|

P
ÝÑ 0,

where
P
ÝÑ indicates convergence in probability. Again, we write p∆pf, f, γnq as p∆pf, γnq.

For the special case of f pjqpx, `q “ Bjpx´ `q´1{B`j, j “ 0, 1, 2, . . . and ` P CzX , using
Lemma 2.1, natural estimators in closed forms are

pΩpf pjqpx, `q, γnq “
BjppΘp`, γnq ´ 1q

B`j
,

p∆pf pj1qpx, `1q, f
pj2qpx, `2q, γnq “

Bj1`j22pδp`1, `2, γnq

B`j11 B`
j2
2

.

In particular, for j, j1, j2 “ 0,

pΩpfpx, `q, γnq “ pΘp`, γnq ´ 1,

p∆pfpx, `1q, fpx, `2q, γnq “ 2pδp`1, `2, γnq.

The estimators are consistent, for any fixed j and `. Given the eigenvalues of pΣp, the
computational complexity of calculating the above estimators is Oppq.

Recall the definitions of TLRpfq, TLHpfq and TBNPpfq from Section 1.

Theorem 2.2 Suppose C1–C6 hold and ∆pf, γq ą 0. Under H0 : BC “ 0,

pTLRpfq :“

?
nt1` pΩpf, γnqu

q1{2
p∆1{2pf, γnq

rTLRpfq ´ q logt1` pΩpf, γnqusùñN p0, 1q,

pTLHpfq :“

?
n

q1{2
p∆1{2pf, γnq

tTLHpfq ´ qpΩpf, γnquùñN p0, 1q,

pTBNPpfq :“

?
nt1` pΩpf, γnqu

2

q1{2
p∆1{2pf, γnq

!

TBNPpfq ´ q
pΩpf, γnq

1` pΩpf, γnq

)

ùñN p0, 1q.

For any of the three tests, the null hypothesis is rejected at asymptotic level α, if
pT pfq ą ξα, where ξα is the 1´ α quantile of the standard normal distribution.

2.3. Asymptotic power under local alternatives

This subsection deals with the behavior of the proposed family of tests under a host
of local alternatives. We start with deterministic alternatives, a framework commonly
used in the literature to study the asymptotic power of inferential procedures. Next, we
consider a Bayesian framework, using a class of priors that characterize the structure of
the alternatives. Because the results to follow simultaneously hold for pTLRpfq, pTLHpfq

and pTBNPpfq, the unifying notation pT pfq will be used to refer to each of the test statistics.
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2.3.1. Deterministic local alternatives

Consider a sequence of BC such that, on an open subset of C containing X ,

?
nCTBT tΘ´1pz, γqΣp ´ zIu´1BC ÝÑ Dpz, γq pointwise, as n, pÑ8. (2.3)

Observe that YQn “
?
nBCrCT pn´1XXT q´1Cs´1{2 ` Σ

1{2
p ZQn and define

HpD, fq “ T´1{2
”

´1

2πi

˛
C
fpzqDpz, γqdz

ı

T´1{2, where (2.4)

T “ lim
nÑ8

CT pn´1XXT q´1C. (2.5)

Note that T exists and is non-singular under C5 and C6. If further fpxq ě 0 for any
x P X , HpD, fq is non-negative definite.

Theorem 2.3 Suppose C1–C6 and (2.3) hold, and ∆pf, γq ą 0. Then, as nÑ8,

?
n

∆1{2pf, γq
tMpfq ´ Ωpf, γqIquùñW `

HpD, fq
∆1{2pf, γq

.

Denote the power functions of pT pfq at asymptotic level α, conditional on BC, by

ΥpBC, fq “ Pp pT pfq ą ξα | BCq.

The asymptotic behavior of the power functions is described in the following corollary.

Corollary 2.2 Under the assumptions of Theorem 2.3, as nÑ8,

ΥpBC, fq ÝÑ Φ
´

´ ξα `
trpHpD, fqq
q1{2∆1{2pf, γq

¯

,

where Φ is the standard normal CDF.

Remark 2.3 Corollary 2.2 indicates the three proposed statistics have identical asymp-
totic powers under the assumed local alternatives. This is because the first-order Taylor
expansions of x, logp1`xq and x{p1`xq coincide at 0. However, the respective empirical
powers may differ considerably for moderate sample sizes.

The following remark provides a sufficient condition under which (2.3) is satisfied.
Denoting the columns of BC by rµ1, . . . , µqs, it follows that

?
nCTBT tΘ´1pz, γqΣp ´ zIu´1BC “

?
n
”

µTi tΘ
´1pz, γqΣp ´ zIpu

´1µj

ıq

i,j“1
.

Remark 2.4 (a) Let Em,p denote the eigen-projection associated with λm,p “ λmpΣpq.

Suppose that there exists a sequence (in p) of mappings rBij;ps
q
i,j“1 from r0,8qq

2

to



High-dimensional general linear hypothesis via spectral shrinkage 11

r0,8qq
2

, satisfying Bij;ppλm,pq “
?
npµTi Em,pµj, m “ 1, . . . , p, and a mapping

rBij;8s
q
i,j“1 continuous on r0,8qq

2

such that, as pÑ8 and for 1 ď i, j ď q,

ˆ
|Bij;ppxq ´Bij;8pxq|dF

Σppxq Ñ 0.

Then, under C4, it follows that (2.3) holds with Dpz, γq “ rdijpz, γqs
q
i,j“1 and

dijpz, γq “
ˆ

Bij;8pxqdL
Σpxq

xΘ´1pz, γq ´ z
“

ˆ
Bij;8pxqdL

Σpxq

xt1´ γ ´ γzmpzqu ´ z
.

(b) If Σp “ Ip, then (2.3) is satisfied if
?
nµTi µj Ñ Kij, for some constants Kij,

1 ď i, j ď q. In this case, Dpz, γq “ pΘ´1pz, γq ´ zq´1rKijsqi,j“1.

2.3.2. Probabilistic local alternatives

While deterministic local alternatives provide useful information, they are somewhat
restrictive for the purpose of a systematic investigation of the power characteristics.
Therefore, probabilistic alternatives are considered in the form of a sequence of prior
distributions for BC. This has the added advantage of providing flexibility for incorpo-
rating structural information about the regression parameters and the constraints matri-
ces. The proposed formulation of probabilistic alternatives can be seen as an extension
of the proposal adopted by Li et al. (2016) in the context of two-sample tests for equal-
ity of means. One challenge associated with formulating meaningful alternatives to the
hypothesis (1.2), when compared to the two-sample testing problem, is that there are
many more plausible ways in which the null hypothesis can be violated. Considering
this, we propose a class of alternatives, that on one hand can incorporate a multitude of
structures of the parameter BC, while on the other hand retains analytical tractability
in terms of providing interpretable expressions for the local asymptotic power.

Assume the following prior model of BC with separable covariance

BC “ n´1{4p´1{2RVST , (2.6)

where V is a pˆm stochastic matrix (m ě 1 fixed) with independent elements νij such
that Erνijs “ 0, Er|νij |2s “ 1 and maxij Er|νij |4s ď pcν for some cν P p0, 1q; R is a pˆ p
deterministic matrix and S is a fixed q ˆm matrix. Moreover, let }R}2 ď K1 ă 8 and
suppose there is a nonrandom function hpz, γq such that, as p Ñ 8, on an open subset
of C containing X ,

p´1trtpΘ´1pz, γqΣp ´ zIq´1RRT u Ñ hpz, γq pointwise. (2.7)

Recalling that pΘ´1pz, γqΣp ´ zIq´1 is the deterministic equivalent of the resolvent

ppΣp ´ zIq´1, existence of the limit (2.7) also implies that p´1trtppΣp ´ zIq´1RRT u con-

verges pointwise in probability to hpz, γq. Notice also that p´1trtppΣp ´ zIq´1RRT u is

the Stieltjes transform of a measure supported on the eigenvalues of pΣp.
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Model (2.6) leads to a fairly broad covariance design for multi-dimensional random
elements, encompassing structures commonly encountered in many application domains,
especially in spatio-temporal statistics. We give some representative examples by consid-
ering various functional forms of the matrix S. Denote by µj the columns of BC and by
Vj the columns of V .

Example 2.1 In all that follows j takes values in 1, . . . , q.
(a) Independent: µj “ n´1{4p´1{2RVj ;
(b) Longitudinal: µj “ n´1{4p´1{2RpV1 ` V2j ` ¨ ¨ ¨ ` Vmj

m´1q;
(c) Moving average: µj “ n´1{4p´1{2RrVj`t ` θ1Vj`t´1 ` ¨ ¨ ¨ ` θtVjs for constants

θ1, . . . , θt.

Taking the MANOVA problem to illustrate, suppose that the columns of B represent
group mean vectors, and suppose C is the matrix that determines successive contrasts
among them. Then, µj is the difference between the means of group j and group j `
1. Parts (a)–(c) of Example 2.1 correspond then to µ1, . . . , µq respectively following
an independent, a longitudinal and a moving average process. The row-wise covariance
structure is assumed to be such that each µj has a covariance matrix proportional to
n´1{2p´1RRT . The factor n´1{2p´1 provides the scaling for the tests to have non-trivial
local power.

A sufficient condition that leads to (2.7), similar to Remark 2.4, is to postulate the
existence of functions B̃p satisfying B̃ppλj,pq “ trtEj,pRRT u, j “ 1, . . . , p, and

ˆ
|B̃ppxq ´ B̃8pxq|dF

Σppxq Ñ 0

for some function B̃8 continuous on r0,8q, where λj,p is the jth eigenvalue of Σp and
Ej,p is the eigen-projection associated with λj,p. Then

hpz, γq “
ˆ

B̃8pxqdL
Σpxq

xt1´ γ ´ γzmpzqu ´ z
. (2.8)

Equations (2.7) and (2.8) indicate that hpz, γq effectively captures the distribution of the
total spectral mass of RRT across the spectral coordinates of Σp, also taking into account
the dimensionality effect through the aspect ratio γ. Later, we shall discuss specific
classes of the matrices R that lead to analytically tractable expressions for hpz, γq, with
the structure of R linking the parameter BC under the alternative through (2.6) to the
structure of Σp.

Another important feature of the probabilistic model is that it incorporates both dense
and sparse alternatives through different specifications of the innovation variables νij . We
consider two special cases.

1. Dense alternative: νij „ N p0, 1q;
2. Sparse alternative: νij „ Gη, for some η P p0, 1q, whereGη is the discrete probability

distribution assigning mass 1 ´ p´η to 0 and mass p1{2qp´η to the points ˘pη{2.



High-dimensional general linear hypothesis via spectral shrinkage 13

Note that the usual notion of sparsity corresponds to the setting where in addition,
R “ Ip. More generally, the second specification above formulates a prior model for BC
that is sparse in the coordinate system determined by R. In particular, if RRT is a
polynomial in Σp (see Section 3.2 for a discussion), BC can be seen as sparse in the
spectral coordinates of Σp.

Theorem 2.4 Suppose that C1–C6 hold and ∆pf, γq ą 0. Also suppose that, under Ha,
BC has a prior distribution given by (2.6). Then, the power function of each of the three
test statistics satisfies

ΥpBC, fq
L1
ÝÑ Φ

´

´ ξα `
trpSSTT´1q

q1{2∆1{2pf, γq

˛
C

´1

2πi
fpzqhpz, γqdz

¯

, (2.9)

as nÑ 8, where T is as in (2.5) and
L1
ÝÑ indicates L1-convergence (with respect to the

prior measure of BC).

Remark 2.5 Even if the quantity hppz, γq “ p´1trtpΘ´1pz, γqΣp´zIq´1RRT u does not
converge, it can be verified that the difference between the left- and right-hand sides of
(2.9) still converges to zero in L1 if hpz, γq is replaced by hppz, γq.

Observe that the matrices R and S decouple in the expression (2.9) for the asymptotic
power. Dependence on the unknown error covariance matrix Σp, besides ∆1{2pf, γq, is
only through the function hpz, νq, which incorporates the structure of the matrix RRT .
It is also noticeable that distributional characteristics of the variables νij do not affect
the asymptotic power. Indeed, the proposed tests have the same local asymptotic power
under both sparse and dense alternatives.

3. Data-driven selection of shrinkage

In this section, we introduce a data-driven procedure to select the “optimal” f from a
parametric family F of shrinkage functions. The strategy is to maximize the local power
function ΥpBC, fq over f , given a class of probabilistic local alternatives as in (2.6). In
designing the classes of alternatives, we focus our attention only on the specification of
R. This is because, as the expression (2.9) shows, the dependence on the matrix S is
only through a multiplier involving a “known” matrix T , while the effect of the unknown
covariance Σp (and its interaction with R) manifests itself through the function hpz, γq.
Another reason for focusing on R is that the choice of S is closely related to the specific
type of linear model being considered, while the choice of R is associated with the
structure of the error distribution.

We present some settings of BC for which hpz, γq can be computed explicitly. We
also verify that the standardized test statistic with the data-driven selection of f is still
asymptotically standard normal under suitable conditions. Hence, the Type 1 error rate
of the tests is asymptotically not inflated, although the same data is used for both shrink-
age selection and testing. Lastly, we present a composite test procedure that combines
the optimal tests corresponding to different prior models of BC and thereby improves
adaptivity to various kinds of alternatives.
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3.1. Shrinkage family

Suppose the family of shrinkage functions is such that

F “ tf` : ` P Lu,

(i) L is a compact subset of Rr, r P N`;
(ii) There is a closed, connected subset Z of C such that X “ r0, lim supp λmaxpΣpqp1`

?
γq2s Ă Z, and the third-order partial derivatives of f` with respect to ` are

continuous on Lb Z;
(iii) The gradient ∇`f` and the Hessian ∇2

`f` of f` with respect to ` have analytic
extensions to Z for all ` P L;

(iv) inf`PL∆pf`, γq ą 0.

Under the probabilistic prior model (2.6) with hpz, γq in (2.7) given, define

Ξp`, h, γq “
´1

2πi∆1{2pf`, γq

˛
C
f`pzqhpz, γqdz.

Theorem 2.4 suggests that ` should be chosen such that Ξp`, h, γq is maximized, that is,

`opt “ arg max
`PL

Ξp`, h, γq.

The test with the selected shrinkage will then be the locally most powerful test under
the alternatives specified by (2.6) and (2.7) for any given choice of S. Since Ξp`, h, γq is
continuous with respect to ` under condition (i)–(iv), `opt exists. Importantly, Ξp`, h, γq
does not rely on S. In other words, different column-wise covariance structures of BC
are uniform in terms of selecting the optimal shrinkage. This significantly simplifies the
selection procedure.

Recall that hpz, `q is the limit of p´1trtpΘ´1pz, γqΣp ´ zIq´1RRT u. We next present
two possible settings of RRT under which hpz, γq and consequently Ξp`, h, γq can be
accurately estimated:

(1) Suppose RRT is specified. Then, hpz, γq is estimated by phpz, γnq “ p´1trtppΣp ´

zIq´1RRT u and

pΞp`,ph, γnq :“
´1

2πip∆1{2pf`, γnq

˛
C
f`pzqphpz, γnqdz

is a consistent estimator of Ξpf, h, γq. As an example of this scenario, assume that
the p components of µj admit a natural ordering such that the dependence between
their coordinates is a function of the difference between their indexes. Then we may
set RRT to be a Toeplitz matrix (stationary auto-covariance structure).

(2) Only the spectral mass distribution of RRT in the form of B̃8 described in (2.8)
is specified.

The remainder of this section is devoted to dealing with the second scenario.
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3.2. Polynomial alternatives

Even if B̃8 is given, the estimation of hpz, γq is still challenging since it involves the
unknown limiting spectral distribution LΣ. In order to estimate hpz, γq, it is convenient
to have it in a closed form. It is feasible if B̃8 is a polynomial, which is true if RRT is
a matrix polynomial in Σp. Since any smooth function can be approximated by polyno-
mials, this formulation is quite flexible and practically beneficial. Assume therefore that

RRT “
ÿs

j“0
tjΣ

j
p, (3.1)

where t0, . . . , ts are pre-specified weights such that
řs
j“0 tjΣ

j
p is nonnegative definite.

Under the model,

hpz, γq “ lim
pÑ8

p´1trrpΘ´1pz, γqΣp ´ zIq´1
ÿs

j“0
tjΣ

j
ps “

ÿs

j“0
tjρjpz, γq,

where the functions ρjpz, γq satisfy the recursive formula (see Ledoit and Péché, 2011)

ρ0pz, γq “ mpzq, ρj`1pz, γq “ Θpz, γq
”

ˆ
xjdLΣpxq ` zρjpz, γq

ı

.

For any j P N,
´
xjdLΣpxq, and consequently ρjpz, γq, can be estimated consistently

(Bai, Chen and Yao, 2010, Lemma 1). Specifically, p´1trppΣpq is a consistent estimator
of
´
xdLΣpxq.

In practice, we restrict to the case s “ 2. There are several considerations that guided
this choice of s as stated in Li et al. (2016). First, for s “ 2, all quantities involved
can be computed explicitly without requiring knowledge of higher-order moments of the
observations. Also, the corresponding estimating equations for hpz, γq are more stable as
they do not involve higher-order spectral moments. Second, the choice of s “ 2 yields
a significant, yet nontrivial, concentration of the prior covariance of µj , j “ 1, . . . , q,
(that is RRT up to a scaling factor) in the directions of the leading eigenvectors of Σp.
Finally, the choice s “ 2 allows for both convex and concave shapes of the spectral mass
distribution B̃8 since the latter becomes a quadratic function.

With s “ 2, we estimate ρ0pz, γq, ρ1pz, γq, ρ2pz, γq, and hpz, γq by

pρ0pz, γnq “ mn,ppzq,

pρ1pz, γnq “ pΘpz, γnqr1` zmn,ppzqs,

pρ2pz, γnq “ pΘpz, γnq
“

p´1trppΣpq ` zpρ1pz, γnq
‰

,

phpz, γnq “
ÿ2

j“0
tjpρjpz, γnq.

(3.2)

The algorithm for the data-driven shrinkage selection is stated next.

Algorithm 3.1 (Data-driven shrinkage selection)
1. Specify prior weights t̃ “ pt0, t1, t2q. The canonical choices are p1, 0, 0q, p0, 1, 0q,
p0, 0, 1q;
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2. Compute phpz, γnq “
ř2
j“0 tjpρjpz, γnq;

3. For any ` P L, numerically compute the integral

pΞp`,ph, γnq “
´1

2πip∆1{2pf`, γnq

˛
C
f`pzqphpz, γnqdz;

4. Select `optpt̃q “ arg max`PL pΞp`,ph, γnq.

The behavior of the tests applied with the data-driven shrinkage selection is described
in the following theorem.

Theorem 3.1 Suppose C1–C6 hold and F satisfies conditions (i)–(iv). Then,

(1) sup`PL
?
n|pΞp`,ph, γnq ´ Ξp`, h, γq|

P
ÝÑ 0 as nÑ8.

(2) Let `˚ be any local maximizer of Ξp`, h, γq in the interior of L. Assume there exists
a neighborhood of `˚ such that for all feasible points ` P L within the neighborhood,
there exists a constant K ą 0 such that

Ξp`, h, γq ´ Ξp`˚, h, γq ď ´K}`´ `˚}22. (3.3)

Then, there exists a sequence (`˚n : n P N) of local maximizers of ppΞp`,ph, γnq : n P Nq
satisfying

n1{4}`˚n ´ `
˚}2 “ Opp1q pnÑ8q. (3.4)

Further, recalling notation in Section 2, under the null hypothesis,

?
n

p∆1{2pf`˚n , γnq
tMpf`˚n q ´

pΩpf`˚n , γnqIqu ùñ W. (3.5)

(3) Let `˚ be any local maximizer of Ξp`, h, γq on the boundary of L. Assume there exists
a neighborhood of `˚ such that for all feasible points ` P L within the neighborhood,
there is a constant K1 ą 0 satisfying

Ξp`, h, γq ´ Ξp`˚, h, γq ď ´K1}`´ `˚}2. (3.6)

Then, (3.4) and (3.5) still hold.

The two conditions (3.3) and (3.6) ensure that the parameter `˚ is locally identifiable in
a neighborhood of `˚. In general, the two conditions depend on the structure of LΣ.

3.3. Combination of prior models

An extensive simulation analysis revealed that there is considerable variation in the shape
of the power functions and the values of t̃ “ pt0, t1, t2q, especially when the condition
number of Σp is relatively large. In this subsection, we consider a convenient collection
of priors that are representative of certain structural scenarios. A composite test, called



High-dimensional general linear hypothesis via spectral shrinkage 17

pTmax, is defined as the maximum of the standardized statistics pT pf`˚i
q where `˚i is obtained

from Algorithm 3.1 under prior t̃i, i “ 1, . . . ,m. The following strategy is applicable to
LR, LH and BNP. We therefore continue to use pT pfq to denote the general test statistic.
In summary, we propose to test the hypothesis by rejecting for large values of the statistic

pTmax “ max
t̃PrΠ

pT pf`˚i
q,

where rΠ “ tt̃1, . . . , t̃mu, m ě 1, is a pre-specified finite class of weights. A simple but

effective choice of rΠ consists of the three canonical weights t̃1 “ p1, 0, 0q, t̃2 “ p0, 1, 0q,
t̃3 “ p0, 0, 1q.

Σ “ Ip Σ “ Σden
k “ 3 k “ 5 k “ 3 k “ 5

n “ 300, p “ 150 600 3000 150 600 3000 150 600 3000 150 600 3000

LRridge

t̃1 5.4 5.2 5.1 5.2 5.1 5.1 4.9 4.4 4.7 4.4 3.3 4.2
t̃2 5.4 5.2 5.1 5.2 5.1 5.1 4.9 5.2 4.9 4.4 4.9 4.7
t̃3 5.3 5.2 5.1 5.2 5.1 5.1 5.8 5.9 5.1 5.3 5.2 4.9

LHridge

t̃1 5.4 5.2 5.1 5.3 5.1 5.2 6.2 7.2 5.7 6.2 7.7 6.0
t̃2 5.4 5.2 5.1 5.3 5.1 5.2 6.2 5.9 5.2 6.2 5.9 5.1
t̃3 5.3 5.2 5.1 5.3 5.1 5.2 5.8 5.9 5.2 5.4 5.2 5.0

BNPridge

t̃1 5.3 5.2 5.0 5.2 5.0 5.0 4.0 2.5 3.7 2.9 1.3 3.1
t̃2 5.4 5.2 5.0 5.2 5.0 5.0 4.0 4.7 4.6 2.9 3.9 4.4
t̃3 5.3 5.2 5.0 5.2 5.0 5.0 5.8 5.8 5.0 5.3 5.1 4.7

LRhigh

t̃1 6.5 6.3 5.3 6.5 5.3 5.5 6.0 5.8 5.1 6.5 5.9 4.5
t̃2 6.5 6.3 5.3 6.5 5.3 5.5 8.3 6.8 5.5 8.4 7.2 5.2
t̃3 6.6 6.3 5.3 6.6 5.3 5.5 6.7 6.7 5.5 6.4 7.1 5.2

LHhigh

t̃1 6.7 6.4 5.4 6.8 5.5 5.7 6.1 5.9 5.7 6.7 6.2 5.5
t̃2 6.7 6.4 5.4 6.8 5.4 5.7 8.3 6.8 5.6 8.5 7.3 5.5
t̃3 6.7 6.4 5.4 6.8 5.4 5.7 6.7 6.7 5.6 6.5 7.2 5.5

BNPhigh

t̃1 6.2 6.3 5.2 6.1 5.3 5.2 5.9 5.7 4.6 6.4 5.5 3.7
t̃2 6.3 6.3 5.2 6.1 5.2 5.2 8.3 6.7 5.3 8.3 7.0 4.9
t̃3 6.3 6.3 5.1 6.1 5.2 5.2 6.6 6.6 5.3 6.4 6.9 4.9

LRcomp 5.1 5.1 5.0 5.4 5.3 5.0 6.0 5.1 5.5 5.6 5.0 5.1

LHcomp 5.1 5.1 5.1 5.5 5.3 5.1 6.7 5.8 5.9 6.9 6.2 5.7

BNPcomp 5.1 5.0 5.0 5.4 5.2 5.0 5.4 4.5 5.1 4.7 4.4 4.6
ZGZ 5.6 5.7 5.2 5.6 4.8 5.2 5.9 5.5 5.4 5.4 5.4 5.3
CX (Oracle) 5.6 6.3 7.0 7.3 6.9 8.6 5.8 5.9 6.8 6.0 7.2 9.0

Table 1. Empirical sizes at level 5%. Σ “ ID and Σden; t̃1 “ p1, 0, 0q, t̃2 “ p0, 1, 0q, t̃3 “ p0, 0, 1q.

Theorem 3.2 Suppose C1–C6 hold and F satisfies condition (i)–(iv). For each i “
1, . . . ,m, assume that `˚in is a sequence of local maximizers of the empirical power function
pΞp`,ph, γnq under prior model with weight t̃i such that

n1{4}`˚in ´ `
˚
i }2 “ Opp1q.

(See (3.4)). Then, under the null hypothesis H0 : BC “ 0,

`

pT pf`˚1n
q, . . . , pT pf`˚mnq

˘

ùñ N
`

0,∆˚
˘

,
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where ∆˚ is an mˆm matrix with diagonal entries 1 and pi, jq-th off-diagonal entry

∆´1{2pf`˚i
, γq∆pf`˚i

, f`˚j
, γq∆´1{2pf`˚j

, γq.

Theorem 3.2 shows that pTmax has a non-degenerate limiting distribution under H0. It
is worth mentioning that LR, LH and BNP share the covariance matrix ∆˚. Theorem
3.2 can be used to determine the cut-off values of the test by deriving analytical formulas
for the quantiles of the limiting distribution. Aiming to avoid complex calculations, a
parametric bootstrap procedure is applied to approximate the cut-off values. Specifically,
∆˚ is first estimated by p∆˚, and then bootstrap replicates are generated by simulating
from N p0, p∆˚q, thereby providing an approximation of the null distribution of pTmax.

Replacing ∆pf`˚i
, f`˚j

, γq with p∆pf`˚i
, f`˚j

, γnq yields the natural estimator.

Remark 3.1 Observe that p∆˚ defined above may not be nonnegative definite even though
it is symmetric. If such a case occurs, the resulting estimator can be projected onto its
closest non-negative definite matrix simply by setting the negative eigenvalues to zero.
This covariance matrix estimator is denoted by p∆`˚ and it is used for generating the
bootstraps samples.

4. Ridge and higher-order regularizers

4.1. Ridge regularization

One of the most commonly used shrinkage procedures in statistics is ridge regularization,
corresponding to choosing f`pxq “ 1{px´ `q, ` ă 0, so that f`ppΣpq “ ppΣp ´ `Ipq

´1. It is

an effective way to shift pΣp away from singularity by adding a ridge term ´`Ip. In this
subsection, we apply the results of Sections 2 and 3 using the ridge-shrinkage family

Fridge :“ tf`pxq “ px´ `q
´1, ` P r`, `su, ´8 ă ` ă ` ă 0.

In the literature, ridge-regularization was applied to high-dimensional one- and two-
sample mean tests in Chen et al. (2011) and Li et al. (2016). Hence, this subsection is a
generalization of their methods to general linear hypotheses.

From the aspect of population covariance estimation, ridge-regularization can be
viewed as an order-one estimation where Σp is estimated by a weighted average of pΣp

and Ip, namely α0Ip ` α1
pΣp. The estimator is equivalent to ridge-regularization with

` “ ´α0{α1 for testing purposes. Within a restricted region of pα1, α2q, the large eigen-

values of pΣp are shrunk down and the small ones are lifted upward. It is a desired
property since in high-dimensional settings, large sample eigenvalues are systematically
biased upward and small sample eigenvalues downwards.

An important advantage of ridge regularization is that the test procedure is com-
putationally efficient due to the fact that Ωpf`, γq and ∆pf`, γq admit closed forms as

shown in Lemma 2.1. These quantities can be estimated by pΩ`pγnq “ pΘp`, γnq ´ 1 and
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p∆`pγnq “ 2pδp`, `, γnq, respectively. A closed-form estimator pΞ`pph, γnq is then also avail-
able for Ξp`, h, γq. This leads to the following algorithm.

Algorithm 4.1 (Ridge-regularized test procedure)

1. Specify prior weights t̃ “ pt0, t1, t2q;

2. With mn,pp`q “ p´1trppΣp ´ `Ipq
´1, compute, for any ` P r`, `s,

pΘp`, γnq “ t1´ γn ´ γn`mn,pp`qu
´1,

pΩ`pγnq “ pΘp`, γnq ´ 1,

p∆`pγnq “ 2γnt1` `mn,pp`qupΘ
3p`, γnq ` 2γn`tmn,pp`q ` `m

1
n,pp`qu

pΘ4p`, γnq;

3. For any ` P r`, `s, compute php`, γnq “
ř2
j“0 tjpρjp`, γnq as defined in (3.2) and

pΞ`pph, γnq “
php`, γnq

p∆
1{2
` pγnq

;

4. Select `˚ “ arg max`Pr`, `s
pΞ`pph, γnq;

5. Use one of the standardized statistics

pTLRp`˚q :“

?
nt1` pΩ`˚pγnqu

q1{2
p∆

1{2
`˚ pγnq

rTLRp`˚q ´ q logt1` pΩ`˚pγnqus,

pTLHp`˚q :“

?
n

q1{2
p∆

1{2
`˚ pγnq

rTLHp`˚q ´ qpΩ`˚pγnqs,

pTBNPp`˚q :“

?
nt1` pΩ`˚pγnqu

2

q1{2
p∆

1{2
`˚ pγnq

”

TBNPp`˚q ´
qpΩ`˚pγnq

1` pΩ`˚pγnq

ı

,

where

TLRp`˚q “
ÿq

i“1
logp1` λiq, TLHp`˚q “

ÿq

i“1
λi, TBNPp`˚q “

ÿq

i“1

λi
1` λi

,

and λ1, . . . , λq are the eigenvalues of n´1QTnYT ppΣp´ `
˚Ipq

´1YQn. Reject the null
at asymptotic level α if the test statistic value exceeds ξα.

Although in theory any negative `˚ is allowed in the test procedure, in practice,
meaningful lower and upper bounds ` and ` are needed to ensure stability of the test
statistics when p « n or p ą n and also to carry out the search for optimal ` at a
low computational cost. In our simulation settings we use ` “ ´p´1trppΣpq{100 and

` “ ´20λmaxppΣpq, which generally lead to quite robust performance.
The composite test procedure with ridge-regularization is summarized below.

Algorithm 4.2 (Composite ridge-regularized test procedure)

1. Select prior weights rΠ “ pt̃1, . . . , t̃mq. The canonical choice is pp1, 0, 0q, p0, 1, 0q,
p0, 0, 1qq;
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2. For each t̃j in rΠ, run Algorithm 4.1, get the standardized test statistic pT p`˚j q and

compute pTmax “ max1ďjďm
pT p`˚j q;

3. With the selected tuning parameters p`˚1 , `
˚
2 , `

˚
3 q compute the matrix p∆˚ whose di-

agonal elements are equal to one and whose pi, jq-th entry for i ‰ j is

p∆
´1{2

`˚i
pγnqp∆`˚i ,`

˚
j
pγnqp∆

´1{2

`˚j
pγnq,

where p∆`˚i
pγnq is defined in Step 2 of Algorithm 4.1 and

p∆`˚i ,`
˚
j
pγnq “ 2pΘp`˚i , γnq

pΘp`˚j , γnq
”`˚i

pΘp`˚i , γnq ´ `
˚
j
pΘp`˚j , γnq

`˚i ´ `
˚
j

´ 1
ı

;

4. Project p∆˚ to its closest non-negative definite matrix p∆`˚ by setting the negative

eigenvalues to zero. Generate ε1, . . . , εG with εb “ max1ďiďm Z
pbq
i with Zpbq “

rZ
pbq
i s

m
i“1 „ N p0, p∆`˚ q.

5. Compute the p-value as G´1
řG
b“1 1tεb ą pTmaxu.

4.2. Extension to higher-order regularizers

Through an extensive simulation study in a MANOVA setting, it is shown in Section 5
that the ridge-regularized tests compare favorably against a host of existing test proce-
dures. This is consistent with the findings in Li et al. (2016) in the two-sample mean

test framework. Ridge-shrinkage rescales pHp by ppΣp ´ `Ipq
´1 instead of pΣ´1

p . Broader
classes of scaling matrices have been studied extensively (see Ledoit and Wolf, 2012, for

an overview). They can be set up in the form fppΣpq. When fp¨q is analytic, such scaling
falls within the class of the proposed tests.

The flexibility provided by a larger class of scaling matrices can be useful to design test
procedures for detecting a specific kind of alternative. The choice of the test procedure
may for example be guided by questions such as Which f leads to the best asymptotic
power under a specific sequence of local alternatives, if H0 is rejected based on large
eigenvalues of Mpfq? While a full characterization of this question is beyond the scope
of this paper, a partial answer may be provided by restricting to functions f in the
higher-order class

Fhigh “

!

f`pxq “
”

ÿκ

j“0
ljx

j
ı´1

: ` “ pl0, . . . , lκq
T P G

)

,

where G is such that f` is uniformly bounded and monotonically decreasing on X , for
any ` P G. These higher-order shrinkage functions are weighted averages of ridge-type
shrinkage functions. To see this, suppose the polynomial

řκ
j“0 ljx

j has roots r1, . . . , rκ0 P

CzX with multiplicity s1, . . . , sκ0
P N`. Via basic algebra, f` can be expressed as

f`pxq “
”

ÿκ

j“0
ljx

j
ı´1

“
ÿκ0

j“1

ÿsκ0

i“1
wjipx´ rjq

´i, (4.1)
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with some weights wji P C. If all roots are simple, f` is a weighted average of ridge-
regularization with κ different parameters. Heuristically, it is expected that a higher order
f` yields tests more robust against unfavorable selection of ridge shrinkage parameter.

The design of G is not easy when κ is large. Here, we select κ “ 3, which is the
minimum degree that allows f´1

` to be both locally convex and concave. In this case,
the complexity of selecting the optimal regularizer is significantly higher than for ridge-
regularization. Due to space limitations, we move the design of G and the test procedure
when κ “ 3 to Section S.1 of the Supplementary Material.

5. Simulations

In this section, the proposed tests are compared by means of a simulation study to two
representative existing methods in the literature, Zhou, Guo and Zhang (2017) (ZGZ)
and Cai and Xia (2014) (CX). We focus on one-way MANOVA, a set-up for which both
competing methods are applicable. It is worth mentioning that CX requires a good esti-
mator of the precision matrix Σ´1

p , that is typically unavailable when both Σp and Σ´1
p

are dense. In the simulations, the true Σ´1
p is utilized for CX, thus making it an oracle pro-

cedure. In the following, LRridge, LHridge, and BNPridge denote the ridge-regularized tests
presented in Algorithm 4.1. LRhigh, LHhigh, and BNPhigh denote the tests with higher-
order shrinkage introduced in Section 4.2 with κ “ 3. LRcomp, LHcomp and BNPcomp

denote the composite ridge-regularized tests of Algorithm 4.2 with the canonical choice
of rΠ “ pp1, 0, 0q, p0, 1, 0q, p0, 0, 1qq.

5.1. Settings

The observation matrix Y was generated as in (1.1) with normally distributed Z. Specifi-
cally, we selected k “ 3 or 5, and N “ 300. For k “ 3, the three groups had 75, 90 and 135
observations, respectively. For k “ 5, the design was balanced with each group containing
60 observations. The dimension p was 150, 600, 3000, so that γn “ p{n « 0.5, 2 and 10.
The columns of B were the k group mean vectors. Accordingly, the columns of X were
the group index indicators of observation subjects. We selected C to be the successive
contrast matrix of order q “ k ´ 1. This is a standard one-way MANOVA setting.

Under the null, B is the zero matrix. Under the alternative, for each setting of the
parameters and each replicate, B is generated using one of the following models.

(i) Dense alternative: The entries of B are i.i.d. N p0, c2q with c “ Opn´1{4p´1{2q used
to tune signal strength to a non-trivial level.

(ii) Sparse altenative: B “ cRV with c “ Opn´1{4p´1{2q, where R is a diagonal pˆ p
matrix with 10% randomly and uniformly selected diagonal entries being

?
10 and

the remaining 90% being equal to 0, and V is a p ˆ p matrix with i.i.d. standard
normal entries.

The following four models for the covariance matrix Σ “ Σp were considered. All
models were further scaled so that trpΣpq “ p.
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Figure 1: Size-adjusted power with Σ “ Σden, k “ 5. Rows (top to bottom): B “ Dense and Sparse;
Columns (left to right): p “ 150, 600, 3000. BNPcomp (red, solid); ZGZ (green, solid); oracle CX (purple,
solid); BNPridge (black, dashed) and BNPhigh (blue, dotted-dashed) with t̃ “ p1, 0, 0q.

Σ “ Σdis Σ “ Σtoep
k “ 3 k “ 5 k “ 3 k “ 5

n “ 300, p “ 150 600 3000 150 600 3000 150 600 3000 150 600 3000

LRridge

t̃1 4.8 5.0 4.6 4.7 4.5 5.0 5.4 4.4 4.8 4.5 4.6 4.6
t̃2 5.1 5.2 4.9 5.2 4.6 5.1 5.4 4.9 4.9 4.9 4.8 5.0
t̃3 5.6 5.5 5.1 5.7 5.3 5.3 5.8 5.2 5.0 5.7 5.4 5.1

LHridge

t̃1 5.8 6.0 5.2 6.6 6.3 5.6 6.4 5.3 5.2 6.2 6.3 5.3
t̃2 5.7 5.7 5.1 6.3 5.6 5.5 5.9 5.3 5.0 5.8 5.6 5.3
t̃3 5.6 5.5 5.2 5.8 5.3 5.4 5.8 5.3 5.1 5.7 5.4 5.2

BNPridge

t̃1 3.9 4.1 4.3 3.1 3.1 4.1 4.4 3.7 4.4 3.2 3.4 3.9
t̃2 4.6 4.8 4.8 4.1 4.0 4.9 4.9 4.4 4.8 4.1 4.3 4.7
t̃3 5.5 5.5 5.0 5.7 5.2 5.1 5.8 5.2 5.0 5.6 5.4 5.1

LRhigh

t̃1 6.3 6.4 4.8 5.9 7.0 5.5 7.1 7.0 5.3 7.5 6.9 5.2
t̃2 7.9 6.5 4.8 8.3 7.1 5.5 7.6 7.2 5.3 7.8 7.0 5.2
t̃3 6.1 5.6 4.8 6.4 6.1 5.5 6.7 6.5 5.3 6.6 6.4 5.2

LHhigh

t̃1 6.6 6.5 5.0 6.2 7.2 5.7 7.2 7.2 5.5 7.7 7.0 5.5
t̃2 8.0 6.6 5.0 8.5 7.2 5.7 7.8 7.2 5.5 8.0 7.1 5.5
t̃3 6.2 5.6 5.0 6.5 6.2 5.7 6.7 6.5 5.5 6.7 6.5 5.5

BNPhigh

t̃1 6.1 6.3 4.7 5.6 6.8 5.3 7.1 7.0 5.2 7.2 6.8 5.1
t̃2 7.9 6.4 4.7 8.2 7.0 5.3 7.5 7.1 5.2 7.7 7.0 5.1
t̃3 6.1 5.5 4.7 6.4 6.0 5.3 6.6 6.4 5.2 6.5 6.3 5.1

LRcomp 6.2 5.2 5.0 5.2 5.3 5.5 5.9 5.0 5.1 5.5 4.9 4.9

LHcomp 7.0 5.9 5.3 6.5 6.4 6.0 6.6 5.6 5.3 6.6 5.7 5.3

BNPcomp 5.5 4.6 4.8 4.4 4.6 5.0 5.4 4.6 4.9 4.8 4.4 4.6
ZGZ 5.5 4.7 4.6 5.7 5.1 5.3 6.0 5.5 5.0 5.9 5.6 5.0

CX (Oracle) 5.3 5.9 6.6 6.8 7.2 8.6 5.3 6.2 6.8 6.8 7.2 8.4

Table 2. Empirical sizes at level 5%. Σ “ Σdis and Σtoep; t̃1 “ p1, 0, 0q, t̃2 “ p0, 1, 0q, t̃3 “ p0, 0, 1q.
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(i) Identity matrix (ID): Σ “ Ip.
(ii) Dense case Σden: Here Σ “ PΣp1qP

T with a unitary matrix P randomly generated
from the Haar measure and resampled for each different setting, and a diagonal
matrix Σp1q whose eigenvalues are given by λj “ p0.1 ` jq6 ` 0.05p6, j “ 1, . . . , p.
The eigenvalues of Σ decay slowly, so that no dominating leading eigenvalue exists.

(iii) Toeplitz case Σtoep: Here Σ is a Teoplitz matrix with the pi, jq-th element equal to
0.5|i´j|. It is a setting where Σ´1 is sparse but Σ is dense.

(iv) Discrete case Σdis: Here Σ “ PΣp2qP
T with P generated in the same way as in

(ii), and Σp2q is a diagonal matrix with 40% eigenvalues 1, 40% eigenvalues 3 and
20% eigenvalues 10.

All tests were conducted at significance level α “ 0.05. Empirical sizes for the various
tests are shown in Tables 1 and 2. Empirical power curves versus expected signal strength
n1{4p1{2c are reported in Figures 1–3. To better compare the power of each test, curves
are displayed after size adjustment where the tests utilize the size-adjusted cut-off values
based on the actual null distribution computed by simulations. Counterparts of Figures
1–3 that utilize asymptotic (approximate) cut-off values are reported in Section S.12 of
the Supplementary Material. The difference between the two types is limited. LR, LH
and BNP criteria behave similarly across simulation settings, as indicated by Theorem
2.4. Therefore, only one of them is displayed in each figure for ease of visualization. More
figures can be found in Section S.11 of the Supplementary Material. Note that, in some
of the settings, several of the power curves nearly overlap, creating an occlusion effect.
Then, power curves corresponding to the composite tests are plotted as the top layer.

5.2. Summary of simulation results

Tables 1 and 2 show the empirical sizes of the proposed tests are mostly controlled
under 7.5%. The slight oversize is caused by the fact that Mpfq behaves like a quadratic
form, therefore the finite sample distribution is skewed. LR and BNP tests are more
conservative than LH tests because the former two calibrate the statistics by transforming
eigenvalues of Mpfq. Ridge-regularized tests are slightly more conservative under higher-
order shrinkage.

Note that in both simulation settings, B consists of independent entries. There-
fore, t̃1 “ p1, 0, 0q is considered as a correctly specified prior, while t̃2 “ p0, 1, 0q and
t̃3 “ p0, 0, 1q are considered as moderately and severely misspecified, respectively. The
composite tests combine t̃1, t̃2 and t̃3, and are therefore considered as consistently cap-
turing the correct prior. We shall treat the composite tests as a baseline to study the
effect of prior misspecification, by comparing them to tests using a single t̃.

For each simulation configuration considered in this study, the proposed procedures
are as powerful as the procedure with the best performance, except for the cases when B
is sparse, p is small, and priors are severely misspecified in the proposed tests; see Figure
S.11.6 in the Supplementary Material. We highlight the following observations based on
the simulation results.
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Figure 2: Size-adjusted power with Σ “ Σden, k “ 5. Rows (top to bottom): B “ Dense and Sparse;
Columns (left to right): p “ 150, 600, 3000. LHcomp (red, solid); ZGZ (green, solid); oracle CX (purple,
solid); LHridge (black, dashed) and LHhigh (blue, dotted-dashed) with t̃ “ p0, 0, 1q.

(1) The composite tests are slightly less efficient than BNPridge and BNPhigh when the
correct prior t̃1 is used, as in Figure 1. However, as in Figure 2, when the prior is
severely misspecified, the composite test is significantly more powerful. It suggests
that the composite tests are robust against prior misspecification, although losing
some efficiency against tests with correctly specified priors.
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Figure 3: Size-adjusted power with Σ “ Σtoep, k “ 3. Rows (top to bottom): B “ Dense and Sparse;
Columns (left to right): p “ 150, 600, 3000. LRcomp (red, solid); ZGZ (green, solid); oracle CX (purple,
solid); LRridge (black, dashed) and LRhigh (blue, dotted-dashed) with t̃ “ p0, 1, 0q.

(2) Although ridge-shrinkage and higher-order shrinkage behave similarly under the
correct prior, the latter outperforms the former when the prior is misspecified; see
Figure 2. This provides evidence for the robustness of high-order shrinkage against
unfavorable ridge shrinkage parameter selection.

(3) ZGZ is a special case of the proposed test family with fpxq “ 1 for all x, which

amounts to replacing pΣp with Ip. When Σp “ Ip, ZGZ appears to be the reasonable
option at least intuitively. Note, both Fridge and Fhigh contain functions close to
fpxq “ 1. Figures for Σp “ Ip displayed in Section S.11 of the Supplementary
Material show that the proposed tests perform as well as ZGZ in that case. It may
be viewed as evidence of the effectiveness of the data-driven shrinkage selection
strategy detailed in Section 3.
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(4) Comparing to ZGZ, when the eigenvalues of Σp are disperse, the proposed tests are
significantly more powerful when p “ 150 and 600, but behave similarly as ZGZ
when p “ 3000. On the other hand, as in Figure 2, the ridge-regularized test with
a severely misspecified prior t̃3, is close to ZGZ.

(5) CX is a test specifically designed for sparse alternatives. The procedure shows
its advantage in favorable settings, especially when p “ 150. Simulation results
suggest that the proposed tests are still comparable to CX even under sparse BC
and Σ´1

p , as long as the prior in use is not severely misspecified. When p is large,
the proposed tests are significantly better when Σp “ Ip. Evidence may be found
in Figures S.11.10, S.11.11 and S.11.12 of the Supplementary Material.
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Appendix: Proof of Theorem 2.1

This appendix contains a proof outline of Theorem 2.1. Additional proofs of supporting
lemmas and other theorems can be found in the Supplementary Material.

Recall Qn “ XT pXXT q´1CrCT pXXT q´1Cs´1{2. Introduce Qn “ UnVn with

Un “ XT pXXT q´1{2 and Vn “ pXX
T q´1{2CrCT pXXT q´1Cs´1{2 .

This decomposition will aid the analysis of the correlation between YQn and pΣp.

From now on, use Σ
T {2
p to denote pΣ

1{2
p qT . Under the null hypothesis, the following

representations hold:

Mpfq “ n´1V Tn U
T
n ZTΣT {2p fppΣpqΣ

1{2
p ZUnVn,

pΣp “ n´1Σ1{2
p ZpI ´ UnU

T
n qZ

TΣT {2p .

Observe that the joint asymptotic normality of entries in
?
nMpfq is equivalent to the

asymptotic normality of

n´1{2αTV Tn U
T
n ZTΣT {2p fppΣpqΣ

1{2
p ZUnVnη

for arbitrary (but fixed) vectors α and η P Rq .
Recall that X “ r0, lim supp λmaxpΣpqp1`

?
γq2s. Let C be any contour enclosing X

such that fp¨q is analytic on its interior. With slight modifications, all arguments in the
following hold for arbitrary such C. For convenience, select C as rectangle with vertices
u ˘ iv0 and u ˘ iv0, such that v0 ą 0; u ą lim supλmaxpΣpqp1 `

?
γq2; u ă 0. Such a

rectangle must exist.
By Cauchy’s integral formula, if λmaxppΣpq ă u,

n´1{2αTV Tn U
T
n ZTΣT {2p fppΣpqΣ

1{2
p ZUnVnη

“
´1

2πi

˛
C
fpzqn´1{2αTV Tn U

T
n ZTΣT {2p ppΣp ´ zIq´1Σ1{2

p ZUnVnηdz.
(A.1)

If λmaxppΣpq ě u, the above equality may not hold. However, if we can show that

PpλmaxppΣpq ě uq converges to 0, we can still acquire the weak limit of the left-hand
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side by deriving the weak limit of the right-hand side. Yin, Bai and Krishnaiah (1988,
Theorem 3.1) implies that

PpλmaxppΣpq ě uq Ñ 0. (A.2)

Hence, it suffices to show the asymptotic normality of the process

ξnpz, α, ηq “ n´1{2αTV Tn U
T
n ZTΣT {2p ppΣp ´ zIq´1Σ1{2

p ZUnVnη, z P C.

Clearly, ξpz, α, ηq is continuous with respect to z. All asymptotic results are derived in
the space of continuous functions on C with uniform topology. Results in Chapter 2 of
Billingsley (1968) apply with Euclidean distance replaced by Frobenius norm of a matrix,
that is }A}F “ p

řm
i“1

řr
j“1 |aij |

2q1{2, where A “ raijsij .
We may proceed to prove the asymptotic normality of ξnpz, α, ηq on z P C directly.

However, several technical challenges need to be addressed. First, in view of the spectral
norm of ppΣp´zIq´1 being unbounded when z is close to the real axis and extreme eigen-

values of pΣp exceed lim supλmaxpΣpqp1`
?
γq2, the tightness of the process ξnpz, α, ηq is

unclear. Secondly, pΣp is not a summation of independent terms, but contains ZUnU
T
n ZT ,

a component containing cross product terms between pairs of columns of Z. These terms
entangle the analysis of the correlation between pΣp and each single column of Z. For
these technical reasons, we avoid directly working on ξnpz, α, ηq under C1 on z P C,

but start with n´1{2UTn ZTΣ
T {2
p prΣp´ zIq´1Σ

1{2
p ZUn, a component of ξnpz, α, ηq with pΣp

replaced by an uncentered counterpart

rΣp “
1

n
Σ1{2
p ZZTΣT {2p . (A.3)

The relationship between rΣp and pΣp is given by pΣp “ rΣp´
1
nΣ

1{2
p ZUnU

T
n ZTΣ

T {2
p . Next,

we modify the process and the distribution of Z as follows.
Process smoothing. Select a sequence of ρn ą 0 such that for some ω P p1, 2q

nρn Ó 0, ρn ě n´ω.

Let C` “ C X tu` iv : |v| ě ρnu. Define

rQnpzq “ n´1UTn ZTΣT {2p prΣp ´ zIq´1Σ1{2
p ZUn, if z P C`,

rQnpzq “
ρn ´ v

2ρn
rQnpu` iρnq `

v ` ρn
2ρn

rQnpu´ iρnq, if z P CzC`.

To understand this definition better, note that if z is too close to the real axis, rQnpzq is
modified to be the linear interpolation of its values at u`iρn and u´iρn. Observe that Vn
appearing in ξnpz, α, ηq was left out when defining rQnpzq. This trick helps transforming

back to pΣp from rΣp; see (A.5). Note also that Vn is a sequence of deterministic matrices
of fixed dimensions, having a limit under C5 and C6. The reason to smooth the process
is to guarantee a bound of order Opρ´1

n q on the spectral norm of prΣp ´ zIpq´1. It is
crucial in the proof of tightness.
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Variable truncation. C1 will be temporarily replaced by the following truncated vari-
able condition. Select a positive sequence εn such that

εn Ñ 0 and ε´4
n Erz4

111p|z11| ě εnn
1{2qs Ñ 0.

The existence of εn is shown in Yin, Bai and Krishnaiah (1988). We then truncate zij
to be zij1p|zij | ď εnn

1{2q. The truncated variable is then standardized to maintain zero
mean and unit variance. Since we will mostly work on the truncated variables in the
following sections, for notational simplicity, we shall use zij to denote the truncated
random variables and z̆ij to denote the original random variable satisfying C1. That is,

zij “
z̆ij1p|z̆ij | ď εnn

1{2q ´ Ez̆ij1p|z̆ij | ď εnn
1{2q

tErz̆ij1p|z̆ij | ď εnn1{2q ´ Ez̆ij1p|z̆ij | ď εnn1{2qs2u1{2
.

For some constant K, when n is sufficiently large,

|zij | ď Kεnn1{2, Erzijs “ 0, Erz2
ijs “ 1, Erz4

ijs ă 8. (A.4)

The reason to truncate z̆ij is to obtain a bound on the probability of extreme eigen-

values of pΣp exceeding lim supp λmaxpΣpqp1`
?
γq2, which is crucial to be able to prove

tightness of the smoothed random processes on C. Under the original condition C1, al-
though (A.2) holds, such a tail bound is not available. After the truncation, the following
lemma shown in Yin, Bai and Krishnaiah (1988); Bai and Silverstein (2004) holds.

Lemma A.1 Suppose the entries of Z satisfy (A.4). For any positive ` and any D P

plim supp λmaxpΣpqp1`
?
γq2, uq,

PpλmaxprΣpq ě Dq “ opn´`q.

It is argued later that the process smoothing and variable truncation steps do not change
the weak limit of objects under consideration.

Theorem A.1 For arbitrary vectors a and b P Rk, define Gnpz, a, bq “ aT rQnpzqb. Sup-
pose Z satisfies (A.4) and suppose C2–C6 in Section 2 hold. Then,

n1{2tGnpz, a, bq ´ a
T b p1´Θ´1pz, γqqu D

ÝÑ Ψp1qpzq, z P C,

where
D
ÝÑ denotes weak convergence in CpC,R2q, and Ψp1qpzq is a Gaussian process with

zero mean and covariance function

Γp1qpz1, z2q “ δpz1, z2, γqΘ
´2pz1, γqΘ

´2pz2, γqr}a}
2}b}2 ` paT bq2s.

See Section S.3 of the Supplementary Material for proof of the theorem.
Next, transforming back to pΣp, define

pQnpzq “ n´1UTn ZTΣT {2p ppΣp ´ zIq´1Σ1{2
p ZUn, z P C`,
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pQnpzq “
ρn ´ v

2ρn
pQnpu` iρnq `

v ` ρn
2ρn

pQnpu´ iρnq, z P CzC`.

Using the identity (A.3), and Lemma S.6 in the Supplementary Material, we get

pQnpzq “ rQnpzqrIk ´ rQnpzqs
´1. (A.5)

Notably, pΘpz, γq ´ 1q{Θpz, γq is bounded away from 1 on C. Since pQnpzq is a smooth

function of rQnpzq, applying the delta-method, the following result is an immediate con-
sequence of Theorem A.1.

Lemma A.2 Suppose Z satisfies (A.4) and suppose C2–C6 in Section 2 hold. Then,

n1{2t pQnpzq ´ tΘpz, γq ´ 1uIku
D
ÝÑ Ψp2qpzq, z P C,

where
D
ÝÑ denotes weak convergence in CpC,R2k2q, and Ψp2qpzq “ rΨp2qpzqsij is a k ˆ k

symmetric Gaussian matrix process with zero mean and covariance

ErΨp2qpz1qsiirΨ
p2qpz2qsii “ 2δpz1, z2, γq,

ErΨp2qpz1qsijrΨ
p2qpz2qsij “ δpz1, z2, γq, if i ă j,

ErΨp2qpz1qsijrΨ
p2qpz2qsi1j1 “ 0, if i ‰ i1 or j ‰ j1.

Define a smoothed version of ξnpz, α, ηq as

pξnpz, α, ηq “ ξnpz, α, ηq, z P C`,

pξnpz, α, ηq “
ρn ´ v

2ρn
ξnpu` iρn, α, ηq `

v ` ρn
2ρn

ξnpu´ iρn, α, ηq, z P CzC`.

Lemma A.3 Suppose that Z satisfies (A.4) and C2–C6 hold. Then,

pξnpz, α, ηq ´ n
1{2pΘpz, γq ´ 1qαT η

D
ÝÑ Ψp3qpzq,

where
D
ÝÑ denotes weak convergence in CpC,R2q, and Ψp3qpzq is a Gaussian process with

zero mean and covariance function Γp2qpz1, z2q “ δpz1, z2, γqr}α}
2}η}2 ` pαT ηq2s.

The following result is an immediate consequence of the foregoing:
˛
C

fpzqpξnpz, α, ηq
´2πi

dz´ n1{2Ωpf, γqαT ηùñN p0, r}α}2}η}2 ` pαT ηq2s∆pf, γqq. (A.6)

To complete the proof of Theorem 2.1, we further need to show (A.6) still holds if (A.4)

is extended to C1 and pξnpz, α, ηq is replaced by ξnpz, α, ηq. We present the extension of
(A.6) in Section S.9 of the Supplementary Material.

Supplementary Material

Supplementary Material includes additional simulation results and detailed proofs of the
main theoretical results presented in this paper.
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