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Abstract

Paper presents a novel application for an autonomous robot to perform RFID-based inventory in a retail environment. For this application, one

challenge is to represent a complicated environment by a good quality map. LIDAR (light detection and ranging) sensors only generate a 2D plane
map that loses a large amount of structural information. In contrast, stereo or RGB-D cameras provide abundant environmental information but in a
limited field of view (FOV), which limits the robot’s ability to gain reliable poses. Another challenge is effectively counting inventory within a massive
retail environment; the robot needs to navigate in an optimal route that covers the entire target area.

To overcome the aforementioned challenges, we propose a multilayer mapping method combined with an Ant Colony enhanced path planning
approach. Multilayer mapping utilizes a LIDAR and RGB-D camera (Microsoft Kinect camera) to obtain both accurate poses and abundant surrounding
details to create a reliable map. To improve inventory efficiency, ACO-enhanced path planning is deployed to optimize the entire inventory route
that minimizes total navigating distance without losing the inventory accuracy. Our experimental results show that multilayer mapping provides a
precise and integrated map that enables the robot to navigate in a mock apparel store. Additionally, the efficiency of RFID-based inventory is greatly
improved. Compared with the traditional method of manual inventory, ACO-enhanced path planning reduced total navigational distance by up to

28.2% while keeping inventory accuracy the same as before.
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Introduction

Keeping accurate inventory is crucial for the retail industry
to stay profitable and efficient. Traditionally, most retail stores
perform manual inventories that are costly, inefficient and error
prone. Since the last decade, radio-frequency identification (RFID)
technology has been widely adopted by retailers [1]. However, even
equipped with RFID technology, existing tools and systems still
rely on employees to carry readers to scan the tag of each product.
Employees move around and make their own decisions while
scanning. To increase inventory efficiency and reduce labor cost,
retailers have attempted to deploy autonomous mobile robots for
RFID-based inventory [2-5].

In this paper, we introduce a systematic approach that enables
robots with onboard RFID-readers to autonomously perform
accurate inventories for retailers. Retail environments are dynamic

@ @ This work is licensed under Creative Commons Attribution 4.0 LicenselO]RAT.MS.ID.OOOSOl.

and complex. To safely and efficiently perform inventory counts,
robots must be able to navigate without colliding with obstacles. To
overcome this challenge, an algorithm for building a high-quality
map that can precisely represent the surrounding environment is
necessary. A common method that allows a robot to build a map
in an unknown space is known as simultaneous localization and
mapping (SLAM) [6].

For indoor robotic applications, light detection and ranging
(LIDAR) sensors and stereo or RGB-D cameras are the most
widely used mapping sensors. However, mapping methods using a
single sensor have obvious limitations. First, LIDAR sensors scan
the environment, detect objects on a 2D plane, and then provide
precise relative distances and angles of each item. However, the
2D map built by LIDAR is unable to describe the complicated
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geometric features of an object-rich, confined retail environment.
Alternatively, stereo or RGB-D cameras simultaneously collect
depth and RGB information and images. Then, each pixel of the RGB
images is paired with the corresponding depth value of the depth
image. Subsequently, 3D point clouds are generated to reconstruct
the surrounding environment. However, due to limited field of view
(FOV) of the camera, robots lack the ability to obtain reliable and
accurate pose estimation.

In addition to accurate mapping, RFID-enabled robots work
quickly and consume little power, therefore reducing operational
time and resource consumption. Inventory can be performed more
frequently and dynamic changes in stock can be precisely recorded.
Additionally, these robots move close to shelves stocked with RFID-
tagged products and scan all tags until the entire target space is
covered. When finished, they return to the initial launch point. To
decrease the time-cost of inventory counts, the robot requires an
optimized path with the shortest navigational distance throughout
the whole inventory route. The challenge of ensuring the robot
visits all locations of interest without repeating is known as a typical
Traveling Salesman Problem (TSP). There has been some pilot work
utilizing various algorithms, such as the Genetic Algorithm (GA) for
the TSP, to optimize the path of mobile robots [7].

In this paper, we propose a novel approach that provides precise
maps and optimizes the inventory path in a retail environment.
For mapping, a new method-called multilayer mapping-fuses the
LIDAR and a Microsoft Kinect RGBD camera (hereafter, Kinect for
short) to create a precise and feature-rich map of the surrounding
environment. It relies on LIDAR to provide frequent and reliable
poses of the robot, while Kinect offers abundant details of the
complicated environment for map building. The map generated
by this multilayer mapping method contains precise poses and
abundant structural features of the surrounding environment.
Hence, it can accurately reconstruct the complex environment and
support effective inventory operations. Motivated by the method
introduced in [3], the robot is equipped to scan RFID tags in a target
space by following a designated path determined by the unique
requirements of the employed RFID technology and created map.
The Ant Colony Optimization (ACO) algorithm is implemented to
minimize the total distance of the inventory route without affecting
inventory accuracy. The main contributions of this paper are as
follows:

1) Develop amethod that fuses a LIDAR sensor and an RGB-D
camera to precisely map complex indoor environments,

such as retail stores.

2) Implement the ACO algorithm to optimize an inventory
path that minimizes the whole navigational distance

while maintaining inventory accuracy.

3) Create a prototype system and conduct several

experiments in a mock apparel store. Results

demonstrate that our proposed method can efficiently
and autonomously execute RFID-based inventory and

provide accurate inventory outputs.
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Related Work

Deploying a robot in a retail environment is not a new idea;
recently, several pilot projects have explored this topic [8-12].
Additionally, some robotic applications have been adopted for
customer assistance, inventory control, and other uses in retail
stores, distribution centers, and warehouses. However, it is
a challenge to deploy autonomous robots in a complex retail
environment. Doing so requires careful attention to environment
mapping, navigation strategies, and sensor technology.

Pilot initiatives of retail automation applications

A robot assistant that directly interacted with customers was
designed by Brodeur [13]. Agnihotram introduced a robot to
patrol the store and provide autonomous shelf analysis to track
dynamic product stocks in retail [14]. Based on machine learning
algorithms, the robot was trained with selected parameters
to detect product boxes with computer vision technologies.
Meanwhile, RFID technologies are widely deployed for a similar
concept. Melia-Segui conducted an RFID-based installation in a
clothing shop in Barcelona [15]. The application interacted with
customers for several months. Massimo designed an RFID gate for
fashion retailers [16], and experiments were performed to test the
efficiency of the gate’s RFID tag reading process. Motroni presented
the phase-based SARFID algorithm to locate static RFID tags with
UHF-RFID readers [17].

In addition to these initial trials of deploying automated RFID
technology in the retail industry, increasingly more research has
focused on combining RFID and robots. Ehrenberg designed the
LiBot system for autonomous library book checking [18]. The LiBot
system enabled the robot to read shelves and locate misplaced
books. Product stock in retail must be recorded routinely, and
object counting is commonly used for inventory management.
Schairer introduced an RFID-based, machine-supported inventory
system [19]. A robot with an RFID reader continuously detected
RFID-tagged products in a simulated supermarket environment.
Miller combined LIDAR and RFID readers on a robot platform to
design the Automated Asset Locating System (AALS) [20]. A robot
with AALS was able to autonomously detect more than 100 target
tags along a 1.4 km navigation path.

Mapping methods

One of the most critical tasks for an autonomous mobile
robotic system is to precisely map the surrounding environment.
Introduced by Durrant-Whyte, SLAM is a fundamental function in
mobile robotic research and applications [21]. There are several
SLAM methods, including the extended Kalman filter (EKF) using
SLAM and FastSLAM using the Rao-Blackwellized filter [22,23].
SLAM implementations are classified according to the sensors
mounted on the robot. For this research, we focused on LIDAR-
based SLAM, visual SLAM, and sensor fusion SLAM.

LIDAR-based SLAM methods have been widely used in previous
decades. LIDAR extracts discrete points that describe distance and
orientation of objects [24]. The nature of LIDAR guarantees highly
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accurate object detection, and, hence, generates high quality maps.
Additionally, optical density has no impact on LIDAR, so LIDAR-
based SLAM methods can be performed in both indoor and outdoor
environments [25, 26]. Alternatively, visual SLAM methods generate
3D maps with rich environmental information using stereo, RGB-D,
or monocular cameras. Paz presented stereo SLAM in the early
years [27]. R.A. Newcombe developed RGB-D SLAM based on Kinect
[28]. Engel performed LSD-SLAM to build a large-scale map using a
monocular camera [29]. More visual SLAM approaches, including
RTAB, and ORB-SLAM, have been developed in recent years [30,31].

However, the maps generated by low-cost 2D LIDAR lack
vertical information to describe complicated environments.
Additionally, visual SLAM approaches obtain poor pose estimations
when locating the object coordinates or a robot in space. To
overcome these issues, sensor fusion methods for mapping are
developed by merging information from both LIDAR and Kinect
[32]. However, information loss occurs during the merging process.
In our paper, we introduce a multilayer mapping approach that

reduces information loss.

Robotic navigation approaches

Path planning strategies for robot navigation can be classified
as local and global. Local path planning prioritizes motion control
and collision avoidance, while the global path planning prioritizes
generating routes for robots so that they may to complete navigation
[33-35]. We focus on the global path planning algorithms for this
paper. The A-star (A*) algorithm was first published in 1968 and is
widely used for robot path planning [36,13]. Later, the probabilistic
roadmap (PRM) planner was introduced based on the A* algorithm
to improve its efficiency [37,38]. Although the A* algorithm and
PRM are widely applied to ground robots, the Rapidly-Exploring
Random Tree (RRT) is utilized for aerial robots and robotic arms
[39, 40].

The RRT generates global paths for robots that require high
dimensional motion. Different from the robot’s task of only
moving from a starting point to a target, the inventory task in
our paper requires the robot to return to the starting point after
visiting multiple targets. Global path generation is, therefore, the
same as the TSP. Various optimization algorithms, including the
Genetic Algorithm (GA), Simulated Annealing (SA) and Ant Colony
Optimization (ACO) are widely implemented for TSP optimization
[41-43]. According to the comparison of experiments from [44,45],
ACO provides the best optimization results for medium and large-
scale TSP, which includes more than 50 vertices. Therefore, we
select the ACO method to generate global paths, which comprise
a larger number of discrete destinations, for robots monitoring

inventory in retail environments.

Approach and Theory

Our proposed method consists of two components, multilayer
mapping and ACO-enhanced path planning. Multilayer mapping
creates a reliable map that enables subsequent ACO-enhanced
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path planning to navigate the robot throughout a complex indoor
environment for efficient inventory counting (Figure 1) illustrates

the architecture of our proposed method.

LIDAR Kinect

1. Precisely localizes the robot,
2. Creates an accurate map of a given environment.

Y

The Map of The Environment

ACO Enhanced Path Planning

1. Based on the map of the target area, generate the
navigational path;
2. Deploy an ACO based method to optimize the path.

§

An Optimized Inventory Path

Figure 1: The system Architecture of the Proposed Approach.

Multilayer mapping

Creating a map for a robot in an unknown area can be
accomplished using the SLAM approach [21]. The nature of
traditional SLAM relies heavily on the accuracy of observation.
Our proposed multilayer mapping method fuses LIDAR and Kinect
information together. This method receives pose estimation
information from LIDAR and rich environmental information
from Kinect to generate a map. The precise poses of the robot
and substantial feature details from RGB-D images guarantee the
generated map can reliably and accurately represent a complex
environment.

SLAM: As shown in (Figure 2), traditional SLAM process builds
a map by the iterative process of control updating, observation
extracting, pose estimating, and map updating [21]. Based on the
control commands, SLAM predicts the position and heading of the
robot against its previous pose. SLAM then receives observation
data from LIDAR, camera or sonar sensors. Together with the
observation data and the predicted pose, SLAM estimates the
current pose of the robot. Lastly, SLAM updates the map with
the robot’s current pose and observation data. It continues this
cycle until the map building process is complete. As one of the
fundamental functions of the mobile robot, there are various
implementations of SLAM, and Rao Blackwell Particle Filter (RBPF)
is widely used for robot tracking [46]. The core procedure of the
traditional RBPF based SLAM can be represented by the following
equation:

P('xlzt’m | Zl:t’uO:t—l) = P(xlzt | Zl:t’uO:t—l)P(m | xl:tﬂzlzt) (1)
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Here, x presents the pose of the robot, m is the map, z denotes
the observation from sensor, and u refers to the control command
(e.g. the odometry information).

‘ Control Updating ‘

l

l Observation Extracting ‘

Pose Estimating

Map Updating

Figure 2 : Traditional SLAM.

>

P(xlzt ,m| Ziys uOZH) estimates the pose of the robot based on
the control commands and observations. It is a typical localization
problem in the robotics community, and there are many solutions
available, including the Monte Carlo localization algorithm [47] that
provides robust pose estimation.

P(m|x,,z,) updates the map based on the given pose of the
robot.

The process of multilayer mapping: Equation (1) shows
that the observations from a sensor are critical for the SLAM
process. However, use of a single sensor hinders robust and
reliable implementation of traditional SLAM. Therefore, we
conducted a benchmark experiment to overcome this challenge.
In this experiment, a 360 degree Lase Scanner Development Kit
(RPLIDAR) [48] and a Microsoft Kinect were selected. The RPLIDAR
only provides a 2D slice of the surrounding environment. Although
existing obstacles outside of the scanning plane of RPLIDAR could
cause a collision during navigation, its longer sense range and
wider angle of FOV provide precise pose during the SLAM process.
Alternatively, Kinect captures 3D images that contain tremendous
detail of the environment in a smaller FOV. We compared the
output of those sensors in (Figure 3,3a) is a photo of a shoe rack
and (Figure 3b) is the corresponding 3D image generated by
Kinect. It is obvious that the 3D image shows much more structural
information about the shoe rack. Usually, the 3D image would be
converted to 2D scan data due to inadequate computing capability
of cost-constrained indoor robots [49]. (Figure 3c) illustrates the
2D scan data projected from Kinect’s depth image, and (Figure 3d)
shows the 2D scan data from RPLIDAR. Here, the red dots represent
the edges of detected objects in the surrounding environment.
Obviously, the observations of LIDAR alone cannot correctly detect
the shoe rack. RPLIDAR only detected the columns of the rack that
were presented as several dots in the scanning output. RPLIDAR
supports a much wider FOV that enables it to detect more objects
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from the surrounding environment, whereas Kinect has a limited
FOV (about 57 ®horizontally and 43 °vertically) that can only detect
the front of the shoe rack. Thus, a short sense range and narrow
FOV prevent Kinect from estimating a precise robot pose.

© (d)

Figure 3 : (a) Photo of shoe rack (b) Registered Depth Image of
Shoe Rack from the Kinect (c) 2D Scanning that is Projected from
the Depth Image (d) 2D Scanning from a LIDAR Sensor.

It is necessary to integrate data obtained from both LIDAR
and Kinect when using both types of sensors [50]. First, we
synchronized observations from the different sensors. For example,
Kinect provides observations in 30 Hz while the frequency of most
LIDAR updating is less than 10 Hz. Second, we addressed the issue
of information loss that occurs during the merging process. LIDAR
only scans a 2D plane and obstacles out of its limited scanning
plane are missed. Therefore, SLAM may treat the objects detected
by Kinect as noise or temporary obstacles and refuse to update
the map. Hence, it is difficult to generate a consistent map during
merging. To overcome the limitations of using single sensor in
map building, we created a multilayer mapping method in which
both LIDAR and Kinect are deployed to offer sufficient observation
information and compensate each other. Instead of merging the
observations from multiple sensors for a single SLAM stack, we
start one SLAM stack for each sensor. The process of multilayer
mapping is shown in (Figure 4). In our proposed method, the
two SLAM stacks work together to produce a multilayer map. The
LIDAR SLAM stack generates a reliable pose estimation of the robot,
which enhances the inaccurate pose estimating of the Kinect SLAM
stack. In this way, two separate map layers with high consistency in
coordinates are obtained to form a multilayer map. From this map,
we obtain accurate poses and all useful structural information of
the environment.

As shown in (Figure 4), the LIDAR SLAM stack is the same as
a traditional SLAM process with control commands and LIDAR

information as its inputs. In this process, the pose of the robot is
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estimated, and a LIDAR-layer map is generated by the observations
from LIDAR. Another process, the Kinect SLAM stack, is based on
the poses from LIDAR SLAM stack to enhance its pose estimation.
Instead of estimating pose from the observations of Kinect and
control information, the Kinect SLAM stack gains the pose from

the LIDAR SLAM stack and control command updates (otherwise
known as Enhanced Pose Estimating). The concept of Enhance Pose
Estimating is shown by the following equations:

P(xz |ft"um)=f(ft'aum) (2)

LIDAR SLAM Stack

( SarSLAMfor LIDAR )
l.__
‘ Control updating |

|

‘ Get Observations from LIDAR |

|
1

Kinect SLAM Stack

( Start SLAM for Kinect )
|
*
|

‘ Pose Estimaiing |

|

‘ Updating the LIDAR Layer Map |

| Enhanced Pose Estimating |
]

I Get Observations from Kinect |

i
| Updating the Kinect Layer Map |
|

Figure 4: Process of Multilayer Mapping.

Here, X, denotes the latest (at time t') estimated pose from the
LIDAR SLAM stack, u,, represents the updated control commands in
time period At (At =t - t'). Function f(.) updates the pose according
the control commands. Since ft is a precise pose estimation, At is
a very short time period between LIDAR and Kinect observations.
The estimation of pose x, contains very little error thatis introduced
by the control update, and that is precise enough for our mapping.
The update of Equation (1) for the Kinect SLAM stack is:

P(x,,,m|z,,u, )= P(x, |ft'a“m YP(m|x,,,z,) (3)

By registering the RGB-D observations from Kinect along
with enhanced pose x, the Kinect layer map shows highly precise
environmental features. Furthermore, because x,1s updated by )_ct ,
the LIDAR layer map and the Kinect layer map are very consistent.
Therefore, with precise poses and abundant details provided by
the multilayer map, the effective performance of robot navigation
is guaranteed.

ACO-enhanced path planning

For an RFID-equipped robot to conduct autonomous inventory
counts in a retail environment, path planning must consider the
requirements of RFID technology. Meanwhile, to improve the
performance of inventory counts, the robot must read all RFID tags
inatargetspace while reducing total moving distance. Consequently,
ACO-enhanced path planning can fulfill those requirements [51].

The UHF-passive RFID sensor model: Due to its low-cost and
capacity to offer unique identification of individual items, ultra-high
frequency (UHF) passive RFID technology is widely deployed in the
retail industry. In a passive UHF RFID system, when a tag receives
a continuous wave (CW) from the reader, it absorbs the energy and
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backscatters CW to communicate with the reader [52]. The signal
strength attenuates dramatically while the distance between the
reader and tag increases. A typical relationship between distance
and signal strength is shown in (Figure 5) [51]. Therefore, a reader
can only detect the tags in a limited range (e.g., most commercial
off-the-shelf UHF RFID readers can only read tags within several
meters). Furthermore, this range is greatly reduced by the objects
and structures that occur in an indoor environment. When a tag is
out of the detectable range of the reader, detection failures occur.

Signal Strength(dBm)

10 12
Distance(m)

14 16

Figure 5: The diagram of distance and signal strength.

Inventory path design: Motivated by the path planner
introduced in paper [3], a navigational path can be generated from
the map created by our multilayer mapping method. This path can
guide the robot to autonomously perform inventory counts. Here,
the path planner consists of a global and a local path planner. The
global path planner generates the inventory path to pilot the robot
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while counting inventory. It considers requirements of the UHF-
passive RFID sensor model to guide the robot as it navigates close
to merchandise to scan for RFID tags. It provides a group of discrete
goals to represent the path. When the robot navigates to all of the
goals, it will have completed an inventory count within the target
space. (Figure 6) illustrates an example of a global path. The local
path planner focuses on how to safely navigate the robot between
goals in the global path, we chose the Dynamic Window Approach
(DWA) method as our local path planner to navigate without
collision [53].

Traveling salesman problem: The global path is a set of
discrete destinations such as those shown in (Figure 6). The robot
needs to visit them all to carry out inventory counting. To improve
inventory Efficiency, the robot needs to arrive at all destinations
without moving back and forth so it can maintain minimal total
traveling distance [54]. Usually, the robot needs to return to the
same place where it started. This process is exactly the same as the
TSP. As the name TSP implies, a salesman needs to travel to all the
cities on a list without repeating a visit and return to the departure
city. It needs to select the shortest route that contains every city.
Along the graph of the route, cities are referred to as vertices or
points, and we will use the terms of city, point, and vertex changeably
hereafter. We assume that there are n total points in a global path
V ={v1,v2,....v,} During an inventory, the cost for the robot move
between two points is unrelated to the visiting direction.

Figure 6: An example of the global path, the green points indicate
discrete destinations that cover all the target area.

That is, the cost of the robot moving from v, to v, is the same
as v, to Vhere i, je{l,2,..n},i# j. Therefore, the robot’s
behavior during the inventory process can be modeled as an
undirected TSP, which can be defined by the graph G = (V, E).
Here, E:{elz’e13 ,,,,,, ,el_j} and (i, j €{1,2,....,n},i # j), denotes
the edges that contain all the paths of the connected points in V.
Notation e, is used to represent the path between point i and point
j. Notation D:{dlz,dw,...,dij},(i,j e{l,2,...,n},i# j) denotes the
Euclidean distance of the points in V and weights the corresponding
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edge. The optimization of the TSP is to select the edges that connect

all vertices in a closed loop with the minimal total weights [55].

Aco-enhanced path planning: We deploy the ACO algorithm
to solve the aforementioned TSP and provide an optimized
navigational path for the robot to perform an RFID inventory
autonomously and efficiently. ACO is inspired by the natural
behavior of an ant colony [56]. A group of ants tend to find the
shortest path to the location of food and return to the colony. A
single ant can only behave simply, however, a group of ants is able
to accomplish tasks with high complexity. Ants leave the colony and
randomly choose a path to the location of food. When an ant travels,
itleaves pheromone signals on the path. The pheromone evaporates
as time passes. Along a shorter path, it takes less time for an ant to
find food and return to the colony. Hence, during that same time
period, any amount of pheromone left along on the shorter path
will be more than that left on a longer path, as ants tend to select
the paths with more pheromone according to biological instinct.
Gradually, the selection of shorter paths converges until only one

short path remains [43].

ACO is widely used for optimizing various problems, as it tends
to find global optimizing results rather than being trapped into
local optimization [57]. Usually, the ACO algorithm is implemented
in an iterative manner and there are two steps within it in a typical
iteration updating. The first step consists of the state transition
between each point the ant chooses next. When an ant k is about to
move to the next point, it makes the decision by following pseudo-

random proportional rules [58].
argmax {[#(G, )].[nG. )]’} it a<q,
s=47€J() (4)

S otherwise

In (4), s represents the next vertex v, that ants move to. 7(Z, j)
stands for the amount of pheromone left on path e n(i,j) is the
heuristic function that estimates the fitness of the path. In ACO, the
value of 1(i,]) is the inverse of weight dl.j. B decide the weights of
n(i, ). All unvisited vertices are evaluated using Equation (4). The
number g is chosen randomly from the range [0,1]. g, is the threshold
that decides whether to perform probability searching or not. If q is
less than q,, the ant selects the vertex with the maximum value as
its destination. Otherwise, S is generated following the probability
distribution in Equation (5). Formula (5) represents the probability
of the vertex, v, that would be chosen as the destination by ant k at
current vertex v, F(i,j)represents the probability distribution of
the ant k at current vertex i moves to a selected vertex j. S denotes
the selected vertex j that is generated randomly following the
probability distribution P, (i, j). The notation J,(i) is the list that
contains the unvisited vertices of ant k at current vertex v,

[ D[ D]
ZzeJk (i>[T(i’Z)]'[77(i’Z)]ﬂ

ifjel, ()
B, j)= (5)

0 otherwise
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The second step consists of the rules for pheromone signals
along the paths on the map. As time passes, the previous pheromone
signal evaporates while ants come and leave new signal on the
path. Pheromone signal updating follows Equations (6) and (7). In
Formula (6), 7(i, j) stands for the amount of pheromone left on
the path e, and a denotes the weight of the remaining pheromone
from the previous iteration. N is the number of ants in the ACO.

Z I’LArk (i, j)represents the sum of the pheromone signal
that all the ants added to path e, in one iteration. In each iteration,
A7, (i, j) stands for the amount of pheromone added to path e, by
ant k in Equation (7). The value of A7, (i, j) is the inverse of total

distance Length, of the trip completed by ant k. When ant k has
visited all vertices, it is regarded as that the ant k finished the tour.

Then, the distance of the tour cycle is computed.

N
(i, j) = a~z(i, )+ > A7, (i, ) (6)
k=1
———— if ant k finished the tour
L. Length;,
AT, (i, )= (7)
0 otherwise

Destination selection and pheromone signal updating construct
the ACO iteration. The optimal path is gradually generated in
iterations of ACO (Figure 7) shows the process of ACO.

Initiate parameters

<

Yes

Update Jy1), tabu,

Initiate A, j) = 0 for all ants on path ¢
Initiate starl veriex v, randomly for all ants

The tour completes
for each ant

No

select the destination

'| Update Jifi), tabu, |

Update pheromone signal

Seleet the best route perihy, .., from all ants

Yes

D

Yes

fmf""dm . Far'l'lh'wrmn

Figure 7: The Flow Chart of ACO Process.

End [*

Atthe initiating step, the maximum iteration, NC_ _, is set. When
the iteration grows larger than NC_, ACO finishes. The vertices
with coordinate information are sent to ACO as preparation. The
distance between vertices is calculated and 7 (i, j) for each path is
generated. The number of ants is configured. Using a large number
of ants in ACO will reduce the number of iterations needed for
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convergence but increase the time cost of each iteration. To keep a
balance of convergence and the time cost of each iteration, we set
the number of ants similar to the quantity of vertices. Following the
suggestion in paper [59], we set 5 to 4 and « to 0.9. Additionally, we
set q,to 0.2 to rely more on probability searching. Before starting
the ACO iteration, the pheromone distribution on each path was
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kept the same. The parameter 7(i, ]) for all path was initiated
to 1. We built a group of empty lists, tabu, to record the visiting
sequence of all ants. In our paper, the optimal output of ACO is the
inventory route with the minimum total distance. The best route
is set as path  to store the total distance and visiting sequence.
Before the iteration, path  is setas NULL.

At the beginning of each iteration, the start vertex v  is
randomly generated for each ant, J, (i) is updated by deleting the
last visited vertex, and tabu, records the current location of ant
k. If there are vertices remaining on the list J (i), ant k selects the
next vertex as the destination following Equations (4) and (5).
Otherwise, the tour of ant k is complete. During the ACO iteration,
J,(i) and tabu, continuous update the status of tour completion
along the trajectory of ant k. After all of the ants finish their
tours, the pheromone signal left on the path updates according to
Equations (6) and (7). During each iteration, the distance of the
route that is completed by each ant is calculated, and the best route
Pt piion

is updated based on the current path,, .
the shortest path.

iteration

with the minimum distance is determined. The path
. The path_ only stores
among all executed iterations. Hence, after
the number of iterations times reaches NC__, path  provides an
optimal route result that includes the shortest distance and visiting
sequence. Usually, NC_  is selected empirically, it is configured as
150 in all our experiments.

Experimental Results
Experimental setup

Robotic platform: The REX-16D Round Robot Base from Zagro
Robotics was chosen for the hardware platform of our robot. It
is equipped with two driver motors and two caster wheels that
support 360-degree rotation. Three 14-inch ABS plastic boards
make up the chassis of the robot, which hosts the on-board
controller, sensors, and batteries. An additional disk was installed
on the chassis to mount the RFID antennas. For our robot’s sensors,
we choose a Microsoft Kinect and a RPLIDAR 360-degree laser
scanner to obtain data for map building and robot navigation. We
selected the Zebra FX9500 to read RFID tags and placed four Zebra
AN720 antennas on the robot for inventorying. The photo of our
prototype robot platform is provided in (Figure 8).

Figure 8: A Robot mounted with four RFID Antennas.

Environmental setting: To demonstrate the performance of
our proposed method, we conducted several experiments in a mock
apparel store at the RFID Laboratory at Auburn University. The
products and facilities are setup in an en- closed area to simulate a
real-world retail environment. The size of the entire store is about
17 x 12 meters (204 square meters). Tables, sofas, racks and metal
shelves with various geometric shapes are set on the sales floor of
the mock store (Figure 9).

Figure 9: The Mock Apparel Store used in experiments.

Experimental results

Assessment of multilayer mapping: We conducted
experiments to evaluate the performance of multilayer mapping in
a retail context. A map of the mock store was created from scratch,
and, during the mapping process, the robot was manually piloted
by keyboard commands to explore the entire store. (Figure 10a) is
a screenshot of running standard SLAM on Robot Operating System
(ROS). (Figure 10b) shows the sampling points of pose estimation
trails of (Figure 10a) in sequence. As previously mentioned, the
Kinectcannotprovide anaccurate pose due to its limited observation
ability, while LIDAR can provide relatively accurate pose estimation
because of improved FOV. According to (Figure 10b), when the
robot changes directions, the pose estimated by LIDAR data is
precise, whereas Kinect’s pose estimate is prone to larger error.
This is because when the robot turns around, observation data
change dramatically. In such cases, it is difficult for Kinect SLAM
to match the correct parts in the map, which results in significant
errors of the estimated poses, as shown in (Figure 10b) at point 2
(2’) and point 4 (4’) of the Kinect pose trail. Here, point 2’ and Point
4’ denote the estimated positions when the robot suddenly changes
direction (at point 2 and point 4, respectively). Additionally, we
compared the localization accuracy of LIDAR SLAM and Kinect
SLAM in (Table 1). This table shows that for LIDAR, smaller errors
are made during turns and the errors can be controlled within a
certain range thanks to FOV.

Table 1: Pose Estimation Errors of LIDAR and Kinect lingerie table.

Kinect pose error (m) | 1.066 2.131 2.813 3.088 13.06
0.044 0.223 0.174 0.134 | 0.154

LIDAR pose error (m)
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Figure 10: (a) LIDA and Kinect Pose Estimation Trails While Mapping. (b) Pose Comparison of LIDAR, Kinect, and Ground Truth.
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(Figure 11) shows the maps generated by SLAM with LIDAR
(LIDAR-map, Figure 11a) and by SLAM with Kinect (Kinect-map,
Figure 11b). Use of each map has its advantages and disadvantages.
The LIDAR-map is precise but lacks environmental features. LIDAR
can provide long range, 2D plane information that is precise and
covers a large area. But with limited vertical information, it can
only give a simple profile of the environment and most of the useful

structural information is lost. In comparison, the Kinect map is

distorted due to Kinect’s limited field FOV and this map does not
match well with the corresponding parts in the blueprint map.
Consequently, this results in incorrect self-locating by the robot
and, therefore, a distorted map. However, the Kinect-map contains
a lot of environmental feature information, and most of the feature
information contained in this map does not appear on the LIDAR-
map, such as the lingerie table, island racks, and shoe rack shown
in (Figure 11b).
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Figure 11: (a) LIDAR map (b) Kinect Map (c) Blueprint Map.
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Additionally, we conducted an experiment to compare the
performance of SLAM utilizing the conventional merged-sensor
data against our proposed multilayer mapping. The results are
illustrated in (Figure 12, Figure 12a) shows the map that results
from the conventional merged-sensor approach (known as a
merged-sensor map). To simplify the comparison, we adapted the
Kinect-layer map to represent the results of our multilayer mapping
method (consists of two map layers). The developed Kinect-layer
map is shown in (Figure 12b). For this experiment, we set up four
obstacles on the retail floor and labeled them 1 through 4 (in yellow,
(Figure 12c). We measured each obstacle’s ground truth position
and compared these with the positions obtained in the merged-
sensor map and the Kinect-layer map. We selected the center of

each obstacle as its position. The results are shown in (Table 2).
For most obstacles, the estimated position in the Kinect-layer map
was more accurate than those of merged-sensor map. For obstacle
2, both estimation errors are small. The accuracy of an obstacle’s
position is critical to map creation and affects the accuracy of the
whole map. Generally speaking, the Kinect-layer map is better
than the merged-sensor map and our multilayer mapping process
improves position accuracy.

Table 2: The Errors of Obstacle Positions in Merged Sensor Map and
Kinect Layer Map.

Merged Sensor Map Error (m)

0.623

0.093

0.401

0.419

13.06

Kinect Layer Map Error (m)

0.322

0.15

0.35

0.257

0.154
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lingerie table

Figure 12: (a) Merged Sensor Map (b) Kinect layer Map (c) Blueprint Map.

Although the merged-sensor map contains roughly all of the
information in the environment, several problems remain. First,
walls in the merged-sensor map are distorted, especially the left
and right walls. Additionally, the layout in the merged-sensor map
is heavily distorted and looks darker (i.e., the lingerie table and
island rack). That distortion is caused by inaccurate estimation of
self-location. When SLAM updates a map, it first locates itself the
robot. When observation data are merged, useful information is
lost and SLAM would, thereby, give an inaccurate pose. Based on
this inaccurate pose, the updated map is slightly titled. As shown
with the lingerie table, inaccurate estimation of the robot pose
caused incorrect mapping of the table layout. Consequently, many
slightly wrong estimates together make the lingerie table, island
rack, and walls look darker. Second, the shapes of obstacles (i.e,
the lingerie table) can only be determined if Kinect detects the
table repeatedly and the corresponding grid cell in the map can be
marked as “occupied”. However, it is hard for the robot to face the
table from all directions simultaneously, and as a result, the lingerie
table and island rack can only be seen in part.

Compared to the merged-sensor map, our multilayer map is
more consistent (or well-registered) with the blueprint map. The
walls (boundaries of the whole room) of the multilayer map are very
straight and the profiles of obstacles are much more accurate and
clearer. The use of LIDAR-estimated pose reduces map distortion,
and Kinect provides an abundance of vertical structure information
and preserves useful data. The robot updates the observed
information combined with a precise pose to get an accurate and
complete map. Obviously, the robot performs better using the
multilayer algorithm because its location and the structures in
environment are precisely estimated.

(Figure 13a) shows a Kinect-layer map that was made on
another sales floor. Marked in blue in (Figure 13b), there is a table
and a rack on the top, and three big shelves on left side and middle
of the map. The bottom side has some debris piles (marked in gray.
(Figure 13b). These areas are inaccessible to the robot. Most of
these obstacles are shown in the Kinect-layer map and the layout of
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the sales floor is accurate. The multilayer algorithm works well in
different environments, and the Kinect-layer map is very accurate
when compared with the blueprint map. (Figure 14) (Figure 14a)
illustrates a map view of the global path the robot follows during
inventory counts, where the green points are the discrete goals of
the global path that are generated by the method included in [3].
(Figure 14b) is a photo of the robot navigating a sales floor. The
robot is marked by a red rectangle in both (14a) and (14b).
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Figure 14: The robot performs retail inventory. (a) illustrates a
map view of the global path. (b) is a photo of the robot navigating

a sales floor.
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Evaluation of ACO enhanced path planning: Initially, the map
generated by our multilayer mapping method was uploaded for
the robot to conduct the inventory experiments. We extracted the
inventory route covering all RFID tag locations with the global path
planner. The robot followed the path to scan all RFID tags within the
experimental area (Figure 14). We conducted several experiments
to compare the performance of between ACO-enhanced path
planning to the RFID inventory path planning method introduced in
[3]- Performance is evaluated by two criteria: navigation efficiency
and RFID-based inventory accuracy. For all experiments in this
section, the ACO was configured with 68 ants and 150 iterations to
find the best path.

Navigation efficiency: The results of the two paths generated
during a typical inventory process are shown in (Figure 15). In
this figure, the green points are discrete goals of the global path
and the brown curves are the recorded trajectories of the robot
that performed an inventory count throughout the store. These
trajectories show that the robot moves around products while
keeping a safe distance. Additionally, ACO enhanced path planning
allows the robot to navigate more efficiently by reducing route
overlap. We repeated this experiment five times and compared
the average navigational distances and inventory duration by
the two (Table 3). For these experiments, the maximum speed of
each robot for these experiments was set at 0.7 m/s. As shown in
(Table 3), the average inventory duration and navigational distance
were significantly reduced with optimization of ACO-enhanced
path planning. Inventory count time was optimized by 30.7% and
navigational distance was optimized by 28.2%. The difference
between the two was caused by varied navigation speeds of the
robot as decided by the local planner (or DWA) in the inventory
process.

Table 4: Comparison of Inventory Accuracy.

Volume 1-Issue 1

Table 3: Comparison of Inventory Efficiency.

Average Navigation

Distances 374.2 meters

268.6 meters

Average Inventory

. 9 minutes
Time

13 minutes

Figure 15: Comparison of Robot Inventory Navigation Results:
(a) Results of the RFID Inventory Path Planning (b) Results of the
ACO-Enhanced Path Planning.

Inventory accuracy: While ACO improves the efficiency
of navigation, we tested inventory accuracy using the two path
planning methods. We repeated the inventory experiments five
times and compared the average accuracy of the two approaches, as
shown in (Table 4). Overall, average accuracy with ACO-enhanced
path planning was 90.49%. With RFID inventory path planner,
average accuracy was 91.53%. To compare, the best accuracy
manual inventorying can achieve is in the range of 85 - 90%. Our
results show that the ACO-enhanced path planning improves
inventory efficiency and that automated inventory accuracy is
comparable to manual inventory accuracy.

Cloth Rack T-shirts, Dress 198 171 86.36% 173.3 87.53%
tops, Pants

Shoes Rack Shoes 42 41 97.62% 41 97.62%
Dresses Rack Dresses, Shoes 24 24 100% 24 100%

Island Rack Jeans, shoes, 52 48 92.31% 493 94.81%

T-Shirts
Lingerie Table Bras Panties 31 30 96.77% 30 96.77%
Total 347 314 90.49% 317.6 91.53%

Conclusion

This paper presents a novel implementation of an autonomous
robot for inventory in retail. A multilayer mapping method was
introduced as the first step of inventory collection; it fuses sensor
observations from LIDAR and Kinect. Rich environmental data
provided by Kinect and pose estimation data provided by LIDAR
are combined to construct a multilayer map. This provides a
robust method for reconstructing and encapsulating complex retail
environments that are full of products and shelves of various shapes
and heights. Our multilayer mapping method improves the ability

of robots to autonomously navigate in complicated environments.
Additionally, ACO-enhanced path planning and precision can
greatly improve the efficiency of robots that execute RFID-based
inventory counts. Lastly, our method maintains count accuracy at
the same rate as that of the best manual inventory counts. Thus,
our systematic approach is a promising and more cost- and time-
efficient implementation of robotic inventory counting.

Acknowledgement

This work is supported in part by the US NSF under Grant
Grant ECCS-1923163, and through the RFID Lab and the Wireless

Citation: Jian Zhang, Xue Xia, Thaddeus Roppel, Yibo Lyu, Shiwen Mao, Senthilkumar CG Periaswamy, Justin Patton. Enabling a Mobile Robot Page 11 of 13
for Autonomous RFID-Based Inventory by Multilayer Mapping and ACO-Enhanced Path Planning. 1(1): 2019. OJRAT.MS.ID.000501.



Volume 1-Issue 1

Online Journal of Robotics & Automation Technology

Engineering Research and Education Center (WEREC) at Auburn
University, USA.

Conflict of Interest

No conflict of interest.

References

1. B Hardgrave try it-you’ll like it! the RFID lab’s annual state of adoption
report of us retailers, RFID Journal.

2. M Beul, D Droeschel, M Nieuwenhuisen, ] Quenzel, S Houben, et al.
(2018) Fast autonomous flight in warehouses for inventory applications,
IEEE Robotics and Automation Letters 3(4): 3121-3128.

3. ] Zhang, Y Lyu, T Roppel, ] Patton, C Senthil kumar (2016) Mobile robot
for retail inventory using RFID. In: 2016 IEEE International Conference
on Industrial Technology (ICIT), IEEE, pp: 101-106.

4. SM Bae, KH Han, CN Cha, HY Lee (2016) Development of inventory
checking system based on uav and rfid in open storage yard. In: 2016
International Conference on Information Science and Security (ICISS),
IEEE, p: 1-2.

5. WE Davidson (2015) Rail-mounted robotic inventory system. us Patent
9:129-251.

6. MG Dissanayake, P Newman, S Clark, HF Durrant Whyte, MC sorba
(2001) A solution to the simultaneous localization and map building
(slam) problem. IEEE Transactions on robotics and automation 17(3):
229-241.

7. T Roppel, Y Lyu, ] Zhang, X Xia (2017) Corrosion detection using robotic
vehicles in challenging environments. In: CORROSION 2017, NACE
International, Louisiana, USA.

8. N Kejriwal, S Garg, S Kumar (2015) Product counting using images
with application to robot-based retail stock assessment, In: 2015
IEEE International Conference on Technologies for Practical Robot
Applications (Te PRA), IEEE, p: 1-6.

9. TG Zimmerman (2010) System and method for performing inventory
using a mobile inventory robot. US Patent 7: 693-757.

10.X Liu, MD Corner, P Shenoy (2011) Ferret: An RFID enabled pervasive
multimedia application, Ad Hoc Networks 9 (4): 565-575.

11.] Zhang, Y Lyu, J Patton, SC Peria swamy, T Roppel (2018) Bfvp: A
probabilistic uhf rfid tag localization algorithm using bayesian filter
and a variable power RFID model, IEEE Transactions on Industrial
Electronics 65(10): 8250-8259.

12. MA Bonuccelli, F Martelli (2018) A very fast tags polling protocol for
single and multiple readers RFID systems, and its applications. Ad Hoc
Networks 71: 14-30.

13. T Brodeur, A Cater, JC Vaz, P Oh (2018) Directory navigation with robotic
assistance. In: 2018 IEEE 8" Annual Computing and Communication
Workshop and Conference (CCWC), IEEE, pp: 777-778.

14.G Agnihotram, N Vepakomma, S Trivedi, S Laha, N Isaacs, et al
(2017) Combination of advanced robotics and computer vision for
shelf analytics in a retail store. In: 2017 International Conference on
Information Technology (ICIT), IEEE, pp: 119-124.

15.] Melia-Segui, R Pous, A Carreras, M Morenza Cinos, R Parada, et al.
(2013) Enhancing the shopping experience through rfid in an actual
retail store. In: Proceedings of the 2013 ACM conference on Pervasive
and ubiquitous computing adjunct publication, ACM, pp: 1029-1036.

16.B Massimo, R Antonio, R Giovanni, V Andrea (2017) Testing an RFID
receiving gate for improving process accuracy in fashion and apparel
retail. In: 2017 IEEE 3rd International Forum on Research and
Technologies for Society and Industry (RTSI), IEEE, p: 1-5.

17.A Motroni, P Nepa, P Tripicchio, M Unetti (2018) A multi antenna
sarbased method for uhf rfid tag localization via UGV. In: 2018 IEEE
International Conference on RFID Technology & Application (RFIDTA),
IEEE, p: 1-6.

Citation: Jian Zhang, Xue Xia, Thaddeus Roppel, Yibo Lyu, Shiwen Mao, Senthilkumar CG Periaswamy, Justin Patton. Enabling a Mobile Robot
for Autonomous RFID-Based Inventory by Multilayer Mapping and ACO-Enhanced Path Planning. 1(1): 2019. OJRAT.MS.ID.000501.

18.1 Ehrenberg, C Floerkemeier, S Sarma (2007) Inventory management
with an RFID equipped mobile robot. Isn: 2007 IEEE International
Conference on Automation Science and Engineering, IEEE, pp: 1020-
1026.

19.T Schairer, C Weiss, P Vorst, ] Sommer, C Hoene, et al. (2008) Integrated
scenario for machine-aided inventory using ambient sensors. In: 4™
European Workshop on RFID Systems and Technologies, VDE, p: 1-8.

20. TH Miller, DA Stolon, JR Spletzer, (2010) An automated asset locating
system (aals) with applications to inventory management. In: Field and
Service Robotics pp: 163-172.

21.H Durrant Whyte, T Bailey (2006) Simultaneous localization and
mapping: part I. IEEE robotics & automation magazine 13(2): 99-110.

22.M Montemerlo, S Thrun, D Koller, B Wegbreit, et al. Fast slam: A factored
solution to the simultaneous localization and mapping problem.

23.T Bailey, ] Nieto, ] Guivant, M Stevens, E Nebot (2006) Consistency of
the EKF-SLAM algorithm. In: 2006 IEEE/RS] International Conference
on Intelligent Robots and Systems, IEEE, pp: 3562-3568.

24.Y Lin, ] Hyyppa, A Jaakkola (2011) Mini-uav-borne lidar for fine-scale
mapping. I[EEE Geoscience and Remote Sensing Letters 8(3): 426-430.

25.S Kohlbrecher, O Von Stryk, ] Meyer, U Klingauf, (2011) A flexible and
scalable slam system with full 3d motion estimation. In: 2011 IEEE
International Symposium on Safety, Security, and Rescue Robotics, IEEE,
pp: 155-160.

26. LA James, DG Watson, WF Hansen (2007) Using lidar data to map gullies
and headwater streams under forest canopy: South carolina, USA,
Catena 71(1): 132-144.

27.LM Paz, P Piniés, |D Tardés, ] Neira (2008) Large-scale6-dofslamwith
stereo-in-hand. IEEE transactions on robotics 24 (5): 946-957.

28.RA Newcombe, S Izadi, O Hilliges, D Molyneaux, D Kim, et al. (2011)
Kinect fusion: Real-time dense surface mapping and tracking. In: 2011
IEEE International Symposium on Mixed and Augmented Reality, IEEE,
pp: 127-136.

29.] Engel, T Schops, D Cremers (2014) Lsd Slam: Large Scale direct
monocular slam. In: European conference on computer vision, Springer
pp: 834-849.

30. M Labbé, F Michaud (2019) RTAB map as an open source lidar and visual
simultaneous localization and mapping library for large-scale and long-
term online operation. Journal of Field Robotics 36(2): 416-446.

31.R Mur Artal, JMM Montiel, JD Tardos (2015) Orb-slam: a versatile and
accurate monocular slam system. IEEE transactions on robotics 31(5):
1147-1163.

32.] Zhang, S Singh (2015) Visual lidar odometry and mapping: Low-drift,
robust, and fast. In: 2015 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, pp: 2174-2181.

33.EY Lee, H] Cho, KY Ryu (2016) A probabilistic approach for collision
avoidance of uncertain moving objects within black zones. Ad Hoc
Networks 52: 50-62.

34.L Liu, G Han, H Wang, ] Wan (2017) Obstacle-avoidance minimal
exposure path for heterogeneous wireless sensor networks. Ad Hoc
Networks 55: 50-61.

35.R Daij, S Fotedar, M Radmanesh, M Kumar (2018) Quality aware uav
coverage and path planning in geometrically complex environments. Ad
Hoc Networks 73: 95-105.

36. PE Hart, NJ Nilsson, B Raphael (1968) A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems
Science and Cybernetics 4(2): 100-107.

37.LE Kavraki, P Svestka, ] Latombe, MH Overmars (1996) Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.

38. LE Kavraki, ] claude Latombe (1998) Probabilistic roadmaps for robot
path planning.

39.SM Lavalle (1998) rapidly exploring random trees: A new tool for path
planning, Tech rep, USA.

Page 12 of 13


https://www.sciencedirect.com/science/article/abs/pii/S157087051000096X
https://www.sciencedirect.com/science/article/abs/pii/S157087051000096X
https://www.sciencedirect.com/science/article/abs/pii/S1570870517302214
https://www.sciencedirect.com/science/article/abs/pii/S1570870517302214
https://www.sciencedirect.com/science/article/abs/pii/S1570870517302214
https://onlinelibrary.wiley.com/doi/10.1002/rob.21831
https://onlinelibrary.wiley.com/doi/10.1002/rob.21831
https://onlinelibrary.wiley.com/doi/10.1002/rob.21831
https://www.sciencedirect.com/science/article/abs/pii/S1570870516302013
https://www.sciencedirect.com/science/article/abs/pii/S1570870516302013
https://www.sciencedirect.com/science/article/abs/pii/S1570870516302013
https://www.sciencedirect.com/science/article/abs/pii/S1570870516302116
https://www.sciencedirect.com/science/article/abs/pii/S1570870516302116
https://www.sciencedirect.com/science/article/abs/pii/S1570870516302116
https://www.sciencedirect.com/science/article/abs/pii/S157087051830043X
https://www.sciencedirect.com/science/article/abs/pii/S157087051830043X
https://www.sciencedirect.com/science/article/abs/pii/S157087051830043X
doi:10.1109/70.508439
doi:10.1109/70.508439

Online Journal of Robotics & Automation Technology

40.K Yang, S Keat Gan, S Sukkarieh (2013) A gaussian process based rrt
planner for the exploration of an unknown and cluttered environment
with a UAV, Advanced Robotics 27(6): 431-443.

41. M Mitchell (1998) An introduction to genetic algorithms, MIT press, USA.

42.S Kirkpatrick, CD Gelatt, MP Vecchi (1983) Optimization by simulated
annealing. science 220(4598): 671-680.

43.M Dorigo, M Birattari (2010) Ant colony optimization algorithms.

44.HH Mukhairez, AY Maghari Performance comparison of simulated
annealing, GA and ACO applied to TSP. Performance Comparison of
Simulated Annealing, GA and ACO Applied to TSP 6(4).

45.SA Haroun, B Jamal (2008) A performance comparison of ga and aco
applied to TSP. International Journal of Computer Applications 117(20).

46. A Doucet, N De Freitas, K Murphy, S Russell (2000) Rao black wellised
particle filtering for dynamic bayesian networks. In: Proceedings of the
Sixteenth conference on Uncertainty in artificial intelligence, Morgan
Kaufmann Publishers Inc pp: 176-183.

47.S Thrun, D Fox, W Burgard, F Dellaert (2001) Robust monte carlo
localization for mobile robots. Artificial intelligence 128(1-2): 99-141.

48. Slamtec, Rplidar (2018) A1 Low Cost 360 Degree Laser Range Scanner
Introduction and Datasheet, rev 1.1(3).

49,K Kamarudin, SM Mamduh, AYM Shakaff, SM Saad, A Zakaria, et al.
(2013) Method to convert kinect’s 3D depth data to a 2D map for indoor
slam. In: 2013 [EEE 9" International Colloquium on Signal Processing
and its Applications, IEEE, pp: 247-251.

50. MF Fallon, H Johannsson, ] Brookshire, S Teller, J] Leonard (2012) Sensor
fusion for flexible human-portable building-scale mapping. In: 2012

Citation: Jian Zhang, Xue Xia, Thaddeus Roppel, Yibo Lyu, Shiwen Mao, Senthilkumar CG Periaswamy, Justin Patton. Enabling a Mobile Robot
for Autonomous RFID-Based Inventory by Multilayer Mapping and ACO-Enhanced Path Planning. 1(1): 2019. OJRAT.MS.ID.000501.

Volume 1-Issue 1

IEEE/RS] International Conference on Intelligent Robots and Systems,
IEEE, pp: 4405-4412.

51. M Zaratti, Rfid sensor (2007).
52.DM Dobkin (2012) The rf in RFID: uhf RFID in practice, Newness, USA.

53.D Fox, W Burgard, S Thrun (1997) The dynamic window approach to
collision avoidance, IEEE Robotics and Automation Magazine 4(1): 23-
33.

54.L Wong, NH Moin (2015) Enhanced ant colony optimization for inventory
routing problem. AIP Conference Proceedings 1682(1): 030007.

55.G Ye, X Rui (2013) An improved simulated annealing and genetic
algorithm for tsp, In: 2013 5% [EEE International Conference on
Broadband Network & Multimedia Technology, IEEE, p: 6-9.

56.M Dorigo, LM Gambardella, M Middendorf, T Stutzle, (2002) Guest
editorial: special section on ant colony optimization, IEEE Transactions
on Evolutionary Computation 6(4): 317-319.

57.R Bajaj, V Malik (2000) A review on optimization with ant colony
algorithm, Journal of Network Communications and Emerging
Technologies (JNCET).

58.M Dorigo, L M Gambardella (1997) Ant colony system: a cooperative
learning approach to the traveling salesman problem, IEEE Transactions
on evolutionary computation 1(1): 53-66.

59. FJ Vasko, ] Bobeck, M Governale, D Rieksts, ] Keffer (2011) A statistical
analysis of parameter values for the rank-based ant colony optimization
algorithm for the traveling salesperson problem, Journal of the
operational Research Society 62(6): 1169-1176.

Page 13 of 13


https://digilander.libero.it/windflow/eng/Usage/RFIDSensor/rfid_sensor.htm
https://aip.scitation.org/doi/abs/10.1063/1.4932470
https://aip.scitation.org/doi/abs/10.1063/1.4932470

	Enabling A Mobile Robot for Autonomous RFID-Based Inventory by Multilayer Mapping and ACO-Enhanced P
	Abstract  
	Keywords
	ntroduction
	Related Work
	Pilot initiatives of retail automation applications
	Mapping methods
	Robotic navigation approaches

	Approach and Theory
	Multilayer mapping
	ACO-enhanced path planning

	Experimental Results
	Experimental setup

	Conclusion
	Acknowledgement
	Conflict of Interest
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15
	Table 1
	Table 2
	Table 3
	Table 4

