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ABSTRACT

Extracting an individual’s knowledge structure is a chal-

lenging task as it requires formalization of many concepts and

their interrelationships. While there has been significant re-

search on how to represent knowledge to support computational

design tasks, there is limited understanding of the knowledge

structures of human designers. This understanding is necessary

for comprehension of cognitive tasks such as decision making

and reasoning, and for improving educational programs. In this

paper, we focus on quantifying theory-based causal knowledge,

which is a specific type of knowledge held by human designers.

We develop a probabilistic graph-based model for representing

individuals’ concept-specific causal knowledge for a given the-

ory. We propose a methodology based on probabilistic directed

acyclic graphs (DAGs) that uses logistic likelihood function for

calculating the probability of a correct response. The approach

involves a set of questions for gathering responses from 205 en-

gineering students, and a hierarchical Bayesian approach for in-

ferring individuals’ DAGs from the observed responses. We com-

pare the proposed model to a baseline three-parameter logistic

(3PL) model from the item response theory. The results suggest

that the graph-based logistic model can estimate individual stu-

dents’ knowledge graphs. Comparisons with the 3PL model in-

dicate that knowledge assessment is more accurate when quanti-

fying knowledge at the level of causal relations than quantifying

it using a scalar ability parameter. The proposed model allows

identification of parts of the curriculum that a student struggles

with and parts they have already mastered which is essential for

remediation.

1 Introduction

Scientific knowledge is central to engineering design. De-

signers use the knowledge of scientific theories such as mechan-

ics of materials, thermodynamics, and controls to make decisions

about concepts, materials, and manufacturing processes. Design-

ers use scientific knowledge to generalize from an experiment to

the real world applications. Scientific knowledge is also an im-

portant ingredient of engineering design expertise. This signifi-

cance makes quantification of knowledge structures of individu-

als essential for understanding design cognition and for design-

ing products and systems that mimic humans [1].
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Quantification of individual-specific knowledge structures is

crucial from the perspective of both design research and educa-

tion. Within design research, the availability of individual spe-

cific knowledge structures can complement the descriptive mod-

els of designers’ decisions [2, 3]. The knowledge structures can

be particularly helpful in accurately describing the prior beliefs

of decision makers. The detailed models of prior knowledge

can provide a better understanding of how designers use back-

ground knowledge for inductive and deductive reasoning tasks

in design [4, 5]. From the educational perspective, a detailed

quantitative representation of knowledge structures can support

accurate assessment of students’ knowledge [6], development of

improved educational support tools [7], and development of edu-

cational interventions for flexible personalized learning environ-

ments.

Despite extensive research on knowledge representation in

diverse fields such as computer science, engineering design, and

psychometrics, there is a lack of approaches for extracting an in-

dividual’s knowledge structure. On one hand, knowledge rep-

resentation models such as those based on function-behavior-

structure (FBS) [8] and core [9] models (discussed in Section

2.1) capture the structure but are meant for computational de-

signs support only. Further, these models do not capture scien-

tific theories. On the other hand, psychometric approaches (dis-

cussed in Section 2.2) are focused on quantifying human knowl-

edge and skills, but do not capture the details of the knowledge

structure of individuals. This gap introduces a need for quanti-

tatively modeling individuals’ knowledge structures at a detailed

level. We address this need for a specific type of knowledge -

theory-based causal knowledge.

Our approach is based on a probabilistic graph-based model

for representing an individual’s concept-specific causal knowl-

edge for a given theory, and employs Bayesian inference for esti-

mating graphs for individuals from their responses to a question-

naire. First, we assume that each individual has a latent knowl-

edge graph that is a subgraph of the ideal theory graph. That is,

we assume that the subjects do not make up new causal links, but

they may not know some of the real causal links. Second, our

model predicts the probability of a correct response to a theoret-

ical question conditional on the causal links that are relevant to

the given question. Third, we use Bayesian inference to estimate

the posterior over the individual knowledge graphs conditioned

on each subject’s answers to a series of theoretical questions. We

illustrate the approach using the responses of mechanical engi-

neering students to a set of questions involving shaft design prob-

lems to quantify their knowledge of fatigue failure.

The results highlight the advantages of causal graphs for ac-

curately quantifying theory-based knowledge and for correctly

predicting individuals’ test responses. Compared to the com-

monly used three-parameter logistic (3PL) model from the item

response theory [10], the proposed model has better posterior

predictive accuracy at the levels of aggregate, each question and

individual student. The proposed model also allows identifica-

tion of parts of the curriculum that a student struggles with and

parts they have already mastered which is essential for providing

feedback.

The paper is organized as follows. We begin with a review

of relevant work from engineering education and design in Sec-

tion 2 and describe their role in motivating the proposed method-

ology. Section 3 provides mathematical details of the proposed

approach. Section 4 presents the data collection approach imple-

mented in an introductory machine design class. In Section 5,

we present key results from the analysis. The implications of

the proposed methodology are discussed from engineering edu-

cation, design and practice in Section 6. Section 7 summarizes

the key conclusions.

2 Review of Literature

2.1 Knowledge Representation in Engineering De-

sign

Many studies investigate the role of design knowledge for

understanding design creativity and problem framing. They use

the function-behavior-structure (FBS) framework as a theoreti-

cal basis for representing processes of creativity and conceptual

design [8]. The FBS framework separates function and structure

to emphasize the role of iteration over prior knowledge of the

design requirements (i.e., the function). Extensions of the FBS

framework have been proposed which allow preliminary struc-

tures of artifact to form based on the design requirements with-

out iterations [11]. However, the existing theoretical frameworks

do not shed light on a designer’s prior knowledge which clearly

plays an important role.

Other studies undertake computational approaches for repre-

senting knowledge of design processes and design artifacts, e.g.,

in the product systems design [12,13]. The goal of these compu-

tational studies is to discover generalized and specialized product

knowledge from design databases for supporting tool develop-

ment for improved analogical design. Dong and Sarakar [14] rep-

resent complex products and processes as matrices where nodes

are product elements and cells are structural, functional or be-

havioral relationships between nodes. Then, they derive gener-

alized design knowledge as the macroscopic level information

from matrix representations using singluar value decomposition.

With the goal of quantifying a product’s innovativeness in terms

of component-level decisions, Rebhuhn et al. [15] represent the

product design process as the hierarchy of product, function, and

components. They use multi-agent models to propagate novelty

scores of products down to the component level. For understand-

ing functional and surface relatedness between products, Fu at

al. [16] analyze the US patent database and discover different

structural forms such as hierarchy and ring. Despite this develop-

ment, computational approaches for representing and estimating
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We do not consider pseudo-guessing, cl = 0, because the data

utilized to train the model were from a written exam. We talk

more about data collection in Section 4.

3 Methodology

3.1 The definition of a knowledge graph

To represent an individual’s state of knowledge about en-

gineering concepts, we utilize graph-based representations of

domain-specific knowledge. Specifically, the representations we

use are based on directed acyclic graphs, and are suitable for rep-

resenting causal knowledge, e.g., see Figure 5 which represents

the causal knowledge for the theory of fatigue failure.

Let X = {x1,x2, . . . ,xN} be the set of physical variables rel-

evant for a given engineering theory. A physical variable can

be a discrete or real-valued variable. These physical variables

are related to each other through structural equations. In these

equations some variables are inputs and some are outputs and

the interpretation is that the input variables are causing the out-

put variables. We say that this input-output relationship that ap-

pears in the equations is a causal relationship. Putting aside the

specific equations, these causal relationships can be represented

with an acyclic directed graph, termed the knowledge graph. The

true knowledge graph for a specific engineering problem, can be

represented as an N ×N binary matrix, KTrue = {kTrue
i j }, where

kTrue
i j is 1 if the variable xi is a direct cause of x j and 0 otherwise.

3.2 Prior over knowledge graphs of individuals

Let the N×N matrix Kr = {kr,i j} represent the r-th person’s

knowledge about the causal links using the same encoding as in

KTrue. We assume that a person’s knowledge graph is always a

subgraph of the true knowledge graph of the theory. This means

that if the theory has no direct link from xi to x j, then a per-

son does not make up such a link. This same assumption means

that we are only going to focus on whether or not a person has

identified correctly the true causal links. Prior to making any ob-

servations, we model our belief that individual r knows about the

existence of a true link between xi and x j by:

p(kr,i j = 1|kTrue
i j = 1,ar,i j) = ar,i j, (3)

where ar,i j is a hyper-parameter taking values in [0,1]. Similarly,

the probability that the person does not know the causal link ex-

ists is p(kr,i j = 0|kTrue
i j = 1,ar,i j) = 1− ar,i j. Given the matrix

of prior link probabilities Ar = {ar,i j}, the prior over the causal

graph of individual r is:

p(Kr|K
True,Ar) = ∏

i, j:kTrue
i j =1

p(kr,i j|k
True
i j = 1,ar,i j)

= ∏
i, j:kTrue

i j =1

a
kr,i j

r,i j (1−ar,i j)
1−kr,i j .

(4)

The reader should notice that the product is only over the true

causal links.

3.3 The data likelihood

In contrast to the IRT, our model requires detailed knowl-

edge about the subgraph of the true knowledge graph that each

question tests. Each question is framed in terms of a given set

of design parameters and a set of a single performance parame-

ter to be evaluated. A person answers the question by providing

a value of the performance parameter. The knowledge required

to answer question l is part of the knowledge graph that connects

the design parameters to the performance parameter. Mathemati-

cally, we can get the relevant subgraph from the knowledge graph

using an N ×N reduction matrix Ql , whose cell value ql,i j is 1

if variable xi and x j belongs to the set of relevant design param-

eters and zero otherwise. Then, the true knowledge subgraph

for question l is the Hadamard product (elementwise product) of

the reduction matrix Ql and the true knowledge graph KTrue, de-

noted as Ql ◦KTrue. In the matrix Ql ◦KTrue irrelevant variables

have been replaced by zeros. We assume that r-th individual’s

response to question l depends only on the relevant subgraph

Ql ◦Kr.

To proceed, we postulate that the probability that an indi-

vidual’s response is correct is a function of on how close that

individual’s relevant knowledge subgraph is to the true relevant

knowledge subgraph. In other words, we propose that the frac-

tion of relevant links that a person correctly identifies is repre-

sentative of the person’s problem-specific ability. The number

of relevant links is ‖ Ql ◦KTrue ‖F , where ‖ B ‖F= ∑i, j bi j is the

Frobenius matrix norm. Notice since the individual’s knowledge

graph is a subgraph of the true graph, the number of correctly

matched links is simply ‖ (Ql ◦Kr) ◦ (Ql ◦KTrue) ‖F . Thus, the

fraction of correctly identified links is:

φ(Ql ◦Kr,Ql ◦KTrue) :=
‖ (Ql ◦Kr)◦ (Ql ◦KTrue) ‖F

‖ (Ql ◦KTrue) ‖F

. (5)

Finally, we model the probability of individual r giving the cor-

rect response to question l as:

p(Erl = 1 | Ql ,Kr,cl ,α,β ,KTrue)

=cl +(1− cl)sigm
(

α(φ(Ql ◦Kr,Ql ◦KTrue)−β
)

,
(6)
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FIGURE 5: The true directed-acyclic graph for the theoretical knowledge of fatigue failure. The loosely dashed and densely dotted nodes

represent the relevant variables for questions 2 and 12 respectively.

(3PL) model, and the graph-based based logistic (GrL) model.

The results are divided into four parts: i) model checking, ii)

representation of person-specific aggregate ability, iii) represen-

tation of problem difficulty, and iv) representation of individuals’

knowledge graphs.

5.1 Model Checking

We utilize the Watanabe-Akaike information criterion

(WAIC) for calculating the in-sample prediction accuracy of the

two models. The WAIC estimates the log pointwise predictive

density of observed data and adds a correction term based on

the effective number of model parameters to adjust for overfit-

ting [28, 29]. Because the goal is to compare two models with

different number of parameters, it is essential to account for the

natural ability of a model with more number of parameters to fit

data better [30]. The lower the WAIC, the better the predictive

accuracy. The results in Table 2 indicate that the GrL model has

the lower WAIC as compared to 3PL model and, thus, the better

predictive accuracy.

TABLE 2: Model comparison based on Watanabe-Akaike infor-

mation criterion (WAIC)

Model
Ability Pa-

rameters

Problem

parame-

ters

WAIC

3 Parameter Logistic 1 3 1929.49

Graph Based Logistic 16 26 721.60

For visual checks, posterior predictive checking is per-

formed on the individual responses in Figure 6 and on impor-

tant test quantities in Figure 7. We see that the posterior pre-

dictions using the GrL model match the patterns in the observed

responses much more closely that the 3PL model. At the pop-

ulation level, in Figure 7, the prediction of the total number of

correct responses is explained adequately by both models with

Bayesian p-values close to 0.5 for both models, see Ch. 6 of [31].

However, for questions Q4 and Q5 which require knowledge of

the same subgraph, the GrL model better explains the the num-

ber of students who get both the questions correct than the 3PL

model.

Further, we compare the question-specific and person-

specific posterior predictive accuracy using test quantities such as

the number of correct responses. Suppose sl =∑
R
r=1 Erl (summed

over all students) is the number of correct responses for a given

question l, then the percentage predictive accuracy is the fraction

of predicted responses that match with the observed responses,
∑

5000
i=1 1[ŝl,i=sl ]

5000
, where sl,i is the prediction of the test quantity by

ith posterior sample. As seen from Figure 8, the GrL model has

higher question-specific posterior prediction accuracy. Further,

the test quantity for comparing the person-specific predictive ac-

curacy is the number of correct responses by individual students.

If the number of correct responses by person r is sr = ∑
L
l=1 Erl

(summed over all questions), then the person-specific percent-

age predictive accuracy is
∑

5000
i=1 1[ŝr,i=sr ]

5000
, where ŝr,i is the predicted

number of correct responses for person r and 1[A] is an indicator

function which is 1 if condition A is true and 0 otherwise. In

Figure 9, the distribution of pooled percentage accuracy for all

7 Copyright c© 2020 by ASME









to generate questions with varying difficulty. This would not only

allow instructors to test the same concepts using different ques-

tions but also help reveal the true knowledge of the concepts for

students.

The computational modelling technique can be coupled with

the existing design research for capturing design knowledge and

predicting human behaviors. The expertise research may bene-

fit from quantifying granular design knowledge for comparison

of design theories such as novice designers implement situation-

independent rules while experienced designer tend to think in a

pattern-based way [32]. The model can be applied for devel-

oping more realistic representation of human behaviors such as

similarity assessment [4], design decisions [2], and design per-

formance [33].

For practitioners, a better understanding of the knowledge

structures can help in reducing the inefficiencies caused by poor

comprehension of relevant physical variables for a given design

problem. This would enable better design support tools that sup-

port human designers in decision making and information pro-

vision, better computational design methods that mimic human

reasoning, better design of human-machine interaction (e.g., co-

robotics), and improved design of automated artificial intelli-

gence (AI) based products and systems [1], and partially auto-

mated augmented intelligence systems that work with humans.

7 Conclusions

The proposed graph based logistic (GrL) model presents

a new approach for quantifying an individual’s causal knowl-

edge. The model is theory driven and can be implemented for

any theory with causal relations. The model quantifies the ex-

perimenter’s belief about an individual’s ability in terms of link-

specific knowledge. The individual-specific ability also helps

in inferring individual-specific problem difficulty. Additionally,

this model employs Bayesian framework for accurate estimation

of individuals’ granular knowledge. The model can be used to

capture a given population’s overall knowledge structure. Using

the indications of which concepts a given population understands

well and poorly, instructors can design test questions for accurate

knowledge assessment, researchers can predict design behaviors,

and practitioners can build computational tools to support design.

In future, we can compare the graph-based logistic model to

different multidimensional models of the item response theory.

To test the predictive accuracy of the model on external observa-

tions, we plan to predict similarity judgments from the estimated

knowledge graphs and compare those to available similarity de-

cisions of the same subject population, which were reported ear-

lier in Ref. [4]. The methodology can also be implemented on

scientific theories other than the theory of fatigue failure for as-

sessing where engineering subjects have weakest and strongest

knowledge.
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I., Bernard, A., Harik, R. F., and Gao, W., 2013. “The evo-

11 Copyright c© 2020 by ASME



lution, challenges, and future of knowledge representation

in product design systems”. Computer-aided design, 45(2),

pp. 204–228.

[13] Wu, D., and Gary Wang, G., 2020. “Knowledge-assisted

optimization for large-scale design problems: A review and

proposition”. Journal of Mechanical Design, 142(1).

[14] Dong, A., and Sarkar, S., 2014. “Generalized design knowl-

edge and the higher-order singular value decomposition”.

In Design Computing and Cognition’12. Springer, pp. 415–

432.

[15] Rebhuhn, C., Gilchrist, B., Oman, S., Tumer, I., Stone, R.,

and Tumer, K., 2014. “A multiagent approach to evaluating

innovative component selection”. Design, computing, and

cognition.

[16] Fu, K., Cagan, J., Kotovsky, K., and Wood, K., 2013. “Dis-

covering structure in design databases through functional

and surface based mapping”. Journal of mechanical De-

sign, 135(3).

[17] Shadbolt, N. R., Smart, P. R., Wilson, J., and Sharples, S.,

2015. “Knowledge elicitation”. Evaluation of human work,

pp. 163–200.

[18] Schiuma, G., Gavrilova, T., and Andreeva, T., 2012.

“Knowledge elicitation techniques in a knowledge manage-

ment context”. Journal of Knowledge Management.

[19] Cooke, N. J., 1994. “Varieties of knowledge elicitation

techniques”. International Journal of Human-Computer

Studies, 41(6), pp. 801–849.

[20] Self, J. A., 1994. “Formal approaches to student mod-

elling”. In Student modelling: The key to individualized

knowledge-based instruction. Springer, pp. 295–352.

[21] Hestenes, D., Wells, M., and Swackhamer, G., 1992.

“Force concept inventory”. The physics teacher, 30(3),

pp. 141–158.

[22] Reckase, M. D., 2009. “Multidimensional item response

theory models”. In Multidimensional item response theory.

Springer, pp. 79–112.

[23] Millán, E., Loboda, T., and Pérez-De-La-Cruz, J. L., 2010.
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