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ABSTRACT

Extracting an individual’s knowledge structure is a chal-
lenging task as it requires formalization of many concepts and
their interrelationships. While there has been significant re-
search on how to represent knowledge to support computational
design tasks, there is limited understanding of the knowledge
structures of human designers. This understanding is necessary
for comprehension of cognitive tasks such as decision making
and reasoning, and for improving educational programs. In this
paper, we focus on quantifying theory-based causal knowledge,
which is a specific type of knowledge held by human designers.
We develop a probabilistic graph-based model for representing
individuals’ concept-specific causal knowledge for a given the-
ory. We propose a methodology based on probabilistic directed
acyclic graphs (DAGs) that uses logistic likelihood function for
calculating the probability of a correct response. The approach
involves a set of questions for gathering responses from 205 en-
gineering students, and a hierarchical Bayesian approach for in-
ferring individuals’ DAGs from the observed responses. We com-
pare the proposed model to a baseline three-parameter logistic
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(3PL) model from the item response theory. The results suggest
that the graph-based logistic model can estimate individual stu-
dents’ knowledge graphs. Comparisons with the 3PL model in-
dicate that knowledge assessment is more accurate when quanti-
Jying knowledge at the level of causal relations than quantifying
it using a scalar ability parameter. The proposed model allows
identification of parts of the curriculum that a student struggles
with and parts they have already mastered which is essential for
remediation.

1 Introduction

Scientific knowledge is central to engineering design. De-
signers use the knowledge of scientific theories such as mechan-
ics of materials, thermodynamics, and controls to make decisions
about concepts, materials, and manufacturing processes. Design-
ers use scientific knowledge to generalize from an experiment to
the real world applications. Scientific knowledge is also an im-
portant ingredient of engineering design expertise. This signifi-
cance makes quantification of knowledge structures of individu-
als essential for understanding design cognition and for design-
ing products and systems that mimic humans [1].

Copyright (©) 2020 by ASME



Quantification of individual-specific knowledge structures is
crucial from the perspective of both design research and educa-
tion. Within design research, the availability of individual spe-
cific knowledge structures can complement the descriptive mod-
els of designers’ decisions [2,3]. The knowledge structures can
be particularly helpful in accurately describing the prior beliefs
of decision makers. The detailed models of prior knowledge
can provide a better understanding of how designers use back-
ground knowledge for inductive and deductive reasoning tasks
in design [4,5]. From the educational perspective, a detailed
quantitative representation of knowledge structures can support
accurate assessment of students’ knowledge [6], development of
improved educational support tools [7], and development of edu-
cational interventions for flexible personalized learning environ-
ments.

Despite extensive research on knowledge representation in
diverse fields such as computer science, engineering design, and
psychometrics, there is a lack of approaches for extracting an in-
dividual’s knowledge structure. On one hand, knowledge rep-
resentation models such as those based on function-behavior-
structure (FBS) [8] and core [9] models (discussed in Section
2.1) capture the structure but are meant for computational de-
signs support only. Further, these models do not capture scien-
tific theories. On the other hand, psychometric approaches (dis-
cussed in Section 2.2) are focused on quantifying human knowl-
edge and skills, but do not capture the details of the knowledge
structure of individuals. This gap introduces a need for quanti-
tatively modeling individuals’ knowledge structures at a detailed
level. We address this need for a specific type of knowledge -
theory-based causal knowledge.

Our approach is based on a probabilistic graph-based model
for representing an individual’s concept-specific causal knowl-
edge for a given theory, and employs Bayesian inference for esti-
mating graphs for individuals from their responses to a question-
naire. First, we assume that each individual has a latent knowl-
edge graph that is a subgraph of the ideal theory graph. That is,
we assume that the subjects do not make up new causal links, but
they may not know some of the real causal links. Second, our
model predicts the probability of a correct response to a theoret-
ical question conditional on the causal links that are relevant to
the given question. Third, we use Bayesian inference to estimate
the posterior over the individual knowledge graphs conditioned
on each subject’s answers to a series of theoretical questions. We
illustrate the approach using the responses of mechanical engi-
neering students to a set of questions involving shaft design prob-
lems to quantify their knowledge of fatigue failure.

The results highlight the advantages of causal graphs for ac-
curately quantifying theory-based knowledge and for correctly
predicting individuals’ test responses. Compared to the com-
monly used three-parameter logistic (3PL) model from the item
response theory [10], the proposed model has better posterior
predictive accuracy at the levels of aggregate, each question and

individual student. The proposed model also allows identifica-
tion of parts of the curriculum that a student struggles with and
parts they have already mastered which is essential for providing
feedback.

The paper is organized as follows. We begin with a review
of relevant work from engineering education and design in Sec-
tion 2 and describe their role in motivating the proposed method-
ology. Section 3 provides mathematical details of the proposed
approach. Section 4 presents the data collection approach imple-
mented in an introductory machine design class. In Section 5,
we present key results from the analysis. The implications of
the proposed methodology are discussed from engineering edu-
cation, design and practice in Section 6. Section 7 summarizes
the key conclusions.

2 Review of Literature

2.1 Knowledge Representation in Engineering De-
sign

Many studies investigate the role of design knowledge for
understanding design creativity and problem framing. They use
the function-behavior-structure (FBS) framework as a theoreti-
cal basis for representing processes of creativity and conceptual
design [8]. The FBS framework separates function and structure
to emphasize the role of iteration over prior knowledge of the
design requirements (i.e., the function). Extensions of the FBS
framework have been proposed which allow preliminary struc-
tures of artifact to form based on the design requirements with-
out iterations [11]. However, the existing theoretical frameworks
do not shed light on a designer’s prior knowledge which clearly
plays an important role.

Other studies undertake computational approaches for repre-
senting knowledge of design processes and design artifacts, e.g.,
in the product systems design [12,13]. The goal of these compu-
tational studies is to discover generalized and specialized product
knowledge from design databases for supporting tool develop-
ment for improved analogical design. Dong and Sarakar [14] rep-
resent complex products and processes as matrices where nodes
are product elements and cells are structural, functional or be-
havioral relationships between nodes. Then, they derive gener-
alized design knowledge as the macroscopic level information
from matrix representations using singluar value decomposition.
With the goal of quantifying a product’s innovativeness in terms
of component-level decisions, Rebhuhn et al. [15] represent the
product design process as the hierarchy of product, function, and
components. They use multi-agent models to propagate novelty
scores of products down to the component level. For understand-
ing functional and surface relatedness between products, Fu at
al. [16] analyze the US patent database and discover different
structural forms such as hierarchy and ring. Despite this develop-
ment, computational approaches for representing and estimating
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an individual’s theory-driven causal knowledge are lacking. The
proposed methodology addresses this gap by modeling theory-
specific causal knowledge as a probabilistic causal graph and es-
timating person-specific causal graphs using Bayesian inference.

2.2 Psychometric Approaches for the Measurement
of Knowledge

Wide ranging techniques such as interviews, protocol analy-
sis, case studies, decision analysis and behavioral experiments
are employed in the literature for knowledge elicitation [17].
These methods are broadly categorized into formal and infor-
mal methods. The informal methods of knowledge elicitation
require moderation from an elicitor agent (human) [18], whereas
the formal methods use procedural and analytical methods to re-
duce interference [19]. Given the quantitative goal of measuring
knowledge, the scope of elicitation techniques relevant to this
paper is formal.

Student modeling is an area where the formal approaches for
knowledge measurement are extensively studied [20]. Most of
these studies are based on the item response theory (IRT) which
allows assessment of students’ ability using psychometrics. An
example of psychometric assessment is the force concept inven-
tory which tests Newtonian concepts along six dimensions such
as kinematics, impetus, active force, action-reaction pairs, con-
catenation of influence, and other influences such as centrifu-
gal forces [21]. The basic structure of the item response theory
models involves defining the probability of correct response as
a function of single or multi-dimensional ability variable, and
question (item)-specific parameters [10]. The models are dif-
ferentiated based on the number of question-specific parameters,
either one, two, or three parameters. Then, the model parameters
are estimated from students’ observed responses using maximum
likelihood estimation methods. Multi-dimensional IRT (MIRT)
models that represent ability using more than one dimension are
the state-of-the-art in the IRT models [6,22,23]. However, most
MIRT models assume that all ability dimensions are required for
answering any question correctly, and the probability of correct
response increases with any dimension (monotonicity assump-
tion). They also assume that the responses of different questions
are independent (local independence assumption). But in the
context of engineering design, selective concepts are required to
answer a specific question correctly and the responses are cor-
related because the underlying knowledge dimensions are the
same.

2.3 Item Response Theory: Three-parameter Logistic
Model

Given the similar knowledge elicitation techniques between
the proposed approach and the item response theory (IRT), we
use a popular three-parameter logistic (3PL) IRT model as a
baseline for comparison. The 3PL model represents dichotomous
data where a response is either correct or incorrect.
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FIGURE 1: Graphical representation of the three parameter lo-
gistic (3PL) model.

Assume that R individuals are tested on L problems. The
3PL model has one person-specific ability parameter 6,, r =
1,...,R and L problem-specific parameters:

1. Problem discrimination oy: This measures how the proba-
bility of answering a question correctly changes with ability.

2. Problem difficulty B;: This is a measure of problem difficulty
based on the ability required to get the correct answer. A
higher ability required to solve a given problem corresponds
to a greater problem difficulty.

3. Pseudo-guessing parameter c;: This accounts for the prob-
ability of getting a correct answer by guessing in a multiple
choice problem and is inversely proportional to the number
of possible correct answers.

We denote with E,; the answer that individual r gave to question
1. The probability of a correct answer (likelihood) is:

P(Eq =16, 04,B1,¢1) = ¢, + (1 — ;) sigm (04 (6, — 1)), (1)

where sigm(x) = 1/(1 4 ¢*) is the sigmoid function. A graphi-
cal representation of the likelihood function under 3PL model is
shown in Figure 1. The model is typically trained by maximizing
the log-likelihood of all observations, i.e., the sum of the loga-
rithms of Eq. (1). In this work we opt for a Bayesian approach.
Assuming that the ability parameter 6, is a real number, slope
oy is positive and threshold f; is positive, we use the following
priors:

0, ~Normal(0, 1)

oy ~Lognormal(0, 1)
B; ~Lognormal(0, 1)
¢; =0.

2
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We do not consider pseudo-guessing, ¢; = 0, because the data
utilized to train the model were from a written exam. We talk
more about data collection in Section 4.

3 Methodology

3.1 The definition of a knowledge graph

To represent an individual’s state of knowledge about en-
gineering concepts, we utilize graph-based representations of
domain-specific knowledge. Specifically, the representations we
use are based on directed acyclic graphs, and are suitable for rep-
resenting causal knowledge, e.g., see Figure 5 which represents
the causal knowledge for the theory of fatigue failure.

Let X = {x1,x2,...,xy} be the set of physical variables rel-
evant for a given engineering theory. A physical variable can
be a discrete or real-valued variable. These physical variables
are related to each other through structural equations. In these
equations some variables are inputs and some are outputs and
the interpretation is that the input variables are causing the out-
put variables. We say that this input-output relationship that ap-
pears in the equations is a causal relationship. Putting aside the
specific equations, these causal relationships can be represented
with an acyclic directed graph, termed the knowledge graph. The
true knowledge graph for a specific engineering problem, can be
represented as an N X N binary matrix, KTrue — {kiT].r“e , where
kl-T]»me is 1 if the variable x; is a direct cause of x; and 0 otherwise.

3.2 Prior over knowledge graphs of individuals

Let the N x N matrix K, = {k,;;} represent the r-th person’s
knowledge about the causal links using the same encoding as in
KTrie 'We assume that a person’s knowledge graph is always a
subgraph of the true knowledge graph of the theory. This means
that if the theory has no direct link from x; to x;, then a per-
son does not make up such a link. This same assumption means
that we are only going to focus on whether or not a person has
identified correctly the true causal links. Prior to making any ob-
servations, we model our belief that individual r knows about the
existence of a true link between x; and x; by:

plhrij = 1k = 1L a;) = arj, 3)

where a,;; is a hyper-parameter taking values in [0, 1]. Similarly,
the probability that the person does not know the causal link ex-
ists is p(k.ij = 0|k5»rue = l,a,;;) = 1 —a,;;. Given the matrix
of prior link probabilities A, = {a,;;}, the prior over the causal

graph of individual r is:
p(K K™ A,) = H p(kr,ij|k;5'rue = 1,a,;j)
i, j:kiTj“‘C:l

= 1 ap—ay)' .

i jike=1

“

The reader should notice that the product is only over the true
causal links.

3.3 The data likelihood

In contrast to the IRT, our model requires detailed knowl-
edge about the subgraph of the true knowledge graph that each
question tests. Each question is framed in terms of a given set
of design parameters and a set of a single performance parame-
ter to be evaluated. A person answers the question by providing
a value of the performance parameter. The knowledge required
to answer question / is part of the knowledge graph that connects
the design parameters to the performance parameter. Mathemati-
cally, we can get the relevant subgraph from the knowledge graph
using an N x N reduction matrix Q;, whose cell value g ;; is 1
if variable x; and x; belongs to the set of relevant design param-
eters and zero otherwise. Then, the true knowledge subgraph
for question / is the Hadamard product (elementwise product) of
the reduction matrix Q; and the true knowledge graph K¢, de-
noted as Q; o KT, In the matrix Q; o KT™® irrelevant variables
have been replaced by zeros. We assume that r-th individual’s
response to question / depends only on the relevant subgraph
Ql oK.

To proceed, we postulate that the probability that an indi-
vidual’s response is correct is a function of on how close that
individual’s relevant knowledge subgraph is to the true relevant
knowledge subgraph. In other words, we propose that the frac-
tion of relevant links that a person correctly identifies is repre-
sentative of the person’s problem-specific ability. The number
of relevant links is || Q; o K™ ||z, where || B ||p= Y ;bij is the
Frobenius matrix norm. Notice since the individual’s knowledge
graph is a subgraph of the true graph, the number of correctly
matched links is simply || (Q; 0 K,) o (Q; 0 KT™¢) ||r. Thus, the
fraction of correctly identified links is:

| (QroK,)o(QioK™) ||k

Kr; KTrue =
#(Qro Ky, 0o KT) (oK™ s

&)

Finally, we model the probability of individual r giving the cor-
rect response to question / as:

p(Eq=1]|01,Kcr,a,B,K"™)

(6)
=] + (l —C[) Slgm (a((P(Ql OKth OKTFUC) _ﬁ) 3
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FIGURE 2: Graphical representation of the graph based logistic
(GrL) model.

where ¢; is a problem-specific parameter capturing the proba-
bility of guessing the correct answer, while o and f3 are global
hyper-parameters determining the slope and the threshold of the
sigmoid, respectively. We call this likelihood function as the
graph based logistic (GrL) model. Finding that ¢ is of the or-
der of 10 and B close to 1 would be an indication that our model
works as expected. A value for o of order of 10 signifies a steep
change in the probability of correctness of response as a func-
tion of fraction of correctly identified links. Further, § close to
1 would imply that in order to correctly answer a given ques-
tion, an individual needs to know all the relevant links for that
question correctly.

See Figure 2 for a visualization of the probability of answer-
ing correctly as a function of ¢.

Assuming zero chances of pseudo-guessing, we take ¢; = 0
for all questions. Since o can only take positive values and 8
should be close to 1, the priors & and 3 are as follows:

o ~ Lognormal(1,1),
B ~ Beta(5,0.1),
Cl =0.

3.4 Assigning hyper-priors

To complete the model we need to assign a hyper-prior on
the link probability matrices A,. The hyperpriors represent our
beliefs about the population’s knowledge about link probabili-
ties. For a link between variables i and j, since a;,;; is between
0 and 1, and ¥; is always positive the hyperprior is defined on
hyper-parameter ¥;; as follows, assuming that the link exists in

True Knowledge
Matrix

Questions ‘

: N\ r=1,2,..,R
1=1,2,...,L T
FIGURE 3: The plate-notation diagram for Bayesian hierarchical

representation of the graph based logistic (GrL) model. The filled
nodes represent the observed variables.

Individuals

OO0

the true knowledge graph:

%] ~ Lognormal(oy 1)’
ar,l.jl’)/ij ~ Beta(lv /yl])

arij =0

if ke =1,

if kl.T;“e =0.

Figure 3 shows the plate-notation for the proposed methodology.

Also, to reduce the number of parameters, we assume that
some link probabilities are the same based on our belief about
whether or not they require knowledge of same concepts. For
example, Figure 5 represents a knowledge map in which different
subgroups of variables are enclosed in separate boxes. Then, for
any pair of boxes the link probability a,.;; connecting any variable
i in the first box to any other variable j in second box is constant.
The probability of links between Marin Factors and variable Se
are the same.

3.5 Sampling from the posterior

The final step is specify how to sample from the joint pos-
terior of all parameters. Because the Markov Chain Monte
Carlo algorithm is generally slow for running inference on large
graphs [24] (such as the fatigue knowledge graph), we em-
ploy the No-U-Turn sampler (NUTS) that is an extension of the
Hamiltonian Monte Carlo method [25]. The NUTS can be imple-
mented in a Python environment using the PyMC3 library [26].
To speed-up the inference, we reparameterize the binary link
variable k,;; into a continuous variable using a sigmoid function
of latent variable A,;;, while ensuring that the link probability
ar;; remains the same. The specifics of the reparameterization
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are as follows:

lr,,'j|ar,,'j ~ Normal(CIfl (am'j)), 1),
kr,ij = sigm(SOk,,ij).

Function ®~! is the inverse cumulative density function of the
standard normal distribution. Since the continuous reparameter-
ization of the binary link variable is very close to either O or 1,
kr;j, is used directly for Eq. (5).

4 Data Collection

We collected student response data during the final exam
of a machine design course at a major university. This dataset
involved 205 student subjects. The exam tested the concepts of
fatigue theory using a shaft design problem. In this problem, the
objective is to perform fatigue analysis to ensure the shaft can
support a set of loads and is safe against yielding and fatigue fail-
ure. The geometry of the shaft, dynamically loaded at one end
and fixed at the other is shown in Figure 4. Figure 5 highlights
the mapping between the input-output variables for the theory
of fatigue failure. Variable F represents the external loading ap-
plied to the steel shaft with geometry G which is being operated
at room temperature 7. The external loading, F, causes the bar to
develop bending moment M. Variable R is the reliability require-
ment for the bar. The ultimate tensile strength S,; is a material
property. The theoretical endurance limit Se), is defined in terms
of the ultimate tensile strength S, using empirical relations given
in Ref. [27, sec. 6-7]. The nominal stress o, is adjusted by mul-
tiplying with the fatigue stress-concentration factor for bending
Ky. The adjusted stresses are shows as ¢. The endurance limit
Se,, is adjusted through multiplication by Marin Factors for dif-

TABLE 1: Causal links required to answer the questions

Design
Q}les- Parame- Output Relevant Causal Links
tion Parameter
ters
(G7M)a (Gu GO)
Ql F1G7M Op (FM),(M, 60)
O F.G M (G,M), (F.M)
0 | kG M (G, M), (F.M)
o - (G.M). (G,00). (M.,).
G,M,0,,Kj (00,0), (Kr,0)
Q5 o (GvM)7 (Ga O-o), (Ma Go),
G7M7 G()aKf (GO G)a (Kf,c)
(GaM)7 (G7 GO)’
F.G,M o,
s ° (F,M),(M,c,)
(044 Sur Sep (Suhsep)
QS G ka (Gvka)
Q9 F,Su kp (F, k) (Sur , kp)
Oio R ke (R,ke)
Qll F7T kCakd (F7kc‘)7 (T7kd)
Sepy ka,
Sep,Se), (ka,Se), (kp,Se),
k R k R k , S ( prre asve
R DU (ke,Se), (ki Se), (ke Se)
013 o,Se ny (o,n¢), (Se,ny)

ferent conditions of surface finish, size, loading, temperature and
miscellaneous factors. This adjusted endurance limit is denoted
as Se. Finally, the factor of safety (FOS) is shown as n.

The student subjects were provided with a total of 13 fa-
tigue theory questions. Each question included input variables
and expected the students to calculate an output parameter; as-
suming that input variables causes the output variables. An-
swers to a given question depend on parents or a set of ances-
tral nodes. Consider question 2 and question 12 for which the
relevant nodes and links are highlighted by using loosely spaced
dashes and densely spaced dots respectively in Figure 5. In ques-
tion 2, nodes F and G are the input variables and M is the output
variable. Similarly, for question 12, nodes Se,,, k4, kp, k¢, kq, and
k. correspond to the input variables and endurance limit Se as
the output variable. For the sake of brevity, the actual questions
are not included in this paper but can be made available upon
request. Further, Table 1 shows input variables, output variables
and the relevant causal links all 13 questions.

5 Results

We present the results of model parameter estimation and
compare predictive accuracy of both, the three-parameter logistic
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FIGURE 5: The true directed-acyclic graph for the theoretical knowledge of fatigue failure. The loosely dashed and densely dotted nodes

represent the relevant variables for questions 2 and 12 respectively.

(3PL) model, and the graph-based based logistic (GrL) model.
The results are divided into four parts: i) model checking, ii)
representation of person-specific aggregate ability, iii) represen-
tation of problem difficulty, and iv) representation of individuals’
knowledge graphs.

5.1 Model Checking

We utilize the Watanabe-Akaike information criterion
(WAIC) for calculating the in-sample prediction accuracy of the
two models. The WAIC estimates the log pointwise predictive
density of observed data and adds a correction term based on
the effective number of model parameters to adjust for overfit-
ting [28,29]. Because the goal is to compare two models with
different number of parameters, it is essential to account for the
natural ability of a model with more number of parameters to fit
data better [30]. The lower the WAIC, the better the predictive
accuracy. The results in Table 2 indicate that the GrL. model has
the lower WAIC as compared to 3PL model and, thus, the better
predictive accuracy.

TABLE 2: Model comparison based on Watanabe-Akaike infor-
mation criterion (WAIC)

- Problem
Model Ability Pa- parame- WAIC
rameters
ters
3 Parameter Logistic | 1 3 1929.49
Graph Based Logistic | 16 26 721.60

For visual checks, posterior predictive checking is per-
formed on the individual responses in Figure 6 and on impor-
tant test quantities in Figure 7. We see that the posterior pre-
dictions using the GrL. model match the patterns in the observed
responses much more closely that the 3PL model. At the pop-
ulation level, in Figure 7, the prediction of the total number of
correct responses is explained adequately by both models with
Bayesian p-values close to 0.5 for both models, see Ch. 6 of [31].
However, for questions Q4 and Qs which require knowledge of
the same subgraph, the GrLL model better explains the the num-
ber of students who get both the questions correct than the 3PL
model.

Further, we compare the question-specific and person-
specific posterior predictive accuracy using test quantities such as
the number of correct responses. Suppose s; = Zlle E,; (summed
over all students) is the number of correct responses for a given
question /, then the percentage predictive accuracy is the fraction

of predicted responses that match with the observed responses,

Y2000 105 ,=s/] . .. .
==ls505—» Where s is the prediction of the test quantity by

posterior sample. As seen from Figure 8, the GrL model has
higher question-specific posterior prediction accuracy. Further,
the test quantity for comparing the person-specific predictive ac-
curacy is the number of correct responses by individual students.
If the number of correct responses by person r is s, = Z;L:1 E,

(summed over all questions), then the person-specific percent-

5000 114
.. . T 1Sy =s A s .
age predictive accuracy is %, where §,; is the predicted

number of correct responses for person r and 1[A] is an indicator
function which is 1 if condition A is true and O otherwise. In
Figure 9, the distribution of pooled percentage accuracy for all

l-th
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FIGURE 6: Posterior predictive checking on all responses. Black
color represents incorrect responses.
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FIGURE 7: Posterior predictive checking on test quantities: 1)
the total number of correct responses for the population, and ii)
the number of students who get both Q4 and Qs correct.

students indicates that the GrLL model has higher accuracy com-
pared to the 3PL model for predicting an individual’s number of
correct responses. Note that the average person-specific accuracy
for the GrL model is 0.7, which is smaller than 1, indicating the
GrL model may need further improvements.

5.2 Representing Aggregate-level Ability

As expected, both the GrL and 3PL models show a posi-
tive correlation between the estimated aggregate ability and the
students’ exam score . Recall that threshold 0 represents an in-
dividual’s ability in the 3PL model. For the GrL model, the total

>
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C,>,80 °
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FIGURE 8: Percentage predictive accuracy on the number of cor-
rect responses in different questions.

mmm GrL

w
o

Number of students
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- N
o o

20 40 60 80
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FIGURE 9: Percentage predictive accuracy on the number of cor-
rect responses by individual students.

number of matched links with respect to the true knowledge ma-
trix quantify an individual’s overall ability which is given as

#Matched links =|| (Q; 0K,) o (Q; 0 KT™) || . @)

These estimated ability parameters are in general agreement with
the exam score, which is commonly regarded as the baseline for
students’ overall knowledge. Figure 10 shows that the estimated
0 increases as the exam score increases. Similar trend is ob-
served for the estimated number of matched links in Figure 11.
The GrL model seems to have more variation that 3PL. model.
One possible reason could be that 3PL model represents one-
dimensional 8 variable whereas GrL model represents the num-
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FIGURE 10: Estimated person-specific ability @ in the three pa-
rameter logistic (3PL) model as a function of exam scores
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FIGURE 11: Estimated total number of matched links from the
graph-based logistic (GrL) model as a function of exam scores

ber of matched links which are calculated from multiple causal
link probabilities.

5.3 Representing Problem Difficulty

Further, the posterior estimates of the question-specific dif-
ficulty B, for the 3PL are shown in Figure 12. Across the pop-
ulation, the 3PL model identifies questions 1, 7, 10 and 11 as
easy problems and questions 9 and 12 as difficult. The estima-
tion of difficulty is mostly along the lines of percentage wrong
responses, for instance high fractions of the students, 44% and
45% respectively, get questions 9 and 12 wrong. Interestingly,
the questions requiring knowledge of the same links has similar
B estimates, e.g. questions 2 and 3, and questions 4 and 5.

On the other hand, the GrL does not quantify question dif-

ficulty explicitly using one parameter. Parameter 8 in the GrL
represents the threshold fraction of required links necessary for
answering any question correctly. A higher value of B in the
GrL could be interpreted as average difficulty perceived by a
population taking that exam. However, it is important to em-
phasize that problem difficulty may be different for different stu-
dents based on their ability. We should also consider the indi-
viduals’ concept-specific knowledge for indicating problem dif-
ficulty. The results from quantification of concept-level knowl-
edge as knowledge graphs is presented in Section 5.4.

1.5 1, *
I
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O-Siii
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T L
1
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|
tl g

3 45 6 7 8 910111213
Question Number /

1

FIGURE 12: Posterior estimates of problem difficulty parameter
B for three parameter logistic (3PL) model.

5.4 Representing Causal Knowledge

Unlike the 3PL model, the GrL. model can quantify an
individual’s causal knowledge in terms of link probabilities.
Figure 13 represents the estimated posterior link probabili-
ties for all causal links across the student population. It
shows that the student population has better knowledge of some
links than the others. For example, the students know links
(G,M),(G,0,),(G,K,) with high certainty. Conversely, for
some causal links, such as (Ky, o) and (Su, k), the population
density is skewed towards O; signifying that the population has
poor knowledge of these links.

The GrL model can also help categorize the subjects based
on their knowledge of causal links. Consider two students, a
high-scoring student who answered all 13 questions correct ver-
sus a low-scoring student who answered 5 questions correct. Fig-
ure 14 compares the knowledge structures of these two students.
The differences in the knowledge structures are evident from the
estimated link probabilities. The high-scoring student has high
knowledge all concepts such as external loading, internal load-
ing, internal stresses and fatigue factor of safety. The low scor-
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FIGURE 13: Population-wide posterior distribution of link prob-
ability parameters a;; in the graph-based logistic model.

ing student knows some links, e.g. calculations of Marin factors
k4, k. and nominal endurance limit Se,, but does not know other
links. For the low scoring student, the GrL model estimates the
following link probabilities as zero: Marin factors to the adjusted
endurance limit Se, geometry G to k,, and geometry G to bending
moment M.

Getting link-level probabilities is particularly useful for pre-
dicting concepts and questions that an individual might get
wrong. For example, consider question 7, for which (S,Se,)
is the relevant causal link. The probability densities for this link
is close to 1, signifying that the students are likely to get this
link correct. This is also reflected by the student score; with
98% of students getting question 7 correct. Further, consider
question 9, for which (F, k) and (S, k) are the relevant causal
links whose estimated probability densities are skewed towards
0. Then, the lack of knowledge about the relevant links is re-
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(a) Estimated knowledge graph for a student with all correct responses
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Internal
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(b) Estimated knowledge graph for a student with 5 correct responses

FIGURE 14: Comparison of the directed-acyclic graphs repre-
senting knowledge structures for high-scoring and low-scoring
students. Larger line thickness represents greater probability of
knowing the link correctly.

flected in the student performance for question 9; with only 30%
of students getting question 9 correct. As we traverse down the
the knowledge graph, we observe that individuals are more likely
to get incorrect answers because latter concepts require more de-
tailed understanding (e.g. question 13) and based on more parent
concepts (e.g. question 12). It is important to note here that for
some causal links, such as (K,,Se),(Kp,Se), etc., have identical
population density because of the assumption that some causal
links (in same sub-groups) share the same probability.

6 Implications for Engineering Education, Design Re-
search and Practice

From the engineering education perspective, the graph-
based logistic model can provide an in-depth understanding of
the concepts that a given population has poor knowledge of as
well as the concepts that the population knows well. From ob-
serving the estimated probability density of individual causal
links, instructors can provide personalised feedback on specific
concepts that help improve students’ knowledge. Also, instruc-
tors could potentially use a different combinations of causal links
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to generate questions with varying difficulty. This would not only
allow instructors to test the same concepts using different ques-
tions but also help reveal the true knowledge of the concepts for
students.

The computational modelling technique can be coupled with
the existing design research for capturing design knowledge and
predicting human behaviors. The expertise research may bene-
fit from quantifying granular design knowledge for comparison
of design theories such as novice designers implement situation-
independent rules while experienced designer tend to think in a
pattern-based way [32]. The model can be applied for devel-
oping more realistic representation of human behaviors such as
similarity assessment [4], design decisions [2], and design per-
formance [33].

For practitioners, a better understanding of the knowledge
structures can help in reducing the inefficiencies caused by poor
comprehension of relevant physical variables for a given design
problem. This would enable better design support tools that sup-
port human designers in decision making and information pro-
vision, better computational design methods that mimic human
reasoning, better design of human-machine interaction (e.g., co-
robotics), and improved design of automated artificial intelli-
gence (Al) based products and systems [1], and partially auto-
mated augmented intelligence systems that work with humans.

7 Conclusions

The proposed graph based logistic (GrL) model presents
a new approach for quantifying an individual’s causal knowl-
edge. The model is theory driven and can be implemented for
any theory with causal relations. The model quantifies the ex-
perimenter’s belief about an individual’s ability in terms of link-
specific knowledge. The individual-specific ability also helps
in inferring individual-specific problem difficulty. Additionally,
this model employs Bayesian framework for accurate estimation
of individuals’ granular knowledge. The model can be used to
capture a given population’s overall knowledge structure. Using
the indications of which concepts a given population understands
well and poorly, instructors can design test questions for accurate
knowledge assessment, researchers can predict design behaviors,
and practitioners can build computational tools to support design.

In future, we can compare the graph-based logistic model to
different multidimensional models of the item response theory.
To test the predictive accuracy of the model on external observa-
tions, we plan to predict similarity judgments from the estimated
knowledge graphs and compare those to available similarity de-
cisions of the same subject population, which were reported ear-
lier in Ref. [4]. The methodology can also be implemented on
scientific theories other than the theory of fatigue failure for as-
sessing where engineering subjects have weakest and strongest
knowledge.
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