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ABSTRACT
The quality of data is extremely important for data analytics. Data
quality tests typically involve checking constraints specified by
domain experts. Existing approaches detect trivial constraint viola-
tions and identify outliers without explaining the constraints that
were violated. Moreover, domain experts may specify constraints
in an ad hoc manner and miss important ones. We describe an
automated data quality test approach, ADQuaTe2, which uses an
autoencoder to (1) discover constraints that may have been missed
by experts, (2) label as suspicious those records that violate the
constraints, and (3) provide explanations about the violations. An
interactive learning technique incorporates expert feedback, which
improves the accuracy. We evaluate the effectiveness of ADQuaTe2
on real-world datasets from health and plant domains. We also use
datasets from the UCI repository to evaluate the improvement in
the accuracy after incorporating ground truth knowledge.
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1 INTRODUCTION
Enterprises use databases, data warehouses, and big data appliances
to store, manage, and query data for making critical decisions.
Records can get corrupted because of how the data is collected,
transformed, and managed, and also because of malicious activities.
Inaccurate data can lead to incorrect conclusions. Thus, rigorous
data quality testing approaches are required.

Data quality tests rely on constraint specifications. Syntactic
constraints check for the conformance of an attribute with the
structural specifications in the data model. For example, in a health
data store, patient_age must take numeric values. Semantic con-
straints check for the conformance of the attribute values with
the specifications stated by domain experts. Semantic constraints
can exist over single attributes (e.g., patient_age >= 0) or multiple
attributes (e.g., pregnancy_status = true→ patient_gender = female).

Constraints are typically defined by domain experts but often in
an ad hoc manner based on their knowledge of the application do-
main and stakeholders requirements. For example, a data record in
a health data store may contain an incorrect value for the day’s sup-
ply of a drug. However, the constraint that restricts the values for
the drug may be missing. Incorrect values in attributes pertaining
to medications and prescriptions can have disastrous consequences
for both patients and research outcomes if the data is used for pa-
tient treatment and in medical research [1]. Tools that automatically
generate syntactic constraints also exist, but they only check for

trivial ones, such as the not-null check [2]. Existing machine learn-
ing approaches can automatically discover non-trivial constraints
from the data and report the faulty records as outliers [3]. However,
these approaches do not explain which constraints are violated by
these records. Thus, experts are forced to inspect a large number of
outliers to determine and explain which ones are actually faulty and
why. Moreover, these techniques can potentially learn incorrect
constraints pertaining to the invalid data and generate false alarms,
which can overwhelm domain experts [4].

This paper describes an automated data quality test approach
called ADQuaTe2 that we previously proposed [5, 6] to address the
above issues. ADQuaTe2 automatically discovers complex semantic
constraints from the data, marks records that violate the constraints
as suspicious, and explains the violations. ADQuaTe2 uses an unsu-
pervised deep learning technique called autoencoder [7] to discover
the constraints associated with the unlabeled records (i.e., records
whose validity is not known in advance). We use an autoencoder
because its deep architecture can model constraints involving both
linear and non-linear relationships among data attributes.

ADQuaTe2 assigns a suspiciousness score (s-score) to each record.
Records whose s-score is greater than a threshold are flagged as
suspicious. To reduce the time needed to inspect a large number of
suspicious records, the Self Organizing Map (SOM) [8] clustering
technique is used to identify a small number of groups. Each group
contains records that are likely to violate the same constraints. De-
cision trees are generated using a Random Forest classifier [9] to
identify the constraints violated by each group.

ADQuaTe2 minimizes false alarms through an interactive learn-
ing process [10]. Domain experts use a web-based interface to mark
groups of records that are actually faulty. This feedback is incor-
porated to retrain the machine learning model and improve the
accuracy of constraint discovery and fault detection.

We evaluated ADQuaTe2 using datasets from a health data ware-
house and a plant diagnosis database. We demonstrated that our
approach can discover new constraints that were missed by do-
main experts and can also detect new faults in these datasets. We
evaluated the improvements in the accuracy of ADQuaTe2 using
datasets with ground truth data (i.e., a set of known faults) from the
UCI repository [11]. We demonstrated that the true positive rate
increases and the false negative rate decreases after incorporating
the ground truth knowledge and retraining the learning model.

2 PROPOSED APPROACH
Figure 1 presents an overview of the approach. Data records are
provided as input. The output is a list of groups of suspicious records
accompanied with an explanation of the violated constraints. The
five components in the approach are explained below.
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Figure 1: ADQuaTe2 Approach

2.1 Data Preparation
This component prepares the data by transforming it from its raw
format into a form that is suitable for analysis. Typical machine
learning algorithms cannot be directly applied to certain data types,
such as categorical, which is treated as numeric. The data attributes
need to be preprocessed based on their type and values. One-hot
encoding [12] is used for preprocessing the categorical attributes
and the standardization [13] method for the numeric attributes.

2.2 Constraint Discovery
This component obtains a trained model that best represents dif-
ferent types of constraints in the unlabeled input data. It uses an
unsupervised deep neural network called autoencoder [7] that is
known to be effective for attribute representation learning [14]. An
autoencoder is composed of an encoder and a decoder. The encoder
compresses the data from the input layer into a short represen-
tation, which is a non-linear combination of the input elements.
The decoder decompresses this representation into a new repre-
sentation that closely matches the original data. The network is
trained to minimize the reconstruction error (RE), which is the
average squared distance between the original data and its recon-
struction [7]. The constraints represented in the trained autoen-
coder model are in the form of complex equations that formulate
the associations among data attributes. However, these constraints
are not human-interpretable. Further steps are required to explain
the identified constraints to the domain experts.

2.3 Fault Detection
This component detects suspicious records that do not conform
to the constraints represented by the trained model. Each record
is assigned a suspiciousness score (s-score), which is equal to the
reconstruction error of the record. Records whose s-score is greater
than a threshold are flagged as suspicious.

Since individually inspecting a large number of suspicious records
is infeasible, we group them based on their similarity using a cluster-
ing approach called Self OrganizingMap (SOM) [8], which preserves
the relationships among attributes in its clusters [15]. However, ad-
ditional information about the reason behind the invalidity of each
group is needed for determining which groups are actually faulty.

2.4 Fault Interpretation
This component helps a domain expert interpret the suspicious
groups by generating visualization plots of two types, namely, s-
score per attribute and decision tree.We use the trained autoencoder
model to calculate the s-score per attribute. The higher the value of
s-score for an attribute, the more likely is the attribute to contribute

to the invalidity of the group. For each group we generate a plot
showing the average s-score values for each of the attributes in the
group. Figures 2 and 3 show these plots for two suspicious groups
in the plant diagnosis dataset. The major causes of invalidity are
the attributes Host, Diagnosis ID, and Suspected Problem for Group
1, and the attribute Genus Confirmation for Group 2.

Figure 2: S-score Per Attribute for Suspicious Group 1

Figure 3: S-score Per Attribute for Suspicious Group 2
We use a decision tree-based technique [16] called random forest

classifier [9] to determine the constraints that are violated by each
group of suspicious records. The non-leaf nodes in the decision tree
correspond to the attributes, the edges correspond to the possible
values of the attributes, and every leaf node contains the label of
the path described by the attribute values from the root to that leaf
node. The label value lies between 0 and 1, where 1 signifies invalid
records. Domain experts decide whether or not a suspicious group
is actually faulty by analyzing the constraints represented in the
decision trees. In Figure 4 (a), the path from the root (Diagnosis ID)
to the leaf node labeled 1.0 represents a constraint, which states that
if the plant Diagnosis ID is ‘Fire blight (Erwinia amylovora)’ and
the Host is ‘Tomato’, then the record is invalid.
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(a) Group 1 (b) Group 2

Figure 4: Decision Trees for the Plant Diagnosis Dataset

2.5 Fault Inspection
Domain expert feedback is obtained through a web-based user inter-
face. Check boxes are used to select groups that are actually faulty.
The feedback is used to label the training data records. The labels
are used by the extended constraint discovery and fault detection
components to improve the accuracy of the approach.

2.6 Retraining Using Domain Expert Feedback
2.6.1 Update Training Dataset for Retraining. The label can take
four possible values (1: faulty, 0.5: suspicious, 0: unknown, and -1:
valid) to each record in the input dataset. The default value is 0. In
the initial dataset for the training phase, the labels are all zero. The
label value of each data record is updated based on expert feedback.
The fault detection component modifies some of the labels from 0
(unknown) to 0.5 (suspicious). The domain expert marks some of the
suspicious records as actually faulty, and their labels are updated to
1. Suspicious records not marked by the domain expert are updated
to -1. The updated dataset is used to retrain the autoencoder.

2.6.2 Incorporate Domain Expert Feedback for Constraint Discovery.
This is done by (1) defining the reconstruction error of autoencoder
based on the label value and (2) initializing the network parameters
for the retraining phase.
Define reconstruction error based on label value.We provide
the record label and the record attributes as input to the autoencoder.
The network is trained to (1) minimize the difference between
the record and its reconstruction and (2) minimize the difference
between the record label and the label predicted by the network.
Initialize autoencoder parameters for retraining. The parame-
ters are initialized with the values learned in the previous execution,
which ensures that the network does not lose any information from
the previous execution and the accuracy of the network is at least
as much as the accuracy of the previous trained network.

2.6.3 Incorporate Domain Expert Feedback for Fault Detection. The
fault detection component defines the s-score based on the label
values using (𝑠_𝑠𝑐𝑜𝑟𝑒 (𝑋 ) = 𝑅𝐸 (𝑋 ) + 𝑙 (𝑋 ), where 𝑅𝐸 (𝑋 ) is the
reconstruction error of record𝑋 and 𝑙 (𝑋 ) is the label assigned to𝑋 ).
This ensures that all the records detected in the retraining phase are
either faulty (i.e., records that were flagged by the expert in previous
executions) or unknown (i.e., records that have not been reported
by ADQuaTe2 in previous executions). Since 0 ≤ 𝑅𝐸 (𝑋 ) ≤ 1 and

𝑙 (𝑋 ) ∈ {−1, 0, 0.5, 1}, this definition ensures that the range of the
s-scores of faulty records is [1, 2], that of valid records is [-1, 0],
and that of unknown records is [0, 1]. Setting the threshold to a
value greater than zero ensures that ADQuaTe2 never reports as
suspicious any valid record in subsequent executions. Moreover, all
the records marked as faulty by the expert in previous executions
are reported as suspicious in subsequent executions, but with a
higher s-score value (in the range [1,2]).

3 EVALUATION
We evaluated the constraint discovery, fault detection, and fault
interpretation effectiveness of ADQuaTe2 using real-world data
from health and plant domains. We used seven datasets created
using multiple table joins in the health data warehouse and one
dataset from the plant diagnosis database. We also evaluated the
improvements in the accuracy of the approach using datasets with
ground truth data from the UCI repository [11]. Finally, we evaluate
the time taken by the approach.

3.1 Effectiveness In the Absence of Retraining
We evaluated the constraint discovery and fault detection effective-
ness on real-world datasets when expert feedback is not used for
retraining. The effectiveness was measured along two dimensions:
the fault detection ability and the generation of new constraints that
were not previously specified by the experts. The new constraints
discovered by the approach help detect new faults.

RQ1.a: Can ADQuaTe2 detect the faults in real-world data that were
already detected by existing tools that rely on manual specification
of constraints by domain experts?

Given E, the set of faulty records detected by an existing data
quality test approach, and A, the set of suspicious records detected
by ADQuaTe2, we define the metrics Previously Detected (PD),
Suspicious Detected (SD), and UnDetected (UD). 𝑃𝐷 =

|𝐸∩𝐴 |
|𝐸 | is

the percentage of faulty records detected by an existing approach
that could also be detected by ADQuaTe2. 𝑆𝐷 =

|𝐴−𝐸 |
|𝐴 | is the per-

centage of suspicious records detected by ADQuaTe2 that were
not previously detected. 𝑈𝐷 =

|𝐸−𝐴 |
|𝐸 | is the percentage of faulty

records detected by an existing approach that could not be de-
tected by ADQuaTe2. Table 1 shows the values of PD, SD, and UD
of ADQuaTe2 with respect to the known faults in the real-world
datasets. The first dataset (𝐼𝐷 = 1) is from the plant science dataset
and the rest are from the health datasets. In this table, |𝐸 | is the
number of known faults and |𝐴| is the total number of suspicious
records detected by ADQuaTe2. There were no previously known
faults for dataset IDs 1 and 5 and every record reported for these
two sets corresponded to a suspicious record not previously de-
tected. ADQuaTe2 detected between 96.14% and 100% of faults that
were previously detected by Achilles [17] and Murdock [18] testing
tools for the health datasets. In the worst case, ADQuaTe2 could
not detect 3.86% of faults that were previously detected by these
tools, indicating that the autoencoder could not discover all the
associations among the attributes.

RQ1.b: Can ADQuaTe2 detect the faults in real-world data that were
missed by domain experts?
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Table 1: Known Faults and Suspicious Records in Real-world
Datasets Detected by ADQuaTe2

Dataset ID |E| |A| PD SD UD
1 0 89 0.00 100.00 0.00
2 19 19 100.00 0.00 0.00
3 5650 6848 98.25 17.50 0.017
4 4810 5070 96.77 8.50 0.032
5 0 5026 0.00 100.00 0.00
6 109980 132174 99.99 16.75 0.01
7 246000 249724 97.21 4.24 2.79
8 700 753 96.14 10.63 3.86

We asked domain experts to inspect the suspicious records. Given
AF as the set of faulty records that are flagged by the domain
expert as actually faulty, we define the Newly Detected (𝑁𝐷) as the
percentage of suspicious records detected by ADQuaTe2 that are
real faults not previously detected. ADQuaTe2 could detect between
33.33% to 35.63% actual faults that were not previously detected for
a plant science and a health dataset. The experts interpreted the
remaining detected records as unusual but possible, suspicious if
they needed more investigations, and valid if they were not actually
faulty. It took one hour for the plant domain expert to inspect the 16
groups of 89 reported records. It also took one hour for the health
domain expert to inspect 23 groups of 6848 reported records.

3.2 Fault Interpretation Effectiveness
RQ2: To what extent do the generated visualization plots correctly
explain the reason behind the invalidity of faults?

We define the Visualization Efficiency (𝑉𝐸) as the percentage of
plots that could correctly explain the reason behind the invalidity
of the suspicious groups to answer this question. Between 53.33%
to 100.00% of the plots for the plant science and the health datasets
correctly explained the reasons behind invalidity of the records.

3.3 Accuracy Improvement Using UCI Datasets
RQ3.a: Does the number of correctly detected faults increase after
retraining the learning model with the help of the expert feedback?

Given E, the set of faulty records detected by an existing data qual-
ity test approach,A, the set of faulty records detected by ADQuaTe2,
and AF, the set of faulty records that are flagged by domain expert
as actually faulty, we use the True Positive Rate (TPR) and Number
of Runs (NR). 𝑇𝑃𝑅 =

|𝐴𝐹 |
|𝐴 | is the percentage of actual faulty records

that are correctly identified as faulty and NR is the total number of
times an expert revalidates data until reaching the desired TPR.

RQ3.b: Can the actual faults detected by ADQuaTe2 in the previous
runs still be detected after retraining the model?

To answer this question, we use False Negative Rate (FNR). 𝐹𝑁𝑅 =
|𝐴𝐹𝑜𝑙𝑑−𝐴𝐹𝑛𝑒𝑤 |

|𝐴𝐹𝑜𝑙𝑑 | + 𝑈𝐷 is the percentage of undetected faults (UD)
plus percentage of actual faulty records detected in previous runs
that could not be detected in the current run, where 𝐴𝐹𝑜𝑙𝑑 is the
set of actual faults detected in previous runs and 𝐴𝐹𝑛𝑒𝑤 is the one
detected in the current run.

We implemented a script that automatically executes ADQuaTe2
against a dataset and detects suspicious records. The script updates
the value of the label from 0.5 to 1 for the suspicious records that are
actually faulty (i.e., within the previously known faults) and from
0.5 to -1 for the ones that are valid. Next, the script retrains the con-
straint discovery model and reruns the fault detection component
(Section 2.5) and measures the accuracy of ADQuaTe2 based on the
metrics described in this section. The whole process is performed 10
times. Figures 5 and 6 show how TPR increases and FNR decreases
over time during the retraining process for the UCI datasets. These
results show that the fault detection effectiveness of ADQuaTe2
improves after retraining the machine learning model. Moreover,
the TPR and FNR are almost stabilized after four iterations, which
shows that the payoff is not worth the cost of running ADQuaTe2
after four iterations for these datasets.

Figure 5: Improvement in TPR for UCI Datasets

Figure 6: Improvement in FNR for UCI Datasets

3.4 Performance Evaluation
RQ5: How does the time it takes to execute ADQuaTe2 change
based on the size of the datasets?

We measure the Total Time (𝑇𝑇 ) it takes to perform the auto-
mated steps of ADQuaTe2 to answer this question. The time spent
by domain experts is not included because different experts do
the fault inspection in different ways. Figure 7 shows values of TT
for one execution of ADQuaTe2 for all the datasets based on their
𝑠𝑖𝑧𝑒 = 𝑁𝑅𝑒 ∗ 𝑁𝐴𝑡 , where NRe is the number of records and NAt is
the number of attributes. It took between 0.138 to 27 minutes to
execute the automated steps of ADQuaTe2 for these datasets. As
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the results show, TT is not necessarily greater for the datasets with
larger sizes. This shows that dataset characteristics other than size,
such as data types and data sparseness may have also affected the
results. The analysis of other effective factors on the performance
of ADQuaTe2 is the subject of our future work.

Figure 7: Total Time (TT) for Different Dataset Sizes

4 RELATED WORK
Machine learning-based approaches can detect the outliers [3] that
violate semantic constraints in the data. Depending on the avail-
ability of labeled data, these techniques are classified as supervised
(e.g., Naive Bayesian [19], Support Vector Machine (SVM) [20],
and Artificial Neural Network (ANN) [21]), semi-supervised (e.g.,
OC-SVM [22]), and unsupervised (e.g., clustering [23]). Supervised
techniques require domain experts to manually label training data,
which is not scalable for big datasets. The training phase is restricted
to a set of labeled data that are biased towards the expert’s knowl-
edge. The Naive Bayesian approach assumes a strong independence
between the record attributes and cannot discover constraints that
involve relationships among multiple attributes. SVM trains a hy-
perplane in the attribute space that best divides a labeled dataset
into valid/invalid classes but the trained hyperplane is an equation
over data attributes that is not human interpretable. ANN trains
a network of information processing units that best classifies the
records as valid/invalid but the network is not human interpretable.
OC-SVM requires providing a clean dataset for the training phase.
This technique is biased towards the definition of valid records by
the experts. Distance-based clustering algorithms cannot derive
relationships among attributes in their clusters [23].

5 CONCLUSIONS
We described ADQuaTe2, which is a data quality test approach
for complex constraint discovery, fault detection, and explanation.
ADQuaTe2 allows domain experts to inspect the reported suspi-
cious records and feeds the constraint discovery and fault detection
components with the information received from them to minimize
false alarms. ADQuaTe2 uses ground truth knowledge to tune its pa-
rameters. Our approach discovered new constraints in the attributes
of health and plant science data that were missed by domain experts
and detected faults that were not previously detected by the existing
tools. Using ground truth UCI datasets that contain a set of known
faults, we demonstrated that the true positive and false negative
rates improved after incorporating the ground truth knowledge and
retraining the learning model. Using the same datasets, we demon-
strated that the training process must be stopped before the network

is overfitted on the training data. We plan to extend ADQuaTe2
to support constraint discovery over multiple records using time
series analysis techniques. We also plan to automatically generate
data quality test assertions from the discovered constraints.
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