
Responsible Vulnerability Disclosure in Cryptocurrencies

RAINER BÖHME∗, Universität Innsbruck

LISA ECKEY, TU Darmstadt

TYLER MOORE†, The University of Tulsa

NEHA NARULA,MIT Digital Currency Initative

TIM RUFFING, Blockstream

AVIV ZOHAR, Hebrew University Jerusalem

Interest in cryptocurrencies has surged in recent years. Today thousands of currencies are in circulation, collectively worth hundreds
of billions of dollars. Software vulnerabilities have also proliferated, which poses new and unique challenges to the ecosystem as
it has developed. This review article explains what is different about vulnerabilities and responsible disclosure in cryptocurrencies,
identifying key problems and opportunities for research and development. Selected case studies of vulnerability disclosures are
presented. We draw lessons and pose open questions that can inform the responsible disclosure debate in cryptocurrencies and beyond.

ACM Reference Format:
Rainer Böhme, Lisa Eckey, Tyler Moore, Neha Narula, Tim Ruffing, and Aviv Zohar. 2018. Responsible Vulnerability Disclosure in
Cryptocurrencies. 1, 1 (July 2018), 14 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION

Despite the focus on operating in adversarial environments, cryptocurrencies have suffered a litany of security and
privacy problems. Sometimes, these issues are resolved without much fanfare following a disclosure by the individual
who found the hole. In other cases, they result in costly losses due to theft, exploits, unauthorized coin creation and
destruction. These experiences provide regular fodder for outrageous news headlines. In this paper we focus on the
disclosure process itself, which presents unique challenges compared to other software projects [15]. To illustrate, we
examine some recent disclosures and discuss difficulties that have arisen.

The cryptocurrency ecosystem. While Bitcoin is the best known, more than 2,000 cryptocurrencies are in circulation,
collectively valued at nearly $225 billion as of October 2019 [6]. Fig. 1 conceptualizes the landscape as a stack. While the
details differ, at the lowest level, each cryptocurrency system is designed to achieve common security goals: transaction
integrity and availability in a highly distributed system whose participants are incentivized to cooperate [38]. Users
interact with the cryptocurrency system via software “wallets” that manage the cryptographic keys associated with the
∗Authors listed alphabetically.
†Corresponding author.

Authors’ addresses: Rainer Böhme, rainer.boehme@uibk.ac.at, Universität Innsbruck; Lisa Eckey, lisa.eckey@crisp-da.de, TU Darmstadt; Tyler Moore,
tyler-moore@utulsa.edu, The University of Tulsa, 800 S. Tucker Dr. Tulsa, Oklahoma, 74104; Neha Narula, narula@mit.edu, MIT Digital Currency
Initative; Tim Ruffing, crypto@timruffing.de, Blockstream; Aviv Zohar, avivz@cs.huji.ac.il, Hebrew University Jerusalem.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/1122445.1122456

2 Rainer Böhme, Lisa Eckey, Tyler Moore, Neha Narula, Tim Ruffing, and Aviv Zohar

Fig. 1. Components of the cryptocurrency architecture covered in this article

User

Developer

MinerMiner Miner

cryptocurrency systems

smart contracts
e. g., token systems

client software
e. g., wallets

online wallets
and exchanges

Main security goals:

Key management
• confidentiality
• authentication

Business logic
• integrity
• authorization

• integrity (safety)
• availability (liveness)
• incentives (fairness)

coins of the user. These wallets can reside on a local client machine or be managed by an online service provider. In
these applications, authenticating users and maintaining confidentiality of cryptographic key material are the central
security goals. Exchanges facilitate trade between cryptocurrencies and between cryptocurrencies and traditional forms
of money. Wallets broadcast cryptocurrency transactions to the network, whose participants relay transactions to
miners, who in turn validate and group them together into blocks that are appended to the blockchain.

Not all cryptocurrency applications revolve around payments. Some cryptocurrencies, most notably Ethereum,
support “smart contracts” in which general-purpose code can be executed with integrity assurances and recorded on
the distributed ledger. An explosion of token systems has appeared, in which particular functionality is expressed and
run on top of a cryptocurrency [12]. Here, the promise is that business logic can be specified in the smart contract and
confidently executed in a distributed fashion.

The emergence of a vibrant ecosystem of decentralized cryptocurrencies has prompted proposals that leverage the
underlying technology to construct new central bank currency [2] and corporate electronic money, such as Facebook’s
asset-linked Libra. This article focuses on existing decentralized cryptocurrencies. Some lessons discussed here could
also inform the design and operation of these prospective forms of digital money issued by public or private legal
entities.

Bugs in cryptocurrencies. The cryptocurrency realm itself is a virtual “wild west”, giving rise to myriad protocols
each facing a high risk of bugs. Projects rely on complex distributed systems with deep cryptographic tools, often
adopting protocols from the research frontier that have not been widely vetted. They are developed by individuals with
varying level of competence (from enthusiastic amateurs to credentialed experts), some of whom have not developed or
managed production-quality software before. Fierce competition between projects and companies in this area spurs rapid
development, which often pushes developers to skip important steps necessary to secure their codebase. Applications
are complex as they require the interaction between multiple software components (e.g., wallets, exchanges, mining
pools). The high prevalence of bugs is exacerbated by them being so readily monetizable. With market capitalizations
often measured in the billions of dollars, exploits that steal coins are simultaneously lucrative to cybercriminals and
Manuscript submitted to ACM

Responsible Vulnerability Disclosure in Cryptocurrencies 3

damaging to users and other stakeholders. Another dimension of importance in cryptocurrencies is the privacy of users,
whose transaction data is potentially viewable on shared ledgers in the blockchain systems on which they transact.
Some cryptocurrencies employ advanced cryptographic techniques to protect user privacy, but their added complexity
often introduces new flaws that threaten such protections.

Disclosures. Disclosures in cryptocurrencies have occurred in varying circumstances, from accidental discoveries,
through analysis by expert developers and academics, to observing successful exploits in the wild. In the rest of the
paper we highlight the difficulties and subtleties that arise in each case. The root causes of most of the difficulties lie in
the special nature of cryptocurrencies: they are based on distributed systems that were designed to be hard to change
in order to provide strong guarantees on their future behavior. In order to change these rules the consent of many
participants is needed – participants who are often anonymous, and who are organized loosely in communities without
governing bodies or regulatory oversight.

We proceed as follows: after briefly highlighting the differences between conventional software development
and cryptocurrencies with regards to vulnerability disclosure, we identify key issues in the disclosure process for
cryptocurrency systems. Finally, we formulate recommendations and pose open questions.

2 HOW IS DISCLOSURE DIFFERENT?

Responsible vulnerability disclosure in cryptocurrencies differs from the conventions adopted for general software
products in several ways. Two fundamental differences arise from the very nature of cryptocurrencies.

First, the decentralized nature of cryptocurrencies, which must continuously reach system-wide consensus on a
single history of valid transactions, demands coordination among a large majority of the ecosystem. While an individual
can unilaterally decide whether and how to apply patches to her client software, the safe activation of a patch that
changes the rules for validating transactions requires the participation of a large majority of system clients. Absent
coordination, users who apply patches risk having their transactions ignored by the unpatched majority.

Consequently, design decisions such as which protocol to implement or how to fix a vulnerability must get support
from most stakeholders to take effect. Yet no developer or maintainer naturally holds the role of coordinating bug fixing,
let alone commands the authority to roll out updates against the will of other participants. Instead, loosely defined
groups of maintainers usually assume this role informally.

This coordination challenge is aggravated by the fact that unlike “creative” competition often observed in the open
source community (e.g., Emacs versus vi), competition between cryptocurrency projects is often hostile. Presumably,
this can be explained by the direct and measurable connection to the supporters’ financial wealth and the often minor
technical differences between coins. The latter is a result of widespread code reuse [28], which puts disclosers into
the delicate position of deciding which among many competing projects to inform responsibly. Due to the lack of
formally defined roles and responsibilities, it is moreover often hard to identify who to notify within each project.
Furthermore, even once a disclosure is made, one cannot assume the receiving side will act responsibly: information
about vulnerabilities has reportedly been used to attack competing projects [18], influence investors, and can even be
used by maintainers against their own users.

The second fundamental difference emerges from the widespread design goal of “code is law”, i.e., making code the
final authority over the shared system state in order to avoid (presumably fallible) human intervention. To proponents,
this approach should eliminate ambiguity about intention, but it inherently assumes bug-free code. When bugs are
inevitably found, fixing them (or not) almost guarantees at least someone will be unhappy with the resolution. This is

Manuscript submitted to ACM

4 Rainer Böhme, Lisa Eckey, Tyler Moore, Neha Narula, Tim Ruffing, and Aviv Zohar

perhaps best exemplified by the controversy around the DAO, an Ethereum smart contract with a reentrance bug that
was exploited to steal coins worth around $50 million. After a community vote, the Ethereum developers rolled out a
patch to reverse the heist, which (maybe surprisingly) turned out to be controversial. While the patch was accepted by
large parts of the ecosystem, it was strongly opposed by a minority of Ethereum users arguing that it is a direct violation
of the code-is-law principle, and the controversy ultimately led to a split of the Ethereum system into two distinct
cryptocurrencies Ethereum and Ethereum Classic [1]. Moreover, situations may arise where it is impossible to fix a bug
without losing system state, possibly resulting in the loss of users’ account balances and consequently their coins. For
example, if a weakness is discovered that allows anybody to efficiently compute private keys from data published on
the blockchain [16], recovery becomes a race to move to new keys because the system can no longer tell authorized
users and attackers apart. This is a particularly harmful consequence of building a system on cryptography without any
safety net. The safer approach, taken by most commercial applications of cryptography but rejected in cryptocurrencies,
places a third party in charge of resetting credentials or suspending the use of known weak credentials.

Ironically, these fundamental differences stem from design decisions intended to enhance security. Decentralization
is prized for eliminating single points of control, which could turn out to be single points of failure. Giving code the
final say is intended to preserve the integrity of operations. However, what may benefit security at design time becomes
a significant liability after deployment once vulnerabilities are found.

Besides these fundamental differences, responsible disclosure for cryptocurrencies is characterized by specific
features of the domain. The interpretation of system state as money, with many exchanges linking it mechanically to
the conventional financial system, makes it easier and faster to monetize bugs than for conventional software, where
vulnerability markets may exist but are known to be friction-prone [23]. Moreover, the cryptocurrency ecosystem
reflects conflicting worldviews, which prevent the establishment of basic norms of acceptable behavior. For example,
invalidating ransomware payments via blacklisting has reignited the debate over censorship versus the rule of law [26].

Finally, we note a difference in emphasis over certain aspects of disclosure. The conventional responsible disclosure
discussion has focused on balancing users’ interests in defensively patching versus national security interests of
weaponizing vulnerabilities [25, 31], without regard to whether the affected software is open or closed source. By
contrast, open-source software and code reuse are central to disclosure issues in the cryptocurrencies, whereas balancing
national and individual security considerations has so far not been widely discussed.

Throughout the rest of the article, we illustrate these differences with real cases before we derive recommendations
and point to open problems.

3 CASE STUDIES

We now review selected case studies of cryptocurrency vulnerability disclosures, highlighting aspects that teach us
about the difficulties in response. We employ a multi-perspective method in selecting and researching these cases,
ranging from the authors’ direct experience as disclosers, interviews with developers and cryptocurrency designers,
and through public reports. Interviews with open-ended questions were conducted by telephone, in-person or by email.
Attribution is given unless the subject requested anonymity. The novelty and heterogeneity of the problem precluded a
more systematic approach, though we hope that those informed by our findings can do so in future investigations. We
investigate coins both small and large, because even the top coins have experienced severe bugs. While the software
development processes for prominent coins are more robust, the cases will show that all coins experience challenges to
disclosure not seen in traditional software projects. Fig. 2 presents a stylized timeline of the cases presented.

Manuscript submitted to ACM

Responsible Vulnerability Disclosure in Cryptocurrencies 5

Money printed
B

Money stolen
B

Money burned Public notification

2013 2014 2015 2016 2017 2018 2019

network split

Bitcoin Cash

theft

IOTA

money burning (paper)

money printing and theft (libzerocoin)

2nd printing 3rd printing

Zcoin

Zcash

money printing (paper)

Ethereum

Smart contracts
The DAO

B

Parity wallet

B
B

money printing

money burning ∗ ∗
Monero

Bitcoin

network split introduced

discovered fixed

money printing

2013 2014 2015 2016 2017 2018 2019

Fig. 2. Visualization of the vulnerabilities discussed in this article. The blue bars represent the underlying coins and their widths are
proportional to their marketcap (c.f. Coinmarketcap.org). The red bars visualize the discussed incidents from their introduction (flag)
to their disclosure (wide bar) to their public announcement (bell). The additional symbol is used whenever money was stolen, burnt or
printed.

Manuscript submitted to ACM

6 Rainer Böhme, Lisa Eckey, Tyler Moore, Neha Narula, Tim Ruffing, and Aviv Zohar

3.1 Cryptocurrency Systems

Zcoin. We start with Zcoin, a relatively unpopular cryptocurrency that has suffered from repeated disclosures.
Zcoin was the first to implement the Zerocoin protocol [22], which uses zero-knowledge proofs to enable untraceable
transactions. In February 2017, an attacker exploited a typo in C++ code (using the equality operator ‘==’ instead
of the assignment operator ‘=’ [17]) to generate 403,050 coins out of thin air. The new coins had a market value of
$750,000 and inflated the currency supply in circulation by 37%. In principle, such attacks can remain unnoticed due to
the zero-knowledge veil, but the sheer number of coins created combined with the attacker’s impatience eventually led
to its discovery. Within hours, the Zcoin team demanded that trading halt at big exchanges, published a blog post, and
asked mining pools to suspend processing zero-knowledge transactions. A patch was released within a day, but the
zero-knowledge feature remained disabled, thereby temporarily freezing all untraceable funds. This issue was resolved
after four days when a “fork” altering the fundamental transaction validation rules was adopted by a majority of the
miners. Even so, the attacker could still abscond with the heist.

Later in 2017, a team of researchers including author Ruffing found another vulnerability in Zcoin that allowed an
attacker to “burn” money in transit, i.e., ensure that no one, including the sender, recipient, and attacker, can further
spend the coins [30]. Remarkably, the root cause of this vulnerability was an overlooked attack vector in the design and
security analysis of the underlying Zerocoin protocol. While money burning does not serve the attacker directly, the
attacker could profit indirectly, e.g., by betting on falling prices of the affected cryptocurrency (short selling) and then
publishing or exploiting the vulnerability. We have no evidence that such short-selling activity did indeed take place.

Having no cryptographer on its team, Zcoin hired Ruffing to provide advice and develop a patch. During the work,
he identified two more vulnerabilities [29], one enabling illegitimate coin generation and one allowing theft of money
in transit. Both vulnerabilities stemmed from bugs in libzerocoin, a prototype library written by the inventors of the
Zerocoin protocol for the purpose of validating their research. The Zcoin project had used that library as-is, despite
the code’s prominent warning that the authors “are releasing this dev version for the community to examine, test and
(probably) break” and that there are things that they have “inevitably done wrong” [21].

Code reuse complicated the disclosure process of the three vulnerabilities [29]. Months after the initial notification,
the discoverers found that more than 1,600 public GitHub repositories included verbatim copies of libzerocoin.
Responsible and confidential disclosure to so many recipients is infeasible. Instead, the discoverers narrowed down
the recipient set to less than ten actual cryptocurrency projects, four of which they deemed trustworthy enough to be
informed additionally. None of the projects had a clearly defined contact point or process for handling vulnerabilities.

Competition between projects prevented a coordinated response. For example, the notified project did not reveal
to the reporters which of their competitors were also vulnerable. Coordination is essential because the first project
to patch reveals the vulnerability, leaving the others unprotected. One currency was actually exploited in this way,
and ironically, Zcoin itself was targeted because the patch was not adopted quickly enough. Dealing with the entire
situation required tact and judgment by the discoverers, and the potential for every mistake to be catastrophic furthers
the discoverers’ burden.

As a result of the coin creation bugs, Zcoin improved continuous monitoring of aggregated balances, which led to the
discovery of another creation bug in April 2019. The project repeated the notification process described above, disabled
the zero-knowledge features via an emergency fork, and informed three potentially affected competitors. It took ten
days of investigation before a project developer identified the root cause in the design of the Zerocoin protocol. Unlike
a simple implementation bug, there was no obvious way to fix the problem. The project’s response was to migrate to

Manuscript submitted to ACM

Responsible Vulnerability Disclosure in Cryptocurrencies 7

an entirely different zero-knowledge protocol, suspending untraceable transactions in the meantime and freezing the
affected funds until the new protocol was deployed in July 2019 [37].

Zcash. Zcash, the commercial implementation of the Zerocash protocol [3], improves on Zerocoin’s model for
untraceable transactions. It too has suffered from similar issues [32]. The proposal for the used algorithm for generating
cryptographic material allowed a parameter to be published that should have remained secret. (Incidentally, a security
proof was omitted because the scheme was similar to a previous one known to be secure.) The published value could
have been used to undetectably generate coins out of thin air. The problem was discovered internally in March 2018
and fixed after 240 days in conjunction with a scheduled upgrade of the zero-knowledge protocol. Before and during
the events the Zcash team had entered mutual disclosure agreements with the two largest competitors who reuse Zcash
code. These competitors were notified two weeks after the fix with a schedule for public disclosure within a maximum
of 90 days, which then took place in February 2019, almost one year after the discovery [32]. Obscurity played a key
role in this event: not only was the fix hidden in a larger update, the critical parameter was also removed from websites
and a cover story spun around the “loss” of this piece of information. The intention of this obscurity was to protect
Zcash’s own interests and its users, as well as those of competing cryptocurrencies. On the downside, such long periods
of obscurity may cast doubt on the trustworthiness of security claims in the future, and it remains unclear whether and
to what extent the bug has been exploited.

Monero. The opposite of internal discovery is accidental public disclosure. This happened to Monero, the most
popular implementation of the CryptoNote protocol [35]. In September 2018, an interested user posted a seemingly
innocuous question to an online forum: “what happens if somebody uses a one-time account twice?” (paraphrased by
the authors) [7]. Surprisingly, there was no protection against this action in the protocol. The revealed vulnerability
allowed attackers to burn other people’s funds. The problem was fixed within ten days without known incidents and
publicly announced thereafter.

A more serious vulnerability in the CryptoNote protocol affected all cryptocurrencies based on it. A post on a
specialized cryptography mailing list in February 2017 revealed an issue which implied a coin generation vulnerability
in CryptoNote’s basic cryptographic scheme [20]. The Monero team took note and developed a patch within 3 days
and shared it privately with preferred parties, such as mining pools and exchanges. The true purpose of the patch was
disguised in order to protect the rest of the users who were running vulnerable clients. After a fork to the validation
rules that completely resolved the issue in Monero in April 2017, the Monero team informed other CryptoNote coins
privately. One such coin, Bytecoin, was exploited immediately afterwards, resulting in the illegitimate generation of 693
million coins [18]. In a public disclosure that took place 15 days later, the Monero team described the aforementioned
process and named unpatched competitors, including Bytecoin [20] (though Bytecoin claims that a patch had been
issued to miners immediately after the exploit [18]). Perversely, the public disclosure attracted other investors to bid up
the Bytecoin price. Its market capitalization grew five-fold, briefly jumping into the top 10 cryptocurrencies by value. It
remains unclear who exploited the bug, but Bytecoin holders certainly benefited from the price rise.

IOTA. Unlike bugs in which coins are created, IOTA suffered a vulnerability that might have placed user funds at risk
of theft. Contrary to the best practice of using standardized cryptographic primitives, IOTA relied on a custom hash
function that had a collision weakness [14]. Author Narula and colleagues disclosed the vulnerability to the developers
in July 2017. The vulnerability was patched by IOTA in August 2017 and made public by the disclosers in September
2017 [13], offering several lessons about the disclosure process.

Manuscript submitted to ACM

8 Rainer Böhme, Lisa Eckey, Tyler Moore, Neha Narula, Tim Ruffing, and Aviv Zohar

First, the vulnerability was fixed and deployed to the network quite quickly. On one hand, this is good because the
potential vulnerability window is smaller. On the other hand, the speedy response was made possible due to the project’s
high level of control over the network, which runs contrary to the design goals of decentralized cryptocurrencies. Such
control further allowed the operators to shut down its network to prevent theft from a vulnerable wallet for several
weeks in early 2020.

The second lesson is that organizations may not respond favorably to a disclosure. Here, communications were
tense, the existence and risk of the vulnerability was denied and downplayed, and the discoverers were threatened
with lawsuits. The response echoes industry reactions to vulnerability disclosures related to digital rights management
decades before [19]. In the cryptocurrency case, there is a clear potential incentive conflict when the organization
holds a large share of the coins and reasonably worries that the news could devalue holdings or prevent partnerships
that might increase the value of holdings. Moreover, information about the bug could be exploited for profit by those
possessing inside information about its existence prior to public disclosure.

Bitcoin Cash. Not to be confused with Bitcoin, “Bitcoin Cash” is derived from Bitcoin’s codebase and was created
due to disagreements within the ecosystem. Cory Fields, a contributor to the predominant implementation of Bitcoin,
Bitcoin Core, was examining change-logs of Bitcoin Cash’s main implementation in April 2018 [10]. There he noticed
that a sensitive piece of code dealing with transaction validation had been improperly refactored, causing a vulnerability.
It would allow an attacker to split the Bitcoin Cash network, thereby compromising the consistency required for a
cryptocurrency to operate.

As Fields noted, bugs like this cause systemic risk: if exploited, they could sink a cryptocurrency. The large amounts
of money at risk prompt disclosers take precautions. In this case, to protect his own safety, Fields chose to remain
anonymous [10]. The patching went smoothly, but we do not know if it would have been more contentious had he
revealed his identity. Moreover, discoverers may want to demonstrate that they behaved ethically, for example, that
they sent a report to the developers. One possible mechanism is to encrypt the report with the developers’ public key
and publish the ciphertext and draw the developer’s attention to it. This would require developers to provide public
keys along with their security contact and have internal processes to handle incoming messages. Surprisingly, at the
time Bitcoin Cash, a top-10 cryptocurrency worth billions of dollars, did not (though now they do). In our interview,
Fields stressed that he found it difficult to figure out what was the right thing to do. What helped him was to imagine
the situation with swapped roles.

Bitcoin. A fewmonths later, a developer fromBitcoin Cash disclosed a bug to Bitcoin (and other projects) anonymously.
Prior to the Bitcoin Cash schism, an efficiency optimization in the Bitcoin codebase mistakenly dropped a necessary
check. There were actually two issues: a denial-of-service bug and potential money creation [8]. It was propagated into
numerous cryptocurrencies and resided there for almost two years, but was never exploited in Bitcoin.

This case teaches us three lessons. First, even the most watched cryptocurrencies are not exempt from critical bugs.
Second, not all cases should be communicated to everyone in the network at the same time. The Bitcoin developers
notified the miners controlling the majority of Bitcoin’s hashrate of the denial-of-service bug first, making sure they
had upgraded so that neither bug could be exploited before making the disclosure public on the bitcoin-dev mailing list.
They did not notify anyone of the inflation bug until the network had been upgraded. Third, the disclosure involved
deliberate deception of users: the Bitcoin developers published a patch describing it as only fixing the denial-of-service
issue. This downplayed the severity of the bug, while at the same time motivating a prompt upgrade. This gave Bitcoin
Manuscript submitted to ACM

Responsible Vulnerability Disclosure in Cryptocurrencies 9

users and other affected cryptocurrencies time to adopt the fix, albeit with grumbling about the sudden public release.
This highlights both a benefit and a downside to employing white lies in the disclosure process.

Silence is an alternative to white lies. The Bitcoin team took this option after an internal discovery in 2014. Bitcoin
suffered from an inconsistency between different versions of the OpenSSL library. The 32-bit version was more tolerant
in accepting variants of digital signatures than the 64-bit version, which could cause a loss of consistency if a signature
is accepted only by the subset of nodes running on 32-bit. The mitigation turned into a year-long ordeal. Fixing OpenSSL
was not an option, hence the stricter signature format had to be enforced in the Bitcoin codebase. Changes were made
subtly and gradually in order to avoid drawing attention on the relevant piece of code. Users upgraded organically over
a period of 10 months. The bug was made public when more than 95% of the miners had patched [36].

3.2 Smart Contracts

Some cryptocurrencies, most prominently Ethereum, support “smart contracts”. These are computer programs anyone
can store on a shared blockchain, which then guarantees correct execution. Contracts can receive, store and send
coins to users or other contracts according to their programmed logic. Smart contracts pose two further challenges to
disclosure and patching. First, there is no club of miners whose incentives are aligned with the functioning of a specific
contract. Therefore, relying on miners as allies to support smooth disclosure is usually not an option (though see below
for an exception). Second, the code is not updateable by design to demonstrate commitment to the rules of operation,
hence the contract analogy. This may turn disastrous if the code contains bugs because machines, unlike arbitrators of
real contracts, have no room for interpretation.

The DAO. The most famous example of a buggy contract is the DAO (short for Decentralized Autonomous Organiza-
tion), the first code-controlled venture fund. Widely endorsed by an enthusiastic Ethereum community, in spring 2016
the DAO project collected user funds and stored them in a smart contract. Its visible balance of $250 million (15% of
all available coins at the time) made it a highly attractive target. It prompted scrutiny from security researchers who
raised concerns [9], the closest activity to disclosure in the smart contract space we have seen. Three weeks later, an
anonymous attacker managed to withdraw more than 3.5 million coins (about $50 million) illegitimately from the DAO
smart contract [1]. The attacker’s trick involved making a small investment in the DAO, then withdrawing and thereby
exploiting a re-entrance vulnerability in the refund mechanism. (The contract’s bug was to not decrease the balance
before sending coins, which in Ethereum passes control to the receiving party.) This exploit set off a vigorous debate
over whether or not this behavior was abusive, since the code technically allowed the interaction.

The DAO incident could have been an example of an irreversible change of system state. However, the exceptional
scale of the project and the involvement of the Ethereum community triggered a historic vote between miners to support
a fork of the underlying cryptocurrency in order to “restore” the investments in the DAO contract. This intervention
was highly controversial as it thwarted the very idea of immutable transactions, causing a group of purists to create
a parallel instance, called Ethereum Classic, that was not rolled back. In hindsight, the incident raised the alarm to
the smart contract community about the looming security issues. Today’s contracts cannot hope for miner-enforced
rollbacks because the uptake of the platform has diversified interests.

Parity wallet. Another example of a fund recovery, albeit partially successful, followed the Parity exploit in July 2017.
The vulnerable contract implemented a multi-signature wallet, a mechanism that promises superior protection against
theft compared to standard wallets. Intended uses include “corporate” accounts storing high value, such as the proceeds
from initial coin offerings (ICOs). An anonymous attacker observed a discrepancy between the published and reviewed

Manuscript submitted to ACM

10 Rainer Böhme, Lisa Eckey, Tyler Moore, Neha Narula, Tim Ruffing, and Aviv Zohar

Table 1. Synthesis of recommendations

Dos
Provide point of contact including public key
Liaise with competitors who share code

Don’ts
Single out vulnerable competitors
Bug bounties in your own coin

Depends
Use obscurity and white lies during disclosure
Notify all affected projects unless there is conflict
Built-in notification and feature “kill” switches

Need for action
Clarify right or obligation to preventively move vulnerable funds
Establish clearinghouse and coordinator

source code and the binary code, which was deployed for each of 573 wallets and omitted an essential access control
step. This enabled a theft of coins worth $30 million from three accounts. Parity discovered the attack as it was ongoing
and published an alert. This would have enabled attentive users to rescue their funds (exploiting the same vulnerability)
in a race against the attacker and imitators. At this point, a total of another $150 million was essentially free to be
picked up by anyone [33]. As expected, many users reacted slowly and found their funds missing. It turned out that a
group of civic-minded individuals has taken the funds in custody in order to protect users and return them in a safe
way. This example raises the question if protective appropriation of funds is legal, or should even be expected from
discoverers.

Users who nevertheless continued to trust the Parity wallet software were less lucky following a second incident.
The Ethereum platform has a fuse mechanism that irrevocably disables code at a given address. In November 2017,
a user (allegedly) inadvertently invoked this mechanism on a library referenced in 584 intentionally non-updatable
contracts of the next-generation Parity wallet. A total of $152 million was burned [34]. This time, no one intervened,
presumably because the loss concerned only 0.5% of all coins.

We close by noting that as of this writing, we are not aware of any major cases of responsible disclosures of
vulnerabilities in smart contracts.

4 RECOMMENDATIONS AND OPEN QUESTIONS

While best practices in secure software engineering and responsible disclosure [15] are increasingly adopted in the
cryptocurrency space, there always remains a residual risk of damaging vulnerabilities. Therefore, norms and eventually
laws for responsible disclosure need to emerge. What follows is a first step towards that end. Our synthesis of what can
be learned from the cases is structured along three central issues of responsible disclosure: (i) how to protect users, (ii)
who to contact, when and how, and (iii) how to reward the discoverer. Table 1 sums up the recommendations outlined
in this section.

Manuscript submitted to ACM

Responsible Vulnerability Disclosure in Cryptocurrencies 11

4.1 How to Protect Users

Discoverer safety. If the vulnerability can make parties who may operate beyond the law substantially richer or
poorer, the discoverer’s personal safety should be considered [10]. Death threats are not unheard of. Confidentially
sharing the vulnerability with others the discoverer trusts (professional colleagues, notaries or the police) might reduce
this risk. Sealed envelopes, or their digital variants such as time-locked encryption or secret sharing schemes, lessen
the risk of unintended leakage. In addition, anonymous reporting may also reduce stress and tension. However, note
that if the vulnerability is exploited, any proof that the discloser knew of the vulnerability before its exploit could be
used as evidence the discloser was the attacker.

Addressing vulnerable funds. If a vulnerability means that anyone can steal money from an account, should civic-
minded defenders proactively steal to protect funds, like in the Parity wallet case (Sect. 3.2)? This touches on unresolved
legal questions. If “code is law” is the guiding principle, moving vulnerable funds must be legal. But courts are bound to
real-world norms which differ across jurisdictions and circumstances. For example, in many places only law enforcement
can legally expropriate property, including crypto coins. Elsewhere, disclosers could be obligated to intervene rather
than stand by and allow a crime to take place. To give the discoverer legal certainty, it is essential to settle the basic
question whether the discoverer could face legal consequences if she takes such precautions, or break the law if she
has the power and does not. If opting to leave the matter to law enforcement, other complications arise: which law
enforcement agency has jurisdiction and sufficient authority and is allowed to act? Do all law enforcement agencies
possess the technical capability to intervene in time?

Preparing the system for disclosure. Given the inevitability of vulnerabilities, one strategy is to implement features in
the cryptocurrency itself to automatically notify affected users of significant problems. In fact, Bitcoin used to have such
an alert system, which enabled trusted actors to disseminate messages to all users and even suspend transactions. Such
alert systems prompt difficult questions of their own, like who can be trusted with that authority in a decentralized
system? Also, the alert system itself could become the target of attack, in much the same way that an Internet “kill
switch” could create more security problems than it solves. Incidentally, Bitcoin itself abandoned the alert system over
such concerns [4]. A similar idea is to incorporate a mechanism to turn off particular features if significant vulnerabilities
are later found. Dash utilizes such a system that lets the holder of a secret key turn features on and off at will [27].
PIVX supports a similar mechanism to disable zero-knowledge transactions, which proved useful during the Zerocoin
disasters (see Sect. 3.1).

Despite the benefits such features bring, they contradict the design philosophy of decentralization and might expose
the privileged party to law enforcement requests. Supposing a cryptocurrency could overcome these challenges and
develop mechanisms for disseminating protective instructions, the question of how to contact the trusted party who
takes the precaution remains. We discuss this issue next.

4.2 Who to Contact, When, and How

Provide clear points of contact. Many cryptocurrencies are designed to avoid relying on privileged parties with
substantial control. Yet this is in effect required to support responsible disclosure. It can be difficult to determine who
is “in charge” (assuming anyone is) and who can fix the bug. Best practices recommend that developers provide clear
points of contact for reporting security bugs, including long-term public keys [11]. Developers who reuse code are
advised to publish the original contact information alongside their own to aid the search for affected projects.

Manuscript submitted to ACM

12 Rainer Böhme, Lisa Eckey, Tyler Moore, Neha Narula, Tim Ruffing, and Aviv Zohar

Identifying the responder. All communication by the discoverer should serve the end of fixing the bug. This means
that the discoverer needs to notify the party who is in the best position to solve the problem. For example, if the
vulnerability affects the cryptocurrency’s core implementation, then the developers are the natural responders. There
is a long history of bugs in exchanges [24], in which case they would respond. It is important to note that once the
responder has taken responsibility, the discoverer should adopt a “need-to-know” practice until the risk is mitigated.
Sometimes the natural choice for responder is missing or untrustworthy. In this case, the discoverer can also serve as
responder, or delegate the responsibility to a third party.

Responder communication with stakeholders. Given the decentralized nature of cryptocurrencies, the responder is
usually not in a position to unilaterally act to fix the bug. Instead, the responder must seek stakeholders’ support. This
means communicating the right messages at the right time. It could be dangerous to tell the full truth right away, so the
message may justifiably include obfuscation or even white lies. Different stakeholders might require varying levels of
detail at particular points in time. For bugs that require certain transactions to be mined for successful exploitation, the
responder might encourage miners to upgrade first in order to deploy a fix as fast as possible. Exchanges can suspend
trading in order to limit price shocks as bad news breaks, or aid in blocking the transport of stolen funds. In other
instances wallet developers need to be notified first, in order to deploy patches to their software. It is good practice to
publish an advisory detailing the course of events and clarify any obfuscation or lies after the risk is mitigated. This
transparency could mitigate the erosion of trust resulting from deception.

Coordination among multiple responders. As illustrated in the cases above, vulnerabilities often affect multiple projects.
It is up to the discoverer to decide where to send the report. The reporter should be transparent about who has been
informed. The discoverer can work with the responders to ensure that everyone affected has been notified. Coordination
among responders is essential. Patches should be deployed as simultaneously as possible across affected projects, since
the patching and publication of vulnerability information would leave others exposed if no precautions were taken. In
some circumstances, the responders are competitors, and their attitudes towards one another range from suspicion to
hostility. We discuss how to deal with such cases next.

Dealing with untrustworthy responders. While in the traditional security world, it is considered not only common
courtesy but professionally and ethically required to inform other projects about vulnerabilities before disclosing their
existence publicly. In the cryptocurrency world, one must adopt a more adversarial mindset. If the discoverer does not
find a trustworthy responder, she can take on that responsibility. While one might not expect the discoverer to fix the
bug, she could nonetheless take steps to protect users (see Section 4.1).

The situation is further complicated when multiple projects share a problem, and some are not trustworthy or are
hostile towards each other. It is unreasonably burdensome for a discoverer to adjudicate such conflicts. Responders
can make a best effort to identify affected parties (e.g., searching for coins sharing common codebases) and notify
accordingly. This points to the need for developing a clearinghouse, à la CERT/CC.

External authorities. Banks, payment processors and other key financial institutions are often required to report
vulnerabilities to banking regulators, who can coordinate the response if needed. There is no current equivalent for
cryptocurrencies, and it is unclear under which jurisdiction such a thing would reside. Should some global reporting
agency of this nature be formed? If so, how might it successfully operate given a community whose common ground is
removing the need for central parties? An external body modeled on CERT/CC might serve as a useful starting point. A
Manuscript submitted to ACM

Responsible Vulnerability Disclosure in Cryptocurrencies 13

less formal and more decentralized example to consider is iamthecalvary.org, an initiative bringing together security
researchers with medical device manufaturers to promote responsible vulnerability disclosure and remediation.

4.3 How to Reward the Discoverer

The article has shown that disclosing a cryptocurrency vulnerability and reacting responsibly is very burdensome.
Interviewees have reported sleepless nights and fears for their safety, which in turn has altered their professional
collaborations and friendships. The alternative to profit from the vulnerability, potentially anonymously, is tempting.
This is why cryptocurrencies specifically cannot expect altruistic behavior and must instead incentivize responsible
disclosure [11].

Bug bounties offer an established way to reward those who find bugs [5]. It stands to reason that they would be
a natural fit for cryptocurrencies, given that they have a built-in payment mechanism. However, denominating the
reward in its own currency is problematic, since its value might diminish as a result of disclosing the vulnerability,
and you are effectively rewarding the discloser in a currency which she just found to be buggy. Other approaches are
possible – for example, Augur (a smart contract market platform) is experimenting with exploit derivatives. It is not
unreasonable to think that the cryptocurrency community might innovate a solution that could be a model for the
broader software community. Nevertheless, monetary rewards must complement and cannot substitute for healthy
norms and a culture that welcomes vulnerability disclosure.

REFERENCES
[1] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A Survey of Attacks on Ethereum Smart Contracts (SoK). In Principles of Security and

Trust (Proc. of POST’17) (Lecture Notes in Computer Science), Matteo Maffei and Mark Ryan (Eds.), Vol. 10204. Springer, 164–186.
[2] Morten Bech and Rodney Garratt. 2017. Central Bank Cryptocurrencies. BIS Quarterly Review 9 (2017), 55–70.
[3] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, and Madars Virza. 2014. Zerocash: Decentralized Anonymous

Payments from Bitcoin. In IEEE Symposium on Security and Privacy (S&P).
[4] Bryan Bishop. 2018. Alert Key Disclosure. Bitcoin development mailing list. https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-July/

016189.html.
[5] Rainer Böhme. 2006. A Comparison ofMarket Approaches to Software Vulnerability Disclosure. In Emerging Trends in Information and Communication

Security (ETRICS) (Lecture Notes in Computer Science), Günter Müller (Ed.), Vol. 3995. Springer, Berlin Heidelberg, 298–311.
[6] CoinMarketCap. 2019. Global Charts. https://coinmarketcap.com/charts/.
[7] dEBRUYNE. 2018. A Post Mortem of The Burning Bug. https://web.getmonero.org/2018/09/25/a-post-mortum-of-the-burning-bug.html.
[8] Bitcoin Core Developers. 2018. CVE-2018-17144 Full Disclosure. https://bitcoincore.org/en/2018/09/20/notice/.
[9] Mark Dino, Vlad Zamfir, and Emin Gün Sirer. 2016. A Call for a Temporary Moratorium on The DAO. Blog post. http://hackingdistributed.com/

2016/05/27/dao-call-for-moratorium/.
[10] Cory Fields. 2018. Responsible disclosure in the era of cryptocurrencies. Blog post. https://medium.com/mit-media-lab-digital-currency-initiative/

http-coryfields-com-cash-48a99b85aad4.
[11] Cory Fields and Neha Narula. 2018. Reducing the risk of catastrophic cryptocurrency bugs. Blog post. https://medium.com/

mit-media-lab-digital-currency-initiative/reducing-the-risk-of-catastrophic-cryptocurrency-bugs-dcdd493c7569.
[12] Michael Fröwis, Andreas Fuchs, and Rainer Böhme. 2019. Detecting Token Systems on Ethereum. In Financial Cryptography and Data Security (Proc.

of FC’19), Ian Goldberg and Tyler Moore (Eds.).
[13] Ethan Heilman, Neha Narula, Thaddeus Dryja, and Madars Virza. 2017. IOTA Vulnerability Report: Cryptanalysis of the Curl Hash Function

Enabling Practical Signature Forgery Attacks on the IOTA Cryptocurrency. https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md.
[14] Ethan Heilman, Neha Narula, Garrett Tanzer, James Lovejoy, Michael Colavita, Madars Virza, and Tadge Dryja. [n. d.]. Cryptanalysis of Curl-P and

Other Attacks on the IOTA Cryptocurrency. IACR Cryptology ePrint Archive, report 2019/344. https://eprint.iacr.org/2019/344.
[15] Allen D. Householder, Garret Wassermann, Art Manion, and Chris King. 2017. The CERT Guide to Coordinated Vulnerability Disclosure. Special

Report CMU/SEI-2017-SR-022.
[16] Lee Hutchinson. 2018. All Android-created Bitcoin wallets vulnerable to theft. Ars Technica. https://arstechnica.com/information-technology/2013/

08/all-android-created-bitcoin-wallets-vulnerable-to-theft/.
[17] Poramin Insom. 2017. Zcoin’s Zerocoin Bug Explained in Detail. Blog post. https://zcoin.io/zcoins-zerocoin-bug-explained-in-detail/.

Manuscript submitted to ACM

iamthecalvary.org
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-July/016189.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-July/016189.html
https://coinmarketcap.com/charts/
https://web.getmonero.org/2018/09/25/a-post-mortum-of-the-burning-bug.html
https://bitcoincore.org/en/2018/09/20/notice/
http://hackingdistributed.com/2016/05/27/dao-call-for-moratorium/
http://hackingdistributed.com/2016/05/27/dao-call-for-moratorium/
https://medium.com/mit-media-lab-digital-currency-initiative/http-coryfields-com-cash-48a99b85aad4
https://medium.com/mit-media-lab-digital-currency-initiative/http-coryfields-com-cash-48a99b85aad4
https://medium.com/mit-media-lab-digital-currency-initiative/reducing-the-risk-of-catastrophic-cryptocurrency-bugs-dcdd493c7569
https://medium.com/mit-media-lab-digital-currency-initiative/reducing-the-risk-of-catastrophic-cryptocurrency-bugs-dcdd493c7569
https://github.com/mit-dci/tangled-curl/blob/master/vuln-iota.md
https://eprint.iacr.org/2019/344
https://arstechnica.com/information-technology/2013/08/all-android-created-bitcoin-wallets-vulnerable-to-theft/
https://arstechnica.com/information-technology/2013/08/all-android-created-bitcoin-wallets-vulnerable-to-theft/
https://zcoin.io/zcoins-zerocoin-bug-explained-in-detail/

14 Rainer Böhme, Lisa Eckey, Tyler Moore, Neha Narula, Tim Ruffing, and Aviv Zohar

[18] A. M. Juarez. 2017. Fraudulent Transactions Allowed by the CryptoNote Key Image Bug Remain Valid. Archived version of Bytecoin GitHub issue
http://archive.today/2017.05.24-094822/https://github.com/amjuarez/bytecoin/issues/104.

[19] Corie Lok. 2001. Dispute over Digital Music Muzzles Academic. Nature 411, 6833 (2001), 5.
[20] luigi1111 and Riccardo "fluffypony" Spagni. 2017. Disclosure of a Major Bug in CryptoNote Based Currencies. Blog post. https://web.getmonero.org/

2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html.
[21] Ian Miers. 2013. README of libzerocoin. https://github.com/Zerocoin/libzerocoin/blob/63ef50417d513194f7fd7294f8b44f6b5ae49f61/README.md#

warning.
[22] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. 2013. Zerocoin: Anonymous Distributed E-Cash from Bitcoin. In IEEE Symposium

on Security and Privacy.
[23] Charlie Miller. 2007. The Legitimate Vulnerability Market: Inside the Secretive World of 0-Day Exploit Sales. In Workshop on the Economics of

Information Security (WEIS). Carnegie Mellon University, Pittsburgh, PA.
[24] Tyler Moore, Nicolas Christin, and Janos Szurdi. 2018. Revisiting the Risks of Bitcoin Currency Exchange Closure. ACM Transactions on Internet

Technology 18, 4 (2018), 50:1–50:18.
[25] Tyler Moore, Allan Friedman, and Ariel D. Procaccia. 2010. Would a ’cyber warrior’ protect us: exploring trade-offs between attack and defense of

information systems. In New Security Paradigms Workshop (NSPW), Angelos D. Keromytis, Sean Peisert, Richard Ford, and Carrie Gates (Eds.). ACM,
85–94. https://tylermoore.utulsa.edu/nspw10.pdf

[26] Malte Möser and Arvind Narayanan. 2019. Effective Cryptocurrency Regulation Through Blacklisting. https://maltemoeser.de/paper/
blacklisting-regulation.pdf.

[27] Dash project. 2017. Spork, Multi-Phased Fork. Glossary item in developer documentation. https://dash-docs.github.io/en/glossary/spork.
[28] Pierre Reibel, Haaroon Yousaf, and Sarah Meiklejohn. 2019. An Exploration of Code Diversity in the Cryptocurrency Landscape. In Financial

Cryptography and Data Security (Proc. of FC’19), Ian Goldberg and Tyler Moore (Eds.).
[29] Tim Ruffing, Sri Aravinda Krishnan Thyagarajan, Viktoria Ronge, and Dominique Schröder. 2018. A Cryptographic Flaw in Zerocoin (and Two

Critical Coding Issues). Blog post. https://www.chaac.tf.fau.eu/2018/04/12/zerocoinzcoinpivxzoinsmartcashhexxcoin-attack/.
[30] Tim Ruffing, Sri Aravinda Krishnan Thyagarajan, Viktoria Ronge, and Dominique Schröder. 2018. (Short Paper) Burning Zerocoins for Fun and for

Profit - A Cryptographic Denial-of-Spending Attack on the Zerocoin Protocol. In Crypto Valley Conference on Blockchain Technology, CVCBT 2018,
Zug, Switzerland, June 20-22, 2018. IEEE, 116–119. https://doi.org/10.1109/CVCBT.2018.00023

[31] Ari Schwartz and Robert K. Knake. 2016. Government’s Role in Vulnerability Disclosure. Harvard Kennedy School Discussion Paper.
[32] Josh Swihart, Benjamin Winston, and Sean Bowe. 2019. Zcash Counterfeiting Vulnerability Successfully Remediated. Blog post. https://electriccoin.

co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/.
[33] Parity Technologies. 2017. The Multi-sig Hack: A Postmortem. https://www.parity.io/the-multi-sig-hack-a-postmortem/.
[34] Parity Technologies. 2017. A Postmortem on the Parity Multi-Sig Library Self-Destruct. https://www.parity.io/

a-postmortem-on-the-parity-multi-sig-library-self-destruct/.
[35] Nicolas van Saberhagen. 2013. Cryptonote v 2.0. White Paper. https://cryptonote.org/whitepaper.pdf.
[36] Pieter Wuille. 2015. Disclosure: Consensus Bug Indirectly Solved by BIP66. Bitcoin development mailing list. https://lists.linuxfoundation.org/

pipermail/bitcoin-dev/2015-July/009697.html.
[37] Reuben Yap. 2019. Further Disclosure on Zerocoin vulnerability. Blog post. https://zcoin.io/further-disclosure-on-zerocoin-vulnerability/.
[38] Aviv Zohar. 2015. Bitcoin: Under the Hood. Commun. ACM 58, 9 (2015), 104–113.

Manuscript submitted to ACM

http://archive.today/2017.05.24-094822/https://github.com/amjuarez/bytecoin/issues/104
https://web.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://web.getmonero.org/2017/05/17/disclosure-of-a-major-bug-in-cryptonote-based-currencies.html
https://github.com/Zerocoin/libzerocoin/blob/63ef50417d513194f7fd7294f8b44f6b5ae49f61/README.md#warning
https://github.com/Zerocoin/libzerocoin/blob/63ef50417d513194f7fd7294f8b44f6b5ae49f61/README.md#warning
https://tylermoore.utulsa.edu/nspw10.pdf
https://maltemoeser.de/paper/blacklisting-regulation.pdf
https://maltemoeser.de/paper/blacklisting-regulation.pdf
https://dash-docs.github.io/en/glossary/spork
https://www.chaac.tf.fau.eu/2018/04/12/zerocoinzcoinpivxzoinsmartcashhexxcoin-attack/
https://doi.org/10.1109/CVCBT.2018.00023
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://www.parity.io/the-multi-sig-hack-a-postmortem/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://www.parity.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://cryptonote.org/whitepaper.pdf
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-July/009697.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-July/009697.html
https://zcoin.io/further-disclosure-on-zerocoin-vulnerability/

	Abstract
	1 Introduction
	2 How is disclosure different?
	3 Case Studies
	3.1 Cryptocurrency Systems
	3.2 Smart Contracts

	4 Recommendations and Open Questions
	4.1 How to Protect Users
	4.2 Who to Contact, When, and How
	4.3 How to Reward the Discoverer

	References

