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Abstract
Predicting the number of clock cycles a processor
takes to execute a block of assembly instructions
in steady state (the throughput) is important for
both compiler designers and performance engi-
neers. Building an analytical model to do so is
especially complicated in modern x86-64 Com-
plex Instruction Set Computer (CISC) machines
with sophisticated processor microarchitectures
in that it is tedious, error prone, and must be per-
formed from scratch for each processor genera-
tion. In this paper we present Ithemal, the first
tool which learns to predict the throughput of
a set of instructions. Ithemal uses a hierarchi-
cal LSTM–based approach to predict throughput
based on the opcodes and operands of instructions
in a basic block. We show that Ithemal is more
accurate than state-of-the-art hand-written tools
currently used in compiler backends and static ma-
chine code analyzers. In particular, our model has
less than half the error of state-of-the-art analyti-
cal models (LLVM’s llvm-mca and Intel’s IACA).
Ithemal is also able to predict these throughput
values just as fast as the aforementioned tools,
and is easily ported across a variety of processor
microarchitectures with minimal developer effort.

1 Introduction
The throughput of a sequence of instructions—the num-
ber processor clock cycles taken to execute the sequence
when looped in steady state—determines how fast those
instructions can process data. Accurately predicting the
throughput of a basic block1 is an essential requirement
in many systems, to be able to predict and optimize run-
time performance. For instance, constraint–based register
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1In this work, we focus specifically on basic blocks, sequences
of instructions with no branches or jumps.

allocation and instruction scheduling (Lozano et al., 2012)
relies on accurate throughput estimations, as do learning–
based techniques like genetic algorithm based register allo-
cation (Stephenson et al., 2003) and reinforcement learning
based instruction scheduling (McGovern & Moss, 1999).

The alternative – measuring throughput on demand by exe-
cuting the basic block – is too expensive for most compilers
and learning–based solutions. In practice, most systems
employ analytical models to predict throughput. For in-
stance, the LLVM compiler team (Lattner & Adve, 2004)
recently merged2 a command-line tool, llvm-mca (Di Bi-
agio & Davis, 2018), that exposes a machine model for
throughput estimation. Intel has also released a closed-
source machine code analyzer, IACA (Intel, 2017), which
relies on internal knowledge of Intel’s processor design.
These models are typically an order of magnitude faster
than measuring a basic block’s throughput. However, man-
ually writing an accurate and complete model is tedious,
error-prone, and exceedingly difficult without knowledge of
the exact mechanisms of the processor.

In the hunt for accuracy, developers build complicated mod-
els which must make significant tradeoffs with the model’s
portability and speed.

Accuracy. Modern x86-64 Complex Instruction Set Com-
puter (CISC) processors contain many hardware optimiza-
tions that significantly complicate building accurate analyti-
cal models. In order to implement an instruction set archi-
tecture (ISA) like x86-64, processors actually implement
an underlying microarchitecture, a physical implementation
of the ISA specification. Processors translate instructions
from the ISA to instructions in the latent microarchitectural
language (termed micro-ops), then execute those micro-ops.
The micro-ops may undergo optimizations such as micro-op
fusion, in which micro-ops of different instructions may be
combined together; out-of-order execution, in which instruc-
tions can be executed in any semantics–preserving order;
register renaming, where false dependencies can be broken
to enable more parallel execution; and many more vendor-
specific optimizations. This makes the prediction problem
highly complex and non-linear.

2 lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
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Portability. While ISAs like x86-64 stay relatively stable,
processor vendors release updated processor implementa-
tions with different microarchitectures every few years. For
example, Intel released the Haswell and Skylake microar-
chitectures in 2013 and 2015 respectively for the x86-64
instruction set. Each microarchitecture of a processor fam-
ily has its own quirks and intricacies. Manually writing a
throughput estimator to support different microarchitectures
requires rewriting instruction tables, resource utilization
charts, and modeling microarchitectural optimizations, all
of which are tedious and error-prone. This is complicated by
the vast, incomplete, and incorrect documentation for many
processors, where understanding of these behaviors has to
be obtained by reverse-engineering the processor. Ideally,
the throughput estimator should be able to automatically
capture such intricacies with minimal human intervention.

Speed. A throughput estimator also needs to be fast. Com-
pilers need to search through many code blocks before emit-
ting the fastest version of a given instruction sequence. Run-
ning the basic blocks to get the ground truth throughput
requires sandboxing and many iterations of execution to ar-
rive at a consistent steady-state throughput estimate, which
is impractical for real-time systems.

1.1 Ithemal: A Data Driven Approach

In this paper we introduce Ithemal (Instruction THroughput
Estimator using MAchine Learning), which takes a novel
data–driven approach to predicting throughput for a block
of instructions, inspired by recent advances in Deep Neural
Networks (DNNs). Ithemal models the throughput estima-
tion problem as a regression task and leverages a DNN
to learn to predict throughput by using a large corpus of
labeled data, mapping assembly sequences to real valued
throughputs. More concretely, Ithemal uses a hierarchical
multiscale RNN (El Hihi & Bengio, 1995; Chung et al.,
2017; Baraldi et al., 2017), which generates an independent
embedding for each instruction, then sequentially combines
the instruction embeddings to predict throughput.

We show that Ithemal’s learned model is significantly more
accurate than the analytical models, dropping the mean abso-
lute percent error by more than 50% across all benchmarks,
while still delivering fast estimation speeds.

To generate high-quality predictions, Ithemal needs only
training data and a specification of the ISA, including the
specification of instructions and their explicit and implicit
operands (for instance, the instruction push rax in x86-
64 pushes the register rax on to the stack and also implicitly
modifies the stack pointer register, rsp). Unlike analytical
models, Ithemal learns any salient microarchitectural details
that contribute to throughput on its own, without any explicit
specification or modeling.

In this paper, we present the following contributions:

• Data–Driven Throughput Estimation. We present
Ithemal, the first system for data-driven basic block
throughput estimation, using a hierarchical multiscale
RNN.

• Evaluation: We demonstrate that Ithemal is more ac-
curate than the state-of-the-art analytical throughput
estimators, while still attaining fast estimation speeds.
We also show that Ithemal’s design is portable across
multiple processor microarchitectures.

• DNN Architecture Exploration. We demonstrate
that the proposed hierarchical multiscale RNN out-
performs many other choices, including other neural
network architectures specifically tailored to mimic
the dependency patterns of instructions within a basic
block.

• Open Source Implementation. We have open-
sourced our implementation of Ithemal at https:
//github.com/psg-mit/Ithemal in the hope
that performance engineers and compiler designers can
use and improve upon our approach.

Ithemal demonstrates that future systems can leverage data–
driven techniques to either augment or fully replace manu-
ally developed throughput estimators.

2 Motivating Examples

Analytical modeling is difficult for many code sequences;
consider examples (a)-(c), their actual throughput3, and their
associated throughput predictions in Table 1. These flawed
predictions occur in spite of many hours spent engineering
detailed models of underlying microarchitectural details. In
contrast, Ithemal’s data driven approach intrinsically learns
accurate predictions from the ground truth data.

shl  rbx, 0x02 
mov  rdi, rbx

mov    [rbp+0x70], rax
mov    rax, 0x01

vxorps xmm0, 
    xmm0,xmm0

Ithemal 35 83102

50

32

IACA

83

100

(a) 

24

(c)

Actual

96

103

84

llvm-mca 100

(b)

Table 1. Example x86-64 assembly code sequences (Intel syntax)
and associated throughput predictions, in clock cycles

Implementation Errors: Intel provides extensive docu-
mentation of its microarchitectural implementation that en-
ables developers to build performance models for assembly

3Note that – following convention – we define throughput to
be the number of clock cycles taken to execute a basic block; this
is actually the reciprocal of the standard definition of throughput.
We also report throughput for 100 iterations of a given basic block.

https://github.com/psg-mit/Ithemal
https://github.com/psg-mit/Ithemal
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Figure 1. Ithemal System Architecture

code. However, the sheer volume of implementation details
makes it challenging to deliver a complete model.

Sequence (a) shows a single instruction sequence that ze-
ros out the vector register xmm0. Zeroing out registers is
so common that Intel processors execute these instructions
using a faster, optimized data path – separate from the nor-
mal instruction execution path. IACA closely predicts the
measured value but llvm-mca’s predictions are much farther
off, because it does not model this optimization.

Sequence (b) shows a pair of mov instructions with a mea-
sured throughput of 103. IACA and LLVM both find an
execution schedule which would predict a throughput of
100 cycles; however, IACA also identifies a micro-op fusion
opportunity, and therefore predicts 84 cycles. This optimiza-
tion opportunity does not manifest in the observed timing
numbers.

Ithemal, which is driven by actual performance data, learns
to closely predict both of these values without any explicit
error-prone encoding of Intel’s optimizations.

Vendor Documentation Errors: The sheer volume of
implementation details also means that Intel’s documenta-
tion can be incorrect. Tools that faithfully adhere to the
documentation can therefore still be incorrect. Sequence (c)
is a short sequence with a data dependency that is bypassed
within the processor pipeline: the mov instruction does not
consume many additional clock cycles over that of shl.
The throughput of this basic block is therefore dominated by
the throughput of shl. However, the throughput value that
Intel provides in its documentation (50 cycles) assumes that
there are no dependencies. Therefore, while IACA – Intel’s
own tool – closely predicts the value, llvm-mca is incorrect
because it uses the dependency-free throughput value. In
comparison, Ithemal closely predicts the actual throughput
because it works with actual performance data.

3 Model Architecture
Figure 1 presents the high-level design of Ithemal’s ap-
proach. We model the problem of throughput estimation

as a regression problem: given the assembly input, Ithe-
mal predicts the throughput of the instruction sequence as a
real-valued number. At the core of Ithemal is a hierarchical
multiscale RNN (Shuai et al., 2015; Zhu et al., 2016) that
sequentially processes all instructions in the basic block and
outputs an embedding, which Ithemal then uses to directly
estimate the throughput. Altogether, we decompose the end-
to-end model into the following stages: canonicalization,
embedding and estimation.

3.1 Canonicalization

The canonicalization stage converts the assembly input into
a more structured form, dictated by the syntax of the as-
sembly instructions. Ithemal takes a compiled assembly
block, disassembles it, and maps it to a list of instructions.
Each instruction consists of a list of tokens representing its
operation code (opcode, e.g. add), source operands, and
destination operands, separated by distinguished delimiter
tokens.

For example, consider the instruction mul ecx, which
multiplies the value in register ecx with eax, and places
the result into registers edx and eax. Note that the source
operand eax and both of the destination operands eax and
edx are implicit in the Intel syntax mul ecx. The final
canonicalized set of tokens for the instruction is:

(mul, <S>, eax, ecx, <D>, edx, eax, <E>)

where the bracketed tokens are the delimiters represent-
ing the break between the opcode, source, and destination
operands.

Assembly code permits more than just register operands,
such as constants and memory operands. We map all con-
stants (e.g. integer constants, memory addresses, etc.) to
a single CONST token. We demarcate memory operands
(consisting of a base address, and an optional offset and
displacement) by surrounding them with <M> and </M> de-
limiter tokens. We present the full canonicalization scheme
in Appendix A.



Ithemal: Basic Block Throughput Prediction

3.2 Embedding

Ithemal’s embedding stage takes a canonicalized token
stream of instructions, and for each instruction produces
an embedding: a representation of an instruction as a real-
valued vector in a high-dimensional space. The first step
is the token layer, which maps a given token to an embed-
ding. We implement the token layer by mapping each token
in the sequence to an n-dimensional vector by learning a
linear transformation of the one-hot token vectors (this is
equivalent to learning a lookup table).

Ithemal then maps the sequence of token embeddings to
an embedding for each instruction in the basic block. We
call this the instruction layer. Because each instruction can
have a variable number of tokens depending on its number
of source and destination operands, the size of the input to
the embedding stage is variable. We therefore implement
the instruction layer with a sequential Recurrent Neural
Network (RNN) architecture with Long Short Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997) cells.

Figure 1 presents the operation of our RNN-based instruc-
tion embedding approach on a small example. The bottom-
most row shows the original assembly input. The second
row shows the sequence of tokens for each instruction. The
third row (the token layer) shows the sequence of token em-
beddings, e.g. vmov, which are mapped directly from each
syntactic token. The fourth row (the instruction layer) shows
the application of an LSTM to reduce the token embedding
sequence into the final instruction embedding, hmov.

3.3 Prediction

The final prediction comes from the prediction layer, which
maps a basic block (a sequence of instruction embeddings)
to a throughput value. This is again implemented with an
RNN with LSTM cells, which has entirely disjoint weights
from the LSTM in the instruction layer. This corresponds to
the topmost layer in Figure 1. Using the final output from
the instruction LSTM (hblock), Ithemal predicts the basic
block’s throughput with a linear layer. Specifically, Ithemal
computes w ·hblock+ b, where w is a learned weight vector
and b is a bias. This produces a final real-valued number
that represents the network’s throughput prediction.

The hierarchical combination of the RNN in the instruc-
tion layer and the RNN in the prediction layer has several
benefits over a non-hierarchical model:

• Memory and backpropagation paths are significantly
shorter than a model using a non-hierarchical (i.e., sin-
gle) RNN. The average length of a block in our dataset
is 6.04 instructions, and the average length of an in-
struction is 7.97 tokens. The average length of a token-
level RNN across the entire basic block would instead
be about 48 RNN cell applications, more than three
times as long as a path through the hierarchical RNN.

• Instructions are embedded atomically: the prediction
layer is only able to generate throughput estimates at
specific points in the overall token stream, i.e. after
complete instructions. This means that the network
does not have an obligation to produce states that corre-
spond to predictions at points in between instructions.

We compare this hierarchical architecture against other ar-
chitecture choices in Section 6, showing the efficacy of
Ithemal’s hierarchical architecture.

4 Data and Training
We collected a dataset of basic blocks from well-known pro-
grams and benchmark suites, and timed them with a proce-
dure that matches the assumptions of the baseline analytical
models. We then train Ithemal using standard supervised
learning techniques.

4.1 Dataset

Table 2 summarizes the set of applications in our dataset.
We designed the dataset to include a diverse set of applica-
tions with different performance characteristics while cov-
ering a wide range of x86-64 instructions. It consists of
performance critical applications used for benchmarking
compiler optimizations as well as end user applications used
in day-to-day computing.

To extract each application’s basic blocks, we first compile
each application using GCC 4.9.4 with the -O3 optimiza-
tion level targeting an Intel Haswell processor. Next, we
use Dynamorio (Bruening et al., 2012), a dynamic binary
instrumentation tool, to dump the encoded bytes of the ex-
ecuted x86-64 basic blocks. We execute the benchmarks
using the standard inputs provided by the benchmark suites.
Next, we de-duplicate the dataset by removing basic blocks
with same encoded byte patterns. This step is important to
eliminate repeated occurrences of basic blocks created by
code shared through common header files and by common
compilation patterns.

4.2 Throughput Profiling

IACA and llvm-mca predict the steady-state throughput of a
basic block, under the assumptions that all memory accesses
result in L1 cache hits and that the execution environment
is non-preemptive. To collect compatible throughput num-
bers, we profile the execution of a loop that executes each
basic block in isolation 100 times (enough to reach the
steady-state behavior; 100 iterations is also the default value
used by llvm-mca). We measure throughput in terms of
clock cycles using a script that we have developed that is
similar to Agner Fog’s timing script4. Agner Fog’s timing

4https://www.agner.org/optimize/testp.zip
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Benchmark suite Description #Total
Blocks

#Unique
Blocks

Linux Shared Libraries linux loaders, standard library and other utilities 313846 103977

SPEC2006 (SPEC, 2006)
benchmark suite with compilers, chess engines, video compres-
sion and various simulation applications. Commonly used for
benchmarking compilers

247047 141051

SPEC2017 (SPEC, 2017) similar to SPEC2006, but with a larger variety 616899 234588
NAS (NASA, 1991–2014) benchmarks with stencil computations (dense loops) 3935 1813
polybench-3.1 (Pouchet, 2012) polyhedral compilation test suite (dense loops) 1900 859
TSVC (Maleki et al., 2011) suite for testing compiler auto-vectorization 5129 2350
cortexsuite (Venkata et al., 2009) computer vision workloads including neural networks 6582 3968

simd (Ihar et al., 2018) heavily hand vectorized image processing library (exposes lot of
SSE2, AVX, AVX2 variants) 212544 25462

compilers/interpreters clang (Lattner & Adve, 2004) and different versions of python
(2.7,3.5) 2746275 924663

end user applications gimp filters, firefox, open-office, rhythmbox, etc. 83555 35513
Full Dataset 4237712 1416473

Table 2. Composition of the dataset for Haswell, showing the total number of basic blocks per benchmark as well as the unique number of
blocks after de-duplicating repeated blocks on a per-benchmark basis. Note that the #Unique Blocks on the full dataset is not equal to the
sum of unique blocks per individual benchmark, as we de-duplicate across all benchmarks.

script is commonly used for validating individual instruc-
tion throughputs. Our timing script additionally ensures
that almost all memory accesses have a L1 cache hit. Addi-
tionally, we measure L1 instruction and data cache misses
and software context switches to detect and filter out invalid
executions that do not conform to the assumptions made by
IACA and llvm-mca in their predictions.

Using this methodology, we collected valid throughput val-
ues for the Intel Ivy Bridge (Intel(R) Xeon(R) CPU E5-2695
v2), Haswell (Intel(R) Xeon(R) CPU E5-2680 v3) and Sky-
lake (Intel(R) Xeon(R) W-2123 CPU) microarchitectures.
Data collection takes approximately 4-5 days for each mi-
croarchitecture. Table 2 shows the breakdown of basic block
counts for each benchmark for Haswell microarchitecture
in total as well as after de-duplicating repeated basic blocks
on a per benchmark basis. The final Haswell dataset, which
is de-duplicated across benchmarks, constitutes 1,416,473
unique basic blocks.

4.3 Training and Methodology

We implemented our neural network model in PyTorch
(0.4.0a0+59bda9a). The learnable parameters in Ithemal
include the token embeddings, the token LSTM and instruc-
tion LSTM parameters, and the affine coefficients in the
final linear layer. For our loss function we use a normalized
error metric, based on the L1 norm:

L(pred,actual) = |pred− actual|
actual

We randomly assign 80% of the collected blocks to the train
set and 20% to the test set. We use Asynchronous Stochastic
Gradient Descent (Robbins & Monro, 1951; Niu et al., 2011)
to train the model. Our full training regime is detailed in
Appendix B.

5 Evaluation
We have evaluated Ithemal against two state-of-the-art, hand-
written analytical models: IACA (Intel, 2017) (v3.0-28-
g1ba2cbb) and llvm-mca (Di Biagio & Davis, 2018) (LLVM
8.0.0). Both of these models are designed to model the
complexities of modern processors (including pipelining,
superscalar, and out-of-order units). We show that our data–
driven model beats the accuracy of these sophisticated hand-
written models (Section 5.1) while maintaining just as fast
prediction speeds (Section 5.2). Further, we show that our
approach is portable across different microarchitectures in
Section 5.3 by showing that Ithemal learns a model that out-
performs IACA and llvm-mca without any neural network
architecture or hyperparameter modifications.

5.1 Accuracy
We evaluate the accuracy of each model against the actual
throughput values for Intel’s Haswell, Ivy Bridge, and Sky-
lake microarchitectures. The version of IACA we use does
not support throughput estimation for Ivy Bridge; we there-
fore evaluate accuracy only for Ithemal and llvm-mca for
Ivy Bridge. We prepared datasets for each microarchitecture
according to the methodology described in Section 4.3.

Table 3 presents the results of our accuracy comparison. We
report the average error with respect to the ground truth of
each tool for each microarchitecture. We also report both the
Spearman and Pearson correlation of each tool’s predictions
with the ground truth.

Ithemal is more accurate in its throughput predictions for ba-
sic blocks across all three microarchitectures. Our model’s
predictions are closer to the ground truth than both IACA
and LLVM in 74% of the blocks in the Haswell test set.
Ithemal’s predictions also have a higher correlation with the
ground truth values for both the Spearman (rank correla-
tion) and Pearson (linear correlation) metrics. The higher
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(a) Ithemal (b) llvm-mca (c) IACA

Figure 2. Heatmaps for measured and predicted throughput values under different models for basic blocks with measured throughput
values less than 1000 cycles (Haswell)

Spearman correlation is especially useful because it directly
corresponds to higher utility for use within an optimizing
compiler (such as an instruction scheduling pass). Specifi-
cally, compilers typically only need to determine which of
several configurations of a basic block is the fastest, and do
not calculate each block’s absolute performance.

Figure 2 presents three heatmaps relating actual and pre-
dicted values in for basic blocks with throughputs less than
1000 cycles for each prediction method (representing 95%
of our dataset).

To generate each heatmap, we binned the actual and pre-
dicted data into axis-aligned bins of width and height 20
cycles. The color in each bin represents the count of blocks
in that bin. A perfect estimator would have all points along
the line y = x (shown as a faint grey, dashed line on the
heatmaps), since the predicted throughputs would always
match the measured throughputs. We see a higher density
near the identity line for Ithemal, compared to both llvm-
mca and IACA. Both llvm-mca and IACA also have more
horizontal banding, representing more predictions of the
same throughput value for different blocks that do actually
have different behaviors.

Figure 3 shows the average error of each system across a
range of throughputs. Compared to llvm-mca and IACA,
Ithemal is better for blocks of almost all sizes. All estima-
tors struggle with blocks with measured throughputs just
below peaks in the measured throughput distribution. We
hypothesize that these blocks correspond to special microar-
chitectural optimizations that llvm-mca and IACA do not
model. Ithemal also struggles some with these rare blocks,
but still outperforms both analytical estimators.

5.2 Speed

Table 4 presents the results of our evaluation of estimator
throughput: the number of instructions able to be timed per
second for each estimator. We calculate this by measuring

Micro-
architecture

Method Error Spearman
Correlation

Pearson
Corr.

Ivy Bridge llvm-mca 0.181 0.902 0.777
Ithemal 0.089 0.955 0.913

Haswell llvm-mca 0.200 0.890 0.790
IACA 0.209 0.917 0.833
Ithemal 0.089 0.960 0.918

Skylake llvm-mca 0.239 0.852 0.729
IACA 0.167 0.926 0.835
Ithemal 0.079 0.960 0.895

Table 3. Average error for different models and microarchitectures

Figure 3. Average error across throughputs for different estimation
methods for basic blocks with throughput values less than 1000
cycles (Haswell)
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the number of basic blocks each tool can time per second,
and multiplying that by the average number of instructions
per basic block. In the last row, we also show the corre-
sponding estimator throughput if we instead measure the
ground-truth throughput for a given block. We measured
these estimator throughputs on the Haswell test set on a
machine with an Intel Xeon E5-2680 CPU.

Ithemal is as fast as llvm-mca and IACA in our measure-
ments, and is significantly faster than empirical evaluation
of basic blocks. It is worth noting that llvm-mca and IACA
can both also output diagnostic information about basic
blocks, and also that empirical evaluation of ground-truth
data could be sped up by running fewer repeated measure-
ments (it may be possible that as few as 2 or 3 measurements
would suffice in some contexts). However even with these
qualifications, we show that Ithemal functions as an equiva-
lently performant and more accurate drop-in replacement for
llvm-mca and IACA in systems which only need throughput
estimations, while still performing significantly faster than
empirical evaluation.

Method Throughput (Instructions / second)
llvm-mca 492
IACA 541
Ithemal 560
Empirical execution 13

Table 4. Estimation throughputs for different estimators measured
in instructions per second

5.3 Portability

We designed and trained Ithemal on Haswell and validated
our architecture and hyperparameters by re-training on Sky-
lake. Without any changes to its structure or training regime,
we then trained and evaluated Ithemal on the Ivy Bridge
dataset. Table 3 summarizes the average errors for each
microarchitecture. Ithemal learns to estimate throughput
values for each microarchitecture with a maximum average
error of 0.089 across all datasets. The hand-written models
exhibit a minimum average error of 0.167.

In sum, Ithemal provides state-of-the-art prediction perfor-
mance; its results beat the baselines across the board. More-
over, Ithemal does so without requiring a user to provide
information about the processor’s underlying microarchi-
tecture, whereas these analytical models require significant
re-engineering for each microarchitecture of interest.

6 Neural Network Architecture Exploration
We evaluated a number of neural network architectures with
varying levels of structure and complexity before arriving at
Ithemal’s network architecture (Section 3).

Figure 4 shows a DAG-RNN (Shuai et al., 2015; Zhu et al.,
2016). Instructions are embedded identically as to in Ithe-
mal (i.e. the token layer and instruction layer remain the

LSTM

LSTM

LSTMmax

hblock 

87.35
h∅

h∅

hmov

hadd
LSTM

max

hsub

hmul

mov  ecx, 0x02
add  eax, ebx
sub  edx, eax
mul  ecx

x86-64 assembly

×

Figure 4. The DAG-RNN Architecture

same). However rather than running an RNN sequentially
over the instructions in the prediction layer, the DAG-RNN
constructs a dependence graph of the instructions in the ba-
sic block, with a directed edge between a pair of instructions
if the second instruction depends on an output of the first
instruction. Because an instruction can depend on multi-
ple previous instructions, we apply an element-wise max
to reduce the states feeding in to a given instruction. Then,
the DAG-RNN applies an LSTM cell, using the generated
instruction embedding as the input, and the result of the
element-wise max as the input state. To generate the final
prediction, we take an element-wise max of the output states
of all leaf instructions (all instructions with no dependents),
and pass the result through a linear layer.

The DAG-RNN is inspired by the theoretical behavior of
a perfect out-of-order processor: the throughput of a basic
block running on a perfect out-of-order processor is equiv-
alent to the throughput of the longest path that must be
serially executed in that basic block. Using a DAG-RNN
implicitly encodes this prior, by only allowing information
to propagate through the paths that must be serially executed
in the block.

We also tested a simple token-level RNN with LSTM cells,
which has a similar base architecture as Ithemal, but with-
out the topmost prediction layer. Instead, this model se-
quentially consumes all tokens in a basic block making no
explicit distinction between instructions, giving a baseline
measure for the efficacy of Ithemal’s hierarchical model.
The full architecture diagram for the token-level RNN is
shown in Appendix E.

Results. Figure 5 shows the training and validation loss
for each model across the first five epochs. It is clear that
the hierarchical LSTM is the best model among these three.
The sequential LSTM performs the worst by far, motivating
the need to process individual tokens and instructions at mul-
tiple scales. The fact that the DAG-RNN performs worse
than the hierarchical LSTM implies that the exact ordering
of instructions in a basic block does matter, not just the
dependency chains. This aligns with the fact that instruction
scheduling optimizations in compilers do result in changed
performance, despite the underlying dependency graph be-
ing the same. While the perfect out-of-order execution
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Figure 5. Learning curves for the models

model is a reasonable approximation, modern processors do
in fact have some serial behavior, which a sequential model
is able to capture.

7 Related Work
Hierarchical Multiscale RNNs Hierarchical RNNs are a
classic technique in sequence prediction domains (El Hihi &
Bengio, 1995). Ithemal uses a hierarchical multiscale RNN
as the core of its prediction methodology, similar to many
other proposed hierarchical RNN models. Ithemal has some
inherent advantages over other models from the literature:
as opposed to the methodology proposed in (Chung et al.,
2017), the hierarchical structure in instruction embedding
and throughput prediction is explicit rather than latent. Ithe-
mal’s structure is instead most similar to boundary-aware
hierarchical RNNs, such as the one presented in (Baraldi
et al., 2017) for video captioning based on a hierarchy of
frames and scenes.

DAG-RNNs and Graph Neural Networks Neural net-
works with generic graph based structures have been used
in NLP tasks to model relations among words in sentences
(Peng et al., 2017; Dhingra et al., 2017). Programs also can
be represented using Gated Graph Neural Networks (Al-
lamanis et al., 2018), to perform high-level tasks such as
variable naming, or identifying variable misuses. Xu et al.
(2017) uses graph neural networks to find binary similarity
between different execution platforms. In experimenting
with a DAG-RNN (Shuai et al., 2015; Zhu et al., 2016), we
hoped to be able to take advantage of the program semantics
of a basic block, although that approach does not perform
as well in our collected datasets.

Analytical Models for Throughput and Runtime Esti-
mation Apart from state-of-the-art tools like llvm-mca
and IACA, other analytical models exist for throughput
estimation (Taha & Wills, 2003) of instructions. OS-
ACA (Laukemann et al., 2018) is an open source analyt-
ical model similar to llvm-mca and IACA, which auto-
mates some of the collection of the tabular data which is

plugged into the model. There are also analytical models
such as (Chen & Aamodt, 2009) to estimate throughput for
multithreaded programs. Cycle–accurate simulators such
as ZSim (Sanchez & Kozyrakis, 2013) and Marss (Patel
et al., 2011) have a high start-up cost and are more suited
for coarse grained simulations.

Coarser analytical models exist for predicting program run-
times (Park, 1993). Work has also been done in develop-
ing analytical models to predict performance of restricted
classes of programs. For example, work on predicting
parallel program runtimes include (Rugina & Schauser,
1998; Adve & Vernon, 2004; Hartleb & Mertsiotakis, 1992;
Blanco et al., 2004; Fahringer & Zima, 1993) and work on
predicting worst case execution times include (Ferdinand
et al., 2001; Li et al., 2007).

All of these models require detailed processor modeling and
considerable human development effort.

Learned Models for Throughput and Runtime Estima-
tion There has been work on developing machine learning–
based models for absolute and relative runtime estimation.
(Huang et al., 2010) introduces sparse polynomial regres-
sion to predict execution time of programs by using a set
of hand–crafted features of high level programs. Dubach
et al. (2007) uses neural networks with hand-crafted features
to estimate the speedup between two code sequences. Ga-
meTime (Seshia & Kotker, 2011; Seshia & Rakhlin, 2012)
uses SMT solvers to generate inputs and game theoretic ap-
proaches to predict the distribution of runtimes of programs.

These models require manual feature engineering, and run-
time predictions are done at a coarser granularity (e.g. at
the full program level). In contrast, Ithemal automatically
learns how to predict throughput of basic blocks with mini-
mal architectural knowledge embedded into the model.

Microarchitectural Predictions Similar to basic block
throughput estimation, various microarchitectural predic-
tion tasks have been explored with machine learning. For
example, RNN models can be used for predicting memory
access (Hashemi et al., 2018), and perceptron models can
be used for branch prediction (Jimenez & Lin, 2001)

8 Conclusion
We present Ithemal, a data–driven system for basic block
throughput estimation. Ithemal’s accuracy surpasses that of
state-of-the-art, hand-written analytical models; it achieves
its accuracy by leveraging a deep neural network designed to
capture the behavior of modern processors. Ithemal demon-
strates that future compilation and performance engineering
tools can be augmented with data–driven approaches to im-
prove their performance and portability, while minimizing
developer effort.
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