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Abstract
We propose a unified framework for adap-
tive connection sampling in graph neural net-
works (GNNs) that generalizes existing stochas-
tic regularization methods for training GNNs.
The proposed framework not only alleviates over-
smoothing and over-fitting tendencies of deep
GNNs, but also enables learning with uncertainty
in graph analytic tasks with GNNs. Instead of
using fixed sampling rates or hand-tuning them
as model hyperparameters as in existing stochas-
tic regularization methods, our adaptive connec-
tion sampling can be trained jointly with GNN
model parameters in both global and local fash-
ions. GNN training with adaptive connection
sampling is shown to be mathematically equiv-
alent to an efficient approximation of training
Bayesian GNNs. Experimental results with abla-
tion studies on benchmark datasets validate that
adaptively learning the sampling rate given graph
training data is the key to boosting the perfor-
mance of GNNs in semi-supervised node classifi-
cation, making them less prone to over-smoothing
and over-fitting with more robust prediction.

1. Introduction
Graph neural networks (GNNs), and its numerous variants,
have shown to be successful in graph representation learn-
ing by extracting high-level features for nodes from their
topological neighborhoods. GNNs have boosted the state-of-
the-art performance in a variety of graph analytic tasks, such
as semi-supervised node classification and link prediction
(Kipf & Welling, 2017; 2016; Hasanzadeh et al., 2019; Haji-
ramezanali et al., 2019). Despite their successes, GNNs have
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two major limitations: 1) they cannot go very deep due to
over-smoothing and over-fitting phenomena (Li et al., 2018;
Kipf & Welling, 2017); 2) the current implementations of
GNNs do not provide uncertainty quantification (UQ) of
output predictions.

There exist a variety of methods to address these problems.
For example, DropOut (Srivastava et al., 2014) is a popular
regularisation technique with deep neural networks (DNNs)
to avoid over-fitting, where network units are randomly
masked during training. In GNNs, DropOut is realized by
randomly removing the node features during training (Rong
et al., 2019). Often, the procedure is independent of the
graph topology. However, empirical results have shown that,
due to the nature of Laplacian smoothing in GNNs, graph
convolutions have the over-smoothing tendency of mixing
representations of adjacent nodes so that, when increasing
the number of GNN layers, all nodes’ representations will
converge to a stationary point, making them unrelated to
node features (Li et al., 2018). While it has been shown
in Kipf & Welling (2017) that DropOut alone is ineffectual
in preventing over-fitting, partially due to over-smoothing,
the combination of DropEdge, in which a set of edges are
randomly removed from the graph, with DropOut has re-
cently shown potential to alleviate these problems (Rong
et al., 2019).

On the other hand, with the development of efficient poste-
rior computation algorithms, there have been successes in
learning with uncertainty by Bayesian extensions of tradi-
tional deep network architectures, including convolutional
neural networks (CNNs). However, for GNNs, deriving
their Bayesian extensions is more challenging due to their
irregular neighborhood connection structures. In order
to account for uncertainty in GNNs, Zhang et al. (2019)
present a Bayesian framework where the observed graph is
viewed as a realization from a parametric family of random
graphs. This allows joint inference of the graph and the
GNN weights, leading to resilience to noise or adversar-
ial attacks. Besides its prohibitive computational cost, the
choice of the random graph model is important and can be
inconsistent for different problems and datasets. Further-
more, the posterior inference in the current implementation
only depends on the graph topology, but cannot consider
node features.
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In this paper, we introduce a general stochastic regulariza-
tion technique for GNNs by adaptive connection sampling—
Graph DropConnect (GDC). We show that existing GNN
regularization techniques such as DropOut (Srivastava et al.,
2014), DropEdge (Rong et al., 2019), and node sampling
(Chen et al., 2018) are special cases of GDC. GDC regular-
izes neighborhood aggregation in GNNs at each channel,
separately. This prevents connected nodes in graph from
having the same learned representations in GNN layers;
hence better improvement without serious over-smoothing
can be achieved. Furthermore, adaptively learning the con-
nection sampling or drop rate in GDC enables better stochas-
tic regularization given graph data for target graph analytic
tasks. In fact, our ablation studies show that only learning
the DropEdge rate, without any DropOut, already substan-
tially improves the performance in semi-supervised node
classification with GNNs. By probabilistic modeling of
the connection drop rate, we propose a hierarchical beta-
Bernoulli construction for Bayesian learnable GDC, and de-
rive the solution with both continuous relaxation and direct
optimization with Augment-REINFORCE-Merge (ARM)
gradient estimates. With the naturally enabled UQ and reg-
ularization capability, our learnable GDC can help address
both over-smoothing and UQ challenges to further push the
frontier of GNN research.

We further prove that adaptive connection sampling of GDC
at each channel can be considered as random aggregation
and diffusion in GNNs, with a similar Bayesian approxima-
tion interpretation as in Bayesian DropOut for CNNs (Gal &
Ghahramani, 2015). Specifically, Monte Carlo estimation of
GNN outputs can be used to evaluate the predictive posterior
uncertainty. An important corollary of this formulation is
that any GNN with neighborhood sampling, such as Graph-
SAGE (Hamilton et al., 2017), could be considered as its
corresponding Bayesian approximation.

2. Preliminaries
2.1. Bayesian Neural Networks

Bayesian neural networks (BNNs) aim to capture model
uncertainty of DNNs by placing prior distributions over the
model parameters to enable posterior updates during DNN
training. It has been shown that these Bayesian extensions
of traditional DNNs can be robust to over-fitting and pro-
vide appropriate prediction uncertainty estimation (Gal &
Ghahramani, 2016; Boluki et al., 2020). Often, the standard
Gaussian prior distribution is placed over the weights. With
random weights {W(l)

}
L

l=1, the output prediction given an� �
input x can be denoted by bf x, {W(l)

}
L

l=1 , which is now
a random variable in BNNs, enabling uncertainty quantifi-
cation (UQ).

The key difficulty in using BNNs is that Bayesian inference

is computationally intractable. There exist various methods
that approximate BNN inference, such as Laplace approx-
imation (MacKay, 1992), sampling-based and stochastic
variational inference (Paisley et al., 2012; Rezende et al.,
2014; Hajiramezanali et al., 2020; Dadaneh et al., 2020a),
Markov chain Monte Carlo (MCMC) (Neal, 2012), and
stochastic gradient MCMC (Ma et al., 2015). However,
their computational cost is still much higher than the non-
Bayesian methods, due to the increased model complexity
and slow convergence (Gal & Ghahramani, 2016).

2.2. DropOut as Bayesian Approximation

Dropout is commonly used in training many deep learning
models as a way to avoid over-fitting. Using dropout at test
time enables UQ with Bayesian interpretation of the network
outputs as Monte Carlo samples of its predictive distribution
(Gal & Ghahramani, 2016). Various dropout methods have
been proposed to multiply the output of each neuron by
a random mask drawn from a desired distribution, such
as Bernoulli (Hinton et al., 2012; Srivastava et al., 2014)
and Gaussian (Kingma et al., 2015; Srivastava et al., 2014).
Bernoulli dropout and its extensions are the most commonly
used in practice due to their ease of implementation and
computational efficiency in existing deep architectures.

2.3. Over-smoothing & Over-fitting in GNNs

It has been shown that graph convolution in graph convo-
lutional neural networks (GCNs) (Kipf & Welling, 2017)
is simply a special form of Laplacian smoothing, which
mixes the features of a node and its nearby neighbors. Such
diffusion operations lead to similar learned representations
when the corresponding nodes are close topologically with
similar features, thus greatly improving node classification
performance. However, it also brings potential concerns
of over-smoothing (Li et al., 2018). If a GCN is deep with
many convolutional layers, the learned representations may
be over-smoothed and nodes with different topological and
feature characteristics may become indistinguishable. More
specifically, by repeatedly applying Laplacian smoothing
many times, the node representations within each connected
component of the graph will converge to the same values.

Moreover, GCNs, like other deep models, may suffer from
over-fitting when we utilize an over-parameterized model to
fit a distribution with limited training data, where the model
we learn fits the training data very well but generalizes
poorly to the testing data.

2.4. Stochastic Regularization & Reduction for GNNs

Quickly increasing model complexity and possible over-
fitting and over-smoothing when modeling large graphs,
as empirically observed in the GNN literature, have been
conjectured for the main reason of limited performance
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from deep GNNs (Kipf & Welling, 2017; Rong et al., 2019).
Several stochastic regularization and reduction methods in
GNNs have been proposed to improve the deep GNN perfor-
mance. For example, stochastic regularization techniques,
such as DropOut (Srivastava et al., 2014) and DropEdge
(Rong et al., 2019), have been used to prevent over-fitting
and over-smoothing in GNNs. Sampling-based stochastic

reduction by random walk neighborhood sampling (Hamil-
ton et al., 2017) and node sampling (Chen et al., 2018) has
been deployed in GNNs to reduce the size of input data
and thereafter model complexity. Next, we review each of
these methods and show that they can be formulated in our
proposed adaptive connection sampling framework.

Denote the output of the lth hidden layer in GNNs by
H

(l) (l) (l)= [h0 , . . . ,hn ]T 2 Rn⇥fl with n being the number
of nodes and fl being the number of output features at the
lth layer. Assume H

(0) = X 2 Rn⇥f0 is the input matrix
of node attributes, where f0 is the number of nodes features.
Also, assume that W(l)

2 Rfl⇥fl+1 and �( · ) are the GNN
parameters at the lth layer and the corresponding activation
function, respectively. Moreover, N (v) denotes the neigh-
borhood of node v; N̂ (v) = N (v) [ {v}; and N(.) is the
normalizing operator, i.e., N(A) = IN +D

�1/2
AD

�1/2.
Finally, � represents the Hadamard product.

2.4.1. DROPOUT (SRIVASTAVA ET AL., 2014)

In a GNN layer, DropOut randomly removes output ele-
ments of its previous hidden layer H(l) based on indepen-
dent Bernoulli random draws with a constant success rate at
each training iteration. This can be formulated as follows:

H
(l+1) = � N(A)(Z(l)

�H
(l))W(l) , (1)

⇣ ⌘

where Z(l) is a random binary matrix, with the same dimen-
sions as H(l), whose elements are samples of Bernoulli(⇡).
Despite its success in fully connected and convolutional
neural networks, DropOut has shown to be ineffectual in
GNNs for preventing over-fitting and over-smoothing.

2.4.2. DROPEDGE (RONG ET AL., 2019)

DropEdge randomly removes edges from the graph by draw-
ing independent Bernoulli random variables (with a constant
rate) at each iteration. More specifically, a GNN layer with
DropEdge can be written as follows:

H
(l+1) = � N(A� Z

(l))H(l)
W

(l) , (2)
⇣ ⌘

Note that here, the random binary mask, i.e. Z(l), has the
same dimensions as A. Its elements are random samples of
Bernoulli(⇡) where their corresponding elements in A are
non-zero and zero everywhere else. It has been shown that
the combination of DropOut and DropEdge reaches the best
performance in terms of mitigating overfitting in GNNs.

2.4.3. NODE SAMPLING (CHEN ET AL., 2018)

To reduce expensive computation in batch training of GNNs,
due to the recursive expansion of neighborhoods across
layers, Chen et al. (2018) propose to relax the requirement
of simultaneous availability of test data. Considering graph
convolutions as integral transforms of embedding functions
under probability measures allows for the use of Monte
Carlo approaches to consistently estimate the integrals. This
leads to an optimal node sampling strategy, FastGCN, which
can be formulated as

H
(l+1) = � N(A) diag(z(l))H(l)

W
(l) , (3)

⇣ ⌘

where z
(l) is a random vector whose elements are drawn

from Bernoulli(⇡). This, indeed, is a special case of
DropOut, as all of the output features for a node are ei-
ther completely kept or dropped while DropOut randomly
removes some of these related output elements associated
with the node.

3. Graph DropConnect
We propose a general stochastic regularization technique for
GNNs—Graph DropConnect (GDC)—by adaptive connec-
tion sampling, which can be interpreted as an approximation
of Bayesian GNNs.

In GDC, we allow GNNs to draw different random masks for
each channel and edge independently. More specifically, the
operation of a GNN layer with GDC is defined as follows:

H
(l+1)[:, j] = �

flX

i=1

N(A� Z
(l)
i,j
)H(l)[:, i]W(l)[i, j] ,

for j = 1, . . . , fl+1 (4)

 !

where fl and fl+1 are the number of features at layers l

and l + 1, respectively, and (l)
Z

i,j
is a sparse random matrix

(with the same sparsity as A) whose non-zero elements
are randomly drawn by Bernoulli(⇡l). Note that ⇡l can be
different for each layer for GDC instead of assuming the
same constant drop rate for all layers in previous methods.

As shown in (1), (2), and (3), DropOut (Srivastava et al.,
2014), DropEdge (Rong et al., 2019), and Node Sampling
(Chen et al., 2018) have different sampling assumptions on
channels, edges, or nodes, yet there is no clear evidence
to favor one over the other in terms of consequent graph
analytic performance. In the proposed GDC approach, there
is a free parameter {

(l)
Z

i,j
2 {0, 1}n⇥n

}
fl
i=1 to adjust the

binary mask for the edges, nodes and channels. Thus the
proposed GDC model has one extra degree of freedom to
incorporate flexible connection sampling.

The previous stochastic regularization techniques can be
considered as special cases of GDC. To illustrate that, we
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assume (l)
Z

i,j
are the same for all j 2 {1, 2, . . . , fl+1}, thus

we can omit the indices of the output elements at layer l+ 1
and rewrite (4) as

H
(l+1) = �

l

i=1

N(A� Z
(l)
i
)H(l)[:, i]W(l)[i, :] (5)

 
fX

!

Define Jn as a n⇥n all-one matrix. Let Z
DO

2 {0, 1}n⇥fl ,
(l)

Z
DE

2 {0, 1}n⇥n, and (l)diag(z
NS

) 2 {0, 1}n⇥n be the ran-
dom binary matrices corresponding to the ones adopted
in DropOut (Srivastava et al., 2014), DropEdge (Rong
et al., 2019), and Node Sampling (Chen et al., 2018), re-
spectively. The random mask {

(l)
Z

i
2 {0, 1}n⇥n

}
fl
i=1 in

GDC become the same as those of the DropOut when
(l) (l)

Z
i

= Jn diag(ZDO
[:, i]), the same as those of DropE-

dge when {
(l)

Z
i
}
fl (l)
i=1 = Z

DE
, and the same as those of node

sampling when {
(l)

Z
i
}
fl (l)
i=1 = Jndiag(zNS

).

(l)

3.1. GDC as Bayesian Approximation

In GDC, random masking is applied to the adjacency matrix
of the graph to regularize the aggregation steps at each
layer of GNNs. In existing Bayesian neural networks, the
model parameters, i.e. W

(l), are considered random to
enable Bayesian inference based on predictive posterior
given training data (Gal et al., 2017; Boluki et al., 2020).
Here, we show that connection sampling in GDC can be
transformed from the output feature space to the parameter
space so that it can be considered as appropriate Bayesian
extensions of GNNs.

First, we rewrite (5) to have a node-wise view of a GNN
layer with GDC. More specifically,

h
(l+1)
v

= �@ 1

cv

� X

u ˆ (v)

z
(l)
vu

� h
(l)
u

�
W

(l)A , (6)

0

2N

1

where cv is a constant derived from the degree of node v,
and (l)

zvu 2 {0, 1}1⇥fl is the mask row vector corresponding
to connection between nodes v and u in three dimensional
tensor Z(l) (l) (l)= [Z1 , . . . ,Z

f
]

l
. For brevity and without loss

of generality, we ignore the constant cv in the rest of this
section. We can rewrite and reorganize (6) to transform the
randomness from0sampling to the parameter space1as

h
(l+1)
v

= �@
u2N̂ (v)

h
(l)
u

diag(z(l)
vu
) W

(l)A

= �

0

@
X

u2N̂ (v)

h
(l)
u

�
diag(z(l)

vu
)W(l)

�
1

A .

(7)

� X �

Define (l) (l)
Wvu := z

(l)
vu W . We have:

h
(l+1)
v

= �@
X

u2N̂ (v)

h
(l)
u

W
(l)
vu
A . (8)

0 1

(l)
Wvu, which pairs the corresponding weight parameter with
the edge in the given graph. The operation with GDC in (8)
can be interpreted as learning different weights for each of
the message passing along edges e = (u, v) 2 E where E is
the union of edge set of the input graph and self-loops for
all nodes.

Following the variational interpretation in Gal et al. (2017),
GDC can be seen as an approximating distribution q✓(!)
for the posterior p(! |A,X) when considering a set of
random weight matrices ! = {!e}

|E
e=1

| in the Bayesian
framework, where !e = {

(l)
We }

L

l=1 is the set of random
weights for the eth edge, |E| is the number of edges in
the input graph, and ✓ is the set of variational parameters.
The Kullback–Leibler (KL) divergence KL(q✓(!)||p(!))
is considered in training as a regularisation term, which
ensures that the approximating q✓(!) does not deviate too
far from the prior distribution. To be able to evaluate the KL
term analytically, the discrete quantised Gaussian can be
adopted as the prior distribution as in Gal et al. (2017).
Further with the factorization q✓(!) over L layers andQ Q
|E| edges such that (l)q✓(!) =

l e
q✓l(We ) and letting

(l) (l)
�

(l)q✓l(We ) = ⇡l�(We 0) + (1 � ⇡ )�(W � M
(l)

l e ),
where ✓l =P

L
P {M

(l),⇡l}, the KL term can be written as
|E| (l) (l)

l=1 e=1 KL(q✓l(We ) || p(We )) and approximately

KL(q✓l(W
(l)
e
) || p(W(l)

e
)) /

(1� ⇡l)

2
||M

(l)
||
2
�H(⇡l),

where H(⇡l) is the entropy of a Bernoulli random variable
with the success rate ⇡l.

Since the entropy term does not depend on network weight
parameters M(l), it can be omitted when ⇡l is not optimized.
But we learn ⇡l in GDC, thus the entropy term is important.
Minimizing the KL divergence with respect to the drop rate
⇡l is equivalent to maximizing the entropy of a Bernoulli
random variable with probability 1 � ⇡l. This pushes the
drop rate towards 0.5, which may not be desired in some
cases where higher/lower drop rate probabilities are more
appreciated.

3.2. Variational Inference for GDC

We consider (l)
ze and W

(l) as local and global random
variables, respectively, and denote Z

(l) = {
(l)

ze }
|E
e=1

| and
!(l) = {

(l)
We }

|E
e=1

| . For inference of this approximating
model with GDC, we assume a factorized variational distri-
bution q(!(l),Z(l)) = q(!(l)) q(Z(l)). Let the prior dis-
tribution (l)p(We ) be a discrete quantised Gaussian andQ
p(!(l)) = E (l)

e=1 p(We ).Therefore, the KL term can be
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P
written as L KL(q(!(l),Z(l)

l=1 ) || p(!(l),Z(l))), with
⇣ ⌘

KL q(!(l),Z(l)) || p(!(l),Z(l)) /

|E|(1� ⇡l)

2
||M

(l)
||
2 +

|E|X

e=1

KL
⇣
q(z(l)

e
) || p(z(l)

e
)
⌘
.

The KL term consists of the common weight decay in
the non-Bayesian GNNs with the additional KL termP|E| (l)

||
(l)

e=1 KL(q(ze ) p(ze )) that acts as a regularization
term for (l)

ze . In this GDC framework, the variational in-
ference loss, for node classification for example, can be
written as

L({M(l),⇡l}
L

l=1) =

Eq({!(l),Z(l)}L
l=1)

[logP (Yo|X, {!(l),Z(l)
}
L

l=1)]

�

LX

l=1

KL(q(!(l),Z(l)) || p(!(l),Z(l))),

(9)

where Yo denotes the collection of the available labels for the
observed nodes. The optimization of (9) with respect to the
weight matrices can be done by a Monte Carlo sample, i.e.
sampling a random GDC mask and calculating the gradients
with respect to {M

(l)
}
L

l=1 with stochastic gradient descent.
It is easy to see that if {⇡l}

L

l=1 are fixed, implementing our
GDC is as simple as using common regularization terms on
the neural network weights.

We aim to optimize the drop rates {⇡l}
L

l=1 jointly with the
weight matrices. This clearly provides more flexibility as
all the parameters of the approximating posterior will be
learned from the data instead of being fixed a priori or
treated as hyper-parameters, often difficult to tune. How-
ever, the optimization of (9) with respect to the drop rates
is challenging. Although the KL term is not a function of
the random masks, the commonly adopted reparameteriza-
tion techniques (Rezende et al., 2014; Kingma & Welling,
2013) are not directly applicable here for computing the
expectation in the first term since the drop masks are binary.
Moreover, score-function gradient estimators, such as REIN-
FORCE (Williams, 1992; Fu, 2006), possess high variance.
One potential solution is continuous relaxation of the drop
masks. This approach has lower variance at the expense of
introducing bias. Another solution is the direct optimization
with respect to the discrete variables by the recently devel-
oped Augment-REINFORCE-Merge (ARM) method (Yin
& Zhou, 2019), which has been used in BNNs (Boluki et al.,
2020) and information retrieval (Dadaneh et al., 2020b;a).
In the next section, we will discuss in detail about our GDC
formulation with more flexible beta-Bernoulli prior con-
struction for adaptive connection sampling and how we
solve the joint optimization problem for training GNNs with
adaptive connection sampling.

4. Variational Beta-Bernoulli GDC
The sampling or drop rate in GDC can be set as a constant
hyperparameter as commonly done in other stochastic regu-
larization techniques. In this work, we further enrich GDC
with an adaptive sampling mechanism, where the drop rate is
directly learned together with GNN parameters given graph
data. In fact, in the Bayesian framework, such a hierarchical
construct may increase the model expressiveness to further
improve prediction and uncertainty estimation performance,
as we will show empirically in Section 7.

Note that in this section, for brevity and simplicity we do
the derivations for one feature dimension only, i.e. fl = 1.
Extending to multi-dimensional features is straightforward
as we assume the drop masks are independent across fea-
tures. Therefore, we drop the feature index in our nota-
tions. Inspired by the beta-Bernoulli process (Thibaux &
Jordan, 2007), whose marginal representation is also known
as the Indian Buffet Process (IBP) (Ghahramani & Grif-
fiths, 2006), we impose a beta-Bernoulli prior to the binary
random masks as

a(l)
e

= z(l)
e
ae, z(l)

e
⇠ Bernoulli(⇡l),

⇡l ⇠ Beta(c/L, c(L� 1)/L), (10)

where ae denotes an element of the adjacency matrix A

corresponding to an edge e, and (l)âe an element of the
matrix Â

(l) = A�Z
(l). Such a formulation is known to be

capable of enforcing sparsity in random masks (Zhou et al.,
2009; Hajiramezanali et al., 2018), which has been shown
to be necessary for regularizing deep GNNs as discussed in
DropEdge (Rong et al., 2019).

With this hierarchical beta-Bernoulli GDC formulation, in-
ference based on Gibbs sampling can be computationally
demanding for large datasets, including graph data (Hasan-
zadeh et al., 2019). In the following, we derive efficient
variational inference algorithm(s) for learnable GDC.

To perform variational inference for GDC random masks
and the corresponding drop rate at each GNN layer together
with weight parameters, we define the variational distribu-
tion as q(Z(l),⇡l) = q(Z(l)

|⇡l)q(⇡l). We define q(⇡l) to
be Kumaraswamy distribution (Kumaraswamy, 1980); as
an alternative to the beta prior factorized over lth layer

q(⇡l; al, bl) = albl⇡
al�1
l

(1� ⇡al
l
)bl�1, (11)

where al and bl are greater than zero. Knowing ⇡l the
edges are independent, thus we can rewrite q(Z(l) ⇡l) =Q|E| (l)

|

e=1 q(ze |⇡l). We further put a Bernoulli distribution
with parameter (l)⇡l over q(ze |⇡l). The KL divergence term
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can be written as

KL q(Z(l),⇡l) || p(Z
(l),⇡l) =

|E|X

e=1

KL
⇣
q(z(l)

e
|⇡l) || p(z

(l)
e

|⇡l)
⌘
+KL (q(⇡l) || p(⇡l)) .

⇣ ⌘

While the first term is zero due to the identical distributions,
the second term can be computed in closed-form as

KL (q(⇡l) || p(⇡l)) =

al � c/L

al

✓
�� � (bl)�

1

bl

◆
+ log

albl
c/L

�
bl � 1

bl
,

where � is the Euler-Mascheroni constant and  (·) is the
digamma function.

The gradient of the KL term in (9) can easily be calculated
with respect to the drop parameters. However, as mentioned
in the previous section, due to the discrete nature of the
random masks, we cannot directly apply reparameterization
technique to calculate the gradient of the first term in (9)
with respect to the drop rates (parameters). One way to
address this issue is to replace the discrete variables with
a continuous approximation. We impose a concrete distri-
bution relaxation (Jang et al., 2016; Gal et al., 2017) for
the Bernoulli random variable (l)zuv , leading to an efficient
optimization by sampling from simple sigmoid distribution
which has a convenient parametrization

z̃(l)
e

= sigmoid
1

t
log
� ⇡l

1� ⇡l

�
+ log

� u

1� u

�
, (12)

✓ ◆

where u ⇠ Unif[0, 1] and t is temperature parameter of
relaxation. We can then use stochastic gradient variational
Bayes to optimize the variational parameters al and bl.

Although this approach is simple, the relaxation introduces
bias. Our other approach is to directly optimize the varia-
tional parameters using the original Bernoulli distribution
in the formulation as in Boluki et al. (2020). We can cal-
culate the gradient of the variational loss with respect to
↵ = {logit(1 � ⇡l)}Ll=1 using ARM estimator , which is
unbiased and has low variance, by performing two forward
passes as

ruL(↵) = E
u⇠

QL
l=1

Q|E|
e=1 Unif[0,1](u(l)

e )
L({M(l)

}
L
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where L({M(l)
}
L

l=1, 1[u<�(↵)]) denotes the loss
obtained by setting Z

(l) = 1[u(l)<�(↵l)] :=� �
1 (l) , . . . , 1 (l) l = 1, . . . , L
[u1 <�(↵l)] [u <�(↵l)]

for . The
|E|

gradient with respect to {al, bl}Ll=1 can then be calculated
by using the chain rule and the reparameterization for
⇡l = (1�

1 1

u bl ) al , u ⇠ Unif[0, 1].

It is worth noting that although the beta-Bernoulli DropCon-
nect with ARM is expected to provide better performance
due to the more accurate gradient estimates, it has slightly
higher computational complexity as it requires two forward
passes.

5. Connection to Random Walk Sampling
Various types of random walk have been used in graph
representation learning literature to reduce the size of input
graphs. In GNNs, specifically in GraphSAGE (Hamilton
et al., 2017), random walk sampling has been deployed to
reduce the model complexity for very large graphs. One
can formulate a GNN layer with random walk sampling as
follows:

h
(l+1)
v

= �@(
X

u2N̂ (v)

(z(l)
vu

|Z
(l�1))h(l)

u
)W(l)A . (13)

0 1

Here, Z(l) is the same as the one in DropEdge except that it
is dependent on the masks from the previous layer. This is
due to the fact that random walk samples for each node are
connected subgraphs.

In this setup, we can decompose the variational dis-
tribution of the GDC formulation in an autoregressive
way. Specifically, here we have (l)q(zuv Z

(l�1))
Bernoulli(⇡l)1P (l

|

u2N̂(v) z
�1)

vu >0
. With fixed Bernoulli pa-

rameters, we can calculate the gradients for the weight ma-
trices with Monte Carlo integration. Learning Bernoulli
parameters is challenging and does not allow direct appli-
cation of ARM due to the autoregressive structure of the
variational posterior. We leave sequential ARM for future
study.
Corollary 1 Any graph neural network with random walk

sampling, such as GraphSAGE, is an approximation of a

Bayesian graph neural network as long as outputs are cal-

culated using Monte Carlo sampling.

=

6. Sampling Complexity
The number of random samples needed for variational infer-
ence in GDC, (4), at each layer of a GNN is |E|⇥ fl ⇥ fl+1.
This number would reduce to |E| ⇥ fl in the constrained
version of GDC as shown in (5). These numbers, poten-
tially, could be very high specially if the size of the graph
or the number of filters are large, which could increase the
space complexity and computation time. To circumvent
this issue, we propose to draw a single sample for a block
of features as oppose to drawing a new sample for every
single feature. This would reduce the number of required
samples to |E|⇥ nb with nb being the number of blocks. In
our experiments, we have one block in the first layer and
two blocks in layers after that. In our experiments, we keep
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Table 1. Semi-supervised node classification accuracy of GCNs with our adaptive connection sampling and baseline methods.

Method Cora Citeseer Cora-ML
2 layers 4 layers 2 layers 4 layers 2 layers 4 layers

GCN-DO 80.98± 0.48 78.24± 2.4 70.44± 0.39 64.38± 0.90 83.45± 0.73 81.51± 1.01
GCN-DE 78.36± 0.92 73.40± 2.07 70.52± 0.75 57.14± 0.90 83.30± 1.37 68.89± 3.37
GCN-DO-DE 80.58± 1.19 79.20± 1.07 70.74± 1.23 64.84± 0.98 83.61± 0.83 81.21± 1.53

GCN-BBDE 81.58± 0.49 80.42± 0.25 71.46± 0.55 68.58± 0.88 84.62± 1.70 84.73± 0.52
GCN-BBGDC 81.80± 0.99 82.20± 0.92 71.72± 0.48 70.00± 0.36 85.43± 0.70 85.52± 0.83

the order of features the same as the original input files,
and divide them into nb groups with the equal number of
features.

While in our GDC formulation, as shown in (4) and (5),
the normalization N(·) is applied after masking, one can
multiply the randomly drawn mask with the pre-computed
normalized adjacency matrix. This relaxation reduces the
computation time and has negligible effect on the perfor-
mance based on our experiments. An extension to the GDC
sampling strategy is asymmetric sampling where the mask
matrix Z could be asymmetric. This would increase the
number of samples by a factor of two; however it increases
the model flexibility. In our experiments, we have used
asymmetric masks and multiplied the mask with the normal-
ized adjacency matrix.

7. Numerical Results
We test the performance of our adaptive connection sam-
pling framework, learnable GDC, on semi-supervised node
classification using real-world citation graphs. In addition,
we compare the uncertainty estimates of predictions by
Monte Carlo beta-Bernoulli GDC and Monte Carlo Dropout.
We also show the performance of GDC compared to exist-
ing methods in alleviating the issue of over-smoothing in
GNNs. Furthermore, we investigate the effect of the num-
ber of blocks on the performance of GDC. We have also
investigated learning separate drop rates for every edge in
the network, i.e. local GDC, which is included in the sup-
plementary materials.

7.1. Semi-supervised Node Classification

7.1.1. DATASETS AND IMPLEMENTATION DETAILS

We conducted extensive experiments for semi-supervised
node classification with real-world citation datasets. We
consider Cora, Citeseer and Cora-ML datasets, and prepro-
cess and split them same as Kipf & Welling (2017) and
Bojchevski & Gunnemann (2018). We train beta-Bernoulli
GDC (BBGDC) models for 2000 epochs with a learning rate
of 0.005 and a validation set used for early stopping. All of
the hidden layers in our implemented GCNs have 128 dimen-

sional output features. We use 5 ⇥ 10�3, 10�2, and 10�3

as L2 regularization factor for Cora, Citeseer, and Cora-ML,
respectively. For the GCNs with more than 2 layers, we
use warm-up during the first 50 training epochs to gradually
impose the beta-Bernoulli KL term in the objective func-
tion. The temperature in the concrete distribution is set to
0.67. For a fair comparison, the number of hidden units
are the same in the baselines and their hyper-parameters are
hand-tuned to achieve their best performance. Performance
is reported by the average accuracy with standard devia-
tion based on 5 runs on the test set. The dataset statistics
as well as more implementation details are included in the
supplementary materials.

7.1.2. DISCUSSION

Table 1 shows that BBGDC outperforms the state-of-the-art
stochastic regularization techniques in terms of accuracy
in all benchmark datasets. DO and DE in the table stand
for DropOut and DropEdge, respectively. Comparing GCN-
DO and GCN-DE, we can see that DropEdge alone is less
effective than DropOut in overcoming over-smoothing and
over-fitting in GCNs. The difference between accuracy
of GCN-DO and GCN-DE is more substantial in deeper
networks (5% in Cora, 7% in Citeseer, and 13% in Cora-
ML), which further proves the limitations of DE. Among
the baselines, combination of DO and DE shows the best
performance allowing to have deeper models. However,
this is not always true. For example in Citeseer, 4-layer
GCN shows significant decrease in performance compared
to 2-layer GCN.

To show the advantages of learning the drop rates as well
as the effect of hierarchical beta-Bernoulli construction, we
have also evaluated beta-Bernoulli DropEdge (BBDE) with
the concrete approximation, in which the edge drop rate at
each layer is learned using the same beta-Bernoulli hierar-
chical construction as GDC. We see that GCN with BBDE,
without any DropOut, performs better than both GCNs with
DE and DO-DE. By comparing GCN with BBDE and GCN
with BBGDC, it is clear that the improvement is not only due
to learnable sampling rate but also the increased flexibility of
GDC compared to DropEdge. We note that GCN-BBGDC
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Table 2. Accuracy of ARM optimization-based variants of our pro-
posed method in semi-supervised node classification.

Method Cora (4 layers)

GCN-BDE-ARM 79.95± 0.79

Citeseer (4 layers)

67.90± 0.15
GCN-BBDE-ARM 81.78± 0.81 69.43± 0.45
GCN-BBGDC-ARM 82.40± 0.60 70.25± 0.07

is the only method for which the accuracy improves by
increasing the number of layers except in Citeseer.

7.1.3. CONCRETE RELAXATION VERSUS ARM

To investigate the effect of direct optimization of the varia-
tional loss with respect to the drop parameters with ARM
vs relaxation of the discrete random variables with concrete,
we construct three ARM optimization-based variants of our
method: Learnable Bernoulli DropEdge with ARM gradi-
ent estimator (BDE-ARM) where the edge drop rate of the
Bernoulli mask at each layer is directly optimized; beta-
Bernoulli DropEdge with ARM (BBDE-ARM); and beta-
Bernoulli GDC with ARM (BBGDC-ARM). We evaluate
these methods on the 4-layer GCN setups where significant
performance improvement compared with the baselines has
been achieved by BBDE and GDC with concrete relaxation.
Comparing the performance of BBDE-ARM and BBGDC-
ARM in Table 2 with the corresponding models with con-
crete relaxation, suggests further improvement when the
drop parameters are directly optimized. Moreover, BDE-
ARM, which optimizes the parameters of the Bernoulli drop
rates, performs better than DO, DE, and DO-DE.

7.2. Uncertainty Quantification

To evaluate the quality of uncertainty estimates obtained
by our model, we use the Patch Accuracy vs Patch Un-
certainty (PAvPU) metric introduced in (Mukhoti & Gal,
2018). PAvPU combines p(accurate|certain), i.e. the
probability that the model is accurate on its output given
that it is confident on the same, p(certain|inaccurate),
i.e. the probability that the model is uncertain about its
output given that it has made a mistake in its prediction,
into a single metric. More specifically, it is defined as
PAvPU = (nac + niu)/(nac + nau + nic + niu), where
nac is the number of accurate and certain predictions, nau

is the number of accurate and uncertain predictions, nic

is the number of inaccurate and certain predictions, and
niu is the number of inaccurate and uncertain predictions.
Higher PAvPU means that certain predictions are accurate
and inaccurate predictions are uncertain.

We here demonstrate the results for uncertainty estimates for
a 4-layer GCN-DO and a 4-layer GCN-BBGDC with ran-
dom initialization for semi-supervised node classification on
Cora. We have evaluated PAvPU using 20 Monte Carlo sam-

Figure 1. Comparison of uncertainty estimates in PAvPU by a 4-
layer GCN-BBGDC with 128-dimensional hidden layers and a
4-layer GCN-DO 128-dimensional hidden layers on Cora.

ples for the test set where we use predictive entropy as the
uncertainty metric. The results are shown in Figure 1. It can
be seen that our proposed model consistently outperforms
GCN-DO on every uncertainty threshold ranging from 0.5
to 1 of the maximum predictive uncertainty. While Figure 1
depicts the results based on one random initialization, other
initializations show the same trend.

7.3. Over-smoothing and Over-fitting

To check how GDC helps alleviate over-smoothing in GCNs,
we have tracked the total variation (TV) of the outputs of
hidden layers during training. TV is a metric used in the
graph signal processing literature to measure the smoothness
of a signal defined over nodes of a graph (Chen et al., 2015).
More specifically, given a graph with the adjacency matrix
A and a signal x defined over its nodes, TV is defined as
TV(x) = kx� (1/|�max|)Axk

2
2, where �max denotes the

eigenvalue of A with largest magnitude. Lower TV shows
that the signal on adjacent nodes are closer to each other,
indicating possible over-smoothing.

We have compared the TV trajectories of the hidden layer
outputs in a 4-layer GCN-BBGDC and a 4-layer GCN-DO
normalized by their Frobenius norm, depicted in Figure 2(a).
It can be seen that, in GCN-DO, while the TV of the first
layer is slightly increasing at each training epoch, the TV
of the second hidden layer decreases during training. This,
indeed, contributed to the poor performance of GCN-DO.
On the contrary, the TVs of both first and second layers
in GCN-BBGDC is increasing during training. Not only
this robustness is due to the dropping connections in GDC
framework, but also is related to its learnable drop rates.

With such promising results showing less over-smoothing
with BBGDC, we further investigate how our proposed
method works in deeper networks. We have checked the
accuracy of GCN-BBGDC with a various number of 128-



Bayesian Graph Neural Networks with Adaptive Connection Sampling

Figure 2. From left to right: a) Total variation of the hidden layer outputs during training in a 4-layer GCN-BBGDC with 128-dimensional
hidden layers and a 4-layer GCN-DO 128-dimensional hidden layers on Cora; b) Comparison of node classification accuracy for GCNs
with a different number of hidden layers using different stochastic regularization methods. All of the hidden layers are 128 dimensional.

dimensional hidden layers ranging from 2 to 16. The results
are shown in Figure 2(b). The performance improves up to
the GCN with 4 hidden layers and decreases after that. It is
important to note that even though the performance drops by
adding the 5-th layer, the degree to which it decreases is far
less than competing methods. For example, the node classi-
fication accuracy with GCN-DO quickly drops to 69.50%
and 64.5% with 8 and 16 layers. In addition, we should
mention that the performance of GCN-DO only improves
from two to three layers. This, indeed, proves GDC is a
better stochastic regularization framework for GNNs in alle-
viating over-fitting and over-smoothing, enabling possible
directions to develop deeper GNNs.

7.4. Effect of Number of Blocks

In GDC for every pair of input and output features, a sepa-
rate mask for the adjacency matrix should be drawn. How-
ever, as we discussed in Section 6, this demands large mem-
ory space. We circumvented this problem by drawing a
single mask for a block of features. While we used only two
blocks in our experiments presented so far, we here inves-
tigate the effect of the number of blocks on the node clas-
sification accuracy. The performance of 128-dimensional
4-layer GCN-BBGDC with 2, 16, and 32 blocks are shown
in Table 3. As can be seen, the accuracy improves as the
number of blocks increases. This is due to the fact that
increasing the number of blocks increases the flexibility of
GDC. The choice of the number of blocks is a factor to con-
sider for the trade off between the performance and memory

Table 3. Accuracy of 128-dimensional 4-layer GCN-BBGDC with
different number of blocks on Cora in semi-supervised node clas-
sification.

Method 2 blocks 16 blocks 32 blocks

GCN-BBGDC 82.2 83.0 83.3

usage as well as computational complexity.

8. Conclusion
In this paper, we proposed a unified framework for adap-
tive connection sampling in GNNs that generalizes existing
stochastic regularization techniques for training GNNs. Our
proposed method, Graph DropConnect (GDC), not only al-
leviates over-smoothing and over-fitting tendencies of deep
GNNs, but also enables learning with uncertainty in graph
analytic tasks with GNNs. Instead of using fixed sampling
rates, our GDC technique parameters can be trained jointly
with GNN model parameters. We further show that training
a GNN with GDC is equivalent to an approximation of train-
ing Bayesian GNNs. Our experimental results shows that
GDC boosts the performance of GNNs in semi-supervised
classification task by alleviating over-smoothing and over-
fitting. We further show that the quality of uncertainty
derived by GDC is better than DropOut in GNNs.
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