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Abstract—QR decomposition of a matrix is one of the essential
operations that is used for solving linear equations and finding
least-squares solutions. We propose a coded computing strategy
for parallel QR decomposition with applications to solving a full-
rank square system of linear equations in a high-performance
computing system. Our strategy is applied to the parallel Gram-
Schmidt algorithm, which is one of the three commonly used
algorithms for QR decomposition. Conventional coding strategies
cannot preserve the orthogonality of Q. We prove a condition for
a checksum-generator matrix to restore the degraded orthogo-
nality of the decoded Q through low-cost post-processing, and
construct a checksum-generator matrix for single-node failures.
We obtain the minimal number of checksums required for single-
node failures under the “in-node checksum storage setting”, where
checksums are stored in original nodes, and further adapt the
coded QR decomposition to this setting.

I. INTRODUCTION

Motivated by the widespread use of large-scale machine
learning computations, coded computing has been an active
area of research [1]–[5], where the aim is to efficiently add
redundancies to make computing more robust to uncertainties
and accelerate computing. In this work, we consider protecting
compute nodes from failures in high-performance computing
(HPC) systems. Building a reliable supercomputer has been
a long-standing problem, but the emergence of exascale com-
puting poses new challenges that require a new and innovative
solution that goes beyond traditional reliability techniques.
More than 20% of the computing capacity in today’s HPC
systems is wasted due to failures and ensuing recovery [6], and
this wastage is only expected to grow as the system size grows.
To reduce the overhead of fault tolerance in upcoming HPC
systems, algorithm-based fault-tolerance (ABFT) for HPC has
been suggested [7]–[17], the core idea of which is essentially
the same as coded computing: adding encoded redundancy
tailored to a given numerical algorithm.
In this work, we study coded computing strategy for QR
decomposition. QR decomposition factors a matrix into a
product of an orthogonal matrix (Q) and an upper triangular
matrix (R). It is an essential building block of linear algebraic
computations as it provides a numerically stable method for
solving linear equations, and is extensively used in the linear
least squares problem (e.g., linear regression). As it is an
important computation primitive, ABFT for parallel QR de-
composition has been studied in the HPC literature [10], [12],
[17]. In this paper, we not only introduce a new computation
primitive that has not been considered in the coded computing
literature, but also incorporate practical system assumptions

that are used in HPC algorithms. Our main contributions are
summarized below:

• Previous works in ABFT for QR decomposition studied
applying coding on the Householder algorithm or the
Givens Rotation algorithm. Our work is the first to
consider applying coding on the Gram-Schmidt algo-
rithm (and its variants). We show that using our strategy
throughout the Gram-Schmidt algorithm1, vertical/hori-
zontal checksum structures are preserved (Section III).

• Simply applying linear coding cannot protect the Q-factor
as the orthogonality is not preserved after linear trans-
forms. To circumvent this issue, we propose an innovative
post-processing technique to restore the orthogonality of
the Q-factor after coding. We show that if the checksum-
generator matrix satisfies certain conditions, with low-
cost post-processing, we can perform QR factorization
to solve a full-rank square system of linear equations.
We propose a construction of such checksum-generator
matrix for single node failures (Section IV).

• We consider practical data distribution. Throughout the
paper, we assume that the matrices are stored block-
cyclically. In HPC applications, matrices are almost al-
ways distributed block-cyclically for load-balancing. Fur-
thermore, in Section VI, we consider in-node checksum
storage setting where we store the coded data (check-
sums) in original processors instead of adding extra
processors for fault tolerance.

This work focuses on the single-node failure case as it is
the most common scenario in HPC. Generalizing our code
construction to multiple-node failure scenarios and beyond
QR decomposition would be interesting to many intriguing
future work. Considering a realistic model of data distribution
and communication used in HPC, as is done here, not only
brings coded computing closer to practice, but also opens up
intriguing theoretical questions.

II. BACKGROUND AND SYSTEM MODEL

A. QR Decomposition
QR decomposition decomposes a matrix A into a product
A = QR of an orthogonal matrix Q (i.e. QTQ = I)
and an upper triangular matrix R. There are three classes
of commonly-used algorithms to compute QR factorization

1Householder, Givens Rotation, Gram-Schmidt are the three most well-
known algorithms for QR decomposition
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Figure 1: Out-of-node checksum storage for vertical checksums with
pr = 2, pc = 3. (a) Six systematic processors (green, purple, red,
blue, brown and white) own the original data blocks and three extra
vertical checksum-processors (orange, light orange, light green) own
the checksum-blocks Cij . (b) Lost data-blocks are grayed out for the
case where the brown node fails.

in HPC: Gram-Schmidt (GS) and Modified Gram-Schmidt
(MGS) [18]–[20], Householder Transformation [21], [22] and
Givens Rotation [23]. In this work, we consider MGS [19],
which is an improved version of the GS algorithm.
We specifically consider solving a system of linear equations
Ax = b, where A is square and full-rank, as the end
application of QR decomposition in this work. Solving square
and non-singular system of linear equations is a fundamental
building block for many applications in HPC [24]–[26], and
uses QR decomposition in practice due to its guaranteed
stability and computational efficiency [27].

B. System Model
We assume 2D block cyclic distribution of a matrix where a
non-singular n ⇥ n matrix A is distributed block-cyclically
on P = p

r

⇥ p
c

processors with block size b, and each b ⇥
b block A

ij

is owned by processor ⇧(i, j) = (i mod p
r

) +

p
r

(j mod p
c

). N =

n

b

denote the number of data blocks of a
block-column or a block-row. This is how matrix algorithms
are implemented in practice for load balancing.
Vertical checksums G

v

A (resp. horizontal checksums AG
h

)
are checksum rows (resp. columns) which extend the input
matrix A vertically (resp. horizontally) and are controlled
by the checksum-generator matrix G

v

(resp. G
h

). For fault
tolerance, we encode the matrix A with both vertical and

horizontal checksums as follows: eA =


A AG

h

G
v

A G
v

AG
h

�
.

We consider the out-of-node checksum storage: (Figure 1a)
The vertical (resp. horizontal) checksums are distributed over
the new set of p

c

vertical (resp. p
r

horizontal) checksum
processors. Each checksum processor is protected and stores
the same amount of data as a systematic processor to ensure
load balancing and efficient parallelism.

C. Failure Model and Real-time Recovery
We focus on recovering from “fail-stop errors”, which is a
realistic failure model in HPC [28], and is similar to common
assumptions in coded computing. In this model, a failure
corresponds to a systematic processor that completely stops
responding, and loses its part of the global data. We assume
that the identity of the processor that fails is provided by
some external source (e.g. Message Passing Interface (MPI)
library [29]). We focus on the single-node failure scenario,

i.e., at any step of the QR decomposition at most one failure
can occur. We assume that all the data owned by the failed
processor is lost when it fails. The failure can strike at any
point during the execution of QR decomposition, immediately
triggering the recovery process. Computation continues once
the system has recovered from its latest failure. Figure 1b
illustrates an example of lost data-blocks.

D. Related Work
State-of-the-art ABFT techniques utilizing coded computation
have considered Householder [10], [12] and Givens Rotation
[17], all of which only protect R via coding and rely on
replication for Q protection. While no work on coded MGS
exists, its fault-tolerance via replication was proposed in [30].
As MGS algorithms directly compute columns (or rows) of
the Q matrix subsequently used for R computation, coding
strategy which can protect Q is the main challenge and
the pivotal building block in the design of coded MGS. Q-
factor protection is challenging: it was shown in [10] that
conventional coding approach, which linearly encodes A, is
not possible for Q protection because the modified Q factor
retrieved from the coded computation is not orthogonal.

E. Problem Definition
We specifically consider MGS algorithm [19] for QR de-
composition in our coding design, where A,Q and R are
distributed over processors using the 2D block-cyclic dis-
tribution and every node is vulnerable to fail-stop failures
(Section II-C). As encoding input matrix A naturally enforces
fault-tolerant computation, we attribute the main limitation to
the unsophisticated decoding of Q-factor. We thus allow post-
processing after the decoding phase to restore the degraded
orthogonality of the decoded Q-factor. Post-processing can
transform A into an alternative form to be used in place of
A in the end application- solving the square and non-singular
system of linear equations Ax = b.
Our goal is to design a novel coding strategy for MGS with full
protection, i.e., comprised of Q-factor and R-factor protection,
to tolerate any single-node failure during the the computation.
As an extension, for the in-node checksum storage recently
proposed by [10], we aim to address the optimality on the
number of checksums required for single-node failure, which
has remained an open question.

III. HORIZONTAL/VERTICAL CHECKSUMS FOR MGS
Checksum-preservation is the key idea of all the previous work
on coded QR decomposition including Householder [10], [12]
and Givens Rotations [17]. For MGS, we hereby show how
horizontal and vertical checksums added to the input matrix
are respectively preserved as checksums for R-factor and Q-
factor throughout the computation. As the QR factorization of
a rank-deficient matrix (encoded eA) is not unique, this property
is not trivial and depends on specific algorithmic structure.

A. MGS algorithm
For extreme-scale QR factorization, MGS is the favored choice
thanks to its low computational cost and ease of imple-
mentation. The pseudo-code of sequential MGS is given in



Algorithm 1, where at the ith iteration, the algorithm computes
column qi of the Q-factor and row ri of the R-factor. For
parallel implementation in practice, block MGS (BMGS) [31]
is widely used as its parallel version (PBMGS) can better
utilize the Level-3 operations in HPC. We refer to parallel
MGS as PBMGS.

Input: eA =
⇥
ea1 ea2 · · · ean+d

⇤
is (n+ c)⇥ (n+ d)

matrix
Output: Q =

�
q1 q2 . . . qn+d

�
is (n+ c)⇥ (n+ d)

matrix , and R = (rij) is (n+ d)⇥ (n+ d) matrix
Result: eA = QR, where QTQ = I

1 for i = 1 to n do
2 ui = eai

3 end
4 for i = 1 to n+ d do
5 rii = ||ui||2
6 qi = ui/rii
7 for j = i+ 1 to n+ d do
8 rij = qT

i uj

9 uj = uj � rijqi

10 end
11 end

Algorithm 1: Modified Gram-Schmidt
B. Checksum-preservation for MGS

In this section, we illustrate how checksums added to the input
matrix are preserved throughout the computation.
The n⇥ n input matrix A is encoded as (Section II-B):

eA =


A AG

h

G
v

A G
v

AG
h

�
(1)

of size (n + c) ⇥ (n + d), where G
h

and G
v

are respec-
tively checksum-generator matrices of size n ⇥ d and c ⇥ n.
We assume that c and d are small to keep the overhead
negligible. QR decomposition via MGS is further performed
on the encoded matrix eA. The algorithm executes T itera-
tions t = 1, . . . , T where at the end of each iteration the
algorithm maintains the update of the Q-factor Q(t) of size
(n+c)⇥(n+d) and the R-factor R(t) of size (n+d)⇥(n+d).
The initial values of the Q-factor and R-factor are Q(0)

=

eA
and R(0)

= 0

(n+d)⇥(n+d)

respectively. At the end of the last
iteration, we retrieve the orthogonal Q = Q(T ) and the upper
triangular R = R(T ) as the output for eA = QR.
We further consider the submatrices of Q(t) and R(t):

Q(t)

=

"
Q(t)

1

Q(t)

2

#
, R(t)

=

h
R(t)

1

R(t)

2

i

where Q(t)

1

: n⇥ (n+ d), Q(t)

2

: c⇥ (n+ d), R(t)

1

: (n+ d)⇥n,
and R(t)

2

: (n+d)⇥d. Lemma 1 shows that the original vertical
checksums G

v

A and horizontal checksums AG
h

are translated
to checksums G

v

Q(t)

1

for Q-protection and R(t)

1

G
h

for R-
protection during the computation. The proofs for Lemma 1
and Corollary 1.1 can be found in [32, Appendix A].
Lemma 1. For both sequential and parallel MGS, the follow-
ing checksum relations hold for t 2 [0, T ]:

Q(t)

2

= G
v

Q(t)

1

(2)

R(t)

2

= R(t)

1

G
h

(3)

Corollary 1.1. At the end of the QR decomposition, the
factorization of eA has the final form:

eA =


Q

1

Q
2

� ⇥
R

1

R
2

⇤
=


Q

1

G
v

Q
1

� ⇥
R

1

R
1

G
h

⇤
(4)

where Q
i

= Q(T )

i

and R
i

= R(T )

i

.

IV. Q-FACTOR PROTECTION

In this section, we discuss how coding can be applied to the
parallel Gram-Schmidt algorithm to protect the left Q factor
(an orthogonal matrix). From (20), we have both horizontal
and vertical checksums, but in this section we will only
consider the vertical checksum for simpler presentation. When
we use A, one can regard it as

⇥
A AG

h

⇤
.

In [10, Theorem 5.1], it was concluded: “Q in Householder
QR factorization cannot be protected by performing factor-
ization along with the vertical checksum.” The basis of this
claim was that in the output retrieval A = Q

1

R after the QR
factorization of the vertically encoded matrix eA:

eA =


A
GA

�
=


Q

1

Q
2

�
R, (5)

Q
1

is not orthogonal, i.e. QT

1

Q
1

6= I . Thus, Q
1

R is not the
correct QR factorization of A. While the theorem statement is
limited to the Householder, this reasoning is generally beyond
such specific algorithm.
An important contribution of our work is that we can convert
Q

1

into an orthogonal matrix with a very small amount of
computation. In Section IV-A, we prove that if the checksum-
generator matrix satisfies certain conditions (given in Theo-
rem 2), there exists a low-cost linear transform that orthogo-
nalizes Q

1

. In Section IV-B, we propose a checksum-generator
matrix construction that satisfies the conditions given in The-
orem 2 while providing resilience to any single node failure.
Finally, we show through careful analysis that the overhead of
fault tolerance including encoding, failure recovery, and low-
cost post-orthogonalization is negligible.

A. Low-cost post-orthogonalization

How “non-orthogonal” is Q
1

? Can we still utilize Q
1

to
recover the original QR factorization? We show that with
a low-cost linear transform, Q

1

can be transformed into
an orthogonal matrix, if the checksum-generator matrix G
satisfies certain conditions.
Theorem 2. Let G

1

, V be submatrices of the vertical
checksum-generator matrix G as follows:

G =

⇥
G

1

V
⇤
, (6)

where G
1

and V have dimensions c ⇥ c and c ⇥ (n � c),
respectively. Let G

0

be an n⇥ n by matrix as follows:

G
0

=


I
c

+G
1

V
V T �I

n�c

�
. (7)

If G satisfies the following condition:

G
1

= �1

2

V V T , (8)

we can prove the following:



Claim 1: G
0

Q
1

is orthogonal, i.e. (G
0

Q
1

)

T

(G
0

Q
1

) = I .

Claim 2: G
0

is invertible.

The proof for Theorem 2 is in [32, Appendix B-A].

First, notice that the matrix G
0

is very sparse as the bottom-
right submatrix is simply an (n� c)⇥ (n� c) identity matrix,
and c is negligible. Claim 1 in Theorem 2 suggests that by
multiplying this sparse matrix G

0

, we can convert Q
1

into
an orthogonal matrix. We now demonstrate how we can use
G

0

Q
1

in place of the original Q in solving a full-rank square
system of linear equations Ax = b.

Let A0
= G

0

A. Then the QR factorization of A0 will be:

A0
= (G

0

Q
1

)R (9)

with the left factor (G
0

Q
1

) and the right factor R. As G
0

is
invertible by Claim 2 in Theorem 2,

Ax = b () (G
0

A)x = G
0

b (10)

The linear system on the right side can be solved using the
QR factorization of A0 given in (9). i.e.,

(G
0

Q
1

)Rx = G
0

b, (11)
(G

0

Q
1

)

T

(G
0

Q
1

)Rx = (G
0

Q
1

)

T

(G
0

b), (12)
Rx = (G

0

Q
1

)

T

(G
0

b). (13)

Then, we can perform triangular solve to get the final answer
x. Remember that we already have Q

1

and R from the QR
factorization of the encoded matrix eA. Hence, all we need
to perform in the above steps is computing post-orthogonaliza
tion, G

0

Q
1

and G
0

b. We show in Theorem 3 that the overhead
of post-orthogonalization is negligible.

B. Checksum-Generator Matrices for Single-Node Failures

The low-cost post-orthogonalization scheme exists under the
constraint (8) on the checksum-generator matrix G. One
crucial question is whether we can construct G that has good
error correction/detection capability while satisfying (8). In
this subsection, we present one such construction of G for
single-node failure recovery. Constructing such checksum-
generator matrix for multiple-node failures is an intriguing
open question. Throughout this section, we assume p

r

divides
n for simplicity, but results generalize to any p

r

and n.

Construction 1 (Q-factor Checksum-Generator Matrix for
Single Node Failure Recovery). If gcd( n

pr
, p

r

) = 1, the
following n

pr
⇥ n checksum-generator matrix G satisfies the

restriction (8), and guarantees single-node fault tolerance for
out-of-node checksum storage:

G =

⇥
�I n

pr
I n

pr
I n

pr
· · · I n

pr

⇤
(14)

where � = � 1

2

(p
r

� 1)

It can be easily verified that the generator matrix in Construc-
tion 1 satisfies the restriction (8) and tolerates any single-
node failure. Detailed proofs are given in [32, Appendix
B-B]. This construction also satisfies the maximum-distance
separable (MDS) condition, i.e., it has the optimal number of
checksums for single-node failures: c = n

pr
.

C. Overhead Analysis
Finally, we analyze the overhead of the proposed coding
strategy for Q-factor protection. We consider communication
and computation cost formulated as an ↵-�-� model [33], [34]:

T = ↵C
1

+ �C
2

+ �C
3

(15)

where C
1

is the number of communication rounds, C
2

is the
number of bytes communicated on the critical path, and C

3

is the number of floating point operations (flops). The ↵ term
models the communication latency, the � term models the per-
byte bandwidth, and � term is the cost per flop. Two types of
overhead are considered: the total overhead of coding T

coding

and the overhead for recovering any single-node failure T
f

.
The coding overhead is modeled as:

T
coding

= T
enc

+ T
post

+ T
comp

(16)

where T
enc

, T
post

and T
comp

are the overhead for encoding,
post-orthogonalization, and increased computation cost for QR
factorization of the encoded matrix. We compare T

coding

with
the cost T

QR

of QR factorization without coding for an n⇥n
matrix using p

r

⇥ p
c

grid of nodes.
Theorem 3. For the MGS algorithm [19], applying a code
given in Construction 1 for Q-factor protection has the fol-
lowing overhead:

T
coding

= O

✓
1

p
r

+

1

p
c

◆
· T

QR

, T↵

coding

= O

✓
1

n

◆
· T↵

QR

,

T
f

= O

✓
1

p
c

◆
· T

QR

.

Notice that while the total overhead scales as O(1/p
r

+1/p
c

)

of the QR decomposition cost, the overhead in terms of
communication latency (the ↵ term) is much smaller, scaling
as O(1/n). Since ↵ is often the dominating term in HPC
systems, our proposed coding scheme could have very small
overhead in real-world systems. Showing this through experi-
ments would be an interesting future direction. The full proof
of Theorem 3 is given in [32, Appendix D].

V. CODED QR DECOMPOSITION – AN EXAMPLE

To illustrate our coding strategy for Q-factor and R-factor
protection, we provide a small example of performing coded
QR factorization on a 3 ⇥ 3 input matrix A by using the
checksum-generator matrices below:

G
v

=

⇥
�1 1 1

⇤
, G

h

=

⇥
1 1 1

⇤
T

,

Note that G
v

satisfies the restriction (8). Now, consider:

A =

2

4
1 �1 4
1 4 �2
1 4 2

3

5 Encode���! eA =

2

64

1 �1 4 4
1 4 �2 3
1 4 2 7
1 9 �4 6

3

75 (17)

The MGS algorithm is executed on eA where Q-factor and
R-factor are first initialized to Q =

eA and R = 0. The
intermediate Q(t) and R(t) matrices are shown in Figure 2.
It is easy for a reader to check that at any iteration the last row
of Q (resp. last column of R) protects all other rows (resp.
columns) via the the checksum relation by G

v

(resp. G
h

):



Iteration 1 Iteration 2 Iteration 3

Figure 2: Q and R matrices over the iterations for the example given in (17).
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(a) Failure-free state
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(b) Single-node failure

Figure 3: In-node checksum storage for pr = 2, pc = 3. (a)
The distribution of the original data is the same as Figure 1a,
but checksum-blocks Cij’s are also distributed over the original
systematic processors. (b) Lost data-blocks are grayed out for the
case where the brown node fails. Notice that some checksum blocks
are also lost in this case.

• Q-factor protection: The last row is the sum of the 2

nd

and 3

rd rows subtracting the 1

st row.
• R-factor protection: The last column is the sum of all the

previous columns.
We proceed to show how the post-orthogonalization step
works. At the end of iteration 3, we retrieve A = Q

1

R where:

Q1 =

2

4
1/2 �1/

p
2 0

1/2 0 �1/
p
2

1/2 0 1/
p
2

3

5 and R =

2

4
2 8 0
0 5

p
2 �4

p
2

0 0 2
p
2

3

5

Following Theorem 2, we can compute G
0

and check the
orthogonality of (G

0

Q
1

):

G0 =

2

4
0 1 1
1 �1 0
1 0 �1

3

5 and G0Q1 =

2

4
1 0 0
0 �1/

p
2 1/

p
2

0 �1/
p
2 �1/

p
2

3

5 .

It is easy to see that (G
0

Q
1

)

T

(G
0

Q
1

) = I .

VI. OPTIMAL IN-NODE CHECKSUM STORAGE FOR
SINGLE-NODE FAILURE

So far in this paper, we examined coding strategies for the
out-of-node checksum storage setting where we add additional
nodes to store the coded data (checksums). This is a commonly
used assumption in the coded computing literature. However,
in the HPC literature, in-node-checksum storage was also
considered [10], [35]. where the coded data is distributed to
the existing nodes instead of introducing additional processors.
This new setting could be more appealing in practice as it does
not require additional processors 2, and alleviates the expense
to make them protected [36], [37]. An example of in-node-
checksum storage is depicted in Figure 3.
In this section, we prove the lower bound on the number of
checksums required for in-node checksum storage setting for
recovering from any single failure, and provide a checksum

2In computations for HPC, algorithms are often designed for powers-of-two
number of nodes for efficiency reasons. A coded computing strategy would
be less desirable to practitioners if they have to change their algorithm to
accommodate for additional checksum nodes.

D0	 D1	 D2	 D3	 D4		 D5		 D6		 D7		 H0		 H1	 H2	

P0	

P1	

P2	

P3	

H0	=	D1	+	D2	+	D3	
H1	=	D0	+	D6	+	D7	
H2	=	D4	+	D5		

(a) Failure-free state
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(b) Single-node failure (at P0)

Figure 4: An example code for in-node checksum storage given in
Theorem 5 for the case L = 8, ⇢ = 4. Here, K =

l
L

⇢�1

m
= 3.

scheme that meets the lower bound. This improves the existing
strategy for in-node checksum storage [10] by ⇠ 2x.
As checksums of each block-row are encoded with the same
linear relation dictated by the checksum-generator matrix, it
suffices to consider the checksum computation for one block-
row. For simplicity, we consider a block-row of L data blocks
D

0

, D
1

, ..., D
L�1

distributed block-cyclically onto ⇢ pro-
cessers P

0

, P
1

, ..., P
⇢�1

, and K checksums H
0

, H
1

, ..., H
K�1

for recovery. If we let f(i, j) = the index of the ith data block
of processor P

j

, then f(i, j) = j + i⇢. For convenience, we
define D

f(i,j)

= 0 if f(i, j) � L, i.e. i exceeds the index of
the last data point of processor j. We first prove a lower bound
on the number of checksums K for single failure recovery.
Theorem 4. Under the in-node checksum storage setting, the
minimum value of K to tolerate a single node failure is:

K �
⇠

L

⇢� 1

⇡
. (18)

In the previous work by Bouteiller et al. [10], the R-protection
under in-node checksum storage required 2

l
L

⇢

m
checksums,

which is ⇠ 2x than the lower bound.
Theorem 5. Under the in-node checksum storage setting, if
⇢ divides L, the following checksum construction guarantees
single-node failure tolerance and achieves optimal size of
checksums K =

l
L

⇢�1

m
:

H
l+v⇢

=

l�1X

i=0

D
f(l�1+v(⇢�1),i)

+

⇢�1X

j=l+1

D
f(l+v(⇢�1),j)

(19)

for l 2 [0, ⇢) and v 2 [0,
l
K

⇢

m
) such that l + v⇢ <

l
L

⇢�1

m
.

The proofs of Theorem 4 and Theorem 5 are given in [32,
Appendix C-A]. Figure 4 illustrates the checksum scheme in
Theorem 5 for L = 8, ⇢ = 4,K =

l
8

4�1

m
= 3.

We also propose a checksum-generator matrix for the Q-factor
protection under the in-node checksum storage setting in [32,
Appendix C-B]3.

3However, this does not meet the lower bound given in Theorem 4. We
also include our thoughts on the gap from the optimality in the discussion.
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