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Abstract

Managing a chronic disease like Type 1 diabetes (T1D) is both challenging and time con-
suming, but new technologies that allow continuous measurement of glucose and delivery
of insulin have led to significant improvements. The development of an artificial pan-
creas (AP), which algorithmically determines insulin dosing and delivers insulin in a fully
automated way, may transform T1D care but it is not yet widely available. Patient-led
alternatives, like the Open Artificial Pancreas (OpenAPS), are being used by hundreds of
individuals and have also led to a dramatic increase in the availability of patient generated
health data (PGHD). All APs require an accurate forecast of blood glucose (BG). While
there have been efforts to develop better forecasts and apply new ML techniques like deep
learning to this problem, methods are often tested on small controlled datasets that do not
indicate how they may perform in reality — and the most advanced methods have not always
outperformed the simplest. We introduce a rigorous comparison of BG forecasting using
both a small controlled research dataset and large heterogeneous PGHD. Our comparison
advances the state of the art in BG forecasting by providing insight into how methods may
fare when moving beyond small controlled studies to real-world use.

1. Introduction

Worldwide there are are over 400 million adults with diabetes, and this is expected to rise
to over 600 million by 2045 (International Diabetes Federation, 2018). While the majority
of cases are of Type 2 diabetes (T2D), the rate of Type 1 diabetes (T1D) is similarly
increasing. T1D is a lifelong condition that usually develops in childhood, where the body
does not produce insulin. As a result, people with T1D rely on exogenous insulin delivery
to regulate their blood glucose (BG) levels (Liu et al., 2018). However this is a difficult and
time consuming task that adds to the cognitive burden of T1D. For each meal and each
activity an individual must calculate the right amount of insulin while accounting for all the
other factors like stress that influence insulin needs. Yet getting the dose right is critical, as
keeping BG within a healthy range can prevent many of the severe secondary complication
of diabetes, such as chronic kidney disease (Levey et al., 2003) and heart disease and stroke
(Mozaffarian et al., 2016).

A major advance in managing T1D is the introduction of continuous glucose monitors
(CGMs). Unlike fingerstick BG measurements, which are regularly done before and after
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meals, CGMs measure glucose every 5 minutes. An artificial pancreas (AP) system connects
a CGM and pump with a controller that takes in CGM measurements, algorithmically
determines the right insulin dosage and sends instructions to the pump. There are many
AP projects, including some that also deliver glucagon, giving them the ability to raise BG
as well as lowering it (El-Khatib et al., 2010). Any AP, though, must be able to accurately
and reliably forecast where BG will be in the future and then determine what adjustments
can safely bring this path into the target range. This is a challenging problem, as CGMs
measure not BG but rather glucose from fluid between cells, which makes measurements
delayed relative to BG. Further they have significant noise and error and can be affected
by factors that don’t influence BG (e.g. acetaminophen (Maahs et al., 2015)).

BG forecasting is a key place where ML can contribute to an AP. Prior work has shown
that simple auto-regressive models can predict BG 30 minutes in advance with a root mean
square error (RMSE) of 27.7 mg/dL (Botwey et al., 2014). Deep learning has recently been
used for BG forecasting, including RNN (Li et al., 2019), CNN (Zhu et al., 2018) and LSTM
(Mohebbi et al., 2020) (RMSE 21.07, 21.72, and 20.80 respectively). However these works
primarily use data collected over a short duration of time from small sets of patients or
simulation, so it is not yet known whether these methods can handle data collected in daily
life, where error rates are higher and there are numerous unmeasured influences on glucose
(e.g. running to catch a bus, having a stressful meeting). Further, as deep learning requires
large training datasets it is not known what the upper bound on performance may be. Yet,
there is now large-scale patient generated health data (PGHD) that can be used to more
robustly evaluate ML for BG forecasting. The Open Artificial Pancreas (OpenAPS) is a
project led by people with T1D who wanted a system they could use immediately and tailor
to their needs (Lewis, 2019). The OpenAPS now has over 1500 users and contributors and
a subset of participants have made their data available for research. The data has been used
to study outcomes of the OpenAPS (Melmer et al., 2019), but despite being larger and more
varied than any clinical dataset it has not yet been leveraged for testing ML algorithms.

In this work we focus on the task of forecasting BG in real-world settings. We provide a
rigorous comparison of multiple ML. methods and architectures and compare them on both
the OpenAPS dataset and data collected for research use. We show how accuracy differs
across the datasets from both statistical and clinical standpoints, and provide insights that
can be used for selecting algorithms for BG forecasting. In the future, these improved fore-
casts can be incorporated into both research AP projects and potentially in OpenAPS sys-
tems to better close the loop. The code is publicly available at https://github.com/health-
ai-lab/MLHC_BG_Forecasting.

Technical Significance Our primary technical contribution is rigorous comparison of ML
methods for glucose forecasting. Prior works have applied existing methods to this task,
often using small controlled datasets with few subjects (e.g. such as OhioT1DM (Zhu et al.,
2018; Midroni et al., 2018; Xie and Wang, 2020) or simulated data (Samadi et al., 2017;
Liu et al., 2018). However as PGHD becomes more prevalent, it is increasingly important
to understand how methods fare on this considerably more challenging data, which has
noise, error, and heterogeneity (e.g. individuals using different types of glucose monitors)
not seen in controlled settings. Thus we present an in-depth and systematic comparison
across 1) methods (e.g. baseline models like linear regression and random forest; traditional
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forecasting models like ARMA; and deep learning), and 2) data types (small controlled
datasets versus large observational data; multi-modality data versus CGM only). We further
compare methods across task type (single-step and multi-output forecasting). This work
provides new insight into the strengths and limitations of these ML approaches on real-world
data and can provide insight into how to choose methods for real-world tasks.

Clinical Relevance T1D requires constant decision-making on how to manage glucose,
primarily by adjusting insulin dosing for meals, activity, stress and all the other factors
that affect BG. This is a significant cognitive burden, which is why an AP that fully au-
tomates insulin dosing is so transformative. Accurate management requires an accurate
forecast of BG. Our clinical contribution is 1) the first rigorous comparison of BG forecast-
ing using PGHD, and 2) comparison of methods across PGHD and benchmark research
data. First, DIY systems are increasing in popularity, with over 1500 individuals using the
OpenAPS (Lewis, 2019) alone. Further, research data often limits variation by ensuring all
participants use the same devices (e.g. same CGM model), which may limit generalizability
of results. Thus it is critical to understand how accurate methods are for forecasting BG
on this much more challenging data compared to the highly controlled datasets used for
research. More broadly, there is a need for more scholarship on such emerging techniques
for diabetes management. Second, we provide a comparison of methods on PGHD (Ope-
nAPS) and on a controlled research dataset (OhiotT1DM). OpenAPS is larger and covers
many more days per individual than is possible in research datasets, so rigorously compar-
ing methods on this diverse data to how they perform on controlled datasets can provide
insight to guide future evaluation. In particular we examine whether methods that perform
best on the research data are the best performers on the patient generated data, as this is
critical for extrapolating from papers to real world settings in the future.

2. Related Work

In 2016, the FDA approved the first commercial AP (FDA, 2018), paving the way for
intelligent decision support systems in diabetes management. An artificial pancreas has
three key components: a CGM (to measure BG), an insulin pump (to deliver insulin to lower
BG), and a control algorithm that takes in input from the CGM and sends instructions to
the pump. There are numerous AP projects in various stages of development. While the
algorithms and devices may differ, they all rely on accurate forecasts of where glucose is
headed, so it can be kept within a target range. Thus we focus our efforts and our review
of related work on approaches for BG forecasting. This is also a key focus for machine
learning to improve BG control. The two primary categories of work for BG forecasting (i.e.
predicting BG at a specific future time or window of times) are knowledge-based approaches
that leverage models of BG dynamics, and data-driven approaches Table 1 summarizes key
results from both groups..



MACHINE LEARNING FOR BLOOD GLUCOSE FORECASTING

Table 1: Related work in glucose forecasting and gylcemic event detection.
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2.1. Knowledge-based Approaches

Knowledge based approaches in BG forecasting aim to use physiological models of glucose-
insulin dynamics to predict BG trajectory. Autoregressive (AR) models have been ex-
tensively used for BG forecasting in the past (Zarkogianni et al., 2013; Li et al., 2014;
Eren-Oruklu et al., 2012; Novara et al., 2015; Cescon and Johansson, 2009; Gani et al.,
2008), with different works exploring various configurations for autoregressive integerated
moving average (ARIMA) model. Stahl and Johansson (2009) used glucoregulatory sub-
systems based on compartmental models to develop several black-box and grey-box models
such as ARMA, ARMA with exogenous inputs (ARMAX), and nonlinear ARMAX mod-
els. On fingerstick BG from a single individual they aimed to predict BG values 2 hours
ahead with an RMSE of less than 18mg/dl (1 mmol/l) in 95% of the cases. The models
did not achieve this goal but this work highlights some of the important limitations and
challenges in BG forecasting using non-CGM data and system identification techniques, in-
cluding the difficulty in accurately modeling glucoregulatory subsystems, handling missing
data in sparsely sampled time-series, and modeling the inherent time-varying dynamics of
the BG time-series data. Botwey et al. (2014) proposed a fusion strategy for combining
an AR model with output correction (cARX) and a Recurrent Neural Network (RNN) for
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glucose forecasting and subsequent prediction of hypo/hypergylcemia. They used data from
23 T1D patients in a clinical study with an average of 5.30 +1.4 recorded days per subject.
They achieved a median RMSE of 13.8 for Py = 30 min using genetic algorithm fusion.
Liu et al. (2018) propose a compartmental model of glucose-insulin dynamics with a de-
convolution technique in estimating glucose levels, and showed that additional information
such as on meals and physical activity improved performance over their uinvariate model.
Using both simulated and clinical data from 10 subjects over one week, they achieved an
RMSE of 35.96 + 4.65,p < 0.001 for clinical test data. One of the limitations of classical
autoregressive models is that because they estimate future values recursively, the estima-
tions accumulate error over time. In order to mitigate this, these models usually require
large amount of historical data to tune several parameters, which increases their already
high computation time.

2.2. Data-driven Approaches

As CGMs improve in accuracy and more data is being collected, there has been increasing
work toward fully data driven approaches. The key advantage of these methods is that they
do not rely on prior knowledge about BG dynamics (which can be incomplete). Support
Vector Regression (SVR) is one of the machine learning algorithms used in prior works
including (Georga et al., 2013; Plis et al., 2014; Wang et al., 2013; De Bois et al., 2019;
Plis et al., 2014) for both BG forecasting and glycemic event prediction. Wang et al. (2013)
combined an AR model, extreme learning machine (ELM), and SVR, using a novel adaptive-
weighting algorithm and achieved a higher performance than using each model separately.
On data from 10 people with T1D the best and worst RMSE were 9.740.2 and 23.5£0.8,
respectively. Since this is a time series forecasting problem, RNN and Long Short-term
Memory (LSTM) are natural solutions, being widely used in sequence prediction (Lipton
et al., 2015). Mirshekarian et al. (2019) used an LSTM for BG forecasting, evaluating it on
both synthetic data and OhioT1DM data (6 subjects, 8 weeks), and report the best RMSE
of 18.7440.17 for the latter dataset. Fox et al. (2018) compared single-step and multi-output
forecasting configurations, using an ensemble of polynomial and sequential functions and
report a 50" percentile absolute percentage error (APE) of 4.59, concluding that a multi-
output approach outperforms single-step forecasting because of its ability to effectively
capture the underlying glucoregulatory dynamics. Li et al. (2019) used a convolutional
RNN and had high accuracy on simulated data (mean RMSE 9.38+0.71), but error increased
significantly when applied to patient data (21.07+2.35).

3. Problem Setup

In this work we focus on the task of BG forecasting, which can be modeled in two main
ways: recursively, where estimates are used for future forecasts, or directly, where prior
estimates do not influence future estimates.

The basic recursive setup is as follows:

2(t) = 9l(a(t — 1), 2(t — 2), . 2(t — )] 1)
2(t+1)=o[(a'(t),z(t —1),2(t = 2),...,z(t — n))] (2)
2(t+h)=0¢[(2'(t+ (h—1)),...,z(t—1),z(t — 2),...,z(t — n))]. (3)
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In this setup, x and 2’ are the actual and estimated value of the variable being forecast
(BG in our task), ¢ is the timepoint the prediction is being made for, and ¢ is the function
being used to make predictions. Py denotes the prediction horizon, meaning how many
timepoints in advance are being forecast. Thus h = 0, ..., Py. For a prediction horizon of
30 minutes with input values recorded every 5 minutes, Py = 6. As shown, the prediction
for the last timepoint ¢ + A is a function of all prior predictions.

In a direct method, on the other hand, the data is split into chunks of fixed sized
sequences of historical and future points which then become features and target output
for a classic regression task. With variables defined as before there is now no dependence
between forecasts:

' (t+h) = ép[(x(t — 1), 2(t —2),...,2(t —n))]. (4)

We can further differentiate between methods based on their output. The basic setups shown
here provide single step forecasts. That is, each time ¢ is called, it produces an estimate of
a single BG value at a single time. Multi-output forecasts in contrast can estimate all values
in the prediction horizon simultaneously, thereby predicting the progression or trajectory
of the signal over the prediction horizon. Such approaches may better ensure smoothness
and consistency in forecasts, and capture dependencies between the forecasts. A downside
is that like for recursive forecasts, errors can propagate rather than being contained to a
single output.

In this work, we aim to compare recursive and direct methods for single-step and
multi-output BG forecasting. We also investigate the impact of using univariate and mul-
tivariate data on the accuracy of future predictions. For blood glucose prediction, let
Xo—1 = {zo,z1,...,2¢-1} € R? denote a multi-variate time series for multi-modality
data obtained from d different sources at ¢ timepoints. Sources could be a CGM, in-
sulin pump, amount of carbohydrate intake, and activity. We assume all data sources
are continuous-valued, but they may be measured at different frequencies. The output
Xigipy =1 %0 %415 Thyo,s s Tyy p, b € R represents multiple future glucose values across a
given prediction horizon Py. In this context, single-step methods estimate p(x¢yp, |To:2—1)
with x4 p,, being the glucose value Py time instances in the future. This can be achieved
in a recursive or direct way. Multi-output forecasting, on the other hand, aims to estimate
the joint probability p(zsi+p, |To:t—1) in one step so it is a direct method.

4. Methods

The methods used for blood glucose prediction are divided into three categories:

e Baseline Models: Popular machine learning models used for regression in healthcare
applications, namely linear regression (LR), Random Forest Regression Trees (RF),
and Support Vector Regression (SVR).

e Recursive Model: This includes the classic auto-regressive moving average (ARMA)
model used in time-series forecasting problems.

e Deep Learning Models: A simple Recurrent Neural Network (RNN) and Long
Short Term Memory (LSTM) model.
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4.1. Baseline models
4.1.1. LINEAR REGRESSION

In an LR model, the core assumption is that future values depend linearly on past glucose
levels, as shown in equation (5),

zp = Bo+ L1714t + Boxoty ooy +PnTnt + Et (5)

where z; represents the future time series, 3 is the set of parameters for the model and
Ty represents the past values for the kth feature. For the univariate case k = 1 and for
the multivariate setting with insulin basal and bolus rates, meals, and glucose differences
used as additional features, k = 5. &; denotes the random error present in the learned
model with an underlying assumption that &, ..,e7 have zero mean and are independent
of the predictor variables, where T' is the total number of future values to be predicted
(Hyndman and Athanasopoulos, 2018). We used a least square approach for learning the
model parameters.

4.1.2. RANDOM FOREST

RF regression is an ensemble of multiple decision trees trained using bootstrap samples and
the final estimations are made by averaging the results obtained from each tree. We used
100 estimators in our RF model and use mean squared error (MSE) to measure the quality
of each split.

4.1.3. SUPPORT VECTOR REGRESSION

For SVR, there were three main parameters: cost C, insensitive parameter ¢, and the
type of kernel function along with the kernel parameters. We used the default parameter
configuration of sklearn library in python with C' = 1, ¢ = 0.1 and radial basis function (rbf)
as a kernel with ~ scaled according to the variance of the input samples used as support
vectors.

4.2. Recursive modeling
4.2.1. ARMA

We use ARMA to perform recursive single-step forecasting. Equation (6) describes the
time-series forecasting problem using ARMA model where x;_; are previous glucose values
with (i = 0,...,p + 1) and p being the lag order. e, and e;—; for (i = 0,...,q + 1) are
the residual terms obtained by subtracting the estimated glucose value from the true value
with ¢ being the size of the moving average window.

Tign = (a1T¢ + 221 + ... + apTy—p_1) + (ep4n + C164 + . + CqC1—g—1). (6)

An automatic grid search was performed using pyramid’s auto.arima library in python
(Pyramid, 2018) to select the best values of p and g. The function uses Akaike information
criterion (AIC) (Konishi and Kitagawa, 2008) to determine the best set of parameters
and instead of doing an exhaustive grid search, uses the step-wise algorithm proposed by
(Hyndman and Khandakar, 2008). Despite this optimization, the model has high time and
memory costs. The parameters (p = 2,¢q = 1) gave the best performance.
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4.3. Deep learning models

A typical feed-forward deep neural network takes a sequence of inputs and maps them to
an output space through a combination of linear operations and non-linear activations. An
RNN additionally has feedback from the preceding hidden states, thereby using not only the
current input but also the state representations learned from the previous inputs in making
the current estimation. Therefore, it takes into account the larger context and long-term
dependencies by circulating past information within the network during the learning pro-
cess. More advanced configurations of RNN include LSTM (Hochreiter and Schmidhuber,
1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014), which better capture long-term
dependencies in sequential data but have more complex architectures and require more data.

4.3.1. LSTM anD RNN

We use an LSTM with a single hidden layer, H(¢) with 32 units, followed by a fully-
connected output layer O(t). We compare it with a fully-connected vanilla RNN which also
has a single hidden layer with 32 units. The number of units for both LSTM and RNN
were chosen after trying and testing [28, 32, 64, 128] and optimizing for the lowest RMSE.
The output layer O(t) predicts the glucose value(s) 30 minutes into the future. The input
I(t) at time instance ¢ consists of the glucose values in the past hour X (¢) and the state
representation H (¢t — 1) learned by the hidden layer in the previous time instance.

It) = X(t)+H(t—1) (7)

At time instance ¢, the hidden layer H; receives the input consisting of past glucose values
and output of the hidden layer in the previous time step. It learns a set of weights 0;;
for every i*" input which then passes through an activation function giving the state vector
representation for that time instance. In this work, we use a ReLLU activation function given
by equation (9).

H;i(t) = U(Zfi(t)eji> (8)
o(z) = max(0,z) (9)

For single-step forecasting, there is a single output unit O(¢) which learns a set of weights
9; to predict the future glucose value for a single time step. A multi-output RNN has &k = 6
(Pg = 30 min) in the output layer because it predicts all the glucose values in the Py
simultaneously. We do not use any activation function in the output layer since we are
using the model to estimate continuous values. Thus,

Op(t) = Z H;(t)0;- (10)

5. Experiments

Our experiments aim to compare BG forecasting methods across a large PGHD dataset
(1-4 years of data for over 50 people) and controlled research data (8 weeks of data for 12
people). We first describe the datasets and then the evaluations.
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5.1. Data
5.1.1. OPENAPS

The OpenAPS Project (Melmer et al., 2019) is a participant-led artifical pancreas system.
The system itself has been made open source, and participants in the project can also
volunteer to donate their diabetes-related data for use by researchers. As a result, the data
available for each individual varies, and includes CGM, insulin (basal and bolus rates),
carbohydrate intake, and insulin doses calculated by the OpenAPS system. As individuals
use their own devices, the exact models of insulin pump, CGM, and other devices will vary
across participants. We use a subset of the available OpenAPS data in this work, only
including participants with multiple calendar years of data even if data was recorded for
only a portion of each year, in order to allow training on prior years and testing on the last
one. This resulted in a final dataset of 55 participants with an average of 320+158.34 days
of data (median 287 days). In total, this dataset has more than 17,000 days of data with
more than 7 million raw glucose measurements (~4.5M training, ~3M testing).

5.1.2. OH10T1DM

All the experiments were repeated on OhioT1DM dataset which is a widely used benchmark
dataset for BG prediction (Marling and Bunescu, 2020). The updated dataset released in
2020 has eight weeks of data for 12 people with T1D. In total this yielded 600 days of
data, with 177,000 CGM values (~ 144k training, ~33k testing), making it more than 40
times smaller than OpenAPS dataset. The average and median number of recorded days
were 5443.02 and 56 days per person. Out of the twenty features originally recorded in the
dataset, we used CGM values, insulin bolus and basal rates and carbs intake, for consistency
with the OpenAPS dataset.

5.2. Data processing

For both datasets, we extracted four features for BG forecasting: raw CGM values (mg/dL),
insulin basal rate, insulin bolus events, and carbs intake (mg). In addition to these four
features, we also calculated the difference between consecutive glucose levels and used them
for BG forecasting in the multivariate setting.

Because of the high error rates and noise in CGM data, we include a number of pre-
processing steps to remove implausible values and fill in missing ones. First, we excluded any
values below 15mg/dL, as glucose values cannot fall below this level for a person who is still
conscious. Missing glucose values in the training set were imputed using linear interpolation
for gaps less than 30 minutes in duration. Interpolation imputes a missing value z; at time
t by assuming a linear relationship between past data points (z;_, ), and future data points
(x¢,,) and fits a straight line using equation (11) (Lepot et al., 2017).

Tt_4 — SL't_H (

Ty = t—t+1)+$t+1 (11)

o1 — 141

where t1 < t < t2. For test data, we used first-order extrapolation to avoid using data from
the future.
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Figure 1: Multimodality data for (a) OpenAPS (b) OhioT1DM.

The gaps in basal insulin rate recordings were forward filled, meaning missing values
were replaced with the last recorded basal rate. This is because a basal rate is recorded when
it is changed, so we know that the value is constant between data points. If a temporary
basal infusion rate was recorded for a given set of timestamps, it was used to supersede the
recorded basal rate (Marling and Bunescu, 2020) by evenly distributing its value across the
time duration which was divided into 5-minute intervals, as done in (Midroni et al., 2018;
Xie and Wang, 2018). Bolus rates (discrete amounts of insulin given to cover events like
meals) were handled in a similar manner by distributing each bolus event evenly across the
specified duration. Outside of recorded bolus events, the value was set to zero as no insulin
was bolused for those times. Similarly, the amount of carbohydrate intake was set to 0 when
no value was recorded, as carbs are only recorded at meal times. Figure 1 shows an example
of a short sequence of multivariate time series from each dataset. Different pre-processing
steps are listed in the Appendix in table 4.

10
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We used a median filter with a window size of 5 samples (Zhu et al., 2018) to smooth
the CGM data and address discontinuities, which cause unnecessary variance in predictions.
This was only done for training data and not for the test set to test robustness of the models
for real-world use.

For direct forecasting, a sliding window was used to split the data into fixed sized
sequences of past and future BG values. There were three parameters for the moving window
i.e. size of the history window (size of historical data to use for forecasting), prediction
offset and horizon (how far into the future and how many future values to predict) and
stride (number of samples to skip while sliding the window). An hour (12 samples for 5-
minute intervals) of past values were used with a prediction horizon of 30 minutes (Py = 6
samples). We used a unit stride which means overlapping windows were used to partition
the data. For the single-step setting, a single future glucose value was estimated whereas for
multi-output prediction, six consecutive future glucose values were estimated for the next
30 minutes, simultaneously. Figure 2 shows the data used from each source before and after
the processing steps which included synchronization, thresholding, and imputation. After
processing, the average number of recorded days per subject were 320+158.34 and 54+3.02
for OpenAPS and OhioT1DM, respectively.

5.3. Training

We divided the experiments into four categories, 1) single-step univariate, 2) single-step
multivariate, 3) multi-output univariate, and 4) multi-output multivariate. ARMA was
used to perform only single-step univariate forecasting due to its high computation time.
The baseline and deep learning models were used to test both category 1 and 2. For category
3 and 4, only deep learning models were compared since they have been used in prior works
for multi-output forecasting (Fox et al., 2018).

For the univariate setting, the time-series consisting of only raw CGM values was given
to the input layer, whereas in the multivariate setting, multimodality time series for CGM,
insulin boluses, basal amounts and meal intake, along with the difference between adjacent
glucose levels were included in the input. Early stopping was used to halt the training
process if validation loss was not improving significantly, with the maximum number of
epochs being 1000 with a batch size of 248 and 32 for OAPS and OhioT1DM, proportional
to the size of each dataset. Glorot normal initialization (Glorot and Bengio, 2010) was used
to initialize the weight matrix in deep learning models. Each experiment was repeated 3
times and average RMSE and standard deviation was calculated across all the trials for each
subject. As we aim to train a single model using data from all the patients, we shuffled the
ordered list of subjects before each trial so that the model’s learning did not depend on the
order in which data from each subject was passed to it.

5.4. Evaluation

We make our evaluations from three main perspectives, 1) difference between individual
modeling methods, 2) impact of forecasting configurations, and 3) effect of data size and
data quality on the accuracy of the predictions. We use both statistical and clinical metrics
to quantify the performance.
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Figure 2: The total number of days for which multimodality data was recorded for each
subject in (a) OpenAPS (b) OhioT1DM dataset. The black bars show the samples excluded
post processing and the red bars represent the data actually used in the experiments.

5.4.1. RooT MEAN SQUARE ERROR (RMSE)

The statistical measure used was RMSE given by equation (12), where = and & are the
actual and estimated BG values, respectively.

1
RMSE = |=) (v, — ) 12
PICE (12)
We use RMSE as our primary metric because it has been widely used in prior works to
measure the deviation of estimated BG values from true BG levels. Since each experiment
was repeated 3 times, we record the mean RMSE for each subject. We then take an average
of all the RMSEs and final results are expressed as average RMSE =+ standard deviation

(SD) over all the subjects.
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Table 2: Best(B), worst(W) and mean(M) RMSE for glucose prediction with Py = 30
minutes across different subjects for each model. The best mean performance for each
dataset is bolded.

Output setting

Single-step Multi-output
RMSE LR RF SVR ARMA RNN LSTM | RNN LSTM
Ohio: B 16.37 18.26 19.73 19.84 16.12 18.13 | 16.00 16.70
4% Ohio: W 24.12 24.84 33.38 31.47 22.71  25.05 | 22.57 23.26
'C% Ohio: M 19.59 21.66 25.22 26.64 19.22 21.33 | 19.12 19.69
>
k=
~ OpenAPS: B 842 9.76 8.07 8.44 8.23 8.05 7.95 7.92
OpenAPS: W 33.73 32.94 41.12 34.46 30.57 29.42 | 30.00 29.03
OpenAPS: M 15.34 17.09 19.68 21.42 15.50 14.53 | 15.02 14.73
Ohio: B 16.22 16.95 20.37 — 16.36 15.99 | 15.91 16.27
4}; Ohio: W 33.26 24.02 31.06 — 23.37 2253 | 44.79 22.98
'% Ohio: M 22.01 20.97 25.06 — 19.68 19.25 | 23.95 19.57
2
g OpenAPS: B 8.00 10.03 8.08 — 8.83 7.84 8.59 8.73
OpenAPS: W 34.58 35.02 40.69 — 31.64 29.95 | 29.57 31.72
OpenAPS: M 15.33 18.12 19.82 — 15.95 15.07 | 1542 15.95

5.4.2. CLARKE’S ERROR GRID ANALYSIS (CEGA)

Clarke’s Error Grid (Clarke, 2005) is another approach used for evaluating BG predictions.
It is primarily used in clinical works, as it provides more detailed insight into the safety
of predictions. Here we use it to assess the clinical significance of the best performing
models for each of the dataset. For this analysis, actual CGM values (x-axis) are plotted
against predicted values (y-axis). Points on the diagonal represent perfect accuracy, while
those above and below are overestimations and underestimations, respectively. To capture
the severity of these errors, there are 5 regions on the grid labelled A — E. Points within
20% of the actual values lie in Zone A, which is within sensor error ranges. Points located
in Zone B represent estimations with an error of more than 20%, but which would not
lead to incorrect treatment choices. Zones C-E can be potentially dangerous failures and
are counted as clinically risky mistakes, as they may lead to overtreatment, undetected
hypo/hyperglycemia or in the worst case conflation of hypo/hyperglycemia (Maran et al.,
2002). We report the score by showing the percentage of total samples for all the subjects
that lie in each of the five regions, for each of the two datasets.

13
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Figure 3: Performance summary of deep learning models with four different configurations
for each dataset.

6. Results

Table 2 shows the RMSE values for different model configurations and modality. We report
the best (B), worst (W) across all 12 and 55 subjects in both OhioT1DM and OpenAPS
datasets, respectively, and average RMSE across the iterations.

We now analyze the results from three main perspectives: methods, input/output (uni
and multivariate, single and multi-step), and data. We also present an ablation study to
better understand the impact of the pre-processing steps that were used for all tasks.

6.1. Modeling techniques

The recursive ARMA model had the highest average RMSE for the single-step univariate
setting. Figure 3 gives a visual summary of the of results in Table 2 for baseline and
deep learning models. In terms of variance, deep learning models tend to perform better
than baseline models, shown by the height of the boxes and the number of outliers for the
OpenAPS dataset. SVR has the the highest variability of all, but as shown in figure 3(b)
it is the only model for which there are no outlier estimations, which shows its ability to
generalize well in case of a bigger dataset at the cost of having the highest average RMSE.
Among deep learning models, performance is comparable and there does not seem to be an
overall best model. LSTM, however performs better with more data as compared to RNN
across OhioT1DM and OpenAPS, for both single-step and multi-output settings. Direct
comparison with prior work is difficult due to differences in the datasets used in terms of
total number of subjects and recorded days. However, we note that RMSE of single-step,
univariate LSTM on OhioT1DM is comparable to 19.51 achieved by Mirshekarian et al.
(2019) using OhioT1DM with 6 subjects instead of 12 used in our work. This performance
can be improved by using multiple techniques like adding drop-out layers, using memory
augmentation and attention modules as done by Mirshekarian et al. (2019), reducing the
RMSE to 18.75. We used simple, single-layer, deep learning models for fair comparison
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between baseline models for different settings. Future work will be needed to compare more
advanced architectures.

6.2. Forecasting configurations
6.2.1. UNIVARIATE VS MULTIVARIATE

For both baseline and deep learning models, the performance slightly decreased from uni-
variate to multivariate setting for single-step forecasting, although it changed the least for
LSTM, where the average error increased by a factor of only 0.04 for OpenAPS, compared
to 0.11 for RNN. Adding more features is believed to improve forecasting accuracy, as shown
by Georga et al. (2012), who used data from 15 subjects part of a clinical study over 5-22
days. That work achieved an average RMSE of 9.15 for single-step multivariate forecasts
using insulin and meal information, versus 15.29 using CGM data only. They used an SVR
model and tuned it iteratively using grid search. However, in our results, we observe that
adding more features adds more perturbations in the BG predictions for some models than
others. For example, among baseline models, linear regression was harmed the most by
adding more features, more so for OpenAPS dataset than OhioT1D, with SD changing
from 5.79 to 13.81 from univariate to multivariate setting for single-step forecasting. Over-
all, adding more features led to the same or slightly worse average RMSE for all methods.
This suggests that simply adding more variables is not necessarily better and more work is
needed to figure out how best to use this additional data.

6.2.2. SINGLE-STEP VS MULTI-OUTPUT

There was not a significant change in performance for deep learning models between the
single-step and multioutput setting. However, the best (B) RMSE was lowest using multi-
output univariate LSTM (7.92 for OAPS), showing that learning the trajectory of BG values
versus predicting a single future value, improves the accuracy of the predictions. This is in
line with the observations made by Fox et al. (2018) who achieved an absolute percentage
error of 5.01 using multi-output GRU versus 5.31 achieved using single-output recursive
network on a large dataset collected from 40 patients over 3 years.

6.3. Data size and quality

For the univariate setting, we always see an improvement in best and average error from
OhioT1DM to OpenAPS dataset, showing that more data not only helps in training more
accurate deep learning models but also improves baseline models like LR. On the other
hand, the worst case RMSE for OpenAPS dataset is in most cases significantly worse than
for the OhioT1DM dataset, for all methods. This highlights the difficulty in training ac-
curate models using large-scale, heterogeneous and noisy PGHD, and shows that variation
in homogeneous research datasets may not predict performance for individuals using these
methods in the real world. However, large data even when noisy can yield better average
case performance than smaller controlled datasets. The worst case RMSE was lowest (best)
for LSTM and highest (worse) for SVR, using OpenAPS. This shows the robustness of
deep architectures to noisy data. This is also shown by the presence of not a single outlier
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Table 3: Results for ablation study comparing the effect of median filtering and imputation
technique on forecasting RMSE.

Imputation Technique

No imputation Interpolation

Ohio: best 35.79 16.96
g Ohio: worst 50.793 23.61
g Ohio: mean 42.71 19.80
E
= OpenAPS: best 12.73 8.50
OpenAPS: worst  37.02 33.86
OpenAPS: mean  20.61 15.48
Ohio: best 16.13 16.70
g Ohio: worst 23.29 23.26
£ Ohio: mean 19.37 19.69
e
OpenAPS: best 11.46 7.92
OpenAPS: worst  31.46 29.03
OpenAPS: mean  19.14 14.73

estimation in figure 3(a) for OhioT1DM dataset and almost every model except SVR hav-
ing outliers in 3(b) for OpenAPS. The variance in performance increases from OhioT1DM
to OpenAPS shown by the height of the boxes. The best and median values of error for
OhioT1DM are much higher than those for OpenAPS, which also has outliers.

6.4. Ablation Study

We now examine the effect of our pre-processing steps that were conducted for all methods.
In particular, we vary filtering (CGM data passed through a median filter, or not) and im-
putation (linear interpolation or deletion of missing instances) and test both combinations,
leading to four different configurations. We repeat this for both the Ohio and OpenAPS
datasets, using the multi-output, univariate LSTM algorithm for forecasting. Results are
shown in table 3. First, we see that regardless of imputation approach or dataset, filtering
the CGM data improves performance. This is due to the filter smoothing out some of the
jumpiness inherent in CGM data. Next, we find that imputation can significantly improve
results. On the unfiltered data, there is a dramatic improvement in accuracy on Ohio data
(mean 42.71 RMSE no imputation, 19.80 with imputation). OpenAPS similarly improves
from a mean of 20.61 RMSE to 15.48 with interpolation. Once data is filtered the im-
provement on OpenAPS is smaller, and results are similar with and without interpolation
on Ohio. However, the best results out of the four configurations across two datasets was
on OpenAPS with both filtering and imputation, suggesting these pre-processing steps and
large data are keys to high accuracy.
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6.5. Clinical Analysis

Finally, we used Clarke’s error grid method to assess the clinical relevance of the results. As
shown in Table 2, single-step LSTM using univariate input gave the least average RMSE for
the bigger dataset. In Figure 4 we plot the BG values estimated by a multi-output, univari-
ate LSTM model versus the actual BG values for the 12 and 55 subjects in OhioT1DM and
OpenAPS datasets respectively. We find that for OhioT1DM, 99.36% (n = 29k points) of
the values are in zone A and B, 0% in zone C, and 0.64%(n = 191) in zone D. For OpenAPS,
these values are as follows: Zone A and B: 99.43% (n = 16M), zone C: 0.029% (n = 4k), zone
D: 0.52% (n = 91k). Thus the types of errors made and their impact on decision-making
(i.e. treatment of BG highs and lows) are substantially similar across the two datasets.
However, due to the size of the OpenAPS data, the number of predictions that may lead to
an incorrect decision is substantial, numbering in the thousands.
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Figure 4: Clarke’s error grid analysis for all the subjects in each of the two datasets.

7. Conclusion

We have done a rigorous comparison between various configurations for time-series forecast-
ing for BG prediction, in the context of PGHD like OpenAPS and benchmark datasets like
OhioT1DM. We have shown that the state-of-the-art forecasting models known to perform
well on small, controlled datasets in prior works, give statistically and clinically different
performance on large-scale PGHD datasets like OpenAPS. Another observation we made
was that different models are affected differently based on the dimension of feature space,
and adding more information about meals and insulin does not always boost performance
and can sometimes even degrade accuracy, such as in the case of linear regression. Conven-
tional time-series forecasting models like ARMA failed to capture the underlying differences
in the BG patterns of different subjects which becomes more prominent in larger datasets
with more subjects with data recorded over a longer duration. In all our experiments, we
used models with most basic configurations in order to do a fair comparison. Our aim was
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not to propose an ultimate best model for BG forecasting, but to compare how different type
of machine learning techniques in their most general form, fare across different forecasting
settings and datasets. Overall we show that BG forecasting is a problem that should be
studied in the context of different size and quality of data, output settings, and modality
of input data.
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Appendix A.

All the data wrangling and machine learning was done in Python. Figure 5 shows how
the data was split into fixed-sized sequences of past and future BG levels, using overlap-
ping moving windows. The three parameters for the moving window were history window
(number of past samples), stride (how many samples to skip while sliding) and prediction
horizon (number of future values to be estimated). For single-step forecasting, the last value
in the prediction horizon (red window) was estimated, whereas in multi-output forecasting
all 6 values were estimated by the deep learning models simultaneously but final RMSE was
calculated by comparing only the last predicted value with the actual value to make a fair
comparison between the output settings.

Table 4 summarizes the various pre-processing steps performed along with the param-
eters used for each technique. We aimed to do minimal pre-processing to evaluate the
robustness of the models being compared.
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Figure 5: Overlapping windows to partition the data for time-series forecasting. The values
represent raw CGM levels recorded over time.

Table 5 gives the parameter configurations used for each model. Baseline models were
implemented using scikit-learn library in Python with default parameter values. For ARMA,
we used the auto.arima function in the pyramid library. It automatically finds the most
optimal parameters including the lag order and moving window size. However, the method
was extremely time-intensive due to its automatic grid search using the Akaike information
criterion (AIC). The deep learning models were implemented using Tensorflow and Keras
and the state vector length and best activation function was found by doing manual grid
search.
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Table 4: Data pre-processing steps and techniques used.

Pre-processing step

Technique

Parameters/constraints

Windowing

Overlapping,
sliding windows

history window = 12,
stride = 1, Pg = 6

Thresholding CGM values

remove samples with
CGM <k

k = 15 mg/dL

Imputing CGM values

Interpolation, (training)
Extrapolation (test)

linear and
for gaps < 30 min

Imputing basal rates

Forward filling

superseded by TBR

Imputing bolus and meals

0 when not recorded

Normalization

Min-max

Tmin = minimum BG
Tmar = maximum BG

Filtering (training data only) Median filter

window size = 5

Pyy: Prediction horizon, BG: Blood glucose, TBR: Temporal basal rate

Table 5: Parameter configuration for different models.

Model Parameter selection Best parameters

Baseline Models

Linear Regression Default —
Random Forest Default no. of trees = 100
Support vector regression Default kernel = rbf, ¢ = 0.1

v = ‘scale’, C =1,

Recursive model

ARMA Auto grid search p=2,q=1
Deep Learning Models

RNN Manual grid search s = 32, activ = reLU

LSTM Manual grid search s = 32, activ = reLLU

rbf: radial basis function s = state vector length
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