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Abstract

We propose a new framework, called Poisson

learning, for graph based semi-supervised learn-

ing at very low label rates. Poisson learning is

motivated by the need to address the degener-

acy of Laplacian semi-supervised learning in this

regime. The method replaces the assignment of la-

bel values at training points with the placement of

sources and sinks, and solves the resulting Poisson

equation on the graph. The outcomes are provably

more stable and informative than those of Lapla-

cian learning. Poisson learning is efficient and

simple to implement, and we present numerical

experiments showing the method is superior to

other recent approaches to semi-supervised learn-

ing at low label rates on MNIST, FashionMNIST,

and Cifar-10. We also propose a graph-cut en-

hancement of Poisson learning, called Poisson

MBO, that gives higher accuracy and can incorpo-

rate prior knowledge of relative class sizes.

1. Introduction

Semi-supervised learning uses both labeled and unlabeled

data in learning tasks. For problems where very few labels

are available, geometric or topological structure in unlabeled

data can be used to greatly improve the performance of clas-

sification, regression, or clustering algorithms. One of the

most widely used methods in graph-based semi-supervised

learning is Laplace learning, originally proposed in (Zhu

et al., 2003), which seeks a graph harmonic function that

extends the labels. Laplace learning, and variants thereof,

have been widely applied in semi-supervised learning (Zhou

et al., 2005; 2004a;b; Ando & Zhang, 2007) and manifold
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ranking (He et al., 2004; Yang et al., 2013; Xu et al., 2011),

among many other problems.

This paper is concerned with graph-based semi-supervised

learning at very low label rates. In this setting, it has been

observed that Laplace learning can give very poor classifica-

tion results (Nadler et al., 2009; El Alaoui et al., 2016). The

poor results are often attributed to the fact that the solutions

develop localized spikes near the labeled points and are al-

most constant far from the labeled points. In particular, label

values are not propagated well by the Laplacian learning ap-

proach. To address this issue, recent work has suggested to

consider p-Laplace learning (El Alaoui et al., 2016). Several

works have rigorously studied p-Laplace regularization with

few labels (Slepčev & Thorpe, 2019; Calder, 2018; 2019),

and recent numerical results show that p > 2 is superior

to Laplace learning at low label rates (Flores et al., 2019).

The case of p =∞ is called Lipschitz learning (Kyng et al.,

2015), which seeks the absolutely minimal Lipschitz ex-

tension of the training data. Other methods to address low

label rate problems include higher order Laplacian regular-

ization (Zhou & Belkin, 2011) and spectral cutoffs (Belkin

& Niyogi, 2002).

While p-Laplace learning improves upon Laplace learn-

ing, the method is more computationally burdensome than

Laplace learning, since the optimality conditions are non-

linear. Other recent approaches have aimed to re-weight

the graph more heavily near labels, in order to give them

wider influence when the labeling rate is very low. One way

to re-weight the graph is the Weighted Nonlocal Laplacian

(WNLL) (Shi et al., 2017), which amplifies the weights

of edges directly connected to labeled nodes. The WNLL

achieves better results at moderately low label rates, but still

performs poorly at very low label rates (Flores et al., 2019).

To address this, (Calder & Slepčev, 2019) proposed the

Properly Weighted Laplacian, which re-weights the graph

in a way that is well-posed at arbitrarily low label rates.

Much of the recent work on low label rate problems has

focused on formulating and implementing new learning

approaches that are well-posed with few labels. The ex-

act nature of the degeneracy in Laplace learning, and the

question of how the tails of the spikes propagate label infor-

mation, has not been studied and is still poorly understood.



Poisson Learning

For some problems, the performance of Laplacian learning

is good (Zhu et al., 2003), while for other problems it is

catastrophic, yielding very poor classification results similar

to random guessing (Shi et al., 2017; Flores et al., 2019).

In this paper, we carefully analyze Laplace learning at very

low label rates, and we discover that nearly all of the degen-

eracy of Laplace learning is due to a large constant bias in

the solution of the Laplace equation that is present only at

low label rates. In order to overcome this problem we intro-

duce a new algorithm, we call Poisson learning, that gives

very good classification performance down to extremely low

label rates. We give a random walk interpretation of Poisson

learning that shows how the method uses information from

the random walkers only before they reach the mixing time

of the random walk and forget their initial condition. We

also propose a graph-cut enhancement of Poisson learning,

called Poisson MBO, that can incorporate knowledge about

class sizes, and further improves the class-label accuracy.

The rest of the paper is organized as follows. In Section 2

we first briefly introduce Poisson learning, and then provide

a detailed motivation for the algorithm and a theoretical

analysis from both the variational and random walk perspec-

tives. The Poisson MBO approach is presented in Section

2.4. In Section 3 we present the step-by-step algorithms and

discuss implementation details for the Poisson and Poisson

MBO algorithms. In Section 4 we present numerical exper-

iments with semi-supervised classification on the MNIST,

FashionMNIST, and Cifar-10 datasets. The proofs of the

results are available in the supplementary materials.

2. Poisson learning

Let X = {x1, x2, . . . , xn} denote the vertices of a graph

with edge weights wij ≥ 0 between xi and xj . We as-

sume the graph is symmetric, so wij = wji. We define

the degree di =
∑n

j=1 wij . For a multi-class classification

problem with k classes, we let the standard basis vector

ei ∈ R
k represent the ith class. We assume the first m

vertices x1, x2, . . . , xm are given labels y1, y2, . . . , ym ∈
{e1, e2, . . . , ek}, where m < n. The task of graph-based

semi-supervised learning is to extend the labels to the rest

of the vertices xm+1, xm+2, . . . , xn.

The well-known Laplace learning algorithm (Zhu et al.,

2003) extends the labels by solving the problem

Lu(xi) = 0, if m+ 1 ≤ i ≤ n,

u(xi) = yi, if 1 ≤ i ≤ m,

}
(2.1)

where L is the unnormalized graph Laplacian given by

Lu(xi) =

n∑

j=1

wij(u(xi)− u(xj)).

Here, u : X → R
k and we write the components of u as

u(xi) = (u1(xi), u2(xi), . . . , uk(xi)). The label decision

for vertex xi is determined by the largest component of

u(xi)
ℓ(xi) = argmax

j∈{1,...,k}

{uj(x)}. (2.2)

We note that Laplace learning is also called label propa-

gation (LP) (Zhu et al., 2005), since the Laplace equation

(2.1) can be solved by repeatedly replacing u(xi) with the

weighted average of its neighbors, which can be viewed as

dynamically propagating labels.

At very low label rates, we propose to replace the problem

(2.1) by Poisson learning: Let y = 1
m

∑m

j=1 yj be the av-

erage label vector and let δij = 1 if i = j and δij = 0 if

i 6= j. One computes the solution of the Poisson equation

Lu(xi) =

m∑

j=1

(yj − y)δij for i = 1, . . . , n (2.3)

satisfying
∑n

i=1 diu(xi) = 0. While the label decision can

be taken to be the same as (2.2), it is also simple to account

for unbalanced classes or training data with the modified

label decision

ℓ(xi) = argmax
j∈{1,...,k}

{sjuj(x)}, (2.4)

where sj = bj/(y · ej) and bj is the fraction of data belong-

ing to class j. We explain this label decision in Remark 2.2.

The Poisson equation (2.3) can be solved efficiently with a

simple iteration given in Algorithm 1.

Technically speaking, in Laplace learning, the labels are im-

posed as boundary conditions in a Laplace equation, while

in Poisson learning, the labels appears as a source term in a

graph Poisson equation. In the sections below, we explain

why Poisson learning is a good idea for problems with very

few labels. In particular, we give random walk and varia-

tional interpretations of Poisson learning, and we illustrate

how Poisson learning arises as the low label rate limit of

Laplace learning.

2.1. Random walk interpretation

We present a random walk interpretation of Poisson learning

and compare to the random walk interpretation of Laplace

learning to explain its poor performance at low label rates.

We note that Laplace learning works very well in practice for

semi-supervised learning problems with a moderate amount

of labeled data. For example, on the MNIST dataset we

obtained around 95% accuracy at 16 labels per class (0.23%

label rate). However, at very low label rates the perfor-

mance is poor. At 1 label per class, we find the average

performance is around 16% accuracy. This phenomenon

has been observed in other works recently (Nadler et al.,
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2009; El Alaoui et al., 2016). However, a clear understand-

ing of the issues with Laplace learning at low label rates was

lacking. The clearest understanding of this phenomenon

comes from the random walk interpretation, and this leads

directly to the foundations for Poisson learning.

Let x ∈ X and let Xx
0 , X

x
1 , X

x
2 , . . . be a random walk on

X starting at Xx
0 = x with transition probabilities

P(Xx
k = xj |X

x
k−1 = xi) = d−1

i wij .

Let u be the solution of the Laplace learning problem (2.1).

Define the stopping time to be the first time the walk hits a

label, that is

τ = inf{k ≥ 0 : Xx
k ∈ {x1, x2, . . . , xm}}.

Let iτ ≤ m denote the index of the point Xx
τ , so Xx

τ = xiτ .

Then, by Doob’s optimal stopping theorem, we have

u(x) = E[yiτ ]. (2.5)

This gives the standard representation formula for the solu-

tion of Laplace learning (2.1). The interpretation is that we

release a random walker from x and let it walk until it hits a

labeled vertex and then record that label. We average over

many random walkers to get the value of u(x).

When there are insufficiently many labels, the stopping

time τ is so large that we have passed the mixing time of

the random walk, and the distribution of Xx
τ is very close

to the invariant distribution of the random walk π(xi) =
di/

∑
i di. In this case, (2.5) gives that

u(x) ≈

∑m

i=1 diyi∑m

j=1 dj
=: yw. (2.6)

Of course, the function u is not exactly constant, and instead

it is approximately constant with sharp spikes at the labeled

vertices; see Figure 1. Previous work has proved rigorously

that Laplace learning degenerates in this way at low label

rates (Slepčev & Thorpe, 2019; Calder, 2018).

It is important to note that the constant vector yw depends

only on the degrees of the labeled nodes in the graph, which

is very sensitive to local graph structure. When Laplace

learning returns a nearly constant label function, it can be

catastrophic for classification, since most datapoints are

assigned the same label. This explains the 16% accuracy in

the MNIST experiment described above.

In contrast, the Poisson equation (2.3) has a random walk

interpretation that involves the Green’s function for a ran-

dom walk, and is in some sense dual to Laplace learning.

The source term on the right hand side of (2.3) represents

random walkers being released from labeled points and ex-

ploring the graph, while carrying their label information

Figure 1. Demonstration of spikes in Laplace learning. The graph

consists of n = 104 independent uniform random variables on

[0, 1]2 and two points are given labels of 0 and 1. Most values of

the solution u of Laplace learning are very close to 0.5.

with them. For T > 0 let us define

wT (xi) = E




T∑

k=0

m∑

j=1

yj1{X
xj

k
=xi}


 .

Essentially, each time the random walk starting from xj ,

denoted X
xj

k , visits xi we record the label yj and sum this

over all visits from 0 ≤ k ≤ T . For short time T , this

quantity is meaningful, but since the random walk is recur-

rent (it is a finite graph), wT (xi) → ∞ as T → ∞. If

we normalize by 1/T , we still have the same issue as with

Laplace learning, where we are only measuring the invariant

distribution. Indeed, we note that

wT (xi) =

T∑

k=0

m∑

j=1

yjP(X
xj

k = xi)

and lim
k→∞

P(X
xj

k = xi) =
di∑n

i=1 di
.

Therefore, when k is large we have

m∑

j=1

yjP(X
xj

k = xi) ≈
di∑n

i=1 di

m∑

j=1

yj ,

and so the tail of the sum defining wT (xi) is recording a

blind average of labels.

The discussion above suggests that we should subtract off

this average tail behavior from wT , so that we only record

the short-time behavior of the random walk, before the

mixing time is reached. We also normalize by di, which

leads us to define

uT (xi) = E




T∑

k=0

1

di

m∑

j=1

(yj − y)1
{X

xj

k
=xi}


 , (2.7)

where y = 1
m

∑m

j=1 yj . It turns out that as T → ∞, the

function uT (xi) converges to the solution of (2.3).
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Theorem 2.1. For every T ≥ 0 we have

uT+1(xi) = uT (xi)+d−1
i




m∑

j=1

(yj − y)δij − LuT (xi)


 .

If the graph G is connected and the Markov chain induced

by the random walk is aperiodic, then uT → u as T →∞,

where u is the unique solution of the Poisson equation (2.3)

satisfying
∑n

i=1 diu(xi) = 0.

Theorem 2.1 gives the foundation for Poisson learning

through the random walk perspective, and in fact, it also

gives a numerical method for computing the solution (see

Algorithm 1).

Remark 2.2. The representation formula (2.7) for the solu-

tion of Poisson learning (2.3) shows that the solution u is a

linear function of the label vectors y1, . . . , ym. That is, for

any A ∈ R
k×k, the solution uA : X → R

k of

LuA(xi) =

m∑

j=1

(Ayj −Ay)δij for i = 1, . . . , n

satisfying
∑n

i=1 diuA(xi) = 0 is exactly uA = Au, where

u is the solution of (2.3). This shows that any reweighting

of the point sources, by which we mean yj 7→ Ayj , is

equivalent to reweighting the solution by u 7→ Au.

If we set A = diag(s1, . . . , sk), then Au corresponds to

multiplying the point sources for class i by the weight si.
We can use this reweighting to account for unbalanced

classes, or a discrepancy between the balancing of train-

ing and testing data, in the following way. Let nj be the

number of training examples from class j, and let bj denote

the true fraction of data in class j. We can choose sj so

that njsj = bj to ensure that the mass of the point sources

for each class, weighted by sj , is proportional to the true

fraction of data in that class. Since nj is proportional to

y · ej , this explains our modified label decision (2.4).

2.2. Variational interpretation

We can also interpret Poisson learning (2.3) as a gradient

regularized variational problem. Before proceeding, we

briefly review some facts about calculus on graphs. Let

ℓ2(X) denote the space of functions u : X → R
k equipped

with the inner product

(u, v)ℓ2(X) =

n∑

i=1

u(xi) · v(xi).

This induces a norm ‖u‖2
ℓ2(X) = (u, u)ℓ2(X). We also

define the space of mean-zero functions

ℓ20(X) =
{
u ∈ ℓ2(X) :

n∑

i=1

diu(xi) = 0
}

We define a vector field on the graph to be an antisymmetric

function V : X2 → R
k (i.e., V (xi, xj) = −V (xj , xi)).

The gradient of a function u ∈ ℓ2(X), denoted for simplic-

ity as ∇u, is defined to be the vector field

∇u(xi, xj) = u(xj)− u(xi).

The inner product between vector fields V and W is

(V,W )ℓ2(X2) =
1

2

n∑

i,j=1

wijV (xi, xj) ·W (xi, xj).

and the norm of V is ‖V ‖2
ℓ2(X2) = (V, V )ℓ2(X2).

We now consider the variational problem

min
u∈ℓ2

0
(X)

{
1

2
‖∇u‖2ℓ2(X2)−

m∑

j=1

(yj − y)·u(xj)

}
. (2.8)

The following theorem makes the connection between Pois-

son learning and the variational problem (2.8).

Theorem 2.3. Assume G is connected. Then there exists a

unique minimizer u ∈ ℓ20(X) of (2.8), and u satisfies the

Poisson learning equation (2.3).

Theorem 2.3 shows that the Poisson learning equation (2.3)

arises as the necessary conditions for a gradient regularized

variational problem with an affine loss function. We contrast

this with the solution of Laplace learning (2.1), which is the

minimizer of the variational problem

min
u∈ℓ2(X)

{
‖∇u‖2ℓ2(X2) : u(xi) = yi, 1 ≤ i ≤ m

}
. (2.9)

Thus, while both Laplace and Poisson learning are gradient

regularized variational problems, the key difference is how

each algorithm handles the labeled data; Laplace learning

enforces hard label constraints while Poisson learning adds

an affine loss function to the energy. Of course, many vari-

ants of Laplace learning have been proposed with various

types of soft label constraints in place of hard constraints.

These variations perform similarly poorly to Laplace learn-

ing at low label rates, and the key feature of Poisson learning

is the affine loss function that can be easily centered.

We note that it would be natural to add a weight µ > 0 to

one of the terms in (2.8) to trade-off the importance of the

two terms in the variational problem. However, as we show

in the supplementary material (see Lemma A.3), this weight

would have no effect on the final label decision. We also

mention that the variational problem (2.8) has a natural ℓp

generalization that we also explore in the supplementary

material (Section A.2).

2.3. Laplace learning at low label rates

Finally, to further motivate Poisson learning, we connect

Poisson learning with the limit of Laplace learning at very
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low label rates. At low label rates, the solution of Laplace

learning (2.1) concentrates around a constant yw, for which

we gave an interpretation of via random walks in Section 2.1.

Near labeled nodes, u has sharp spikes (recall Figure 1) in

order to attain the labels. From the variational perspective,

the constant function has zero cost, and the cost of spikes

is very small, so this configuration is less expensive than

continuously attaining the labels u(xi) = yi.

A natural question concerns whether the spikes in Laplace

learning contain useful information, or whether they are

too localized and do not propagate information well. To

test this, we changed the label decision (2.2) in the MNIST

experiment described in Section 2.1 to subtract off the tail

constant yw identified in (2.6)

ℓ(xi) = argmax
j∈{1,...,k}

{uj(x)− yw · ej}.

where yw is defined in (2.6). Thus, we are centering the

function u at zero. At 1 label per class (10 labeled images

total), the accuracy improved from 16% to 85.9%! Hence,

the difference u− yw contains enough information to make

informed classification decisions, and therefore the spikes

contain useful information.

This indicates that much of the poor performance of Laplace

learning can be explained by a large shift bias that occurs

only at very low label rates. Fixing this seems as sim-

ple as applying the appropriate shift before making a deci-

sion on a label, but this does not lead to a well-grounded

method, since the shifted function u − yw is exactly the

graph-harmonic extension of the shifted labels yj − yw.

Why should we have to use a harmonic extension of the

wrong labels in order to achieve a better result? On the

other hand, Poisson learning, which we introduced above,

provides an intuitive and well-grounded way of fixing the

shift bias in Laplace learning.

To see the connection to Poisson learning, let us assume the

solution u of the Laplace learning equation (2.1) is nearly

equal to the constant vector yw ∈ R
k from (2.6) at all

unlabeled points xm+1, . . . , xn. For any labeled node xi

with i = 1, . . . ,m we can compute (assuming wij = 0 for

all j ∈ {1, . . . ,m}) that

Lu(xi) =

n∑

j=1

wij(u(xi)− u(xj))

≈

n∑

j=m+1

wij(yi − yw) = di(yi − yw).

Since Lu(xi) = 0 for i = m + 1, . . . , n, we find that u
approximately satisfies the Poisson equation

Lu(xi) =

m∑

j=1

dj(yj − yw)δij for i = 1, . . . , n. (2.10)

This gives a connection, at a heuristic level, been Laplace

equations with hard constraints, and Poisson equations with

point sources, for problems with very low label rates. We

note that since constant functions are in the kernel of L,

u − yw also satisfies (2.10). We also note that the labels,

and the constant yw, are weighted by the degree dj , which

does not appear in our Poisson learning equation (2.3). We

have found that both models give good results, but that (2.3)

works slightly better, which is likely due to the rigorous

foundation of (2.3) via random walks.

2.4. The Poisson MBO algorithm

Poisson learning provides a robust method for propagating

label information that is stable at very low label rates. After

applying Poisson learning to propagate labels, we propose

a graph-cut method to incrementally adjust the decision

boundary so as to improve the label accuracy and account

for prior knowledge of class sizes. The graph-cut method

we propose is to apply several steps of gradient descent on

the graph-cut problem

min
u:X→Sk

(u)X=b

{
1

2
‖∇u‖2ℓ2(X2) − µ

m∑

j=1

(yj − y)·u(xj)

}
, (2.11)

where Sk = {e1, e2, . . . , ek}, b ∈ R
k is given, and

(u)X := 1
n

∑n

i=1 u(xi). Since we are restricting u(xi) ∈
Sk, the term 1

2‖∇u‖2
ℓ2(X2) is exactly the graph-cut energy

of the classification given by u. Likewise, the components

of the average (u)X represent the fraction of points assigned

to each class. The constraint (u)X = b therefore allows us

to incorporate prior knowledge about relative class sizes

through the vector b ∈ R
k, which should have positive en-

tries and sum to one. If there exists u : X → Sk with

(u)X = b, then (2.11) admits a solution, which in general

may not be unique.

On its own, the graph-cut problem (2.11) can admit many

local minimizers that would yield poor classification results.

The phenomenon is similar to the degeneracy in Laplace

learning at low label rates, since it is very inexpensive to

violate any of the label constraints. Our overall plan is to first

use Poisson learning to robustly propagate the labels, and

then project onto the constraint set for (2.11) and perform

several steps of gradient-descent on (2.11) to improve the

classification accuracy. While Poisson learning propagates

the labels in a robust way, the cut energy is more suitable

for locating the exact decision boundary.

To relax the discrete problem (2.11), we approximate the

graph-cut energy with the Ginzburg-Landau approximation

min
u∈ℓ2(X)
(u)X=b

{
GLτ (u)− µ

m∑

j=1

(yj − y) · u(xj)
}
, (2.12)

where
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GLτ (u) =
1

2
‖∇u‖2ℓ2(X2) +

1

τ

n∑

i=1

k∏

j=1

|u(xi)− ej |
2.

The Ginzburg-Landau approximation allows u ∈ ℓ2(X) to

take on any real values, instead of discrete values u ∈ Sk,

making the approximation (2.12) easier to solve computa-

tionally. The graph Ginzburg-Landau approximation GLτ

has been used previously for graph-based semi-supervised

learning in (Garcia-Cardona et al., 2014), and other works

have rigorously studied how GLτ approximates graph-cut

energies in the scalar setting (Van Gennip & Bertozzi, 2012).

Here, we extend the results to the vector multi-class setting.

Theorem 2.4. Assume G is connected. Let b ∈ R
k and

assume there exists u : X → Sk with (u)X = b. For

each τ > 0 let uτ be any solution of (2.12). Then, the

sequence (uτ )τ is precompact in ℓ2(X) and any convergent

subsequence uτm converges to a solution of the graph-cut

problem (2.11) as τm → 0. Furthermore, if the solution

u0 : X → Sk of (2.11) is unique, then uτ → u0 as τ → 0.

Theorem 2.4 indicates that we can replace the graph-cut

energy (2.11) with the simpler Ginzburg-Landau approxi-

mation (2.12). To descend on the energy (2.12), we use a

time-spitting scheme that alternates gradient descent on

E1(u) :=
1

2
‖∇u‖2ℓ2(X2) − µ

m∑

j=1

(yj − y) · u(xj),

and E2(u) :=
1

τ

n∑

i=1

k∏

j=1

|u(xi)− ej |
2.

The first term E1 is exactly the energy for Poisson learning

(2.8), and gradient descent amounts to the iteration

ut+1(xi) = ut(xi)− dt

(
Lut(xi)− µ

m∑

j=1

(yj − y)δij

)
.

We note that Lu and the source term above both have zero

mean value. Hence, the gradient descent equation for E1 is

volume preserving, i.e., (ut+1)X = (ut)X . This would not

be true for other fidelity terms, such as an ℓ2 fidelity, and

this volume conservation property plays an important role

in ensuring the class size constraint (u)X = b in (2.12).

Gradient descent on the second term E2, when τ > 0 is

small, amounts to projecting each u(xi) ∈ R
k to the closest

label vector ej ∈ Sk, while preserving the volume con-

straint (u)X = b. We approximate this by the following

procedure: Let ProjSk
: R

k → Sk be the closest point

projection, let s1, . . . , sk > 0 be positive weights, and set

ut+1(xi) = ProjSk
(diag(s1, . . . , sk)u

t(xi)), (2.13)

where diag(s1, . . . , sk) is the diagonal matrix with diago-

nal entries s1, . . . , sk. We use a simple gradient descent

scheme to choose the weights s1, . . . , sk > 0 so that the

volume constraint (ut+1)X = b holds (see Steps 9-14 in Al-

gorithm 2). By Remark 2.2, this procedure can be viewed as

reweighting the point sources in the Poisson equation (2.3)

so that the volume constraint holds. In particular, increasing

or decreasing si grows or shrinks the size of class i.

We note that the work of (Jacobs et al., 2018) provides an

alternative way to enforce explicit class balance constraints

with a volume constrained MBO method based on auction

dynamics. Their method uses a graph-cut based approach

with a Voronoi-cell based initialization.

3. Poisson learning algorithms

We now present our proposed Poisson learning algorithms.

The Python source code and simulation environment for

reproducing our results is available online.1

We let W = (wij)
n
i,j=1 denote our symmetric weight ma-

trix. We treat all vectors as column vectors, and we let 1 and

0 denote the all-ones and all-zeros column vectors, respec-

tively, of the appropriate size based on context. We assume

that the first m data points x1, x2, . . . , xm are given labels

y1, y2, . . . , ym ∈ {e1, e2, . . . , ek}, where the standard ba-

sis vector ei ∈ R
k represents the ith class. We encode

the class labels in a k ×m matrix F, whose jth column is

exactly yj . Let b ∈ R
k be the vector whose ith entry bi

is the fraction of data points belonging to class i. If this

information is not available, we set b = 1
k
1.

Poisson learning is summarized in Algorithm 1. The label

decision for node i is ℓi = argmax1≤j≤k Uij , and the

reweighting in Step 11 implements the label decision (2.4).

In all our results, we always set b = 1
k
1, so Poisson learning

does not use prior knowledge of class sizes (the true value

for b is used in PoissonMBO below). The complexity is

O(TE), where E is the number of edges in the graph. We

note that before the reweighting in Step 11, the Poisson

learning algorithm computes exactly the function uT defined

in (2.7). In view of this, there is little to be gained from

running the iterations beyond the mixing time of the random

walk. This can be recorded within the loop in Steps 8-10

by adding the iteration pt+1 = WD−1pt, where the initial

value p0 is the vector with ones in the positions of all labeled

vertices, and zeros elsewhere. Up to a constant, pt is the

probability distribution of a random walker starting from

a random labeled node after t steps. Then the mixing time

stopping condition is to run the iterations until

‖pt − p∞‖∞ ≤ ε,

where p∞ = W1/(1TW1) is the invariant distribution.

We use this stopping condition with ε = 1/n in all experi-

ments, which usually takes between 100 and 500 iterations.

1
Source Code: https://github.com/jwcalder/GraphLearning
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Algorithm 1 PoissonLearning

1: Input: W,F,b, T
2: Output: U ∈ R

n×k

3: D← diag(W1)
4: L← D−W

5: y← 1
m
F1

6: B← [F− y, zeros(k, n−m)]
7: U← zeros(n, k)
8: for i = 1 to T do

9: U← U+D−1(BT − LU)
10: end for

11: U← U · diag(b/y)

The Poisson MBO algorithm is summarized in Algorithm 2.

The matrices D, L and B are the same as in Poisson learn-

ing, and Poisson MBO requires an additional fidelity pa-

rameter µ and two parameters Ninner and Nouter. In all

experiments in this paper, we set µ = 1, Ninner = 40
and Nouter = 20. Steps 9-14 implement the volume con-

strained projection described in Section 2.4. We set the time

step as dτ = 10 and set the clipping values in Step 12 to

smin = 0.5 and smax = 2. We tested on datasets with bal-

anced classes, and on datasets with very unbalanced classes,

one may wish to enlarge the interval [smin, smax].

The additional complexity of PoissonMBO on top of Pois-

son learning is O(NinnerNouterE). On large datasets like

MNIST, FashionMNIST and Cifar-10, our Poisson learning

implementation in Python takes about 8 seconds to run on

a standard laptop computer, and about 1 second with GPU

acceleration.2 The additional 20 iterations of PoissonMBO

takes about 2 minutes on a laptop and 30 seconds on a GPU.

These computational times do not include the time taken to

construct the weight matrix.

4. Experimental Results

We tested Poisson learning on three datasets: MNIST (Le-

Cun et al., 1998), FashionMNIST (Xiao et al., 2017) and

Cifar-10 (Krizhevsky et al., 2009). FashionMNIST is a

drop-in replacement for MNIST consisting of 10 classes of

clothing items. To build good quality graphs, we trained au-

toencoders to extract important features from the data. For

MNIST and FashionMNIST, we used variational autoen-

coders with 3 fully connected layers of sizes (784,400,20)

and (784,400,30), respectively, followed by a symmetri-

cally defined decoder. The autoencoder was trained for

100 epochs on each dataset. The autoencoder architecture,

loss, and training, are similar to (Kingma & Welling, 2014).

For Cifar-10, we used the AutoEncodingTransformations

architecture from (Zhang et al., 2019), with all the default

2We used an NVIDIA RTX-2070 GPU, and it took 3 seconds to
load data to/from the GPU and 1 second to solve Poisson learning.

Algorithm 2 PoissonMBO

1: Input: W,F,b, T,Ninner, Nouter, µ > 0
2: Output: U ∈ R

n×k

3: U← µ · PoissonLearning(W,F,b, T )
4: dt← 1/max1≤i≤n Dii

5: for i = 1 to Nouter do

6: for j = 1 to Ninner do

7: U← U− dt (LU− µBT )
8: end for

9: s← ones(1, k)
10: for j = 1 to 100 do

11: b̂← 1
n
1
T ProjSk

(U · diag(s))

12: s← max(min(s+ dτ (b− b̂), smax), smin)
13: end for

14: U← ProjSk
(U · diag(s))

15: end for

parameters from their paper, and we normalized the features

to unit-vectors.

We then constructed a graph over the latent feature space

by connecting each image to its K-nearest neighbors with

Gaussian weights given by

wij = exp
(
−4|xi − xj |

2/dK(xi)
2
)
,

where xi represents the latent variables for image i, and

dK(xi) is the distance in the latent space between xi and its

Kth nearest neighbor. We used K = 10 in all experiments.

The weight matrix was then symmetrized by replacing W
with W +WT . For Poisson learning, we additionally set

wii = 0 for all i. Placing zeros on the diagonal does not

change the solution the Poisson learning equation (2.3), but

it does accelerate convergence of the iteration in Algorithm

1 by allowing the random walk to propagate faster.

We compare against Laplace learning (2.9) (Zhu et al.,

2003), lazy random walks (Zhou & Schölkopf, 2004; Zhou

et al., 2004a), multiclass MBO (Garcia-Cardona et al., 2014;

Bertozzi & Flenner, 2012), weighted nonlocal Laplacian

(WNLL) (Shi et al., 2017), volume constrained MBO (Ja-

cobs et al., 2018), Centered Kernel Method (Mai & Couillet,

2018), sparse label propagation (Jung et al., 2016), and

p-Laplace learning (Flores et al., 2019). In the volume con-

strained MBO method we used exact volume constraints and

temperature of T = 0.1. In the Centered Kernel Method,

we chose α to be 5% larger than the spectral norm of the

centered weight matrix. For a baseline reference, we also

compared against a nearest neighbor classifier that chooses

the label of the closest labeled vertex with respect to the

graph geodesic distance. In all experiments, we ran 100

trials randomly choosing which data points are labeled, with

the exception of the p-Laplace and sparse label propagation

methods, which are slower and were run for 10 trials. The

same random label permutations were used for all methods.



Poisson Learning

Table 1. MNIST: Average accuracy scores over 100 trials with standard deviation in brackets.

# LABELS PER CLASS 1 2 3 4 5

LAPLACE/LP (ZHU ET AL., 2003) 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)
NEAREST NEIGHBOR 55.8 (5.1) 65.0 (3.2) 68.9 (3.2) 72.1 (2.8) 74.1 (2.4)
RANDOM WALK (ZHOU & SCHÖLKOPF, 2004) 66.4 (5.3) 76.2 (3.3) 80.0 (2.7) 82.8 (2.3) 84.5 (2.0)
MBO (GARCIA-CARDONA ET AL., 2014) 19.4 (6.2) 29.3 (6.9) 40.2 (7.4) 50.7 (6.0) 59.2 (6.0)
VOLUMEMBO (JACOBS ET AL., 2018) 89.9 (7.3) 95.6 (1.9) 96.2 (1.2) 96.6 (0.6) 96.7 (0.6)
WNLL (SHI ET AL., 2017) 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)
CENTERED KERNEL (MAI & COUILLET, 2018) 19.1 (1.9) 24.2 (2.3) 28.8 (3.4) 32.6 (4.1) 35.6 (4.6)
SPARSE LP (JUNG ET AL., 2016) 14.0 (5.5) 14.0 (4.0) 14.5 (4.0) 18.0 (5.9) 16.2 (4.2)
P-LAPLACE (FLORES ET AL., 2019) 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)
Poisson 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)
PoissonMBO 96.5 (2.6) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1) 97.2 (0.1)

Table 2. FashionMNIST: Average accuracy scores over 100 trials with standard deviation in brackets.

# LABELS PER CLASS 1 2 3 4 5

LAPLACE/LP (ZHU ET AL., 2003) 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)
NEAREST NEIGHBOR 44.5 (4.2) 50.8 (3.5) 54.6 (3.0) 56.6 (2.5) 58.3 (2.4)
RANDOM WALK (ZHOU & SCHÖLKOPF, 2004) 49.0 (4.4) 55.6 (3.8) 59.4 (3.0) 61.6 (2.5) 63.4 (2.5)
MBO (GARCIA-CARDONA ET AL., 2014) 15.7 (4.1) 20.1 (4.6) 25.7 (4.9) 30.7 (4.9) 34.8 (4.3)
VOLUMEMBO (JACOBS ET AL., 2018) 54.7 (5.2) 61.7 (4.4) 66.1 (3.3) 68.5 (2.8) 70.1 (2.8)
WNLL (SHI ET AL., 2017) 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)
CENTERED KERNEL (MAI & COUILLET, 2018) 11.8 (0.4) 13.1 (0.7) 14.3 (0.8) 15.2 (0.9) 16.3 (1.1)
SPARSE LP (JUNG ET AL., 2016) 14.1 (3.8) 16.5 (2.0) 13.7 (3.3) 13.8 (3.3) 16.1 (2.5)
P-LAPLACE (FLORES ET AL., 2019) 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)
Poisson 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2 (2.2) 72.4 (2.3)
PoissonMBO 62.0 (5.7) 67.2 (4.8) 70.4 (2.9) 72.1 (2.5) 73.1 (2.7)

# LABELS PER CLASS 10 20 40 80 160

LAPLACE/LP (ZHU ET AL., 2003) 70.6 (3.1) 76.5 (1.4) 79.2 (0.7) 80.9 (0.5) 82.3 (0.3)
NEAREST NEIGHBOR 62.9 (1.7) 66.9 (1.1) 70.0 (0.8) 72.5 (0.6) 74.7 (0.4)
RANDOM WALK (ZHOU & SCHÖLKOPF, 2004) 68.2 (1.6) 72.0 (1.0) 75.0 (0.7) 77.4 (0.5) 79.5 (0.3)
MBO (GARCIA-CARDONA ET AL., 2014) 52.7 (4.1) 67.3 (2.0) 75.7 (1.1) 79.6 (0.7) 81.6 (0.4)
VOLUMEMBO (JACOBS ET AL., 2018) 74.4 (1.5) 77.4 (1.0) 79.5 (0.7) 81.0 (0.5) 82.1 (0.3)
WNLL (SHI ET AL., 2017) 74.4 (1.6) 77.6 (1.1) 79.4 (0.6) 80.6 (0.4) 81.5 (0.3)
CENTERED KERNEL (MAI & COUILLET, 2018) 20.6 (1.5) 27.8 (2.3) 37.9 (2.6) 51.3 (3.3) 64.3 (2.6)
SPARSE LP (JUNG ET AL., 2016) 15.2 (2.5) 15.9 (2.0) 14.5 (1.5) 13.8 (1.4) 51.9 (2.1)
P-LAPLACE (FLORES ET AL., 2019) 73.0 (0.9) 76.2 (0.8) 78.0 (0.3) 79.7 (0.5) 80.9 (0.3)
Poisson 75.2 (1.5) 77.3 (1.1) 78.8 (0.7) 79.9 (0.6) 80.7 (0.5)
PoissonMBO 76.1 (1.4) 78.2 (1.1) 79.5 (0.7) 80.7 (0.6) 81.6 (0.5)
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Figure 2. Accuracy of Poisson Learning for (a) different numbers of neighbors k used to construct the graph and (b) unbalanced training

data. In (a) we used 5 labels per class and in (b) we used 1 label per class for the odd numbered classes, and m = 1, 2, 3, 4, 5 labels per

class for the even numbered classes. Both figures show the difference in accuracy compared to k = 10 and balanced training data.
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Table 3. Cifar-10: Average accuracy scores over 100 trials with standard deviation in brackets.

# LABELS PER CLASS 1 2 3 4 5

LAPLACE/LP (ZHU ET AL., 2003) 10.5 (1.3) 12.5 (4.4) 13.1 (3.8) 14.5 (4.7) 18.0 (6.9)
NEAREST NEIGHBOR 33.6 (4.4) 37.3 (3.3) 40.3 (3.0) 40.9 (2.7) 42.1 (2.4)
RANDOM WALK (ZHOU & SCHÖLKOPF, 2004) 37.1 (5.0) 42.1 (3.7) 45.8 (3.4) 47.0 (2.8) 48.8 (2.5)
MBO (GARCIA-CARDONA ET AL., 2014) 15.2 (4.1) 20.4 (4.8) 25.9 (4.1) 29.6 (4.3) 34.5 (4.2)
VOLUMEMBO (JACOBS ET AL., 2018) 40.3 (8.0) 47.2 (7.1) 52.2 (5.3) 53.3 (4.7) 55.9 (4.0)
WNLL (SHI ET AL., 2017) 20.8 (6.4) 34.5 (6.2) 42.1 (5.2) 46.1 (4.4) 50.2 (3.5)
CENTERED KERNEL (MAI & COUILLET, 2018) 13.8 (1.1) 15.5 (1.2) 17.3 (1.4) 18.8 (1.7) 20.4 (1.6)
SPARSE LP (JUNG ET AL., 2016) 10.4 (2.1) 11.1 (1.4) 11.8 (2.1) 12.8 (4.4) 13.6 (3.3)
P-LAPLACE (FLORES ET AL., 2019) 28.7 (6.6) 39.8 (6.4) 45.7 (2.6) 46.8 (1.7) 50.4 (2.9)
Poisson 41.6 (5.4) 46.9 (4.2) 51.1 (3.4) 52.5 (3.0) 54.5 (3.0)
PoissonMBO 42.1 (7.0) 49.1 (5.3) 53.8 (4.4) 55.6 (3.7) 57.4 (3.4)

# LABELS PER CLASS 10 20 40 80 160

LAPLACE/LP (ZHU ET AL., 2003) 31.5 (7.6) 49.7 (4.9) 59.6 (2.2) 63.9 (1.0) 66.7 (0.6)
NEAREST NEIGHBOR 45.5 (1.8) 48.7 (1.5) 51.2 (0.8) 53.7 (0.6) 56.1 (0.5)
RANDOM WALK (ZHOU & SCHÖLKOPF, 2004) 53.5 (1.9) 57.6 (1.1) 60.7 (0.7) 64.0 (0.4) 66.4 (0.3)
MBO (GARCIA-CARDONA ET AL., 2014) 47.3 (3.3) 58.6 (2.0) 63.8 (1.1) 66.4 (0.6) 68.5 (0.4)
VOLUMEMBO (JACOBS ET AL., 2018) 59.5 (2.0) 61.4 (0.9) 62.2 (0.7) 63.3 (0.5) 64.2 (0.4)
WNLL (SHI ET AL., 2017) 56.7 (2.3) 61.1 (1.1) 63.7 (0.7) 65.4 (0.4) 66.8 (0.3)
CENTERED KERNEL (MAI & COUILLET, 2018) 26.5 (2.0) 34.8 (2.1) 43.6 (2.2) 51.8 (2.3) 58.7 (1.5)
SPARSE LP (JUNG ET AL., 2016) 16.2 (2.6) 20.3 (1.4) 19.0 (1.1) 19.2 (1.1) 27.1 (1.7)
P-LAPLACE (FLORES ET AL., 2019) 54.6 (2.2) 60.7 (0.8) 63.9 (0.4) 66.0 (0.5) 67.9 (0.3)
Poisson 58.7 (1.8) 61.9 (1.0) 63.7 (0.7) 65.2 (0.6) 66.5 (0.5)
PoissonMBO 61.3 (1.8) 63.8 (1.0) 65.5 (0.6) 66.9 (0.5) 68.3 (0.4)

Tables 1, 2 and 3 show the average accuracy and standard

deviation over all 100 trials for various low label rates. We

also ran experiments at higher label rates on FashionMNIST

and Cifar-10, which are reported in the lower half of their

respective tables. We mention that in Tables 1, 2 and 3

the training data is balanced, so y = 1
101. Thus, the label

decisions (2.4) and (2.2) are equivalent.

We see that in nearly all cases, PoissonMBO outperforms all

other methods, with PoissonMBO typically outperforming

Poisson learning by a few percentage points. The most dras-

tic improvements are seen at the ultra low label rates, and

at the moderate label rates shown in Tables 2 and 3, several

other methods perform well. We note that VolumeMBO and

PoissonMBO are the only methods that incorporate prior

knowledge of class sizes, and are most suitable for direct

comparison. Our results can be compared to the cluster-

ing results of 67.2% on FashionMNIST (McConville et al.,

2019) and 41.2% on Cifar-10 (Ghasedi et al., 2019).

Figure 2(a) shows the accuracy of Poisson learning at 5

labels per class as a function of the number of neighbors K
used in constructing the graph, showing that the algorithm

is not particularly sensitive to this. Figure 2(b) shows the

accuracy of Poisson learning for unbalanced training data.

We take 1 label per class for half the classes and m =
1, 2, 3, 4, 5 labels per class for the other half. Since the

training data is unbalanced, y is not a constant vector and the

label decision in Step 11 of Algorithm 1 (Poisson Learning)

compensates for unbalanced training data. Note that in

Figure 2 we plot the difference in accuracy compared to (a)

the baseline of k = 10 and (b) 1 label per class. In Figure

2 (b), we see an increase in accuracy when only half the

classes get additional labels, though the increase is not as

large as in Tables 1, 2 and 3 where all classes get additional

labels.

5. Conclusion

We proposed a new framework for graph-based semi-

supervised learning at very low label rates called Poisson

learning. The method is efficient and simple to implement.

We performed a detailed analysis of Poisson learning, giving

random walk and variational interpretations. We also pro-

posed a graph-cut enhancement of Poisson learning, called

Poisson MBO, that can give further improvements. We

presented numerical results showing that Poisson Learning

outperforms all other methods for semi-supervised learning

at low label rates on several common datasets.
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