
Comparison of Array Management Library Performance -
A Neuroscience Use Case

Donghe Kang*, Oliver Rübel†, Suren Byna†, Spyros Blanas*
*Ohio State University, †Lawrence Berkeley National Laboratory

{kang.1002,blanas.2}@osu.edu,{oruebel,sbyna}@lbl.gov

ABSTRACT
Array management libraries, such as HDF5, Zarr, etc., depend on
a complex software stack that consists of parallel I/O middleware
(MPI-IO), POSIX-IO, and file systems. Components in the stack
are interdependent, such that effort in tuning the parameters in
these software libraries for optimal performance is non-trivial. On
the other hand, it is challenging to choose an array management
library based on the array configuration and access patterns. In this
poster, we investigate the performance aspect of two array manage-
ment libraries, i.e., HDF5 and Zarr, in the context of a neuroscience
use case. We highlight the performance variability of HDF5 and
Zarr in our preliminary results and discuss potential optimization
strategies.

1 INTRODUCTION
Scientific data is often organized as multi-dimensional arrays that
are stored as files in storage devices. Towards managing I/O and
mapping arrays to files, several self-describing data and file for-
mat libraries are available. For instance, HDF5 and netCDF have
been available for more than two decades and new libraries, such
as Zarr are coming to prominence. Evaluating the performance
characteristics of these libraries is helpful in selecting a file format.

Since these libraries depend on multiple I/O libraries (POSIX-IO,
MPI-IO, and file systems) and have different storage layouts, tuning
them for achieving optimal performance is a non-trivial effort. For
instance, HDF5 stores everything, including array data and meta-
data, in a file. In contrast, Zarr stores chunks, fixed-size partitions of
an array, as separate files. Because of these fundamental differences
of organizing data, their I/O performance varies depending on the
application I/O patterns. The storage stack has various parameters
impacting the performance, such as chunk shape, stripe count and
size, and concurrency.

Several efforts have focused on selecting the I/O optimization
parameters file system and MPI-IO, however, selection of array
management parameters received less attention. Behzad et al. [1]
automatically tunes parameters in the stack to optimize I/O perfor-
mance of HDF5 applications. However, it does not explicitly explain
how these parameters impact the HDF5 performance and is limited

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC’19, November 17–22, 2019, Denver, Colorado, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

to HDF5. Yu et al. [3] characterizes the I/O performance on Lustre
file system, which does not cover the full storage stack.

In this poster, we study performance variability of HDF5 and
Zarr formats using a neurosicence use case. We use the NWB:N
[2] data standard, which supports archiving, processing, and shar-
ing neurophysiology data. We first summarize the common array
access patterns in neuroscience area and provide a benchmark to
systematically evaluate HDF5 and Zarr and analyze the impact
of these parameters on I/O performance. We run the preliminary
evaluations in the NERSC Cori supercomputer. We provide detailed
explanations for performance variations in our evaluations. In this
abstract, we highlight three optimization strategies: (i) Accessing
metadata blocks is a significant overhead for HDF5, which leads
to low performance when the application reads one column. (ii)
Reading and writing one file per chunk are the bottleneck for Zarr,
especially when the chunk size is small. (iii)Memory copy slows
HDF5 and Zarr when the array serialization in disk, decided by the
chunk shape, does not match with the serialization in memory.

2 BENCHMARKS
We developed a benchmark for comparing array management li-
braries, based on a neuroscience dataset that is generated by 64
instruments observing the brain activity in 35,660,170 timesteps.
The instrument flushes its data to the array per 69,649 timesteps.
Hence, the array has 35,660,170 rows and 64 columns.

Applications typically access the entire array, and all observa-
tions in a set of timesteps or the observations of an instrument.
Hence, the benchmark has three access patterns, which are reading
or writing (i) an entire array, (ii) a set of rows, and (iii) a column.

3 EXPERIMENTAL RESULTS
We systematically compare HDF5 and Zarr in different access pat-
terns. Each experiment is repeated by 10 times and we report the
median values.

3.1 Row-major read
In Figure 1, we show the time breakdown for reading an array with
HDF5 and Zarr for various chunk dimensions. In this experiment,
we increase the chunk size in both of the two dimensions. HDF5
and Zarr read the chunks in row-major order. The I/O time de-
creases as we increase the chunk size. HDF5 I/O time decreases
from 78 seconds to 19 seconds and Zarr I/O time decreases from
1408 seconds to 68 seconds. Zarr has higher I/O cost because Zarr
reads chunks from separate files while HDF5 reads from a single
file. Opening files in Lustre has to get the file metadata from MDS,
which is the bottleneck in the Zarr I/O process. The chunk size
itself in this experiment decides the I/O time. Chunk shapes, having
the same chunk size, result in the same I/O performance.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SC’19, November 17–22, 2019, Denver, Colorado, USA D. Kang, O. Rubel, S. Byna, S. Blanas

69649*1 278596*1 1114384*1 4457536*1

HDF5 Zarr HDF5 Zarr HDF5 Zarr HDF5 Zarr

0

500

1000

1500

Chunk shape

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Operation Memory copy I/O Other

(a) Increase chunk length in
the first dimension

69649*1 69649*16 69649*4 69649*64

HDF5 Zarr HDF5 Zarr HDF5 Zarr HDF5 Zarr

0

500

1000

1500

Chunk shape

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Operation Memory copy I/O Other

(b) Increase chunk length in
the second dimension

Figure 1: Time breakdown of reading an array

The cost for copying data from non-contiguous locations to a
contiguous buffer is labeled as "Memory copy" in the figure.Memory
copy time is constant as we increase the chunk length in the first
dimension, while decreases as we increase the chunk length in the
second dimension. Both HDF5 and Zarr read a chunk from Lustre
to a temporary buffer, and then copy elements from the buffer to
the output buffer where the array is serialized in row-major order.
When we increase the chunk length in the first dimension, the
number of copy operations does not change where an operation
copies an element. However, as the chunk length in the second
dimension increases, the number of elements copied in an operation
is also increased, such that the number of copy operations decreases.

3.2 Column-major read

0

10

20

30

69649*1 278596*1 1114384*1 4457536*1

Chunk shape

I/O
 ti

m
e

(s
ec

on
ds

)

Backends HDF5 Zarr

(a) I/O time

0

250

500

750

1000

69649*1 278596*1 1114384*1 4457536*1

Chunk shape

N
um

be
r o

f r
ea

d
op

er
at

io
ns

Backends HDF5 Zarr

(b) Number of I/O operations

Figure 2: Read a column by HDF5 and Zarr.
In Figure 2, we show the I/O time and number of I/O operations

when HDF5 and Zarr read a column. Both HDF5 and Zarr I/O time
decreaes as we increase the chunk length in the first dimension.
Reading a column with larger chunks in this experiment needs less
I/O requests, where each I/O transfers more data.

Figure 2b shows that HDF5 has twice I/O operations than Zarr,
such that HDF5 is slower shown in Figure 2a. Zarr only reads
chunks, but HDF5 also reads metadata blocks. A metadata block
describes the layout of fixed number of chunks which are contigu-
ous in row-major serialization. Reading a single column requires a
large amount of metadata blocks. Due to the extra metadata read
operations, HDF5 has higher I/O time.

3.3 Parallel I/O

0

100

200

300

1 4 16 64

Number of processes

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Backends HDF5 Zarr

(a) Read arrays

0

25

50

75

1 4 16 64

Number of processes

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Backends HDF5 Zarr

(b) Write arrays

Figure 3: Execution time of parallel I/O

In this experiment, we use multiple processes concurrently and
independently read and write arrays. The original array in the
benchmark is partitioned to smaller ones, where each process ac-
cesses a small array. Figure 3 shows that the execution time of HDF5
and Zarr decreases as we increase the number of processes from
1 to 64. HDF5 is faster than Zarr in the read experiment, because
Zarr has to open and read from multiple files. Lustre prefetches
data for HDF5 processes. HDF5 is slower than Zarr in the write
experiment, except for using 1 process to write the array. One pos-
sible reason is that parallel HDF5 writes metadata blocks. These
blocks are scattered in the file, which leads to lots of random I/Os.

4 CONCLUSION
Array management libraries, together with MPI-IO and Lustre file
system, are the common storage software stack used in HPC sys-
tems. This work derives a neuroscience benchmark to evaluate the
performance of two array management libraries, HDF5 and Zarr.
The benchmark contains a real scientific array and a set of access
patterns.We study the impact of the chunk shape and the number of
processes. In the preliminary results, increasing the chunk size and
the number of processes improves the performance. Memory copy
cost is high when the array serialization in disk and input or output
buffer does not match. Accessing the metadata blocks is a bottle-
neck for HDF5 for parallel I/O. Zarr is slower than HDF5 when we
read arrays in serial or parallel, because it opens and reads one file
per chunk. The results and analysis provide the heuristics to select
and tune array management libraries for optimal performance.

ACKNOWLEDGMENTS
This research was supported in part by NSF grants CCF-1816577.

REFERENCES
[1] Babak Behzad, Huong Vu Thanh Luu, Joseph Huchette, Surendra Byna, Ruth

Aydt, Quincey Koziol, Marc Snir, et al. 2013. Taming parallel I/O complexity with
auto-tuning. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. ACM, 68.

[2] Oliver Ruebel, Andrew Tritt, Benjamin Dichter, Thomas Braun, Nicholas Cain,
Nathan Clack, Thomas J Davidson, Max Dougherty, Jean-Christophe Fillion-Robin,
Nile Graddis, et al. 2019. NWB: N 2.0: An Accessible Data Standard for Neuro-
physiology. (2019).

[3] Weikuan Yu, Jeffrey S Vetter, and H Sarp Oral. 2008. Performance characteriza-
tion and optimization of parallel I/O on the Cray XT. In 2008 IEEE International
Symposium on Parallel and Distributed Processing. IEEE, 1–11.

2

	Abstract
	1 Introduction
	2 Benchmarks
	3 Experimental results
	3.1 Row-major read
	3.2 Column-major read
	3.3 Parallel I/O

	4 Conclusion
	References

