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ABSTRACT

The analysis of massive datasets requires a large number of
processors. Prior research has largely assumed that track-
ing the actual data distribution and the underlying network
structure of a cluster, which we collectively refer to as the
topology, comes with a high cost and has little practical ben-
efit. As a result, theoretical models, algorithms and systems
often assume a uniform topology; however this assumption
rarely holds in practice.
This necessitates an end-to-end investigation of how one

can model, design and deploy topology-aware algorithms for
fundamental data processing tasks at large scale. To achieve
this goal, we first develop a theoretical parallel model that
can jointly capture the cost of computation and communi-
cation. Using this model, we explore algorithms with the-
oretical guarantees for three basic tasks: aggregation, join,
and sorting. Finally, we consider the practical aspects of
implementing topology-aware algorithms at scale, and show
that they have the potential to be orders of magnitude faster
than their topology-oblivious counterparts.

1. INTRODUCTION
Even though a parallel data processing task can utilize

millions of compute cores in a datacenter, data manipulation
algorithms so far have been analyzed in a topology-agnostic
manner: common assumptions are that the data distribu-
tion is uniform and that the underlying network topology
is a fully connected graph with bidirectional links. At its
essence, the assumption is one of homogeneity: every com-
pute core has roughly the same data processing capability
and can communicate with every other node with roughly
the same latency and bandwidth.
In reality, modern datacenters have a complex network

structure and heterogeneous compute resources. On the net-
work side, large clusters often have “fat tree” networks with
oversubscribed links. In a fat-tree topology, the bandwidth
within a rack is much higher than the bandwidth across
racks. High-radix topologies such as CLOS are gaining pop-
ularity in commercial datacenters [1], and high-performance
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computers like BlueGene have featured hypercube topolo-
gies in the recent past. The compute side also exhibits diver-
gent performance profiles between multi-cores, lean many-
cores like Xeon Phi and massive parallelism in GPUs. The
picture gets even more complicated in a cloud computing
setting where the infrastructure is shared between concur-
rent tasks with weak performance isolation.

We posit thatmaking data processing topology-aware
is a significant and achievable research milestone to scale
data analysis to large-scale computers. Optimizing for com-
plex topologies is a challenging task that requires tackling
open research questions that span theory, algorithms and
practice. At the theoretical level, the opportunity is to
devise models that jointly capture compute and communi-
cation costs, and discover tighter lower bounds for specific
topologies. At the algorithmic level, the opportunity is to
develop approximations and heuristics to achieve these lower
bounds. At the practical level, the opportunity is to develop
a system prototype to demonstrate that topology-aware data
processing outperforms the state of the art in practice.

This research trajectory is motivated by encouraging pre-
liminary results that we have obtained for parallel aggrega-
tion [22]: Even in a trivial network topology, one can prove
that it is hard to approximate the plan that minimizes the
network cost of a parallel aggregation within any constant
factor. This is in stark contrast to the complexity of similar
questions in classical network models, which admit efficient
algorithms. Yet in practice, a greedy topology-aware heuris-
tic performs aggregation up to 3.5× faster than the state of
the art in parallel data processing. Our research vision is
to deliver similar results for other common data processing
operations and in non-trivial topologies. We identify three
thrusts in realizing this vision.

Thrust 1: Models. From a modeling perspective, prior
parallel computation models cannot sufficiently capture cer-
tain intricacies of complex parallel systems. We propose to
develop a theoretical model that will capture the cost of com-
putation in a topology-aware manner, which is something
that current theoretical parallel models cannot do. We pro-
pose a new theoretical model that captures the cost of com-
munication and computation in a complex, heterogeneous
network topology.

The vertex-capacitated model can incorporate different
facets of network behavior, including congestion, compute
node heterogeneity, and bandwidth limitations. We then
plan to investigate how we can model different types of com-
monly used network topologies, cost functions and node ca-
pabilities in our model. Then, based on the proposed model,



one can develop lower bounds that will shed light on the
hardness of the algorithmic problems, as well as on the ef-
fect of network topology in the efficiency of communication
for the data processing tasks at hand.

Thrust 2: Algorithms. From an algorithmic perspec-
tive, the focus is on three fundamental data processing tasks
that form the backbone of any data-to-knowledge pipeline:
aggregation, joins and sorting. Since the standard way of
modeling a network is through a graph, developing algo-
rithms that minimize the cost for the aforementioned data
processing tasks is tightly related to optimization problems
in graph theory, such as routing and graph partitioning. The
new theoretical model leads to several exciting algorithmic
questions, the main of which is: Given access to an approx-
imation of a certain statistic on the data distribution, how
do we obtain a data transfer and computation protocol with
minimum cost for a specific data processing task and net-
work topology?

Thrust 3: Systems. The systems thrust connects the-
ory to practice and measures performance improvement in
the field. The key research questions pertain to (1) dis-
covering network topology information in a hosted envi-
ronment, (2) overlapping computation with communication
during topology-aware query processing, including offload-
ing computation in the network. The goal is to demon-
strate that topology-aware algorithms can be implemented
efficiently in practice, in support of our thesis that one can
capture some, hitherto untapped, power of scale in modern
datacenters.

2. THRUST 1: TOPOLOGY-AWARE MODEL

Network Model. We model the network topology using
a directed graph G = (V,E). Each directed edge in E rep-
resents a network link, where the direction follows the flow
of data on the link. We distinguish a subset of nodes in the
network VC ⊆ V to be compute nodes: these can store data
and perform computation on their local data. We assume
that G is strongly connected, such that each compute node
can communicate with all other compute nodes.

Computation. A parallel algorithm A in our model pro-
ceeds in sequential rounds (or phases). In the beginning,
each compute node v holds part of the input I, denoted
X0(v) ⊆ I. The goal of the algorithm is to compute a query
(or function) over the input I. We use Xi(v) to denote the
data stored at compute node v ∈ VC after the i-th round
completes, where i = 1, . . . , r. At every round, the compute
nodes first perform some computation on their local data.
Then, they communicate by sending data to other compute
nodes in the network. We assume that for a data trans-
fer from compute node u to compute node v, the algorithm
must explicitly specify the routing path(s).

Cost Model. Since algorithms proceed in sequential rounds,
we decompose the cost of the algorithm, denoted cost(A), as
the sum of the costs for each round i, cost(A) =

∑r

i=1 costi(A).
In order to model costi(A), we introduce a cost function
fe : E → R for each link e ∈ E. Let Yi(e) denote the total
data that is routed through link e during round i. Then,
our edge-capacitated model measures the cost as

costi(A) = max
e∈E(G)

fe(|Yi(e)|).

(a) Star (b) Fat tree

Figure 1: Popular tree topologies.

(a) Intel KNL (b) Cray XC40 (c) 2D torus

Figure 2: Examples of planar (a), shallow-minor-free (b) and
bounded genus (c) graphs.

For example, we associate with each link e a capacity we >
0, which captures the link bandwidth, and define fe(x) =
x/we. In this case, the cost of each round is the cost of
transferring data through the most bottlenecked link in the
network graph. The edge-capacitated model does not take
into account computation, and hence captures the cost when
computation is fast and communication is the bottleneck.

We note that the proposed model can capture the com-
putation cost by performing a simple transformation of the
underlying graph that adds virtual nodes for each compute
node, and then encodes compute costs as edge weights. It
is also possible to define a vertex-capacitated version of our
model, where there is a cost function fv associated with each
compute node, and the cost is defined by taking the maxi-
mum cost over all nodes. Although the vertex-capacitated
model would be more general, it is unclear if it would provide
any stronger insights for topologies of practical interest.

Network Topologies. Several network routing problems
are known to admit improved solutions when the underly-
ing topology has a certain desirable structure [2, 8]. Even
though our model supports general topologies, results that
are tailored to the following network structures are of im-
mense practical interest.

Trees. Perhaps the simplest topology is that of a star net-

work, as shown in Figure 1a. At the microarchitectural level,
CPU cores commonly exchange data through a shared last-
level cache, which implicitly forms the center of a star topol-

ogy. Designing optimal algorithms for basic tasks such as
aggregation or sorting is nontrivial even in this apparently
simple network. A special class of a tree topology is the pop-
ular fat tree topology in Figure 1b. In a fat tree topology,
the capacity of each link increases closer to the root.

Planar graphs and their generalizations. Many popular net-
work topologies are planar, such as meshes, grids, and trees
of rings. Many-core processors such as the older Intel Knights
Landing and the new 2nd generation Intel Scalable Proces-
sor platform interconnect cores in a grid [16] (see Figure 2a).
Many interesting topologies are “nearly-planar”, such as the
2-dimensional torus shown in Figure 2c. Many of these
graphs can be modeled using the language of graph minor
theory [28]. Furthermore, algorithmic results on minor-free
graphs often extend to more general classes, such as shallow-



Figure 3: CLOS-5 topology, a
high-radix network topology.

Figure 4: Parallel aggrega-
tion example.

minor-free graphs [26]. Figure 2b depicts the topology of the
blade servers of a Cray XC40, which is obtained by connect-
ing several 2-dimensional grids along a “spine”; the resulting
graph is not minor-free, but shallow-minor-free.

High-radix network topologies. Warehouse-scale computers
use high-radix networks. Many cloud vendors use a CLOS-5
network topology [1] (Figure 3), the Cray XC40 comput-
ers use the Dragonfly topology,while the IBM Blue Gene/Q
features a multi-dimensional torus topology.

3. THRUST 2: ALGORITHMS
The theoretical model gives rise to several new algorithmic
problems. This section focuses on three tasks that are ubiq-
uitous in data processing: aggregation, joins, and sorting.

3.1 Parallel aggregation
Prior work by the authors proposed GRASP, a GReedy

Aggregation Scheduling Protocol, which is a heuristic algo-
rithm for the parallel aggregation problem [22]. Despite its
apparent simplicity, GRASP performs favorably in experi-
ments. The algorithm constructs a set of transmission pairs,
chosen greedily such that data is aggregated along network
paths that connect nodes with common aggregation keys to
avoid unnecessary retransmissions of the same key. The in-
tuition is best illustrated through an example.

Example 1. Topology-aware Parallel Aggregation

Consider a network with four compute nodes {v1, v2, v3, v4}
and two routing nodes {r1, r2}, as shown in Figure 4. The

links that connect the compute to the routing nodes have a

bandwidth of one tuple per time unit, while the link between

the two routing nodes has twice the bandwidth. Suppose v1
stores tuple t1, v2 stores tuple t2, and v3 stores tuple t3. We

want to compute the sum over all the tuples in the network,

and want the aggregation result in node v4.
We consider two different algorithms and measure their

cost. Algorithm A1 is topology-oblivious and needs only one

round. A1 sends all tuples to v4 concurrently for v4 to per-

form the aggregation. Since the link (r2, v4) has to transfer

three tuples, the cost is 3 time units and thus cost(A1) = 3.
Algorithm A2 operates in two rounds. In the first round,

node v3 sends tuple t3 to v4, and node v1 sends t1 to v2. The

compute node v2 now computes the partial sum between t2, t3
and sends the result to v4 in the second round. The cost of

each round is 1 in this case for a total cost of cost(A2) = 2,
a 1.5× speedup over the topology-oblivious algorithm.

Towards an O(log2 n)-approximation for aggregation
on star networks. The GRASP algorithm described above
is competitive in experiments, yet its performance lacks a
provable theoretical guarantee. One approach to obtain an
algorithm for the aggregation problem with a provable guar-
antee is as follows: We partition the compute nodes into

buckets Z0, Z1, . . . , Zlog b, where Zi contains all nodes with
an incident link of capacity in the range [2i, 2i+1). For each i,
we pick a representative node zi ∈ Zi, and create an instance
Φi of the all-to-one aggregation problem where every node
Zi must send its data to zi. In order to solve each of these
smaller instances Φ0, . . . ,Φlog b, it suffices to consider the
case of all-to-one aggregation for star networks where each
link has the same capacity, up to a factor of two. We refer
to these networks as uniform stars. We obtain a O(log n)-
approximation algorithm for uniform stars as follows:

1. Computing an aggregation round. In each round i
of the protocol, we define the set Ai ⊆ Zi of active nodes

to be the ones who have not transmitted their input yet.
In the first round all nodes are active. We construct an
auxiliary complete graph Γi with vertex set Ai. For each
edge {x, y} in Γi, we associate a cost c(x, y) ≥ 0 to be
equal to the size of the union of the sets of x and y.
We compute a min-cost matching Mi in Γi. For each
edge {x, y} ∈ Mi, we transmit either x → y, or y → x,
depending on whether |x| or |y| is the smallest.

2. The multiple-round protocol. The cost of one round
is at most the cost of an optimal solution. Since the num-
ber of active nodes decreases by a factor of two in each
round, there are at most O(log n) rounds, and hence the
cost of the resulting schedule is a O(log n)-approximation.

Combining thisO(log n)-approximation on uniform stars with
the reduction outlined above, we obtain a O(log b · log n)-
approximation for general stars. This can be further im-
proved to a O(log2 n)-approximation using a more careful
bucketing scheme.

Towards provably good algorithms for general net-
work topologies. Our plan for extending the above algo-
rithm to the case of general network topologies is as follows:

From stars to fat trees. A fat tree of depth d = 1 is a star, for
which we have already described an O(log2 n)-approximate
algorithm. An aggregation problem on a fat tree with d > 1
can be decomposed into a sequence of d families F1, . . . ,Fd

of aggregation instances. For each i ∈ [d], the instances in
Fi aggregate from all nodes at level d− i+1 to the nodes at
level d−i; specifically, each node at level d−i aggregates the
data of its children. Concatenating the resulting aggregation
protocols, one obtains aO(d log2 n)-approximate solution for
the original aggregation instance.

From fat trees to general networks. Räcke’s seminal work
on oblivious routing [27] provides a powerful framework for
obtaining approximation algorithms for routing and parti-
tioning problems on graphs. At the heart of Räcke’s ap-
proach is a hierarchical graph decomposition scheme which
partitions the graph into a set of clusters, and each cluster is
decomposed recursively. When contracting each cluster to
a single vertex, one obtains an expander graph. It is natural
to ask whether a logO(1) n-approximation algorithm can be
obtained for the case of expander graphs via an approach
that uses multicommodify flow techniques.

3.2 Join Processing
The second fundamental task of interest is the join be-

tween two relations, as it can be the stepping stone for con-
sidering multi-way joins, and joins followed by aggregations.

Binary Join. To compute the equi-join R ✶ S, typical
topology-agnostic algorithms use either a parallel hashing



algorithm, or partition the largest relation and broadcast
the smallest one. Parallel hashing maps the tuples by hash-
ing using the values of the join attribute. The default goal
of the hashing procedure is to uniformly distribute the load.
However, this approach is suboptimal even for simple net-
work topologies, such as a star topology, or when the initial
distribution of the input data is skewed across the compute
nodes. It can be shown that one can easily take topological
information into account even for a simple star network and
obtain good speedup by carefully constructing a partition-
ing function (see Section 5). However, finding the best par-
titioning function is non-trivial when the topology is more
complex than a star, and especially so when the topology is
not a tree and hence there are multiple routing paths to the
destination. Both are intriguing aspects for further study.
Algorithms also need to consider the case where the join

has data skew. In such a case, it is necessary to treat the
values of the join attribute that appear very frequently dif-
ferently, similar to techniques from topology-agnostic paral-
lel algorithms [5]. In the extreme, the join becomes equiv-
alent to computing a cartesian product. The optimal al-
gorithm that computes the cartesian product in a uniform
star topology [19] does not extend to other topologies, hence
it is necessary to design new techniques to achieve optimal
performance in non-uniform topologies. Prior literature has
proposed algorithms (such as flow join [29]) that treat fre-
quent join keys differently, but the theoretical properties of
these practical solutions are not well understood.

Multi-way Joins. For queries with multiple joins, there
are two possible approaches. A baseline solution computes
a multi-way join as a sequence of binary joins and optimizes
each binary join separately. One can hope to do better by
exploiting the join structure. For example, in the case of
acyclic queries, semi-joins can be used to eliminate redun-
dant tuples across all relations involved. The second ap-
proach seeks to optimize the query as a whole, applying sim-
ilar ideas to recent work in parallel join processing [4, 5]. A
possible outcome would be algorithms that come with worst-
case theoretical guarantees on the communication cost, in
analogy to the single-machine setting [25]. Concretely, con-
sider the 3-way join R(A,B) ✶ S(B,C) ✶ T (C,A). Instead
of computing the query as a sequence of two binary joins,
one can compute the join in a single push, by reshuffling the
data such that the join can be performed locally thereafter.

3.3 Sorting
A parallel sorting algorithm takes as input a relation par-

titioned across the compute nodes. It then reshuffles the
tuples of the relation, and returns a sorted order of the com-
pute nodes, v0, v1, . . . , vn, such that for any tuples t in vi, t

′

in vj , whenever i < j we have t ≤ t′.
In the context of network-agnostic parallel models, sev-

eral theoretically optimal sorting algorithms have been pro-
posed [9, 13]. However, these algorithms are complex and
see limited practical use. A promising direction is to build
upon a simple framework called Parallel Sort by Regular

Sampling, PSRS [32], which is commonly used in massively
parallel settings. PSRS uses sampling to find n−1 splitters,
which are elements that split the table into n intervals of
roughly equal size. Each interval is assigned to one compute
node, and the input tuples are partitioned to the appropri-
ate node in one round according to the interval they belong
to. Finally, the data is locally sorted.

To adapt PSRS to our topology-aware model, one must
design a sampling procedure that takes topology into ac-
count: for example, one can sample non-uniformly from
compute nodes so as to exploit links with high bandwidth,
or avoid routing data through links with low bandwidth.
Furthermore, the ability to push sampling down into the
routing layer is particularly promising (see Section 4). The
challenge is to ensure that the intervals created by the split-
ters will vary in size depending on network constraints (e.g.,
link bandwidth) and compute constraints (e.g., processing
speed, CPU core count and memory capacity).

4. THRUST 3: A SYSTEM PROTOTYPE
A number of practical considerations lie in the path towards
making topology-aware algorithms practically usable.

Topology discovery

The algorithms presented thus far assume transparency of
the network structure, network routing decisions and net-
work performance. However, in practice, the structure and
the performance of a network may not be known in advance
or may change dynamically. The question that arises is how
can an optimization procedure estimate salient network met-
rics to accelerate data processing.

Semi-transparent deployments. The first step is inves-
tigating topology discovery techniques for shared infrastruc-
ture in a non-adversarial environment. Examples include
on-premises clusters and scientific computing facilities. In
such deployments, infrastructure providers are often willing
to share telemetery on network, compute and I/O utiliza-
tion through tools such as Ganglia, Darshan and TOKIO.
The main challenge in this environment is addressing the
weak performance isolation between concurrent workloads.
A promising avenue is to replace the fixed edge weights of the
network model (see Section 2) with a probability function
based on the available information on the predicted compute
and network capacity.

Opaque deployments. The next step is considering de-
ployments where the infrastructure provider is unwilling to
share information such as network capabilities, routing de-
cisions and VM placement information. This is common
when deploying applications in the cloud. A system can
implement an array of techniques to discover the topology,
bandwidth and compute capabilities of the cluster in this
common deployment scenario.

1. Bandwidth sensing with pair-wise communication.
All-to-all communication is inherently non-scalable. In
practice, algorithms need to limit the number of open
connections per node. The most judicious use of resources
is using one connection per node per phase. (This con-
straint has been used in prior work to minimize network
contention [30].) In this setting, it suffices to measure the
pair-wise bandwidth through a benchmarking procedure
that is executed at system startup. The benchmark will
construct a throughput matrix B that stores all pair-wise
bandwidths and will be used during query optimization.

2. Topology approximation techniques. Another av-
enue of investigation considers how to approximate the
network topology, specifically using sparsification and hi-
erarchical tree approximation. Sparsification starts by
assuming the network structure is a complete graph and
then progressively removes edges such that clusters in the



graph can be easily discerned. The round-trip message
latency can be a predictor of the number of “network
hops” of each network path and can be used for sparsi-
fication. The hierarchical tree approximation probabilis-
tically approximates any finite metric space with a tree
metric space with a polylogarithmic distortion [3].

Overlapping communication and computation

The model assumes that the performance of an operation
along a network path is the minimum of the network and
compute capabilities of every node in the path. In other
words, the model assumes that computation and communi-
cation can perfectly overlap. As the network performance
in modern clusters approaches memory speeds [7], systems
need to carefully consider how to achieve this property in
practice. Open questions pertain to when should transfers
be scheduled, and how can multiple cores share a NIC.

When to schedule data transfers. Connection manage-
ment can take significant time for fast networks with RDMA
capabilities, as this entails locating and pinning memory for
DMA operations. The setup time is in the order of hundreds
of milliseconds [23]—in other words, setting up a connection
takes as much time as transmitting a few GB of data. In
practice, these substantial startup and shutdown costs will
determine the performance of short queries. A number of
design alternatives can ameliorate this cost:

1. Staged scheduling. Scheduling communication in stages
directly maps to the communication model that has been
presented in Section 2.

2. All-at-once scheduling. The argument for schedul-
ing all connections at once is that processes will natu-
rally block until all data have been received. All-at-once
scheduling allows transfers to start as early as possible.

3. Fixed lookahead scheduling. A promising strategy in-
volves scheduling data transfers for up to k phases ahead.
One can vary the lookahead factor at runtime to limit how
many open connections need to be maintained, so that k
is smaller for phases that require many open connections.

Effectively sharing the network adaptor (NIC). Fast
networks support kernel bypass, which allows applications
to directly communicate with the NIC through memory-
mapped NIC device registers. However, this places the ap-
plication in charge of determining how to most efficiently
share the NIC across queries.

1. Busy polling. The challenge with busy polling is that
the system needs to determine a priori how many CPU
cores need to be designated as receivers and as senders
to achieve peak data processing throughput. This deter-
mination is non-trivial and may vary during execution
as the compute intensity of the receiving and sending
pipelines changes. Naive solutions like oversubscribing
threads do not work well with fast networks whose per-
formance sharply decreases with high contention.

2. Notification-based mechanisms. A system can also
rely on notifications for intra-thread communication. Al-
though a thread wakeup is a costly event, the cost amor-
tizes over data transfers that move substantial amount
of data in one request. Event-based methods will also
be relevant in compute-heavy data processing pipelines.
The challenge is that notification-based mechanisms are

well-suited for events at the millisecond frequency; events
at the microsecond frequency are notoriously challenging.

3. Dynamic. Another strategy is to use a single thread to
poll the network adapter and dispatch requests to sleep-
ing threads. The single polling thread merely dispatches
requests and does not touch incoming data. Threads are
woken up using notification-based mechanisms when suf-
ficient work has accumulated.

5. PRACTICAL EXAMPLES
This section focuses on two practical problems, network

interference and topology-aware joins, where the theoretical
model suggests that significant speedups can be obtained by
leveraging the topology.

5.1 Network interference degrades a single link
Large datacenters are shared between multiple users, and

tasks may interfere with other concurrently-running jobs
when accessing shared resources such as the network. Tasks
that interfere often experience a transient performance degra-
dation. Consider a cluster with 4 nodes in a star topology,
where a single downlink experiences a performance degra-
dation due to interference. This performance degradation
can be encapsulated in the network topology, as shown in
Figure 5. We compute a natural join between two relations
R,S. The total input size (in tuples) is N = |R|+ |S|. Sup-
pose that the initial distribution is such that each node holds
N/p data, assigned at random.

Model. The model is an asymmetric star with p com-
pute nodes. All links send with the same bandwidth w,
and can receive with bandwidth wi. Assume mini wi ≤ w.
The standard topology-oblivious hash join algorithm will
be bottlenecked by the slowest link and thus cost Cobl ≈
N/(pmini wi).

Algorithm. A topology-aware algorithm can hash to
node i with probability wi/

∑
i
wi. Assuming that w ≥∑

i
wi/p, the cost of this algorithm is Copt = N/

∑
i
wi. The

speedup is
∑

i
wi/(pmini wi), which grows in proportion to

the slowdown of the slowest link.
System. We implemented and deployed the topology-

aware join algorithm in a star network with 4 compute nodes,
and placed 10GB of data in each node at random. The
nodes are interconnected with a 1Gbps link in this experi-
ment. Downlink interference was introduced through a back-
ground process on a single node, which performed a multi-
TB dataset download and was kept active for the duration
of the experiments. Figure 6 shows the performance of the
interference-oblivious and the topology-aware algorithms, as
well as the predicted cost by the model (dashed line). The
vertical axis shows the network transfer time for each join

Figure 5: Performance degradation in downlink of v2 due to
interference.
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Figure 6: The topology-aware join is 2.3× faster than the
interference-oblivious join when there is substantial perfor-
mance degradation (70%) due to link interference.

algorithm, and the horizontal axis shows link interference as
a percentage of the link capacity. Link interference was ob-
tained by measuring how much data the background process
downloaded during the network time of the algorithm, aver-
aging per second, and dividing by the link capacity. We find
that the time for the interference-oblivious join is increasing
rapidly as all nodes are waiting for the slowest node to com-
plete the data transmission and start local join processing.
The topology-aware algorithm re-distributes data to faster
nodes proportional to the available bandwidth, and is as
much as 2.3× faster when there is substantial performance
degradation (70%) due to link interference. The topology-
aware algorithm is robust across different levels of interfer-
ence, as its network time is within 20% of the time when
there is no interference.

5.2 Joins in oversubscribed tree topologies
Tree network topologies are often oversubscribed at the

root, hence data transmissions that need to cross the root
may be slower than local transmissions. Fiugre 7 shows such
an example: note how the transmission v0 → v1 must use the
slower links from/to the root, while v0 → v2 only involves
local, fast links. Assume we want to compute a natural join
between two relations R,S, where |R| < |S|. Assume that
each node holds equal input data, N/p, where N = |R|+ |S|.
Model. Consider a tree with p compute nodes. All links

have the same bandwidth w in both directions. The nodes
are split into two groups of p/2 nodes, connected by a single
slow link (path). A repartition-based hash join algorithm
will incur a cost of N/4w, since half the data will have to
cross the single link in the middle with probability 1/2.
Algorithm. One can deploy a smarter, topology-aware

strategy to join R and S that moves more data in the fast,
local links of the tree but judiciously sends data over the slow
link through the root: The S tuples are hashed only within
their group and do not cross the root, while the R tuples are
hashed across both groups. Now, the middle link will have a
cost of |R|/2, while the other links will have a cost of about
N/p. Hence, the cost will be (1/w) ·max{|R|/2, N/p}. The
speedup between the two algorithms is O(min{N/|R|, p}).
This speedup will grow as S becomes much larger than R,
but will never exceed p.

Figure 7: Tree topology with fast links within groups but
slow links to the root.
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Figure 8: The topology-aware join is 2.5× faster than repar-
titioning at all scales because it transmits less data over the
slow link.

System. We implemented and deployed the topology-
aware strategy on a tree-based network with 2, 4 and 8
compute nodes, split into two groups. The groups are con-
nected via a slow 1Gbps link. Nodes within the group use
fast 40Gbps links. For this experiment, every node stores 1
GB of R tuples and 4 GB of S tuples. Figure 8 shows the
network time for the topology-aware algorithm that was de-
scribed above with the standard repartition join and broad-
cast join algorithms in prior literature. The predicted cost
from the model for each algorithm is shown as a dashed
line. We observe that broadcast join becomes prohibitively
expensive at scale as it needs to transmit the R tuples p− 1
times to every other node. The repartition join time grows
linearly with the data volume, but is suboptimal because it
transmits tuples from the larger S table across the slow link.
The topology-aware join only hashes S within each group to
avoid the slow link and replicates the smaller R table to
the both groups. Because the topology-aware join transmits
less data over the slow link, the topology-aware join is 2.5×
faster than repartitioning at all scales.

6. RELATED WORK

Relationship to literature on parallel models. The
fundamental difference with other parallel models (e.g., BSP
[34], MPC [4], LogP [11]) is that prior models view the net-
work as a star topology, where each link and each node have
exactly the same cost functions. In this sense, our model



can be viewed as a generalization, where both network and
compute heterogeneity is taken into account.

Relationship to literature on topology-aware com-
munication in HPC. The high-performance computing
community has long considered the role of topology in com-
munication, and multiple works have considered how com-
mon operations, such as MPI collectives, can be optimized
for a given network topology [6, 14, 33]. In broad strokes, the
main distinctions between the data processing algorithms we
focus in this proposal and the general communication pat-
terns that the HPC community considers are as follows:

1. Most operations during data processing are performed
between two pairs of nodes and are scheduled in an ad
hoc manner, in contrast with the collective nature of
HPC operations;

2. The communication patterns in data processing opera-
tions are data-dependent and cannot be reliably known
a priori, in contrast with the fixed nature of commu-
nication groups in HPC applications;

3. The data processing algorithm can tighten or relax
aspects of communication like message priorities and
message ordering guarantees at runtime on a per-query
basis, in contrast with the more consistent runtime be-
havior of HPC applications;

4. In data analysis the communication pattern critically
depends on the initial data distribution, in contrast
with the simpler problem of mapping processes to com-
pute units in the HPC literature;

5. Data processing algorithms can tolerate errors and of-
fer resource elasticity, whereas fault tolerance and elas-
ticity are much harder to achieve in general, given the
diversity of HPC applications.

Relationship to literature on parallel DBMSs. Data
management research has extensively studied ways to opti-
mize aggregation, sorting and joins in parallel systems.
Related to aggregation, Larson [20] proposed to use par-

tial preaggregation to reduce the input size. Shatdal and
Naughton [31] compared the repartitioning and two-phase
parallel aggregation algorithms and proposed adaptive ag-
gregation algorithms. Neither has considered the opportu-
nity to reduce the transmitted data volume by computing
partial aggregates along network paths. Madden et al. [24]
proposed a tiny aggregation service which does in network
aggregation in sensor networks; Culhane et al. [10] propose
LOOM, which builds an aggregation tree with fixed fan-in
for all-to-one aggregations. These systems lack any theoret-
ical guarantees.
Related to join processing, there is a long line of research

focusing on parallel joins under skew, starting from the work
of DeWitt et al. [12] and Wolf et al. [35], to more recent
work on how to mitigate skew by Rödiger et al. [29], and
Li et al. [21]. A different line of research has focused on
designing join algorithms with theoretical guarantees [18,
19, 17, 15], both for binary and multi-way joins. To best of
our knowledge, the above works do not take the topology
into account when designing the optimal join algorithm.

7. OPEN QUESTIONS

Modeling node types. Our basic model distinguishes only
two types of nodes: routing and compute nodes. One can
extend the model with node types of different capabilities.
For instance, we can define node types that can route, and
also perform restricted forms of computational tasks (for
example, aggregation, filtering, or comparisons).

Suitable cost functions. So far we have considered a cost
function that estimates the communication cost based on
the available network bandwidth. However, in many net-
work settings it will be necessary to model other aspects
of the topology, such as communication latency, compute
and memory limits, path congestion, or network interference
from other processes running in the background.

The general aggregation problem at large scale. An-
other interesting direction is extending the aggregation prob-
lem to the case where the partitioning scheme of the output
is not specified by the database system, but by the aggrega-
tion algorithm. An important milestone towards answering
this question is whether the optimization procedure can be
performed with limited communication among nodes.

Optimal topologies for common processing tasks. An
intriguing question is what is the optimal topology for com-
mon data processing tasks. This can answer what is the
most effective way an infrastructure provider can invest a
limited budget to accelerate data processing tasks.
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