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Abstract

Recent advances in convolutional neural network (CNN)

model interpretability have led to impressive progress in vi-

sualizing and understanding model predictions. In partic-

ular, gradient-based visual attention methods have driven

much recent effort in using visual attention maps as a means

for visual explanations. A key problem, however, is these

methods are designed for classification and categorization

tasks, and their extension to explaining generative models,

e.g., variational autoencoders (VAE) is not trivial. In this

work, we take a step towards bridging this crucial gap,

proposing the first technique to visually explain VAEs by

means of gradient-based attention. We present methods to

generate visual attention from the learned latent space, and

also demonstrate such attention explanations serve more

than just explaining VAE predictions. We show how these

attention maps can be used to localize anomalies in images,

demonstrating state-of-the-art performance on the MVTec-

AD dataset. We also show how they can be infused into

model training, helping bootstrap the VAE into learning im-

proved latent space disentanglement, demonstrated on the

Dsprites dataset.

1. Introduction

Dramatic progress in computer vision, driven by deep

learning [22, 13, 15], has led to widespread adoption of

the associated algorithms in real-world tasks, including

healthcare, robotics, and autonomous driving [17, 50, 23]

among others. Applications in many such safety-critical

and consumer-focusing areas demand a clear understand-

ing of the reasoning behind an algorithm’s predictions, in

addition certainly to robustness and performance guaran-

tees. Consequently, there has been substantial recent inter-

est in devising ways to understand and explain the underly-
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Figure 1. We propose to visually explain variational autoencoders.

Each element in the latent vector (here z1 − z3) can be explained

separately with our attention maps, visualizing consistent explana-

tions across different samples.

ing why driving the output what.

Following the work of Zeiler and Fergus [40], much re-

cent effort has been expended in developing ways to visu-

alize feature activations in convolutional neural networks

(CNNs). One line of work that has seen increasing adop-

tion involves network attention [47, 33], typically visualized

by means of attention maps that highlight feature regions

considered (by the trained model) to be important for sat-

isfying the training criterion. Given a trained CNN model,

these techniques are able to generate attention maps that vi-

sualize where a certain object, e.g., a cat, is in the image,

helping explain why this image is classified as belonging to

the cat category. Some extensions [24, 36] provide ways to

use the generated attention maps as part of trainable con-

straints that are enforced during model training, showing

improved model generalizability as well as visual explain-

ability. While Zheng et al. [45] used a classification module

to show how one can generate a pair of such attention maps

to explain why two images of people are similar/dissimilar,



all these techniques, by design, need to perform classifi-

cation to guide model explainability, limiting their use to

object categorization problems.

Starting from such classification model explainability,

one would naturally like to explain a wider variety of neural

network models and architectures. For instance, there has

been an explosion in the use of generative models follow-

ing the work of Kingma and Welling [21] and Goodfellow

et al. [12], and subsequent successful applications in a vari-

ety of tasks [16, 26, 37, 39]. While progress in algorithmic

generative modeling has been swift [38, 18, 30], explaining

such generative algorithms is still a relatively unexplored

field of study. There are certainly some ongoing efforts in

using the concept of visual attention in generative models

[35, 2, 41], but the focus of these methods is to use attention

as an auxiliary information source for the particular task of

interest, and not visually explain the generative model itself.

In this work, we take a step towards bridging this crucial

gap, developing new techniques to visually explain varia-

tional autoencoders (VAE) [21]. Note that while we use

VAEs as an instantiation of generative models in our work,

some of the ideas we discuss are not limited to VAEs and

can certainly be extended to GANs [12] as well. Our in-

tuition is that the latent space of a trained VAE encapsu-

lates key properties of the VAE and that generating expla-

nations conditioned on the latent space will help explain the

reasoning for any downstream model predictions. Given a

trained VAE, we present new ways to generate visual atten-

tion maps from the latent space by means of gradient-based

attention. Specifically, given the learned Gaussian distribu-

tion, we use the reparameterization trick [21] to sample a

latent code. We then backpropagate the activations in each

dimension of the latent code to a convolutional feature layer

in the model and aggregate all the resulting gradients to

generate the attention maps. While these visual attention

maps serve as means to explain the VAE, we can do much

more than just that. A classical application of a VAE is in

anomaly localization, where the intuition is that any input

data that is not from the standard Gaussian distribution used

to train the VAE should be anomalous in the inferred latent

space. Given this inference, we can now generate attention

maps helping visually explain why this particular input is

anomalous. We then also go a step further, presenting ways

in which to use these explanations as cues to precisely local-

ize where the anomaly is in the image. We conduct exten-

sive experiments on the recently proposed MVTec anomaly

detection dataset and present state-of-the-art anomaly local-

ization results with just the standard VAE without any bells

and whistles.

Latent space disentanglement is another important area

of study with VAEs and has seen much recent progress

[14, 19, 46]. With our visual attention explanations con-

ditioned on the learned latent space, our intuition that us-

ing these attention maps as part of trainable constraints

will lead to improved latent space disentanglement. To this

end, we present a new learning objective we call attention

disentanglement loss and show how one can train existing

VAE models with this new loss. We demonstrate its impact

in learning a disentangled embedding by means of experi-

ments on the Dsprites dataset [29].

To summarize, our key contributions are:

• We take a step towards solving the relatively unex-

plored problem of visually explaining generative mod-

els, presenting new methods to generate visual atten-

tion maps conditioned on the latent space of a vari-

ational autoencoder. Furthermore, we show how our

visual attention maps can be put to multipurpose use.

• We present new ways to localize anomalies in im-

ages by using our attention maps as cues, demonstrat-

ing state-of-the-art localization performance on the

MVTec-AD dataset [3].

• We present a new learning objective called the atten-

tion disentanglement loss, showing how one incorpo-

rate it into standard VAE models, and demonstrate im-

proved disentanglement performance on the Dsprites

dataset [29].

2. Related Work

CNN Visual Explanations. Much recent effort has

been expended in explaining CNNs as they have come

to dominate performance on most vision tasks. Some

widely adopted methods that attempt to visualize interme-

diate CNN feature layers included the work of Zeiler and

Fergus [40] and Mahendran and Vedaldi [27], where meth-

ods to understand the activity within the layers of convolu-

tional nets were presented. Some more recent extensions of

this line of work include visual-attention-based approaches

[47, 11, 34, 6], most of which can be categorized into ei-

ther gradient-based methods or response-based methods.

Gradient-based method such as GradCAM [34] compute

and visualize gradients backpropagated from the decision

unit to a feature convolutional layer. On the other hand,

response-based approaches [42, 47, 11] typically add ad-

ditional trainable units to the original CNN architecture to

compute the attention maps. In both cases, the goal is to

localize attentive and informative image regions that con-

tribute the most to the model prediction. However, these

methods and their extensions [11, 24, 36], while able to

explain classification/categorization models, cannot be triv-

ially extended to explaining deep generative models such as

VAEs. In this work, we present methods, using the philoso-

phy of gradient-based network attention, to compute and vi-

sualize attention maps directly from the learned latent em-

bedding of the VAE. Furthermore, we make the resulting
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attention maps end-to-end trainable and show how such a

change can result in improved latent space disentanglement.

Anomaly Detection. Unsupervised learning for

anomaly detection [1] still remains challenging. Most

recent work in anomaly detection is based on either

classification-based [31, 5] or reconstruction-based ap-

proaches. Classification-based approaches aim to pro-

gressively learn representative one-class decision bound-

aries like hyperplanes [5] or hyperspheres [31] around the

normal-class input distribution to tell outliers/anomalies

apart. However, it was also shown [4] that these meth-

ods have difficulty dealing with high-dimensional data.

Reconstruction-based models, on the other hand, assume in-

put data that are anomalous cannot be reconstructed well by

a model that is trained only with normal input data. This

principle has been used by several methods based on the

traditional PCA [20], sparse representation [44], and more

recently deep autoencoders [49, 48]. In this work, we take a

different approach to tackling this problem. We use the at-

tention maps generated by our proposed VAE visual expla-

nation generation method as cues to localize anomalies. Our

intuition is that representations of anomalous data should be

reflected in latent embedding as being anomalous, and that

generating input visual explanations from such an embed-

ding gives us the information we need to localize the partic-

ular anomaly.

VAE Disentanglement. Much effort has been expended

in understanding latent space disentanglement for genera-

tive models. Early work of Schmidhuber et al. [32] pro-

posed a principle to disentangle latent representations by

minimizing the predictability of one latent dimension given

other dimensions. Desjardins et. al [10] generalized an

approach based on restricted Boltzmann machines to fac-

tor the latent variables. Chen et. al extended GAN [12]

framework to design the InfoGAN [8] to maximise the mu-

tual information between a subset of latent variables and

the observation. Some of the more recent unsupervised

methods for disentanglement include β-VAE [14] which at-

tempted to explore independent latent factors of variation

in observed data. While still a popular unsupervised frame-

work, β-VAE sacrificed reconstruction quality for obtaining

better disentanglement. Chen et. al [7] extended β-VAE to

β-TCVAE by introducing a total correlation-based objec-

tive, whereas Mathieu et al. [28] explored decomposition

of the latent representation into two factors for disentangle-

ment, and Kim et al. [19] proposed FactorVAE that encour-

aged the distribution of representations to be factorial and

independent across the dimensions. While these methods

focus on factorizing the latent representations provided by

each individual latent neuron, we take a different approach.

We enforce learning a disentangled space by formulating

disentanglement constraints based on our proposed visual

explanations, i.e., visual attention maps. To this end, we

propose a new attention disentanglement learning objective

that we quantitatively show provides superior performance

when compared to existing work.

3. Approach

In this section, we present our method to generate ex-

planations for a VAE by means of gradient-based atten-

tion. We first begin with a brief review of VAEs in Sec-

tions 3.1 followed by our proposed method to generate VAE

attention. We discuss our framework for localizing anoma-

lies in images with these attention maps and conduct ex-

tensive experiments on the MVTec-AD anomaly detection

dataset [3], establishing state-of-the-art anomaly localiza-

tion performance. Next, we show how our generated at-

tention visualizations can assist in learning a disentangled

latent space by optimizing our new attention disentangle-

ment loss. Here, we conduct experiments on the Dsprites

[29] dataset and quantitatively demonstrate improved dis-

entanglement performance when compared to existing ap-

proaches.

3.1. One­Class Variational Autoencoder

A vanilla VAE is essentially an autoencoder that is

trained with the standard autoencoder reconstruction objec-

tive between the input and decoded/reconstructed data, as

well as a variational objective term attempts to learn a stan-

dard normal latent space distribution. The variational ob-

jective is typically implemented with Kullback-Leibler dis-

tribution metric computed between the latent space distri-

bution and the standard Gaussian. Given input data x, the

conditional distribution q(z|x) of the encoder, the standard

Gaussian distribution p(z), and the reconstructed data x̂, the

vanilla VAE optimizes:

L = Lr(x, x̂) + LKL(q(z|x), p(z)) (1)

where LKL is the Kullback-Leibler divergence term and

Lr is the reconstruction term, which is typically a mean-

squared error between x and x̂.

3.2. Generating VAE Attention

We propose a new technique to generate VAE visual at-

tention by means of gradient-based attention computation.

Our proposed approach is substantially different from exist-

ing work [34, 47, 45] that computes attention maps by back-

propagating the score from a classification model. On the

other hand, we are not restricted by such requirements and

develop an attention mechanism directly using the learned

latent space, thereby not needing an additional classification

module. As illustrated in Figure 2 and discussed below, we

compute a score from the latent space, which is then used

to calculate gradients and obtain the attention map.

Specifically, given the posterior distribution q(z|x) in-

ferred by the trained VAE for a data sample x, we use the
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Figure 2. Element-wise attention generation with a VAE.

reparameterization trick to obtain a latent vector z. For each

element zi, we backpropagate gradients to the last convolu-

tional feature maps A ∈ R
n×h×w, giving the attention map

Mi corresponding to zi. Specifically, Mi is computed as

the linear combination:

Mi = ReLU(
n∑

k=1

αkAk) (2)

where the scalar αk = GAP( ∂zi
∂Ak

) and Ak is the kth feature

channel (k = 1, . . . , n) of the feature maps A. Note ∂zi
∂Ak

is a matrix and so we use the global average pooling (GAP)

operation to get the scalar αk. Specifically, this is:

αk =
1

T

h∑

p=1

w∑

q=1

(
∂zi

∂A
pq
k

) (3)

where T = h×w and A
pq
k is the pixel value at location (p, q)

of the h×w matrix Ak. We now repeat this for all elements

z1, z2, . . . , zD of the D−dimensional latent space, giving

M1, . . . ,MD (see Figure 2). An example of what each

Mi represents is shown in Figure 1, where we see consis-

tent high-response regions for each latent dimension across

multiple data samples. While the above procedure gives one

attention map per latent dimension, one can obtain a single

overall attention map using any matrix aggregation scheme,

e.g., the mean, in which case the overall attention map is

M = 1
D

∑D
i Mi.

3.3. Generating Anomaly Attention Explanations

We now discuss how our gradient-based attention gener-

ation mechanism can be used to localize anomaly regions

given a trained one-class VAE. Inference with such a one-

class VAE with data it was trained for, i.e., normal data

(digit “1” for instance), should ideally result in the learned

latent space representing the standard normal distribution.

Consequently, given a testing sample from a different class

(abnormal data, digit “5” for instance), the latent representa-

tion inferred by the learned encoder should have a large dif-

ference when compared to the learned normal distribution.

This intuition can be captured in many ways. A straightfor-

ward approach (which we use to show results next) is to take

the inferred mean vector and generate the resulting attention

map. Specifically, we compute the sum of all elements in

the mean vector, giving a score s, which we backpropagate

to compute the anomaly attention M (as in Equation 2). An

alternative approach can be using the normal difference dis-

tribution. Given all normal images used to train the VAE,

we can infer the overall μx and σx representing the distribu-

tion of embeddings of all the normal images x ∈ X. Now,

given the μ
y
i and σ

y
i for each latent variable zi inferred for

an abnormal sample y, we can define the normal difference

distribution as:

Pq(zi|x)−q(zi|y)(u) =
e−[u−(μx

i −μy

i
)]2/[2((σx

i )
2+(σy

i
)2)]

√
2π((σx

i )
2 + (σy

i )
2)

(4)

for each latent variable zi. Given a latent code z sampled

from Pq(zi|X)−q(zi|Y ), one can follow the procedure de-

scribed above to compute the anomaly attention map M.

This is visually summarized in Figure 3.

3.3.1 Results

In this section, we evaluate our proposed method to generate

visual explanations as well as perform anomaly localization

with VAEs.

Metrics: We adopt the commonly used the area under the

receiver operating characteristic curve (ROC AUC) for all

quantitative performance evaluation. We define true pos-

itive rate (TPR) as the percentage of pixels that are cor-

rectly classified as anomalous across the whole testing class,

whereas the false positive rate (FPR) the percentage of pix-

els that are wrongly classified as anomalous. In addition, we

also compute the best intersection-over-union (IOU) score

by searching for the best threshold based on our ROC curve.

Note that we first begin with qualitative (visual) evaluation

on the MNIST and UCSD datasets, and then proceed to a

more thorough quantitative evaluation on the MVTec-AD

dataset.

MNIST. We start by qualitatively evaluating our visual at-

tention maps on the MNIST dataset [9]. Using training im-

ages from one single digit class, we train our one-class VAE

model, which will be used to test on all the digit numbers’

testing images. We reshape all the training and testing im-

ages to resolution of 28× 28 pixels.

In Figure 4 (top), we show results with a model trained

on the digit “1” (normal class) and test on all other dig-

its (each of which becomes an abnormal class). For each

test image, we infer the latent vector using our trained en-

coder and generate the attention map. As can be observed

in the results, the attention maps computed with the pro-

posed method is intuitively satisfying. For instance, let us

consider the attention maps generated with digit “7” as the

test image. Our intuition tells us that a key difference be-

tween the “1” and the “7” is the top-horizontal bar in “7”,

and our generated attention map indeed highlights this re-

gion. Similarly, the differences between an image of the



Figure 3. Attention generation with a one-class VAE.

Figure 4. Anomaly localization results from the MNIST dataset.

Figure 5. Qualitative results from UCSD Ped1 dataset. L-R: Orig-

inal test image, ground-truth masks, our anomaly attention local-

ization maps, and difference between input and the VAE’s recon-

struction . The anomalies in these samples are moving cars, bicy-

cle, and wheelchair.

digit “2” and the “1” are the horizontal base and the top-

round regions in the “2”. From the generated attention maps

for “2”, we notice that we are indeed able to capture these

differences, highlighting the top and bottom regions in the

images for “2”. We also show testing results with other dig-

its (e.g., “4”,“9”) as well as with a model trained on digit

“3” and tested on the other digits in the same figure. We

note similar observations can be made from these results

as well, suggesting that our proposed attention generation

mechanism is indeed able to highlight anomalous regions,

thereby capturing the features in the underlying latent space

that cause a certain data sample to be abnormal.

UCSD Ped1 Dataset: We next test our proposed method

on the UCSD Ped 1[25] pedestrian video dataset, where the

videos were captured with a stationary camera to monitor

a pedestrian walkway. This dataset includes 34 training se-

quences and 36 testing sequences, with about 5500 “nor-

mal” frames and 3400 “abnormal” frames. We resize the

data to 100× 100 pixels for training and testing.

We first qualitatively evaluate the performance of our

proposed attention generation method in localizing anoma-

lies. As we can see from Figure 5 (where the corresponding

anomaly of interest is annotated on the left, e.g., bicycle,

Car etc.), our anomaly localization technique with attention

maps performs substantially better than simply computing

the difference between the input and its reconstruction (this

result is annotated as Vanilla-VAE in the figure). We note

more precise localization of the high-response regions in

our generated attention maps, and these high-response re-

gions indeed correspond to anomalies in these images.

We next conduct a simple ablation study using the

pixel-level segmentation AUROC score against the baseline

method of difference between input data and the reconstruc-

tion. We test our proposed attention generation mechanism

with varying levels of spatial resolution by backpropagat-

ing to each of the encoder’s convolutional layers: 50 × 50,

25 × 25, and 12 × 12. The results are shown in Table 1

where we see our proposed mechanism gives better perfor-

mance than the baseline technique.

MVTec-AD Dataset: We consider the recently re-

leased comprehensive anomaly detection dataset: MVTec

Anomaly Detection (MVTec AD) [3] that provides multi-

object, multi-defect natural images and pixel-level ground



Vanilla-VAE Ours(Conv1) Ours(Conv2) Ours(Conv3)

AUROC 0.86 0.89 0.92 0.91

Table 1. Results on UCSD Ped1 using pixel-level segmenta-

tion AUROC score. We compare results obtained using our

anomaly attention generated with different target network layers

to reconstruction-based anomaly localization using Vanilla-VAE.

truth. This dataset contains 5354 high-resolution color im-

ages of different objects/textures, with both normal and de-

fect (abnormal) images provided in the testing set. We re-

size all images to 256× 256 pixels for training and testing.

We conduct extensive qualitative and quantitative experi-

ments and summarize results below.

We train a VAE with ResNet18 [13] as our feature en-

coder and a 32-dimensional latent space. We further use

random mirroring and random rotation, as done in the orig-

inal work [3], to generate an augmented training set. Given

a test image, we infer its latent representation z to generate

the anomaly attention map. Given our anomaly attention

maps, we generate binary anomaly localization maps using

a variety of thresholds on the pixel response values, which

is encapsulated in the ROC curve. We then compute and

report the area under the ROC curve (ROC AUC) and gen-

erate the best IOU number for our method based on FPR

and TPR from the ROC curve.

The results are shown in Table 2, where we compare our

performance with the techniques evaluated in the bench-

mark paper of Bergmann et al. [3] (note that the baselines

here are the same methods as in [3]). From the results, we

note that with our anomaly localization approach using the

proposed VAE attention, we obtain better results on most

of the object categories than the competing methods. It is

worth noting here that some of these methods are specif-

ically designed for the anomaly localization task, whereas

we train a standard VAE and generate our VAE attention

maps for localization. Despite this simplicity, our method

achieves competitive performance, demonstrating the po-

tential of such an attention generation technique to be useful

for tasks other than just model explanation.

We also show some qualitative results in Figure 6. We

show results from six categories - three textures and three

objects. For each category, we also show four types of de-

fects provided by the dataset. We show, from the top row to

the bottom, the original images, ground truth segmentation

masks, and our anomaly attention maps. One can note that

our attention maps are able to accurately localize anomalous

regions across these various defect categories.

3.4. Attention Disentanglement

In the previous section, we discussed how one can gen-

erate visual explanations, by means of gradient-based at-

tention, as well as anomaly attention maps for VAEs. We

also discussed and experimentally evaluated using these

Category
AE

(SSIM)

AE

(L2)

Ano

GAN

CNN

Feature

Dictionary

ours

T
ex

tu
re

Carpet
0.87 0.59 0.54 0.72 0.78

0.69 0.38 0.34 0.20 0.1

Grid 0.94 0.90 0.58 0.59 0.73

0.88 0.83 0.04 0.02 0.02

Leather 0.78 0.75 0.64 0.87 0.95

0.71 0.67 0.34 0.74 0.24

Tile 0.59 0.51 0.50 0.93 0.80

0.04 0.23 0.08 0.14 0.23

Wood 0.73 0.73 0.62 0.91 0.77

0.36 0.29 0.14 0.47 0.14

O
b
je

ct
s

Bottle 0.93 0.86 0.86 0.78 0.87

0.15 0.22 0.05 0.07 0.27

Cable 0.82 0.86 0.78 0.79 0.90

0.01 0.05 0.01 0.13 0.18

Capsule 0.94 0.88 0.84 0.84 0.74

0.09 0.11 0.04 0.00 0.11

Hazelnut 0.97 0.95 0.87 0.72 0.98

0.00 0.41 0.02 0.00 0.44

Metal Nut 0.89 0.86 0.76 0.82 0.94

0.01 0.26 0.00 0.13 0.49

Pill 0.91 0.85 0.87 0.68 0.83

0.07 0.25 0.17 0.00 0.18

Screw 0.96 0.96 0.80 0.87 0.97

0.03 0.34 0.01 0.00 0.17

Toothbrush 0.92 0.93 0.90 0.77 0.94

0.08 0.51 0.07 0.00 0.14

Transistor 0.90 0.86 0.80 0.66 0.93

0.01 0.22 0.08 0.03 0.30

Zipper 0.88 0.77 0.78 0.76 0.78

0.10 0.13 0.01 0.00 0.06

Table 2. Quantitative results for pixel level segmentation on 15

categories from MVTec-AD dataset. For each category, we report

the area under ROC AUC curve on the top row, and best IOU on

the bottom row. We adopt comparison scores from [3].

anomaly attention maps for anomaly localization on a va-

riety of datasets. We next discuss another application of

our proposed VAE attention: VAE latent space disentangle-

ment. Existing approaches for learning disentangled rep-

resentations of deep generative models focus on formulat-

ing factorised, independent latent distributions so as to learn

interpretable data representations. Some examples include

β-VAE [14], InfoVAE [43], and FactorVAE [19], among

others, all of which attempt to model the latent prior with

factorial probability distribution. In this work, we present

an alternative technique, based on our proposed VAE atten-

tion, called the attention disentanglement loss. We show

how it can be integrated with existing baselines, e.g., Fac-

torVAE, and demonstrate the resulting impact by means of

qualitative attention maps and quantitatively performance

characterization with standard disentanglement metrics.
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Figure 6. Qualitative results from MVTec-AD. Here, we provide

results from: Wood, Tile, Leather, Hazelnut, Pill, and Metal Nut.

For each category, we show four different type of defects. As can

be seen from the figure, our anomaly attention maps are able to

accurately localize anomalies.

Attention 
Disentanglement 
Loss

Element-wise 
Attention Generation

M1

M2

VAE LossesDecoder

ReparameterizationEncoderInput

Figure 7. Training a variational autoencoder with the proposed at-

tention disentanglement loss.

3.4.1 Training with Attention Disentanglement

As we showed earlier, our proposed VAE attention, by

means of gradient-based attention, generates attention maps

that can explain the underlying latent space represented by

the trained VAE. We showed how attention maps intuitively

represent different regions of normal and abnormal images,

directly corresponding to differences in the latent space

(since we generate attention from the latent code). Con-

sequently, our intuition is that using these attention maps

to further bootstrap the training process of the VAE model

should help boost latent space disentanglement. To this end,

our big-picture idea is to use these attention maps as train-

able constraints to explicitly force the attention computed

from the various dimensions in latent space to be as disen-

tangled, or separable as possible. Our hypothesis is that if

we are able to achieve this, we will be able to learn an im-

proved disentangled latent space. To realize this objective,

we propose a new loss called the attention disentanglement

loss (LAD) that can be easily integrated with existing VAE-

type models (see Figure 7). Note that while we use the Fac-

torVAE [19] for demonstration in this work, the proposed

attention disentanglement loss is in no way limited to this

model and can be used in conjunction with other models as

well (e.g., β-VAE [14]). The proposed LAD takes two at-

tention maps A1 and A2 (each computed from a certain di-

mension in the latent space following Equation 2) as input,

and attempts to separate the high-response pixel regions in

them as much as possible. This can be mathematically ex-

pressed as:

LAD = 2 ·

∑
ij min(A1

ij , A
2
ij)∑

ij A
1
ij +A2

ij

(5)

where · is the scalar product operation, and A1
ij and A2

ij are

the (i, j)th pixel in the attention maps A1 and A2 respec-

tively. The proposed LAD can be directly integrated with

the standard FactorVAE training objective LFV, giving us

an overall learning objective that can be expressed as:

L = LFV + λLAD (6)

We now train the FactorVAE with our proposed overall

learning objective of Equation 6, and evaluate the impact of

LAD by comparisons with the baseline FactorVAE trained

only with LFV. For this purpose, we use the same evaluation

metric discussed in FactorVAE [19].

3.4.2 Results

Data: We use the Dsprites dataset [29] which provides

737,280 binary 64× 64 2D shape images.

Quantitative Results: In Figure 8, we compare the

best disentanglement performance (plotted against the re-

construction error) of our proposed method (called AD-

FactorVAE) with other competing approaches: baseline

FactorVAE [19] (training with only LFV) and β-VAE[14].

We note that training with our proposed LAD results in

higher disentanglement scores under the same experimen-

tal setting, giving a best disentanglement score of around

0.90, whereas baseline FactorVAE (γ = 40) gives around

0.82, both with a reconstruction error around 40. We also



Figure 8. Reconstruction error plotted against disentanglement

metric [19]. The numbers at each point show β and γ values. We

want a low reconstruction error and a high disentanglement metric.

note our proposed method obtains a higher disentanglement

score compared to β-VAE (0.73 with β = 4 as the best re-

sult). These results demonstrate the potential of both our

proposed VAE attention and LAD in improving the perfor-

mance of existing methods in the disentanglement litera-

ture. These improvements are also reflected in the qualita-

tive results we discuss next.

Qualitative Results: Figure 9 shows some attention maps

generated using the baseline FactorVAE and our proposed

AD-FactorVAE. The first row shows 5 input images, and

the next 4 rows show results with the baseline FactorVAE

and our proposed method. Row 2 shows attention maps

generated with FactorVAE by backpropagating from the la-

tent dimension with the highest response, whereas row 3

shows attention maps generated by backpropagating from

the latent dimension with the next highest response. Rows 4

and 5 show the corresponding attention maps with the pro-

posed AD-FactorVAE. Our intuition and expectation with

AD-FactorVAE is that each dimension’s attention map will

have high responses in different spatial regions of the in-

put. From Figure 9, this is indeed the case, with high-

response regions in different areas in the image (rows 4 and

5), whereas we see attention overlap in baseline FactorVAE

(rows 2 and 3).

4. Summary and Future Work

We presented new techniques to visually explain varia-

tional autoencoders, taking a first step towards explaining

deep generative models by means of gradient-based net-

work attention. We showed how one can use the learned la-

tent representation to compute gradients and generate VAE

attention maps, without relying on classification-kind of

models. We demonstrating applicability of the resulting

Figure 9. Attention separation on the Dsprites dataset. Top row:

the original shape images. Middle two rows: attention maps

from FactorVAE. Bottom two rows: attention maps from AD-

FactorVAE.

VAE attention on two tasks: anomaly localization and latent

space disentanglement. In anomaly localization, we used

the fact that an abnormal input will result in latent variables

that do not conform to the standard Gaussian in gradient

backpropagation and attention generation. These anomaly

attention maps were then used as cues to generate pixel-

level binary anomaly masks. In latent space disentangle-

ment, we showed how we can use our VAE attention from

each latent dimension to enforce new attention disentan-

glement learning constraints, resulting in improved atten-

tion separability as well as disentanglement performance.

Since a VAE can infer a full posterior distribution, with our

method, one can obtain a distribution of attention matrices

(maps) with repeated sampling. While one way of visualiz-

ing this distribution is with the resulting sample mean, gen-

erating more generic visual explanations for the full matrix

distribution is an interesting topic for future research.
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1. Element-wise attention

In Figure 1, we show additional results with our

element-wise attention generation mechanism (section 3.2

in the main paper).

Figure 1. Element-wise attention results. Each element in the la-

tent vector (here z1 − z3) can be explained separately with our

attention maps, visualizing consistent explanations across differ-

ent samples.

2. MNIST Dataset

Implementation details and additional results: We re-

sized images in the MNIST dataset to 28 × 28 pixels. We

train our network only on one digit at a time, and then test

the trained model on all other digit classes. We set the learn-

ing rate to 0.001 and batch size to 128, with a detailed net-

work architecture shown in Table 1. Here, we present ad-

ditional qualitative results in Figure 2, where we train with

digit “1” and test with digit “5” and “6” respectively. These

results correspond to Figure 4 in the main paper.

∗Wenqian Liu and Runze Li contributed equally to this work.

Network Layer Output Dimensions

E
n

co
d

er

Conv 2D, 4× 4, 64,2,1 14× 14× 64

ReLU 14× 14× 64

Conv 2D, 4× 4, 128,2,1 7× 7× 128

ReLU 7× 7× 128

Flatten 6272

Linear 1024

ReLU 1024

Linear 32

D
ec

o
d

er

Linear 1024

ReLU 1024

Linear 6272

ReLU 6272

Unflatten 7× 7× 128

ReLU 7× 7× 128

ConvTr 2D, 4× 4, 64,2,1 14× 14× 64

ReLU 14× 14× 64

ConvTr 2D, 4× 4, 1,2,1 28× 28× 1

Sigmoid 28× 28× 1

Table 1. Architecture details for the one-class VAE on the MNIST

dataset. The notation for “Layer” column is as follows: opera-

tion, kernel size h×w, number of filter channels, stride, padding.

ConvTr 2D denotes the transpose convolution layer.

3. UCSD Ped1 Dataset

Implementation details and additional results: We re-

sized each input frame from the UCSD Ped1 dataset to

100 × 100 pixels, considering each image independently

without any temporal knowledge. We set the learning rate

to 0.0001 with a batch size of 32 frames for training. A de-

tailed network architecture is shown in Table 2. We show

more qualitative results for anomaly localization on UCSD

Ped1 in Figure 3. These figures correspond to Figure 5 in

the main paper.



Figure 2. Additional qualitative results from MNIST dataset.

Figure 3. Additional qualitative results from UCSD Ped1 dataset. L-R: ground truth image and mask, our attention maps and masks, and

Vanilla-VAE’s attention maps and masks. Each row represents a different anomaly situation. Compared to vanilla-VAE, our attention maps

and masks localize anomalies much more accurately.

4. MVTec-AD Dataset

Implementation details and additional results: All im-

ages are resized to 256 × 256 pixels. During training, we

apply data augmentation with random rotations between

[−30◦, +30◦] and mirroring. We set the learning rate to



Network Layer Output Dimensions
E

n
co

d
er

Conv 2D, 4× 4, 64,2,1 50× 50× 64

ReLU 50× 50× 64

Conv 2D, 4× 4, 128,2,1 25× 25× 128

ReLU 25× 25× 128

Conv 2D, 4× 4, 256,2,1 12× 12× 256

ReLU 12× 12× 256

Flatten 36864

Linear 1024

ReLU 1024

Linear 32

D
ec

o
d
er

Linear 1024

ReLU 1024

Linear 36864

ReLU 36864

Unflatten 256× 12× 12

ReLU 256× 12× 12

ConvTr 2D, 5× 5, 128,2,1 25× 25× 128

ReLU 25× 25× 128

ConvTr 2D, 4× 4, 64,2,1 50× 50× 64

ReLU 50× 50× 64

ConvTr 2D, 4× 4, 1,2,1 100× 100× 1

Sigmoid 100× 100× 1

Table 2. Architecture details of the model we use for training and

testing on the UCSD Ped1 dataset. The notation for “Layer” col-

umn is as follows: operation, kernel size h × w, number of filter

channels, stride, padding. ConvTr 2D denotes the transpose con-

volution layer.

0.0001 and batch size to 8 for training. A detailed network

architecture is shown in Table 3. We show more qualitative

results for anomaly localization on the MVTec-AD dataset

in Figure 4. These results correspond to Figure 6 in the main

paper.

5. Attention Disentanglement

Implementation details and additional results: We resize

input images to 64 × 64 pixels. We replace the last con-

volutional layer in the standard FactorVAE network with

two fully connected layers with an output size of 32. A

detailed network architecture is shown is Table 4. We do

not perform any hyperparameter search and instead use the

same training parameters as FactorVAE, which is our base-

line. Figures 5, 6, and 7 show additional attention maps

generated with FactorVAE [1] trained with our proposed

LAD loss (called AD-FactorVAE in the figure) as well as

the baseline FactorVAE. These results correspond to Fig-

ure 9 in the main paper. As in the main paper, in each

figure, the first row shows the input images, and the next

4 rows show results with the baseline FactorVAE and our

proposed method. Row 2 shows attention maps generated

with FactorVAE by backpropagating from the latent dimen-

sion with the highest response, whereas row 3 shows at-

tention maps generated by backpropagating from the latent

Network Layer Output Dimensions

E
n
co

d
er Resnet18(w/o last 2 layers) 8× 8× 512

Linear 1024

Linear 32

D
ec

o
d
er

Linear 1024

Linear 1024× 4× 4

ConvTr 2D, 4× 4, 512,2,1 8× 8× 512

BatchNorm 8× 8× 512

ReLU 8× 8× 512

ConvTr 2D, 4× 4, 256,2,1 16× 16× 256

BatchNorm 16× 16× 256

ReLU 16× 16× 256

ConvTr 2D, 4× 4, 128,2,1 32× 32× 128

BatchNorm 32× 32× 128

ReLU 32× 32× 128

ConvTr 2D, 4× 4, 64,2,1 64× 64× 64

BatchNorm 64× 64× 64

ReLU 64× 64× 64

ConvTr 2D, 4× 4, 32,2,1 128× 128× 32

BatchNorm 128× 128× 32

ReLU 128× 128× 32

ConvTr 2D, 4× 4, 3,2,1 256× 256× 3

Sigmoid 256× 256× 3

Table 3. Architecture details of the model we use for training and

testing on the MVTec-AD dataset. The notation for “Layer” col-

umn is as follows: operation, kernel size h × w, number of filter

channels, stride, padding. ConvTr 2D denotes transpose convolu-

tion layer. We take Resnet18’s architecture except its last 2 layers

in the encoder, and retrain the whole network on the MVTec-AD

dataset.

dimension with the next highest response. Rows 4 and 5

show the corresponding attention maps with the proposed

AD-FactorVAE. From these figures, we can note that for

each shape (square, ellipse and heart), our proposed method

results in better attention separation when compared to the

baseline FactorVAE, with high-response regions in different

areas in the image.
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Figure 4. Additional qualitative results on the MVTec-AD dataset.



Figure 5. Attention separations of the “Square” shape of Dsprites.

Figure 6. Attention separations of the “Ellipse” on Dsprites.



Figure 7. Attention separations of the “Heart” shape on Dsprites Dataset.



Network Layer Output Dimensions

Input Image 64× 64

E
n

co
d

er

Conv 2D, 4× 4, 32,2,1 32× 32× 32

ReLU 32× 32× 32

Conv 2D, 4× 4, 32,2,1 16× 16× 32

ReLU 16× 16× 32

Conv 2D, 4× 4, 64,2,1 8× 8× 64

ReLU 8× 8× 64

Conv 2D, 4× 4, 64,2,1 4× 4× 64

ReLU 4× 4× 64

Conv 2D, 4× 4, 128,1,1 1× 1× 128

ReLU 1× 1× 128

Conv 2D, 1× 1, 32,1,0 32

Conv 2D, 1× 1, 32,1,0 32

D
ec

o
d

er

Input R
32

Conv 2D, 1× 1, 128,1,0 128

ReLU 1× 1× 128

ConvTr 2D, 4× 4, 64,1,0 4× 4× 64

ReLU 4× 4× 64

ConvTr 2D, 4× 4, 64,2,1 8× 8× 64

ReLU 8× 8× 64

ConvTr 2D, 4× 4, 32,2,1 16× 16× 32

ReLU 16× 16× 32

ConvTr 2D, 4× 4, 32,2,1 32× 32× 32

ReLU 32× 32× 32

ConvTr 2D, 4× 4, 1,2,1 64× 64× 1

Table 4. Architecture details of the AD-FactorVAE we use for

training and testing on Dsprites dataset. The notation for “Layer”

column is as follows: operation, kernel size h × w, number of

filter channels, stride, padding. ConvTr 2D denotes 2D transpose

convolution layer.


