
A study of predictors for debugging quality among preservice, early childhood teachers

Brian R. Belland, ChanMin Kim, Eunseo Lee, Afaf Baabdullah, & Anna Y. Zhang

The Pennsylvania State University

Objectives

In this study, we provided debugging scaffolding to preservice, early childhood teachers

as they engaged in debugging, and explored predictors of debugging quality from among the

following data: motivation data, process data, and the number of words in and positive/negative

valence of what learners typed in response to scaffolding prompts.

Theoretical Framework

Recently, there has been a push for the inclusion of computer science throughout the K-

12 curriculum (Grover & Pea, 2013; K-12 Computer Science Framework Steering Committee,

2016). While there has been progress, there is a need to promote more equitable participation in

computer science education and to improve teacher preparation (Blikstein, 2018). A learner

population that is often overlooked when it comes to computer science education is that of early

childhood learners, including infants, toddlers, preschoolers, kindergartners, and early

elementary learners. While much work has addressed how to prepare secondary and primary

teachers to teach computer science (Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014), there is

a dearth of literature addressing how to prepare early childhood teachers to teach computer

science. Within early childhood education, computer science is often taught by inviting children

to control robots using block-based programming (Bers, 2010; Umaschi & Ettinger, 2012).

Block-based programming is more intuitive and simpler to implement than text-based

programming (e.g., python, C#), as it involves dragging and dropping blocks of code that are

Predictors debugging quality Page 2 of 18

often represented by pictures. Still, as with text-based programming, bugs can and do occur, and

resolving such can be challenging. Thus, a key challenge in preparing early childhood teachers to

teach computer science is helping them learn to debug.

Debugging is a form of ill-structured problem solving (Fitzgerald et al., 2008; Jonassen,

2011; Vessey, 1985). Ill-structured problem solving ability can be enhanced by providing

learners with scaffolding as they engage in problem solving (Jonassen, 2011; Reiser, 2004;

Wood, Bruner, & Ross, 1976). Scaffolding can be defined as cognitive and motivational support

that enlists student interest in problem solving, models expert processes, asks pertinent questions,

provides feedback, highlights important problem features, and helps student control frustration

(van de Pol, Volman, & Beishuizen, 2010; Wood et al., 1976). One way it can do so is by

simplifying the problem elements that are not essential to learning the problem solving skill, but

also problematizing those elements that are (Reiser, 2004). Scaffolding often takes the form of

question prompts to which student need to type an answer, and then build on their answers when

responding to further prompts.

Recent meta-analyses have shown that ill-structured problem-solving ability is enhanced

more when learners receive scaffolding than when they receive lecture (Authors, 2017a, 2017b).

Still, there can be variations in scaffolding’s effectiveness based on such factors as the level with

which students engage with scaffolding (Kim & Hannafin, 2011; Saye & Brush, 2002),

achievement goal orientation (Duffy & Azevedo, 2015; Giesbers, Rienties, Tempelaar, &

Gijselaers, 2013), and student motivation to engage with the subject and the problem being

addressed (Giesbers et al., 2013). One can measure the level with which students engage with

scaffolding by counting the number of words students type in response to scaffold prompts.

Achievement goal orientation refers to what an individual wishes to accomplish within a learning

Predictors debugging quality Page 3 of 18

task: mastery of the content and skills (mastery goal orientation), demonstration of competence,

especially in comparison with others (performance-approach), and avoidance of challenging

tasks to avoid appearing incompetent (performance-avoid) (Covington, 2000; Lehtinen, Vauras,

Salonen, Olkinuora, & Kinnunen, 1995; Linnenbrink-Garcia et al., 2012; Pintrich, 2000).

Motivation to engage with a subject and problem being addressed can also stem from one’s

domain identification, or sense of belonging and strong self-efficacy in a particular domain (e.g.,

English or science) (Thoman, Smith, Brown, Chase, & Lee, 2013).

Research Question

Do goal orientation, perceptions of STEM+CS, domain identification, debugging process

quality, and the number of words in and positive/negative valence of what learners typed in

response to scaffold prompts predict debugging quality?

Method

Note: Full elaboration of method details is not possible due to space constraints.

Setting and Participants

The study took place during three sessions of 2.5 hours each of a class on play in the

early childhood curriculum in a large university in the eastern USA. Nineteen students (all

female) consented to participate. Eighteen were early childhood education majors (4 seniors, 10

juniors, and 4 sophomores) who had all completed at least some field experience at the

infant/toddler, preschool, kindergarten, or early elementary levels. The other was a non-major

who has not completed any field experience. Two students were African American, while the

rest were Caucasian.

The class covered play-based activities as educative processes in the early childhood

classroom. The foundational assumption was that play is ideally child-directed rather than

Predictors debugging quality Page 4 of 18

teacher-directed. Accordingly, students were encouraged to think of ways to integrate robots

within early childhood instruction, but to leave room for children to direct their own play with

robots.

Materials

Ozobot Evos were used, and they were controlled using Ozoblockly, a block-based

coding program.

Scaffolding design was informed by clustering an expanded coding dataset from a meta-

analysis (reference removed for blind review) in which we identified scaffolding features of

clusters in which scaffolding was used at the university or graduate level and in computer

science or engineering field, and for which effect size was medium or high. We used the results

of this analysis, in addition to a literature review on learning debugging, to protype the

scaffolding. The scaffolding invited students to identify the blocks used within the buggy code,

the order in which the blocks were used, and to create and test hypotheses about the nature of the

bug and how to can be fixed.

Data Collection

Presurvey. The presurvey was designed to assess participants’:

• Perceptions of

o science, technology, engineering, mathematics, computer science, and

English

o STEM and computer science careers

• Mathematics and English self-efficacy

• Goal orientation

Predictors debugging quality Page 5 of 18

Debugging process quality. The debugging process rubric assessed the quality with

which each team (a) identified the bug, (b) located the bug, and (c) fixed the bug (see Table 1).

Two raters applied the rubric independently to what each group articulated in response to

scaffold prompts while completing two debugging challenges. Interrater reliability before

coming to consensus was 0.954, based on the intraclass correlation coefficient metric. The raters

met to come to consensus on scores, and consensus scores were used in the analysis.

Debugging quality. The debugging quality rubric assessed the extent to which

participants found the location of the bug and fixed it (see Table 2). Two raters applied the rubric

independently to the final code participants created at the end of the two debugging challenges.

Interrater reliability before coming to consensus was 0.878, as measured by the intraclass

correlation coefficient. The raters met to come to consensus on scores, and consensus scores

were used in the analysis.

Sentiment analysis. The SentimentAnalysis package for r (Feuerriegel & Proellochs,

2019) was used to determine the degree to which what participants wrote in response to

debugging scaffolding and when reflecting on the debugging process was positive or negative.

Possible scores ranged from -1 to 1.

Analysis

We used a Bayesian multiple linear regression approach to predict debugging quality

because, with small samples, results from frequentist statistical methods can often lack precision

due to limitations in applying the central limit theorem (McNeish, 2017). In the Bayesian

approach to statistics, one sets up a probability model through a prior distribution and then

updates it using observed data to obtain the posterior distribution; the end result is a credible

interval that represents a distribution of the parameter of interest (Little, 2006; Smith & Gelfand,

Predictors debugging quality Page 6 of 18

1992). This is because in the Bayesian approach, data is assumed to be fixed and the parameters

are assumed to be random; to the contrary, in the frequentist approach (the most commonly used

statistical approach in educational research), data is assumed to be random and parameters are

assumed to be fixed (McNeish, 2017).

First, we used Bayesian automatic stepwise model selection to determine the combination

of predictor variables that led to the ideal model fit. We started with 12 predictors. Next, two

predictors were removed due to collinearity problems. Next, we established a prior distribution

of inverse gamma for sigma2 (variance) and uniform prior for Beta values. We then ran Markov

Chain Monte Carlo Simulations (10,000 iterations) to determine the posterior distribution.

Analysis was conducted using the Bayes.lm function in r.

Results

Convergence Diagnosis

As can be seen in Figure 1, there was convergence and normality of the MCMC

simulated samples. Furthermore, it indicates that there were no issues of autocorrelation.

Do goal orientation, perceptions of STEM+CS, domain identification, debugging process

quality, and the number of words in and positive/negative valence of what learners typed in

response to scaffold prompts predict debugging quality?

The final Bayesian linear regression model (See Table 3) was:

Debugging quality = 0.554 * debugging process total score + 0.395 * English domain

identification score + 0.588 * Performance approach goal orientation – 0.554 * sentiment

analysis total score – 61.441.

Bayesian regression indicates that the variables included in this model predict debugging

quality. The Beta for debugging process total score was 0.554. This means that for each increase

Predictors debugging quality Page 7 of 18

of one point in debugging process total score, one can expect an increase in debugging quality

score of 0.554 points. The Beta for English domain identification was 0.395. This means for each

increase of one point in English domain identification, one can expect an increase of 0.394 points

in debugging quality score (though cation is warranted as the credible interval for this Beta

includes zero). The Beta for performance approach goals was 0.588. This means that for each

one point move in the direction of performance approach goals, one can expect an increase in

debugging quality score of 0.588 points. The Beta for sentiment analysis was -0.554. This means

that for each increase in sentiment analysis of 1 point, one can expect a decrease in debugging

quality of 0.554 points.

Scientific Significance

Due to space limitations, discussion of results is abbreviated, but will be expanded in the

full paper.

One of the most intriguing results in this study was that sentiment analysis was associated

with a sizable negative Beta. This in essence means that, as what people write in response to

scaffold prompts demonstrates a more negative valence, debugging quality improves. It is

important to note that sentiment analysis is performed by a computer with no human

intervention, and that when the computer deems writing to be more negatively valenced, that

does not necessarily mean that the author is writing negatively worded posts such as “I hate this

scaffolding.” Rather, a response to scaffold prompt of “I did X, but I should have done Y,”

would likely be interpreted as negatively valenced. However, that is precisely the type of

response that would lead to better debugging, because it evidences critical reflection on action,

and thoughts on how to improve.

Predictors debugging quality Page 8 of 18

The second most intriguing result was that English domain identification was a positive

predictor of debugging quality. The literature shows that often students identify with a particular

domain to the exclusion of other domains, and this can lead to poor performance in the latter

domains (Thoman et al., 2013).

That performance approach goals are positive and sizable predictors of debugging quality

is not surprising given the literature that shows that such goals can be quite adaptive (Elliot &

Harackiewicz, 1996). And the finding that debugging process quality predicts debugging quality

is to be expected. Still, it is helpful to determine the Betas for the predictors, as this can lead to

knowledge of how to optimally support preservice teachers learning to debug.

Limitations

As is often the case in educational research, sample size was small. This can lead to

erroneous conclusions. Using a Bayesian approach can partially assuage such concerns, but non-

informative priors can become informative with small sample size, which can be problematic

(McNeish, 2017). Still, using a Bayesian approach allows one to make probabilistic statements

about population parameters, which can enhance generative potential.

Acknowledgments

This research was supported by grants 1906059 and 1927595 from the National Science

Foundation. Any opinions, findings, and/or conclusions are those of the authors and do not

necessarily represent official positions of NSF.

References

Bers, M. U. (2010). The tangibleK robotics program: Applied computational thinking for young
children. Early Childhood Research & Practice, 12(2).

Blikstein, P. (2018). Pre-college computer science education: A survey of the field. Mountain
View, CA: Google LLC. Retrieved from https://goo.gl/gmS1Vm.

Predictors debugging quality Page 9 of 18

Covington, M. V. (2000). Goal theory, motivation, and school achievement: An integrative
review. Annual Review of Psychology, 51(1), 171–200.
doi:10.1146/annurev.psych.51.1.171

Duffy, M. C., & Azevedo, R. (2015). Motivation matters: Interactions between achievement
goals and agent scaffolding for self-regulated learning within an intelligent tutoring
system. Computers in Human Behavior, 52, 338–348. doi:10.1016/j.chb.2015.05.041

Elliot, A. J., & Harackiewicz, J. M. (1996). Approach and avoidance achievement goals and
intrinsic motivation: A mediational analysis. Journal of Personality and Social
Psychology, 70(3), 461–475. doi:http://dx.doi.org/10.1037/0022-3514.70.3.461

Feuerriegel, S., & Proellochs, N. (2019). Retrieved from https://cran.r-
project.org/web/packages/SentimentAnalysis/vignettes/SentimentAnalysis.html

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., & Zander,
C. (2008). Debugging: Finding, fixing and flailing, a multi-institutional study of novice
debuggers. Computer Science Education, 18(2), 93–116.
doi:10.1080/08993400802114508

Giesbers, B., Rienties, B., Tempelaar, D., & Gijselaers, W. (2013). Investigating the relations
between motivation, tool use, participation, and performance in an e-learning course
using web-videoconferencing. Computers in Human Behavior, 29, 285–292.
doi:10.1016/j.chb.2012.09.005

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field.
Educational Researcher, 42(1), 38–43. doi:10.3102/0013189X12463051

Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem-solving
learning environments. New York, NY, USA: Routledge.

K-12 Computer Science Framework Steering Committee. (2016). K–12 computer science
framework. Retrieved from http://www.k12cs.org

Kim, M., & Hannafin, M. (2011). Scaffolding 6th graders’ problem solving in technology-
enhanced science classrooms: A qualitative case study. Instructional Science, 39, 255–
282. doi:10.1007/s11251-010-9127-4

Lehtinen, E., Vauras, M., Salonen, P., Olkinuora, E., & Kinnunen, R. (1995). Long-term
development of learning activity: Motivational, cognitive, and social interaction.
Educational Psychologist, 30, 21–35. doi:10.1207/s15326985ep3001_3

Linnenbrink-Garcia, L., Middleton, M., Ciani, K., Easter, M., O’Keefe, P., & Zusho, A. (2012).
The strength of the relation between performance-approach and performance-avoidance
goal orientations: Theoretical, methodological, and instructional implications.
Educational Psychologist, 47, 281–301. doi:10.1080/00461520.2012.722515

Little, R. J. (2006). Calibrated Bayes: A Bayes/frequentist roadmap. American Statistician, 60,
213–223. doi:10.1198/000313006X117837

McNeish, D. M. (2017). Challenging conventional wisdom for multivariate statistical models
with small samples. Review of Educational Research, 0034654317727727.
doi:10.3102/0034654317727727

Pintrich, P. R. (2000). Multiple goals, multiple pathways: The role of goal orientation in learning
and achievement. Journal of Educational Psychology, 92, 544–555. doi:10.1037/0022-
0663.92.3.544

Reiser, B. (2004). Scaffolding complex learning: The mechanisms of structuring and
problematizing student work. Journal of the Learning Sciences, 13, 273–304.
doi:10.1207/s15327809jls1303_2

Predictors debugging quality Page 10 of 18

Saye, J., & Brush, T. (2002). Scaffolding critical reasoning about history and social issues in
multimedia-supported learning environments. Educational Technology Research and
Development, 50(3), 77–96. doi:10.1007/BF02505026

Smith, A. F. M., & Gelfand, A. E. (1992). Bayesian statistics without tears: A sampling-
resampling perspective. The American Statistician, 46(2), 84–88. doi:10.2307/2684170

Thoman, D. B., Smith, J. L., Brown, E. R., Chase, J., & Lee, J. Y. K. (2013). Beyond
performance: A motivational experiences model of stereotype threat. Educational
Psychology Review, 25(2), 211–243. doi:10.1007/s10648-013-9219-1

Umaschi, M., & Ettinger, A. B. (2012). Programming robots in kindergarten to express identity:
An ethnographic analysis. In B. S. Barker, G. Nugent, N. Grandgenett, & V. I.
Adamchuk, Robots in K-12 education a new technology for learning (pp. 168–184).
Information Science Reference.

van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction:
A decade of research. Educational Psychology Review, 22, 271–296.
doi:10.1007/s10648-010-9127-6

Vessey, I. (1985). Expertise in debugging computer systems: A process analysis. International
Journal of Man-Machine Studies, 23(5), 459–494. doi:10.1016/S0020-7373(85)80054-7

Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of
Child Psychology and Psychiatry, 17, 89–100. doi:10.1111/j.1469-7610.1976.tb00381.x

Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational thinking
in elementary and secondary teacher education. ACM Transactions on Computing
Education, 14(1).

Predictors debugging quality Page 11 of 18

Table 1. Debugging process quality rubric.

Debugging
processes

Debugging
subprocesses 1 2 3 4

Identifying the
bug

Reviewing the
program (code)

Did not review
the code (no
listing of the
blocks)

 Reviewed the
code but the list
of blocks is
incomplete

Reviewed the
code and the list
of blocks is
complete

Running the
program to
evaluate the
output

Did not run the
program

 Ran the
program

Describing the
discrepancy
between
program goal
and program
output

Did not describe
the discrepancy
between
program goal
and program
output

Described the
discrepancy
between
program goal
and program
output but
incorrectly

Described the
discrepancy
between
program goal
and program
output correctly,
but in a vague
manner

Described the
discrepancy
between
program goal
and program
output correctly
and clearly

Generating a
hypothesis for a
bug causing the
discrepancy

Did not generate
a hypothesis

Generated a
hypothesis that
was unrelated to
the discrepancy

Generated a
hypothesis that
was partially
related to the
discrepancy

Generated a
hypothesis that
was fully related
to the
discrepancy

Locating the
bug

Reviewing the
structure of the
program to
investigate the
probable
location of the
bug

No attempt to
locate the bug

Line-by-line
review of the
program was
mentioned
without talking
about the
structure of the
program

Chunk-by-
chunk review of
the program was
mentioned
without paying
attention to the
structure of the
program

The structure of
the program was
mentioned when
reporting the
review of the
program

Using cues
while examining
the program

No cue was
mentioned

Cues were
mentioned but
they were
unrelated to the
bug

Cues were
mentioned but
they were
partially related
to the bug

Cues were
mentioned and
they were
related to the
bug

Locating the
bug

No attempt to
locate the bug

Attempted but
failed to locate
the bug

The bug was
partially
located; (e.g.,
succeeded in
locating the
block where the
bug was but
failed to locate
the exact code
in the block
causing the
error)

The bug was
correctly located

Fixing the bug Examining
program goal to
determine how
to fix the bug

Did not mention
the program
goal

NA NA Mentioned
program goal

Predictors debugging quality Page 12 of 18

Revising the
program

No attempt to
revise the
program

Revised the
program
incorrectly

NA Revised the
program
correctly

Reevaluating
the program
after revision

No attempt to
reevaluate

Failed numerous
trial-and-error
attempts

Success after
numerous trial-
and-error
attempts

Success without
trial-and-error
attempt

Concluding The bug was not
fixed

The bug was
fixed but not in
a structurally
correct manner
but the desired
output was
produced

The bug was
fixed in a
structurally
correct manner
but without the
desired output

The bug was
fixed in a
structurally
correct manner
with the desired
output

Table 2. Debugging quality.

 0 3 5 7 10 Score
deduction

Bug A
Failed to find
the buggy
block

(a) Found the
buggy block
but not the
exact
location
requiring
change(s) in
value and/or
sequence and
(b) failed to
fix

(a) Found the
buggy block
and the exact
location
requiring
change(s) in
value and/or
sequence but
(b) failed to
fix

(a) Found the
buggy block
and the exact
location
requiring
change(s) in
value and/or
sequence but
(b) fixed the
bug only
partially

Fixed the bug
completely

Score
deduction
two points
deduction (-2)
for each

unnecessary
code change*

Bug B Failed to find
the bug block

(a) Found the
buggy block
but not the
exact
location
requiring
change(s) in
value and/or
sequence and
(b) failed to
fix

(a) Found the
buggy block
and the exact
location
requiring
change(s) in
value and/or
sequence but
(b) failed to
fix

(a) Found the
buggy block
and the exact
location
requiring
change(s) in
value and/or
sequence but
(b) fixed the
bug only
partially

Fixed the bug
completely

Table 3. Bayesian multiple regression model

Coefficients Estimate Lower limit
95% credible
interval

Upper limit
95% credible
interval

Naïve
standard
error

(Intercept) -61.445 -94.293 -27.68 0.167

Predictors debugging quality Page 13 of 18

Debugging
process total
score

0.554 0.369 0.738 0.001

English domain
identification

0.395 -0.05 0.828 0.002

Performance
approach goals

0.588 0.172 1.009 0.002

Sentiment
analysis

-0.554 -1.023 -0.077 0.002

Note: MCMC iterations = 10,000

Figure 1. Trace plots.

Predictors debugging quality Page 14 of 18

0 2000 4000 6000 8000 10000

−6
3

−6
2

−6
1

−6
0

−5
9

−5
8

−5
7

Trace

Iteration Number

M
od

el
 In

te
rc

ep
t

Histogram

Model Intercept

Fr
eq

ue
nc

y

−64 −62 −60 −58
0

50
0

10
00

15
00

20
00

25
00

30
00

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Autocorrelation

−64 −62 −60 −58

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Density

N = 10000 Bandwidth = 0.08301

D
en

si
ty

Predictors debugging quality Page 15 of 18

0 2000 4000 6000 8000 10000

0.
54

0
0.

54
5

0.
55

0
0.

55
5

0.
56

0
0.

56
5

Trace

Iteration Number

D
eb

ug
gi

ng
 P

ro
ce

ss
 T

ot
al

 S
co

re

Histogram

Debugging Process Total Score

Fr
eq

ue
nc

y

0.540 0.545 0.550 0.555 0.560 0.565
0

50
0

10
00

15
00

20
00

25
00

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Autocorrelation

0.540 0.545 0.550 0.555 0.560 0.565

0
20

40
60

80
10

0
12

0

Density

N = 10000 Bandwidth = 0.0004613

D
en

si
ty

Predictors debugging quality Page 16 of 18

0 2000 4000 6000 8000 10000

0.
30

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

Trace

Iteration Number

En
gl

is
h

Sc
or

e

Histogram

English Score

Fr
eq

ue
nc

y

0.30 0.32 0.34 0.36 0.38 0.40 0.42
0

10
00

20
00

30
00

40
00

50
00

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Autocorrelation

0.30 0.32 0.34 0.36 0.38 0.40 0.42

0
10

20
30

40
50

Density

N = 10000 Bandwidth = 0.001094

D
en

si
ty

Predictors debugging quality Page 17 of 18

0 2000 4000 6000 8000 10000

0.
56

0.
57

0.
58

0.
59

0.
60

0.
61

Trace

Iteration Number

Pe
rfo

rm
an

ce
 A

pp
ro

ch
 G

oa
ls

Histogram

Performance Approch Goals

Fr
eq

ue
nc

y

0.56 0.57 0.58 0.59 0.60 0.61 0.62
0

50
0

10
00

15
00

20
00

25
00

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Autocorrelation

0.56 0.57 0.58 0.59 0.60 0.61 0.62

0
10

20
30

40
50

Density

N = 10000 Bandwidth = 0.001063

D
en

si
ty

Predictors debugging quality Page 18 of 18

0 2000 4000 6000 8000 10000

−0
.6

6
−0

.6
4

−0
.6

2
−0

.6
0

−0
.5

8
−0

.5
6

−0
.5

4
−0

.5
2

Trace

Iteration Number

Se
nt

im
en

t A
na

ly
si

s

Histogram

Sentiment Analysis

Fr
eq

ue
nc

y

−0.66 −0.62 −0.58 −0.54
0

10
00

20
00

30
00

40
00

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Autocorrelation

−0.66 −0.62 −0.58 −0.54

0
10

20
30

40

Density

N = 10000 Bandwidth = 0.001208

D
en

si
ty

