
A study of predictors for debugging quality among preservice, early childhood teachers 

 

Brian R. Belland, ChanMin Kim, Eunseo Lee, Afaf Baabdullah, & Anna Y. Zhang 

The Pennsylvania State University 

Objectives 

In this study, we provided debugging scaffolding to preservice, early childhood teachers 

as they engaged in debugging, and explored predictors of debugging quality from among the 

following data: motivation data, process data, and the number of words in and positive/negative 

valence of what learners typed in response to scaffolding prompts. 

Theoretical Framework 

Recently, there has been a push for the inclusion of computer science throughout the K-

12 curriculum (Grover & Pea, 2013; K-12 Computer Science Framework Steering Committee, 

2016). While there has been progress, there is a need to promote more equitable participation in 

computer science education and to improve teacher preparation (Blikstein, 2018). A learner 

population that is often overlooked when it comes to computer science education is that of early 

childhood learners, including infants, toddlers, preschoolers, kindergartners, and early 

elementary learners. While much work has addressed how to prepare secondary and primary 

teachers to teach computer science (Yadav, Mayfield, Zhou, Hambrusch, & Korb, 2014), there is 

a dearth of literature addressing how to prepare early childhood teachers to teach computer 

science. Within early childhood education, computer science is often taught by inviting children 

to control robots using block-based programming (Bers, 2010; Umaschi & Ettinger, 2012). 

Block-based programming is more intuitive and simpler to implement than text-based 

programming (e.g., python, C#), as it involves dragging and dropping blocks of code that are 
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often represented by pictures. Still, as with text-based programming, bugs can and do occur, and 

resolving such can be challenging. Thus, a key challenge in preparing early childhood teachers to 

teach computer science is helping them learn to debug. 

Debugging is a form of ill-structured problem solving (Fitzgerald et al., 2008; Jonassen, 

2011; Vessey, 1985). Ill-structured problem solving ability can be enhanced by providing 

learners with scaffolding as they engage in problem solving (Jonassen, 2011; Reiser, 2004; 

Wood, Bruner, & Ross, 1976). Scaffolding can be defined as cognitive and motivational support 

that enlists student interest in problem solving, models expert processes, asks pertinent questions, 

provides feedback, highlights important problem features, and helps student control frustration 

(van de Pol, Volman, & Beishuizen, 2010; Wood et al., 1976). One way it can do so is by 

simplifying the problem elements that are not essential to learning the problem solving skill, but 

also problematizing those elements that are (Reiser, 2004). Scaffolding often takes the form of 

question prompts to which student need to type an answer, and then build on their answers when 

responding to further prompts.  

Recent meta-analyses have shown that ill-structured problem-solving ability is enhanced 

more when learners receive scaffolding than when they receive lecture (Authors, 2017a, 2017b). 

Still, there can be variations in scaffolding’s effectiveness based on such factors as the level with 

which students engage with scaffolding (Kim & Hannafin, 2011; Saye & Brush, 2002), 

achievement goal orientation (Duffy & Azevedo, 2015; Giesbers, Rienties, Tempelaar, & 

Gijselaers, 2013), and student motivation to engage with the subject and the problem being 

addressed (Giesbers et al., 2013). One can measure the level with which students engage with 

scaffolding by counting the number of words students type in response to scaffold prompts. 

Achievement goal orientation refers to what an individual wishes to accomplish within a learning 
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task: mastery of the content and skills (mastery goal orientation), demonstration of competence, 

especially in comparison with others (performance-approach), and avoidance of challenging 

tasks to avoid appearing incompetent (performance-avoid) (Covington, 2000; Lehtinen, Vauras, 

Salonen, Olkinuora, & Kinnunen, 1995; Linnenbrink-Garcia et al., 2012; Pintrich, 2000). 

Motivation to engage with a subject and problem being addressed can also stem from one’s 

domain identification, or sense of belonging and strong self-efficacy in a particular domain (e.g., 

English or science) (Thoman, Smith, Brown, Chase, & Lee, 2013).  

Research Question 

Do goal orientation, perceptions of STEM+CS, domain identification, debugging process 

quality, and the number of words in and positive/negative valence of what learners typed in 

response to scaffold prompts predict debugging quality? 

Method 

Note: Full elaboration of method details is not possible due to space constraints. 

Setting and Participants 

The study took place during three sessions of 2.5 hours each of a class on play in the 

early childhood curriculum in a large university in the eastern USA. Nineteen students (all 

female) consented to participate. Eighteen were early childhood education majors (4 seniors, 10 

juniors, and 4 sophomores) who had all completed at least some field experience at the 

infant/toddler, preschool, kindergarten, or early elementary levels. The other was a non-major 

who has not completed any field experience. Two students were African American, while the 

rest were Caucasian. 

The class covered play-based activities as educative processes in the early childhood 

classroom. The foundational assumption was that play is ideally child-directed rather than 



Predictors debugging quality Page 4 of 18 

teacher-directed. Accordingly, students were encouraged to think of ways to integrate robots 

within early childhood instruction, but to leave room for children to direct their own play with 

robots.  

Materials 

Ozobot Evos were used, and they were controlled using Ozoblockly, a block-based 

coding program. 

Scaffolding design was informed by clustering an expanded coding dataset from a meta-

analysis (reference removed for blind review) in which we identified scaffolding features of 

clusters in which scaffolding was used at the university or graduate level and in computer 

science or engineering field, and for which effect size was medium or high. We used the results 

of this analysis, in addition to a literature review on learning debugging, to protype the 

scaffolding. The scaffolding invited students to identify the blocks used within the buggy code, 

the order in which the blocks were used, and to create and test hypotheses about the nature of the 

bug and how to can be fixed.  

Data Collection 

Presurvey. The presurvey was designed to assess participants’:  

• Perceptions of  

o science, technology, engineering, mathematics, computer science, and 

English 

o STEM and computer science careers 

• Mathematics and English self-efficacy 

• Goal orientation 
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Debugging process quality. The debugging process rubric assessed the quality with 

which each team (a) identified the bug, (b) located the bug, and (c) fixed the bug (see Table 1). 

Two raters applied the rubric independently to what each group articulated in response to 

scaffold prompts while completing two debugging challenges. Interrater reliability before 

coming to consensus was 0.954, based on the intraclass correlation coefficient metric. The raters 

met to come to consensus on scores, and consensus scores were used in the analysis. 

Debugging quality. The debugging quality rubric assessed the extent to which 

participants found the location of the bug and fixed it (see Table 2). Two raters applied the rubric 

independently to the final code participants created at the end of the two debugging challenges. 

Interrater reliability before coming to consensus was 0.878, as measured by the intraclass 

correlation coefficient. The raters met to come to consensus on scores, and consensus scores 

were used in the analysis. 

Sentiment analysis. The SentimentAnalysis package for r (Feuerriegel & Proellochs, 

2019) was used to determine the degree to which what participants wrote in response to 

debugging scaffolding and when reflecting on the debugging process was positive or negative. 

Possible scores ranged from -1 to 1. 

Analysis 

We used a Bayesian multiple linear regression approach to predict debugging quality 

because, with small samples, results from frequentist statistical methods can often lack precision 

due to limitations in applying the central limit theorem (McNeish, 2017). In the Bayesian 

approach to statistics, one sets up a probability model through a prior distribution and then 

updates it using observed data to obtain the posterior distribution; the end result is a credible 

interval that represents a distribution of the parameter of interest (Little, 2006; Smith & Gelfand, 
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1992). This is because in the Bayesian approach, data is assumed to be fixed and the parameters 

are assumed to be random; to the contrary, in the frequentist approach (the most commonly used 

statistical approach in educational research), data is assumed to be random and parameters are 

assumed to be fixed (McNeish, 2017).  

First, we used Bayesian automatic stepwise model selection to determine the combination 

of predictor variables that led to the ideal model fit. We started with 12 predictors. Next, two 

predictors were removed due to collinearity problems. Next, we established a prior distribution 

of inverse gamma for sigma2 (variance) and uniform prior for Beta values. We then ran Markov 

Chain Monte Carlo Simulations (10,000 iterations) to determine the posterior distribution. 

Analysis was conducted using the Bayes.lm function in r. 

Results 

Convergence Diagnosis 

As can be seen in Figure 1, there was convergence and normality of the MCMC 

simulated samples. Furthermore, it indicates that there were no issues of autocorrelation. 

Do goal orientation, perceptions of STEM+CS, domain identification, debugging process 

quality, and the number of words in and positive/negative valence of what learners typed in 

response to scaffold prompts predict debugging quality? 

The final Bayesian linear regression model (See Table 3) was: 

Debugging quality = 0.554 * debugging process total score + 0.395 * English domain 

identification score + 0.588 * Performance approach goal orientation – 0.554 * sentiment 

analysis total score – 61.441.  

Bayesian regression indicates that the variables included in this model predict debugging 

quality. The Beta for debugging process total score was 0.554. This means that for each increase 
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of one point in debugging process total score, one can expect an increase in debugging quality 

score of 0.554 points. The Beta for English domain identification was 0.395. This means for each 

increase of one point in English domain identification, one can expect an increase of 0.394 points 

in debugging quality score (though cation is warranted as the credible interval for this Beta 

includes zero). The Beta for performance approach goals was 0.588. This means that for each 

one point move in the direction of performance approach goals, one can expect an increase in 

debugging quality score of 0.588 points. The Beta for sentiment analysis was -0.554. This means 

that for each increase in sentiment analysis of 1 point, one can expect a decrease in debugging 

quality of 0.554 points.  

Scientific Significance 

Due to space limitations, discussion of results is abbreviated, but will be expanded in the 

full paper. 

One of the most intriguing results in this study was that sentiment analysis was associated 

with a sizable negative Beta. This in essence means that, as what people write in response to 

scaffold prompts demonstrates a more negative valence, debugging quality improves. It is 

important to note that sentiment analysis is performed by a computer with no human 

intervention, and that when the computer deems writing to be more negatively valenced, that 

does not necessarily mean that the author is writing negatively worded posts such as “I hate this 

scaffolding.” Rather, a response to scaffold prompt of “I did X, but I should have done Y,” 

would likely be interpreted as negatively valenced. However, that is precisely the type of 

response that would lead to better debugging, because it evidences critical reflection on action, 

and thoughts on how to improve.  
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The second most intriguing result was that English domain identification was a positive 

predictor of debugging quality. The literature shows that often students identify with a particular 

domain to the exclusion of other domains, and this can lead to poor performance in the latter 

domains (Thoman et al., 2013). 

That performance approach goals are positive and sizable predictors of debugging quality 

is not surprising given the literature that shows that such goals can be quite adaptive (Elliot & 

Harackiewicz, 1996). And the finding that debugging process quality predicts debugging quality 

is to be expected. Still, it is helpful to determine the Betas for the predictors, as this can lead to 

knowledge of how to optimally support preservice teachers learning to debug. 

Limitations 

As is often the case in educational research, sample size was small. This can lead to 

erroneous conclusions. Using a Bayesian approach can partially assuage such concerns, but non-

informative priors can become informative with small sample size, which can be problematic 

(McNeish, 2017). Still, using a Bayesian approach allows one to make probabilistic statements 

about population parameters, which can enhance generative potential. 
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Table 1. Debugging process quality rubric. 

Debugging 
processes 

Debugging 
subprocesses 1 2 3 4 

Identifying the 
bug 
 

Reviewing the 
program (code) 
 

Did not review 
the code (no 
listing of the 
blocks)  

 Reviewed the 
code but the list 
of blocks is 
incomplete 

Reviewed the 
code and the list 
of blocks is 
complete  

Running the 
program to 
evaluate the 
output  

Did not run the 
program  

   Ran the 
program  

Describing the 
discrepancy 
between 
program goal 
and program 
output 

Did not describe 
the discrepancy 
between 
program goal 
and program 
output 

Described the 
discrepancy 
between 
program goal 
and program 
output but 
incorrectly  
 

Described the 
discrepancy 
between 
program goal 
and program 
output correctly, 
but in a vague 
manner 

Described the 
discrepancy 
between 
program goal 
and program 
output correctly 
and clearly  

Generating a 
hypothesis for a 
bug causing the 
discrepancy  

Did not generate 
a hypothesis 

Generated a 
hypothesis that 
was unrelated to 
the discrepancy 

Generated a 
hypothesis that 
was partially 
related to the 
discrepancy 

Generated a 
hypothesis that 
was fully related 
to the 
discrepancy 

Locating the 
bug 

Reviewing the 
structure of the 
program to 
investigate the 
probable 
location of the 
bug  

No attempt to 
locate the bug 

Line-by-line 
review of the 
program was 
mentioned 
without talking 
about the 
structure of the 
program  

Chunk-by-
chunk review of 
the program was 
mentioned  
without paying 
attention to the 
structure of the 
program  

The structure of 
the program was 
mentioned when 
reporting the 
review of the 
program 

Using cues 
while examining 
the program 

No cue was 
mentioned 

Cues were 
mentioned but 
they were 
unrelated to the 
bug 

Cues were 
mentioned but 
they were 
partially related 
to the bug 

Cues were 
mentioned and 
they were 
related to the 
bug 

Locating the 
bug 

No attempt to 
locate the bug 

Attempted but 
failed to locate 
the bug 
 

The bug was 
partially 
located; (e.g., 
succeeded in 
locating the 
block where the 
bug was but 
failed to locate 
the exact code 
in the block 
causing the 
error) 

The bug was 
correctly located 

Fixing the bug Examining 
program goal to 
determine how 
to fix the bug  

Did not mention 
the program 
goal 

NA NA Mentioned 
program goal 
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Revising the 
program 

No attempt to 
revise the 
program 

Revised the 
program 
incorrectly  

NA Revised the 
program 
correctly  

Reevaluating 
the program 
after revision 

 

No attempt to 
reevaluate  

Failed numerous 
trial-and-error 
attempts 

Success after 
numerous trial-
and-error 
attempts 

Success without 
trial-and-error 
attempt 

Concluding  The bug was not 
fixed 

The bug was 
fixed but not in 
a structurally 
correct manner 
but the desired 
output was 
produced 

The bug was 
fixed in a 
structurally 
correct manner 
but without the 
desired output  

The bug was 
fixed in a 
structurally 
correct manner 
with the desired 
output 

 

Table 2. Debugging quality.  

 0 3 5 7 10 Score 
deduction 

Bug A 
Failed to find 
the buggy 
block 

(a) Found the 
buggy block 
but not the 
exact 
location 
requiring 
change(s) in 
value and/or 
sequence and 
(b) failed to 
fix 

(a) Found the 
buggy block 
and the exact 
location 
requiring 
change(s) in 
value and/or 
sequence but 
(b) failed to 
fix 

(a) Found the 
buggy block 
and the exact 
location 
requiring 
change(s) in 
value and/or 
sequence but 
(b) fixed the 
bug only 
partially 

Fixed the bug 
completely 

Score 
deduction 
two points 
deduction (-2) 
for each 

unnecessary 
code change* 

Bug B Failed to find 
the bug block 

(a) Found the 
buggy block 
but not the 
exact 
location 
requiring 
change(s) in 
value and/or 
sequence and 
(b) failed to 
fix 

(a) Found the 
buggy block 
and the exact 
location 
requiring 
change(s) in 
value and/or 
sequence but 
(b) failed to 
fix  

(a) Found the 
buggy block 
and the exact 
location 
requiring 
change(s) in 
value and/or 
sequence but 
(b) fixed the 
bug only 
partially 

Fixed the bug 
completely 

 

Table 3. Bayesian multiple regression model 

Coefficients Estimate Lower limit 
95% credible 
interval 

Upper limit 
95% credible 
interval 

Naïve 
standard 
error 

(Intercept) -61.445 -94.293 -27.68 0.167 
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Debugging 
process total 
score 

0.554 0.369 0.738 0.001 

English domain 
identification 

0.395 -0.05 0.828 0.002 

Performance 
approach goals 

0.588 0.172 1.009 0.002 

Sentiment 
analysis 

-0.554 -1.023 -0.077 0.002 

Note: MCMC iterations = 10,000 

 

Figure 1. Trace plots.  
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