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As calls increase that all students learn computer science (Grover & Pea, 2013; K-12 

Computer Science Framework Steering Committee, 2016; Lye & Koh, 2014), it is critical to 

investigate how to prepare teachers to succeed in this environment. Simply telling teachers to 

teach computer science is not likely to be effective if they do not already have the necessary 

content knowledge. In addition, doing so would impinge on teachers’ autonomy, which in turn 

could lead to low motivation (Deci & Ryan, 2000). Rather, it is important to help teachers learn 

computer science content in an effective, problem-centered manner (Lye & Koh, 2014). This, in 

turn, can help model effective methods of teaching computer science. But it is not enough to 

simply give authentic problems to students. To the contrary, one needs to provide support for 

problem solving. This can be done with scaffolding, defined as dynamic support provided by 

teachers, computer-based tools, or peers, that helps students perform and gain skill at performing 

problem solving tasks (Wood et al. 1976). In particular, when students are challenged with ill-

structured problems with no clear solutions or solution path, scaffolding can address students’ 

learning and performance needs based on conceptual, metacognitive, strategic, and motivational 

perspectives (Hannafin et al., 1999). Scaffolding has been integrated into instruction in a wide 

range of educational levels (e.g., K-12, university, graduate, and adult) and disciplines (e.g., 

science, technology, engineering, mathematics, social studies) (Duffy & Azevedo, 2015; Poitras 

& Lajoie, 2014). This paper focuses on identifying the most effective combinations of 

scaffolding features and contexts of use within computer science education at the college and 

graduate school levels. This is done through clustering an expansion of a scaffolding meta-

analysis dataset (Belland, Walker, Kim, et al., 2017). 

Scaffolding 
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Meta-analyses of between-subjects and within-subjects effects indicated that students 

who use scaffolding in the context of problem solving outperform students who receive lecture 

(Belland et al., 2015; Belland, Walker, & Kim, 2017; Belland, Walker, Kim, et al., 2017). While 

students from all education populations and education levels benefit from scaffolding, there are 

significant differences in effect sizes resulting from scaffolding across education levels and 

learner populations (Belland, Walker, & Kim, 2017; Belland, Walker, Kim, et al., 2017). This 

suggests that, within published research on scaffolding, scaffolding features are not optimized to 

individual student characteristics. Furthermore, scaffolding features often are used in different 

combinations, and such different combinations lead to different effects in different fields. Prior 

work focused on calibrating classifiers to accurately predict expected effect size of scaffolding 

schemes for students (Kim et al., 2017). This paper extends the line of research by exploring and 

describing possible relationships among student groups with different scaffolding effect sizes 

and scaffolding characteristics variables using two-step clustering. Because scaffolding feature 

combinations and the context in which they are used, and the efficiacy of such, often vary 

according to discipline and education level, in this paper, we focus on clustering scaffolding 

research in the technology and engineering fields at the college and graduate school levels. 

Literature Review 

Problem-centered Instruction and Scaffolding 

With the rise of automation and the explosion of information access, the workforce of the 

future requires workers who can think critically about information and address complex 

problems (National Academies of Sciences, Engineering, and Medicine, 2017). A promising way 

to help students gain these skills is through engaging them in ill-structured problem solving with 

the assistance of scaffolding. In its original form, scaffolding was delivered one-on-one by a 
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teacher who dynamically assessed the student's performance characteristics (Wood et al., 1976). 

Computer-based scaffolding can help overcome the issue of high student-teacher ratios in K-12 

contexts, which precludes teachers from working one-on-one with the same student for an entire 

class period (Hawkins & Pea, 1987; Saye & Brush, 2002). Computer-based scaffolding is highly 

effective, with students who address authentic problems while supported by computer-based 

scaffolding performing at least 0.4 standard deviations better than students who receive lecture 

across concept, principles, and application level assessments (Belland, Walker, Kim, et al., 

2017). 

One way to conceptualize scaffolding is as a tool that aids current performance and 

enables skill gain by removing complexity that is not, and highlights complexity that is, central 

to learning the target skill (Reiser, 2004). Scaffolding does this through a combination of 

cognitive and motivational support (Belland et al., 2013). Scaffolding can be seen as taking three 

forms - conceptual (help with things to consider while solving the problem), strategic 

(bootstrapping an overall strategy for solving the problem, and metacognitive (helping students 

question their own understanding and processes) (Hannafin et al., 1999). 

Variation in Scaffolding Effectiveness 

While highly effective as a whole, some learner populations benefit more from computer-

based scaffolding than others (Belland, Walker, & Kim, 2017; Belland, Walker, Kim, et al., 

2017). For example, the within-subjects effects resulting from scaffolding have the highest 

probability of the best among college- and graduate-level learners, and among elementary special 

education students (Belland, Walker, & Kim, 2017). The between-subjects effects resulting from 

scaffolding are stronger among traditional students than among lower-achieving students, and 
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stronger among adult learners than among elementary, middle, secondary, college, and graduate-

level learners (Belland, Walker, Kim, et al., 2017).  

Possible reasons for variation in scaffolding effectiveness. As Wood et al. (1976) 

noted, scaffolding needs to be “generated by the interaction of the tutor’s two theories” – namely 

“a theory of the task or problem and how it may be completed” and “a theory of the performance 

characteristics of [the] tutee” (p. 97). But computer-based scaffolding is most often not generated 

according to an interaction of a theory of the task and a theory of the tutee (Pea, 2004; 

Puntambekar & Hübscher, 2005). Meta-analyses indicate that such limited customization does 

not improve learning (Belland et al., 2015; Belland, Walker, Kim, et al., 2017). Poor 

performance of computer-based scaffolding customization is in part due to the fact that the logic 

of all existing methods is centered in strict pattern matching. That is, within many existing 

computer-based scaffolding systems, when students perform a certain sequence of actions or 

respond to a closed-ended quiz in a particular way, the actions are compared to a set of actions 

associated with adding or fading scaffolding and then the system triggers the fading or adding of 

scaffolding based on the degree of whether the actions match exactly or not. Other computer-

based scaffolding systems set scaffolding to fade based on fixed time intervals or when students 

click a button that says that they do not need any more help. To develop a computer-based 

scaffolding system that goes beyond scaffolding customization on simple pattern matching, it is 

necessary to set up conditions by which scaffolding systems can produce output by matching 

patterns in actions of current users with patterns of data accumulated over time (Chen et al., 

2016; Sun, 2013; Theodoridis, 2015).  

Another possible reason is that scaffolding design is often not driven by systematic 

synthesis of research results. This may be because, until recently, there were few systematic 
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syntheses of the scaffolding literature. Rather, there were many conceptual frameworks meant to 

guide scaffolding design, but these often reflected the theoretical positions of the authors. 

Scaffolding is underpinned by a variety of theories, including cultural historical activity theory 

(Leont’ev, 1974; Luria, 1976), ACT-R (Anderson et al., 1997), and knowledge integration (Linn 

et al., 2003). Scaffolding design is often informed by the premises of one of the theories or a 

particular line of research, rather than driven by systematic empirical evidence gathered from the 

overall scaffolding literature.  

Another reason is that scaffolding form, and the context in which it is used, often varies 

considerably. For example, scaffolding is used in the context of many different problem-centered 

instructional models, including problem-based learning, project-based learning, design-based 

learning, modeling/visualization, and inquiry-based learning.  

Cluster Analysis and Scaffolding Customization 

While scaffolding is highly effective in general, the impact often varies in magnitude 

across education levels, disciplines, and types of context in which scaffolding is used. For 

example, previous meta-analysis results showed that effectiveness was stronger among adult 

learners than among learners at other education levels and when used in project-based learning 

than when used in other types of instructional approaches (Belland, Walker, Kim, et al., 2017). 

Inconsistency in scaffolding effectiveness results in part from the poor performance of 

computer-based scaffolding customization. Within current scaffolding systems, dynamic 

assessment is limited in that students’ performance is assessed by simply matching their response 

pattern with the pre-set standards (Puntambekar & Hübscher, 2005; Reiser, 2004). Scaffolding 

customization is also restricted because it is conducted by simply adjusting scaffolding intensity 

or frequency in a linear manner (Koedinger & Aleven, 2007; VanLehn, 2011). For more 
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effective scaffolding customization, there is a need to explore conditions, based on accumulated 

empirical data, by which the systems can provide optimal scaffolding solutions. 

Cluster analysis helps to identify the most effective combinations of scaffolding 

characteristics for target populations. The clustering algorithm can determine the natural 

groupings of scaffolding features out of accumulated empirical data that had actual effects on 

improving learning (Aldenderfer & Blashfield, 1984). This clustering solution can help 

computer-based scaffolding systems to navigate best scaffolding strategies among different 

combinations of scaffolding characteristics based on not only learner’s simple response patterns 

but also the tendency of co-occurrence of other attributes such as education levels, context of 

use, and their associated effect size (Baker & Inventado, 2014).  

Research Questions 

1. What combinations of scaffolding characteristics for problem-centered learning lead to 

medium and large effect sizes among college and graduate-level learners in the 

technology and engineering disciplines? 

2. How are the combinations of scaffolding characteristics related to their context of use? 

Method 

Data Source 

 The dataset used in this study is from a meta-analysis that synthesized the results of 144 

studies on the effects of computer-based scaffolding on students’ cognitive learning outcomes in 

STEM education (Belland, Walker, Kim, et al., 2017). The 333 coded outcomes were expanded 

to 13,638 cases, with each case representing one participant from each study, and each case 

being assigned the mean effect size for its study. 
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The original dataset consisted of four coding categories as moderators including 

scaffolding characteristics, study characteristics, student characteristics, and assessment 

characteristics and their sub-categories. For this study, the Hedge’s g effect size was transformed 

into a categorical variable with four levels: “large” (0.8 or greater), “medium” (0.5 to 0.8), 

“small” (0.2 to 0.5), and “no effect” (less than 0.2) (Cohen, 1969). The initial dataset included 

studies ranging from elementary-adult levels, as well as in the context of science, technology, 

engineering, and mathematics education. Since we were interested in the most effective 

combinations of scaffolding features in college and graduate level education in the technology 

and engineering disciplines, we downselected data accordingly. Specifically, we selected 

‘college’ and ‘graduate’ sub-categories data including 7,294 cases. Then, we used data from the 

studies whose results showed at least medium effect size in the ‘technology’ and ‘engineering’ 

disciplines, resulting in 1,726 cases in the final dataset (see Table 1). 

Analysis 

We explored scaffolding clusters using two-step cluster analysis available in SPSS 24 to 

identify distinct groups of scaffolding attributes tailored to teacher learning of computer science 

at the undergradute and graduate levels. Two-step cluster analysis is a clustering procedure that 

combines the principles of hierarchical and partitioning methods. The algorithm first carries out a 

process similar to the k-means algorithm. Based on these results, a modified hierarchical 

agglomerative clustering procedure is conducted that combines the objects sequentially to form 

homogeneous clusters (Mooi & Sarstedt, 2011). This method is particularly useful when 

handling categorical or mixed scale variables and it allowed us to draw meaningful outcomes 

from our multivariate categorical data.  

Table 1. Variables used in cluster analysis 



9/29 
 
 

 

Categories Attributes Sub-categories 
Scaffolding 
Characteristics  
 

Scaffolding 
Intervention 

Conceptual, Metacognitive, Strategic, 
Motivation 

Scaffolding Intended  
Outcomes 

Higher-order Thinking Skills, Knowledge 
Integration, Enhance Motivation 

Scaffolding Strategy Specific, Generic 
Scaffolding Change Fading, Adding, Fading/Adding, No Change 
Scaffolding 
Schedule 

Performance-adapted, Fixed Time Interval, 
Self-selected, No Schedule 

 Education Level College, Graduate 
Study Characteristicss  Context of Use Project-based Learning, Problem-based 

Learning, Problem-solving, 
Modeling/Visualization, Project-based 
Learning, Learning by Design, Case-based 
Learning, Inquiry-based Learning 

 General Disciplines Technology, Engineering 
Assessment 
Characteristics 

Assessment Level Principles, Concept, Application 

Outcome  Effect Size Large, Medium 

Scaffolding characteristics variables were the main input variables used to find cluster 

solutions. In addition to that, we used ‘context of use’ variable to see what combinations of 

scaffolding characteristics are effective under which instructional contexts, including project-

based learning, inquiry-based learning, problem-based learning, etc.  

Last, we assessed the stability of the cluster solution by checking the replicability of a 

cluster solution across different samples from the same dataset. For this, we split the sample into 

two parts and performed the same cluster analysis method on both parts and checked if the 

solutions are similar in terms of the number and characteristics of the clusters.  

Results 

Model Fit 

Two-step cluster analysis in SPSS offers an overall goodness-of-fit measure of the cluster 

model called silhouette measure of cohesion and separation. It is based on average distances 
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between objects and can vary between -1 and +1, with the values of more than 0.50 indicating a 

good solution. Our clustering model showed a value of 0.62, which indicates good fit.  

Figure 1 shows each input variable’s importance in determining clusters. The importance 

of major scaffolding characteristics variables is evenly distributed, indicating this output is not 

biased in terms of predicting each cluster membership. 

 

Figure 1. Predictor importance 

Number of Clusters 

Two-step cluster analysis allows researchers to specify the number of clusters. We 

determined the optimal number of clusters based on the three criteria. First, outcomes needed to 

allow us to have enough combinations capturing subtle differences between segments. Next, the 

ratio of cluster sizes–the size of the largest cluster to the smallest cluster– needed to be less than 

three so that the smallest cluster can have enough representativeness in comparison with the 

largest one. Last, the stability of cluster outcomes where the cluster membership of individuals 

Least Important Most Important 
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does not change or only changes little when different clustering methods are used (Mooi & 

Sarstedt, 2011). The optimal number of clusters in our solution turned out to be four (see Figure 

2). This number of clusters prevented a few binary variables from acting as swamping variables 

and hindering drawing meaningful outcomes. Also, each of the four clusters demonstrated a 

stable distribution with sufficient sample size and the cluster membership of individuals changed 

little under the repetitive clustering procedure. 

 

Figure 2. Number of clusters and sizes 

Additionally, we also used two R packages - 'cluster' and 'klaR' - to validate our decision 

on the number of clusters and cluster outcomes. The 'cluster' package is used to calculate the 

dissimilarity matrix (Maechler et al., 2019) and 'klaR' is used to run the k-modes clustering 

algorithm (Roever et al., 2020). We also used the 'stats' (R: The R Stats Package, n.d.) and 

'RColorBrewer' (Neuwirth, 2014) packages for visualization via heatmaps and color effect 
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adjustment. The same eight categorical variables used in SPSS analysis (i.e., scaffolding change, 

scaffolding intended outcome, scaffolding intervention, scaffolding strategy, scaffolding 

schedule, context of use, assessment level, and effect size) were included in R analysis. 

Using the elbow method, we found the optimal number of clusters to be 8. Figure 3 

shows the change in total within-cluster variation as the number of clusters increases. Total 

within-cluster difference score indicates how similar observations are in a designated cluster. A 

low within-cluster difference indicates that the observations in a cluster share similar 

characteristics and result in a more compact cluster. When cluster number is equal to eight, the 

total within-cluster difference reaches the lowest point. K-modes algorithm assign each 

observation to a cluster based on the same criterion. 

 

Figure 3. Elbow Plot 

Even though eight clusters were able to catch subtle variations within the dataset better, 

it also made it complicated to interpret clustering outcomes and their relationships. To better 

understand the relationship between variables among different clusters and to get more 

meaningful implications in terms of scaffolding use, we tried to narrow down the numbers and 
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identify significant patterns out of eight clusters. By comparing and contrasting each clusters’ 

profile, we were able to identify four distinct cluster patterns in terms of the combination of 

variable dimensions within each cluster, which were similar results with the ones from SPSS 

analysis. So, while presenting and discussing the eight clustering outputs in detail in the next 

section, we were also able to combine clusters that had almost identical patterns but a small 

difference and compare and contrast subtle differences among them and draw out meaningful 

insights in terms of scaffolding use. 

Profile and Visulization of Cluster Outputs 

In this section, we profile and visualize eight cluster outputs from R analysis and 

compare with four cluster outputs from SPSS analysis to understand the relationships among 

variables that may affect the effectiveness of scaffolding. As shown in Figure 4, our cluster 

outputs reflect multi-dimensional characteristics of the clusters, showing relative distributions 

along the dimension of input variables. Specifically, eight cluster outputs are on the x-axis and 

eight different variables are presented on the y-axis of each heat map and each variable has 

different dimensions. Different shades of blue represent the different frequencies of observations, 

where the darker the color of the grid within the map, the more observations are in that 

dimension of the variable. 



14/29 
 
 

 

 

Figure 4. Heat map of Cluster Outputs 

Among the eight cluster outputs, clusters 4, 6, and 8 have very similar characteristics 

with the only difference being the composition of the assessment level variable (See Table 2). 

This set of clusters has the largest frequency of observation (950 out of 1726 observed cases 

(55%) and represent a relatively clearer cluster center and more distinct characteristics than other 

clusters. Adding strategic support based on students’ performance is predominant compared to 

other elements within each variable. Also, higher order thinking skills as a scaffold’s intended 

outcome and scaffold that is tailored to specific content (compared to general support) are the 

predominant elements of this group of clusters. So, in general, the profile of the clusters indicate 

that adding support in terms of students’ strategy use on the basis of their performance has at 

least medium size effects on improving their higher order thinking skills in problem-solving 

contexts. This result is matched with cluster 3 from the SPSS analysis results (Table 3). In terms 

of assessment level, both concept and principles level of assessment present in this group of 

clusters, indicating that implementing this type of scaffolding can have a significant effect either 
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Table 2. Profile of cluster outputs from R analysis 

scaffolding change 1 (N=71) 2(N=182) 3(N=277) 4(N=34) 5(N=33) 6(N=179) 7(N=213) 8(N=737) 

None 71(100%) 78(43%) 256(92%) 0(0%) 33(100%) 0(0%) 95(45%) 20(3%) 

Adding 0(0%) 0(0%) 0(0%) 34(100%) 0(0%) 179(100%) 16(8%) 717(97%) 

Fading 0(0%) 26(41%) 21(8%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

Fading/adding 0(0%) 78(66%) 0(0%) 0(0%) 0(0%) 0(0%) 102(48%) 0(0%) 

intended outcome 1 (N=71) 2(N=182) 3(N=277) 4(N=34) 5(N=33) 6(N=179) 7(N=213) 8(N=737) 

knowledge integration 0(0%) 64(35%) 21(8%) 0(0%) 0(0% 0(0%) 20(9%) 0(0%) 

higherorderskills 71(100%) 118(65%) 256(92%) 34(100%) 33(100%) 179(100%) 193(91%) 737(100%) 

intervention 1 (N=71) 2(N=182) 3(N=277) 4(N=34) 5(N=33) 6(N=179) 7(N=213) 8(N=737) 

conceptual(content) 65(92%) 182(100%) 277(100%) 0(0%) 33(100%) 20(11%) 198(93%) 0(0%) 

strategic(process) 6(8%) 0(0%) 0(0%) 34(100%) 0(0%) 159(89%) 15(7%) 737(100%) 

strategy 1 (N=71) 2(N=182) 3(N=277) 4(N=34) 5(N=33) 6(N=179) 7(N=213) 8(N=737) 

generic 0(0%) 13(7%) 110(38%) 0(0%) 33(100%) 0(0%) 0(0%) 0(0%) 

specific 71(100%) 169(93%) 176(62% 34(100%) 0(0%) 179(100%) 213(100%) 737(100%) 

schedule 1 (N=71) 2(N=182) 3(N=277) 4(N=34) 5(N=33) 6(N=179) 7(N=213) 8(N=737) 

none 71(100%) 78(43%) 256(92%) 0(0%) 33(100%) 0(0%) 95(45%) 20(3%) 

fixed 0(0%) 26(14%) 21(8%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

Self-selected 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 82(38%) 0(0%) 

Performance-adapted 0(0%) 78(43%) 0(0%) 34(100%) 0(0%) 179(100%) 36(17%) 717(97%) 

context of use 1 (N=71) 2(N=182) 3(N=277) 4(N=34) 5(N=33) 6(N=179) 7(N=213) 8(N=737) 

CBL 0(0%) 0(0%) 77(28%) 0(0%) 0(0%) 0(0%) 80(38%) 0(0%) 

IBL 0(0%) 13(7%) 110(40%) 0(0%) 13(39%) 0(0%) 0(0%) 20(3%) 

Learning by desiggn 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0% 0(0%) 0(0%) 

Modeling/visualization 51(72%) 67(37%) 50(18%) 0(0%) 0(0%) 0(0%) 16(8%) 0(0%) 

Problem-based learning 0(0%) 58(32%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 

Problem-solving 20(28%) 44(24%) 0(0%) 34(100%) 0(0%) 179(100% 117(55%) 717(97%) 

Project-based learning 0(0%) 0(0%) 40(14%) 0(0%) 20(61%) 0(0%) 0(0%) 0(0%) 

assessment level 1 (N=71) 2(N=182) 3(N=277) 4(N=34) 5(N=33) 6(N=179) 7(N=213) 8(N=737) 

concept 51(72%) 13(7%) 21(8% 0(0%) 0(0%) 153(85%) 162(76%) 737(100%) 

principles 20(28%) 169(93%) 256(92%) 34(100%) 33(100%) 26(15%) 36(17%) 0(0%) 

application 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 0(0%) 15(7%) 0(0%) 

effect size 1 (N=71) 2(N=182) 3(N=277) 4(N=34) 5(N=33) 6(N=179) 7(N=213) 8(N=737) 

medium 6(8%) 124(68%) 110(40%) 0(0%) 0(0%) 46(26%) 100(47%) 737(100%) 

large 65(92%) 58(32%) 167(60%) 34(100% 33(100%) 133(74%) 113(53%) 0(0%) 

 

when the learning outcome is measured on the basic knowledge level or when it is measured on 

rule application (transfer) level.   
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Table 3. Profile of cluster outputs from SPSS analysis 

 Cluster 3 Cluster 1 Cluster 2 Cluster 4 

Sample Size 717 (41.5%) 474 (27.5%) 291 (16.9%) 244 (14.1%) 

Context of 
Use 

Problem-
solving (100) 

CBL (33.1) 
IBL (28.7) 
M&V (25.5) 
Project-based (12.7) 

Problem-solving (94.5) 
M&V (5.5) 

Problem-solving (48.8) 
PBL (23.8) 
M&V (19.3) 
IBL (8.2) 

Scaffolding 
Change adding (100) none (100) adding (71.8) 

fading adding (28.2) 

fading adding (40.2) 
none (32.4) 
fading (19.3) 
adding (8.2) 

Scaffolding 
Schedule 

performance 
adapted (100) none (100) 

performance adapted 
(71.8) 
self-selected (28.2) 

performance adapted (48.4) 
none (32.4) 
fixed (19.3) 

Scaffolding 
Intervention 

strategic 
(100) conceptual (100) strategic (66.3) 

conceptual (33.7) 
conceptual (83.2) 
strategic (16.8) 

Assessment 
Level 

Concept 
(100) 

Principles (70.9) 
Concept (29.1) 

Concept (73.9) 
Principles (26.1) 

Principles (66.4) 
Concept (27.5) 
Application (6.1) 

Effect Size medium 
(100) 

medium (52.7)  
large (47.3) 

large (91.1) 
medium (8.9) 

medium (53.3) 
large (46.7) 

Scaffolding 
Intended 
Outcomes 

higher order 
thinking 
skills (100) 

higher order 
thinking skills (100) 

higher order 
thinking skills (100) 

higher order 
thinking skills (57.0) 
knowledge integration (43.0) 

Scaffolding 
Strategy specific (100) specific (67.1) generic (32.9) specific (100) specific (100) 

Note: CBL: Case-Based Learning, IBL: Inquiry-Based Learning, PBL: Problem-Based Learning, 
M&V: Modeling & Visualization. 

As a specific example, Corbett and Anderson (2001) examined scaffolding conditions in 

relation to problem solving performance and learning under intelligent tutoring systems. 

Undergraduates participated in a programming course where they learned programming 

knowledge and process while working at their own pace with cognitive tutor and completed tests 

which measure their programming related concepts (e.g., code evaluation, code debugging, and 

code generation). The student group who was given immediate feedback when they typed an 
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incorrect symbol performed best on tests and completed the problems fastest. This result shows 

that providing immediate feedback based on students’ performance can be efficient and effective 

tutorial support for learning a complex problem solving skill such as programming. 

On the contrary, cluster 7 suggests that, for the same intended outcome of scaffolding 

(i.e., higher order skills), the similar effect size can be achieved through making some variations 

and giving some flexibility to scaffolding change and schedule. Indeed, cluster 2 from SPSS 

analysis has a similar pattern and implication (Table 3), which shows that adding or 

fading/adding support adjustment or even scaffolding without any scheduled change can be done 

effectively based on the students’ performance or by their own request. This type of scaffolding 

was proposed in Yin et al. (2013) that is intended to promote students’ learning conceptual 

knowledge using participatory simulation on mobile devices. In the study, students were taught 

the rules of the sorting algorithms and asked to simulate the sorting algorithms and master it at a 

certain level. The system on the mobile device assisted students if they needed help by providing 

information about where the mistakes are and how to correct them as well as additional teacher’s 

help based on students’ inquiry. As students were gradually able to understand the methods and 

strategies and have better conceptual knowledge, the system reduced the help gradually, and 

students were required to solve the problem themselves. This adding/fading support adjustment 

based on students’ performance and their request brought about significantly higher accuracy 

rates in students performing the complicated sorting algorithms. 

Besides, Yeh et al. (2010) showed in their study that similar scaffolding condition 

demonstrated large effect size not only when the assessment is conducted in the basic knowledge 

level, but also in more adaptive principles level (e.g., knowledge transfer). In the study, they 

investigated the effects of different formats of self-explaining prompts as a scaffolding based on 
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learners’ knowledge level when learning with dynamic multimedia materials. Then, they 

measured learning outcomes based on three categories which include declarative knowledge, 

near-transfer, and far-transfer. In the transfer measure, students were asked to apply rules and 

algorithms they’ve learned to similar situations. The results confirmed that adaptive self-

explaining prompts can serve as effective scaffolding not only for improving conceptual 

knowledge but also enhancing knowledge transfer. 

Next, clusters 1, 3, and 5 together have distinct characteristics compared to other clusters 

in that they demonstrate that conceptual scaffolds— providing targeted hints and prompts about 

the content or helping learners to structure their content knowledge through a concept map— can 

be effective for higher order thinking skills without any customization during the intervention 

under certain circumstances. This group of clusters shows a similar pattern with cluster 1 from 

SPSS analysis results. Specifically, in this case, either the fundamental nature of the scaffold or 

the frequency of it does not change in response to anything. This intervention contrasts with 

other interventions where the nature and the frequency of scaffold change based on student’s 

performance, request, or pre-defined (fixed) number. According to the profile of the clusters, this 

type of scaffolding change and schedule is effectively applicable to both cases where the 

elements of scaffolding is adapted to specific content (e.g., feedback for engineering principles 

(Rodriguez et al., 2006)) and where the element is not tailored to specific content, thus more 

generic (e.g., instruction for information evaluation (Wiley et al., 2009)). This scaffolding 

characteristic can be utilized with various problem-centered instructions including case-based 

learning and inquiry-based learning.  

For instance, the intervention used in the Demetriadis et al. (2008) study exemplifies this 

type of scaffold. In this study, elaborative question prompts were used as a scaffolding 
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intervention to activate students’ context-generating cognitive processes during case-based 

learning. Scaffolded student group (i.e., prompted to consistently answer a set of questions meant 

to engage them in deep information processing) performed significantly better in both domain 

knowledge acquisition and knowledge transfer tests. The scaffolding was not adapted for 

customization in a sense that the same set of question prompts were persistently presented to 

every student each time they navigated to a new case and answered to scenario questions. 

Wiley et al. (2009) utilized similar scaffolding characteristics in their study under the 

inquiry-based learning situation. They used an instructional unit (named SEEK) as a scaffolding 

intervention to help students to evaluate the reliability of information sources from multiple 

internet websites during a science inquiry task. The SEEK instructional unit consisted of 

declarative information about source evaluation, evaluation template, and expert feedback and 

this pre-set unit was presented consistently to the students over the session without any 

customization. Students who used SEEK scaffold displayed greater performance in their 

reliability judgments of information sources than students who did not. 

Last, cluster 2 indicates the effectiveness of scaffolding across levels of different 

dimensions of variables, suggesting that scaffolding intervention can be designed in different 

ways while remaining highly effective. This observation aligns with previous meta-analysis 

results that showed no difference in effect sizes between scaffoldings that include fading, adding, 

adding/fading, or no customization and their adjustment logic by which scaffolding change is 

implemented (Belland, Walker, Kim, et al., 2017). This observation is also evidenced by several 

empirical studies.  

Butz et al. (2006) demonstrated that a combination of adding and fading scaffolding 

based on students’ performance can have a large effect size in association with developing higher 
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order thinking skills during problem-based learning. They used an interactive multimedia 

intelligent tutoring system that can modify the instructional sequence and the amount of detail 

presented to students according to their weakness. This intelligent tutoring system was designed 

to assist electrical engineering undergraduate students in solving a real-life problem. The 

students who were scaffolded using this system scored higher on their performance measures 

than the students who were not.  

Also, the combination of adding and fading support based on students’ performance 

showed at least medium effect size when the scaffolding targets to improve knowledge 

integration (i.e., integration of new knowledge with existing mental models) for a deep 

understanding of content during simulation based learning. Kumar et al. (2007) used, in their 

study, conversational agents (i.e., CycleTalk) as a form of dynamic learning support to enhance 

students’ knowledge related to the thermodynamic class. Students were instructed to build their 

designs using the simulation software and evaluate their design, meant to have them learn related 

concepts while doing the activity. The CycleTalk agent provided the knowledge construction 

dialogues, at the same time monitored the conversation pattern and provided hints and prompts 

during the conversation. As a result, dynamic support implemented with tutorial dialogue agents 

brought about significantly more learning among students.  

General Findings Across Cluster Outputs 

When examining the 8-cluster and 4-cluster solutions, one notices several trends. First, 

scaffolding that leads to medium or large effect sizes almost exclusively is intended to improve 

higher-order thinking skills, rather than knowledge integration. 

In addition, in the 8-cluster solution, all clusters include a dominant percentage of 

context-specific scaffolds except for cluster 5. Furthermore, all 4 clusters in the 4-cluster solution 
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used predominantly context-specific scaffolding. However, this does not indicate effective 

scaffolding solutions should opt for context-specific scaffolds over the generic scaffolds. 

Because the vast majority of data selected (1570 out of 1726 cases) were associated with 

context-specific scaffolds, this result rather implicates that context-specific scaffold is the most 

frequently used strategy in technology and engineering disciplines. 

Overall, conceptual and strategic scaffolding interventions appear with similar frequency, 

reflecting equal importance in achieving the intended outcome. That means not only supporting 

students to acquire content knowledge to be used for problem solving but also providing 

guidance from the strategy use perspective are critical elements for successful problem-centered 

instruction.   

In the 8-cluster solution, all clusters except for clusters 1 and 5 are associated with a 

dynamically changing scaffold that includes predominantly adding, or a combination of fading 

and adding support. This observation implies that, with no difference in effect sizes, designers 

can customize scaffolding in conjunction with the frequently co-occurring scaffolding adjustment 

logic in technology and engineering classes, which was students’ performance followed by 

students’ self-selection. 

Also of interest is that scaffolding appeared to be most effective when it was either not 

customized, or customized on the basis of performance.  

Discussion 

Scaffolding is an intervention that leads to stronger learning than lecture across learner 

populations, and education and assessment levels (Belland, 2017; Belland, Walker, & Kim, 

2017; Belland, Walker, Kim, et al., 2017; Ma et al., 2014; Steenbergen-Hu & Cooper, 2013, 

2013; VanLehn, 2011). Furthermore, it leads to strong within-subjects gains across learner 
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populations, and education and assessment levels (Belland, Walker, & Kim, 2017). But it is not 

useful to simply tell a designer to use scaffolding, as scaffolding has so many variations, and can 

be used in the context of many different problem-centered instructional models and STEM 

disciplines. Rather, it is important to consider what combination of scaffolding features are most 

effective for which students in which conditions. Many researchers endeavor to find such an 

ideal combination of scaffolding features in isolation, varying one feature between two groups 

and comparing learning outcomes. The results of any individual study along those lines can only 

provide some evidence that the particular feature may positively or negatively influence learning 

under similar conditions to the study. Meta-analysis can be a helpful approach to systematically 

synthesize results across studies (Borenstein et al., 2009; Cooper et al., 2009; Hedges & Vevea, 

1998). However, meta-analyses cannot always provide clear design guidance. For example, in 

our scaffolding meta-analysis, there were no differences in effect size based on whether 

scaffolding was faded, added, faded and added, or not at all (Belland, Walker, Kim, et al., 2017). 

But this finding strongly contradicted the majority of scaffolding theory and much empirical 

research. Therefore, we set out to conduct the current study to see what combinations of 

scaffolding features tended to lead to the strongest effect sizes within the context of computer 

science education at the college and graduate school levels. By going beyond the meta-analytic 

results to use two-step clustering, we were able to see the conditions under which (a) fading and 

adding is useful (when it is context-specific, conceptual scaffolding designed to enhance 

knowledge integration, and such fading and adding is based on performance and self-selection), 

(b) adding is useful, and (c) no scaffolding customization is necessary.  

By clustering an expanded version of a comprehensive scaffolding meta-analysis dataset, 

this study used a systematic approach to determine the optimal combinations of scaffolding 
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features within computer science education at the college and graduate school levels. The results 

indicate that, within college- and graduate-level technology and engineering education, 

scaffolding is most effective when it is (a) designed to enhance higher order thinking skills, and 

(b) is either not customized or is customized on the basis of performance. In this way, we helped 

to bring clarity to how to designing scaffolding to maximize learning in college and graduate 

level computer science courses. Contrary to the suggestions of much scaffolding literature 

(McNeill et al., 2006; Pea, 2004; Puntambekar & Hübscher, 2005), utilizing fading by itself is 

not associated with medium or large effect sizes in college and graduate-level technology and 

engioneering education. In contrast, using context-specific scaffolding that is designed to impact 

higher-order thinking skills with conceptual, context-specific scaffolding leads to a large effect 

size. In addition, adding scaffolding by itself, and using a combination of fading and adding, 

were also associated with medium and large effect sizes.   

Knowing the combinations of scaffolding features that are associated with medium and 

large effect sizes can help technology and engineering educators design scaffolding that can help 

their students learn at an optimal level.  

Limitations and Suggestions for Future Research 

The dataset used for this clustering study originated with a meta-analysis coding dataset. 

As is the case with any systematic synthesis effort, meta-analysis collapses across studies to help 

researchers identify evidence associated with specific instructional features (Cooper et al., 2009). 

For example, there is a range of fixed customization approaches used in scaffolding, with some 

preprogramming scaffolding to fade after a certain amount of time has passed, and some after a 

certain number of iterations of the problem solving process has occurred. By identifying all such 

scaffolding systems as incorporating fixed customization, one is leaving some detail out of the 
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analysis. But that is simply the nature of meta-analysis (Borenstein et al., 2009; Cooper et al., 

2009). That simplification is compounded in clustering, in that a cluster that reflects any 

particular coding category also reflects the simplification that is inherent in meta-analysis. 

However, without meta-analyses, one would be subject to the inherent biases reflected in 

narrative reviews. 

This paper essentially employed an approach of dimension reduction (the coding of the 

included studies in the original meta-analysis) followed by clustering (D’Enza et al., 2014). One 

potential issue is that the cluster structure may have been distorted by the dimension reduction 

(D’Enza et al., 2014). However, clustering would not have been possible had the underlying 

articles not been coded in the first place, and we followed a rigorous process in which all 

included students were coded by two coders who then came to consensus and inter-rater 

agreement before coming to consensus was assessed (Belland, Walker, Kim, et al., 2017). 
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