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Abstract: Cathode materials for Li-ion batteries exhibit
volume expansions on the order of 10% upon maximum
lithium insertion. As a result internal stresses are pro-
duced and after continuous electrochemical cycling dam-
age accumulates, which contributes to their failure. Bat-
tery developers resort to using smaller particle sizes in or-
der to limit damage and somemodels have beendeveloped
to capture the effect of particle size on damage. In this pa-
per,wepresent a gradient elasticity framework,which cou-
ples the mechanical equilibrium equations with Li-ion dif-
fusion and allows the Young’s modulus to be a function
of Li-ion concentration. As the constitutive equation in-
volves higher order gradient terms, the conventional finite
element method is not suitable, while, the two-way cou-
pling necessitates the need for higher order shape func-
tions. In this study, we employ B-spline functions with
the framework of the iso-geometric analysis for the spa-
tial discretization. The effect of the internal characteristic
length on the concentration evolution and the hydrostatic
stresses is studied. It is observed that the stress amplitude
is significantly affected by the internal length, however, us-
ing either a constant Young’s modulus or a concentration
dependent one yields similar results.

Keywords: cathodes; gradient elasticity; stress induced
diffusion; diffusion induced stress; NURBS

1 Introduction
Li-ion batteries are the most promising energy storage de-
vices for portable devices and electric vehicles. The stabil-
ity of commercial batteries is at least up to 1000 cycles,
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however, there still remain open questions that need to be
addressed in order to improve their life-time and capacity.
One of these issues is the volume expansions that the elec-
trodes experience during Li-ion insertion and subsequent
contractions during de-insertion. Such volume changes re-
sults in internal stresses that lead to damage. This prob-
lem mainly concerns failure in anode materials such as
Si and Sn as they experience over 300% expansions and
fracture occurs from the first few electrochemical cycles.
Cathodematerials such as LiNi1/3Co1/3Mn1/3O2 , LiMn2O4
, LiFePO4 for LIBs, undergo a significantly lower volumeex-
pansion of approximately 10 %, resulting in damage accu-
mulation over tens of cycles and contributing to the capac-
ity retention over long term cycling. In [1, 2] it was experi-
mentally shown that continuous electrochemical cycling
resulted in damage/fracture on the surface of LiMn2O4
single crystal particles. Battery developers are exploring
the use of nanoparticles as damage mechanisms are less
severe at such scales, however, to understand the inter-
play between the particle size and performance, it is nec-
essary to also perform modeling. Initial studies on the
electro-mechanical behavior of cathodes [3, 4], accounted
for the diffusion of Li within classical mechanics, which
cannot account for the particle size. Linear elastic frac-
ture mechanics were also used in [2, 5] in order to de-
velop design criteria for materials selections and config-
uration that increase mechanical stability of anodes dur-
ing cycling. Furthermore, several aspects of stress diffu-
sion coupling, both one way and two way have been stud-
ied [1, 2, 5], however, a comprehensive numerical investiga-
tionhasnot been carried out tounderstand the effect of the
size of the electrode particles. Moveover, recent first princi-
ple calculations suggest that the Young’s modulus of cath-
ode materials is dependent on the Li-concentration, and
therefore a concentration dependent modulus needs to be
accounted for in order to accurately capture intercalation
induced mechanical degradation. In this paper, we use a
fully coupled chemo-mechanical framework to study the
size effects and the effects of stress-diffusion interactions
in cathodematerials of LIBs. To do so the framework of gra-
dient elasticity (GRADELA) as put forth by Aifantis [6–8] is
employed, which is a non-local theory that enhances the
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classical linear elasticity with only one extra material pa-
rameter (the internal length scale, ℓo) that multiplies the
Laplacian of the Hookean stress, which is then added to
the classical linear elasticity expression [6]. The resulting
equations are numerically solved using the Galerkin ap-
proach. The addition of an extra material parameter in-
creases the continuity requirement of the functions used
to approximate the unknown fields. This is accomplished
by employing the non-uniform rational B-splines for the
spatial discretization.

The paper is organized as follows: Section 2 presents
the governing differential equations for the diffusion of Li-
ions and the corresponding gradient elasticity equations.
Section 2.1 presents theweak form for the coupled differen-
tial equations and discusses the spatial and temporal dis-
cretization. The influence of various parameters such as
the particle size, diffusion induced stress, stress induced
diffusion, internal length scale on the concentration build
up and the stresses in the particle are systematically stud-
ied in Section 3, followedby concluding remarks in the last
section.

2 Theoretical formulation
In this study, we assume that the response of a particle
that is being lithiated is governed by the fully coupled
chemo-mechanical problem involving two fields: the Li-
ion concentration and the elastic displacements. Consider
a linear elastic body occupying an open domain B ⊂ R2

and bounded by a surface 𝛤 with an unit outward nor-
mal, n. Let (u, c) : B → R2 be the displacement and the
concentration at a point x of the elastic body when it is
subjected to external tractions t : 𝛤t → R2 and external
flux J : 𝛤J → R2. The boundary is assumed to be decom-
posed into: 𝛤 = 𝛤u

⋃︀
𝛤t ≡ 𝛤c

⋃︀
𝛤J and ∅ = 𝛤u

⋂︀
𝛤t ≡

𝛤c
⋂︀

𝛤J . The boundary value problem for the coupled
chemo-mechanical problem in the absence of body forces
(in elasticity) and the source terms (in the diffusion equa-
tion) is:

∂c
∂t +∇ · J = 0 (1)

∇ · 𝜎 = 0

subject to the following boundary conditions:

u = u ∀x ∈ 𝛤u (2)
c = c ∀x ∈ 𝛤c

𝜎 · n = t ∀x ∈ 𝛤t

J · n = J ∀x ∈ 𝛤J

Here u is the displacement vector, 𝜎 is the Cauchy stress
tensor, c represents the concentration and J represents the
diffusive flux. The diffusive flux is given by the gradient of
the chemical potential 𝜇 as:

J = −Mc∇𝜇 (3)

where M is the mobility of the lithium ions and the chemi-
cal potential in an ideal solid solution is expressed as:

𝜇 = 𝜇o + RTlnX −𝛺𝜎h (4)

where 𝜇o is is the chemical potential of a species under a
known pressure, R is a gas constant, T is the absolute tem-
perature, X is the molar fraction of lithium ions, 𝛺 is the
partial molar volume of lithium ions and 𝜎h is the hydro-
static stress. Using Equation (4), the flux can be written as:

J = −D
(︂
∇c − 𝛺

RT c∇𝜎h

)︂
(5)

where D = MRT is the diffusion constant and 𝜎h = 1
3 tr(𝜎)

is thehydrostatic stress. The influence of the concentration
on the stress field can bemodelled bymodifying the stress
field within the gradient elasticity [6] by thermal analogy
(similarly as in the recent works of [9, 10]) by:

𝜎 = C
[︁
(1 − ℓ2o∇2)𝜀 − I𝜀c

]︁
(6)

where C = f (E, 𝜈) is the material constitutive matrix, E, 𝜈
are the Young’s modulus and the Poisson’s ratio, respec-
tively, 𝜀 is the infinitesimal strain tensor, 𝜀c = 𝛺

3 𝛥c is the
strain due to concentration, 𝛥c = c − ci is the change in
the concentration and ci is the initial concentration, ℓo is
the internal characteristic length.

In this study, we are interested in understanding the
stress and the concentration distribution in a spherical
particle. Hence, owing to spherical symmetry, the above
equations become one-dimensional and are given by:

∂c
∂t +

1
r2

∂[r2J]
∂r = 0 (7)

d𝜎r
dr + 2

r [𝜎r − 𝜎t] = 0

where 𝜎r and 𝜎t are the stress in the radial and the tan-
gential directions. The stress-strain relations within the
GRADELA framework [6] are

𝜎r = E
[︀
(1 − 𝜈)𝜀r + 2𝜈𝜀t

]︀
(8)

− Eℓ2o
[︁
(1 − 𝜈)∇2𝜀r + 2𝜈∇2𝜀t

]︁
− Ec

𝜎t = E [𝜈𝜀r + 𝜀t] − Eℓ2o
[︁
𝜈∇2𝜀r +∇2𝜀t

]︁
− Ec

𝜎z = 𝜎t



38 | S. Natarajan and K. Aifantis

with

E = E(c)
(1 + 𝜈)(1 − 2𝜈) ; c = 𝛺𝛥c

3 = 𝛺(c − ci)
3

It has been observed experimentally that the Young’smod-
ulus electrode materials depends on the Li-ion concentra-
tion [11]. In this work, we assume a linear dependence:

E(c) = Eo + k
(︁ c − ci
cm − ci

)︁
(9)

where Eo is the Young’s modulus of the material, which
is independent of the concentration, prior to Li-insertion,
cm is the maximum Li concentration in the particle and k
is a material constant. The flux and the concentration are
related by:

J = −D
[︂
dc
dr −

𝛺

RT c
d𝜎h
dr

]︂
(10)

and the strain-displacement relations are given by:

𝜀r =
dur
dr , 𝜀t =

ur
r . (11)

2.1 Weak form, spatial and temporal
discretiztion

The two-way coupled interaction between the mechani-
cal degradation and the diffusion process is governed by
Equation (2). In this section, we develop the correspond-
ingweak form of the governing equations and the solution
methodology.

2.1.1 Weak form

Theweak form is obtainedby invoking theGalerkin orthog-
onality, wherein, the error due to the assumed test spaces
for the displacement and the concentration are perpendic-
ular to the trial spaces within the domain. Mathematically,
the weak formulation is: find u ∈ U and c ∈ C such that
∀v ∈ V : ∫︁

B

(∇ · 𝜎) v dV = 0, (12a)

∫︁
B

(︂
∇ · J + ∂c

∂t

)︂
v dV = 0 (12b)

where, U and C are the displacement and the concentra-
tion trial spaces, respectively and V is the test space:

U :=
{︁
u(r) ∈ [C0(𝛺)] : u ∈ [W(𝛺)] ⊆ [H1(𝛺)], u = (13a)

ûon𝛤u
}︀
,

C :=
{︁
c(r) ∈ [C0(𝛺)] : c ∈ [W(𝛺)] ⊆ [H1(𝛺)], c =

ĉ on𝛤c
}︀
,

V :=
{︁
v(r) ∈ [C0(𝛺)] : v ∈ [W(𝛺)] ⊆ [H1(𝛺)], v =

0 on𝛤u , 𝛤c} ,

where the spaceW(𝛺) includes linear displacement fields
and the concentration field. The domain is partitioned into
elements 𝛺h, and on using shape functions 𝜑a that span
at least the linear space, we substitute vector-valued trial
and test functions uh =

∑︀
a 𝜑aua; c

h =
∑︀

a 𝜑aca and v
h =∑︀

b 𝜑bvb, respectively, into Equation (12) and apply a stan-
dard Galerkin procedure to obtain the following mechani-
cal and the chemical internal force vector, Pint = {Pu , Pc}T:

Pu = −
∫︁
B

(Bu)T𝜎 dV, (14a)

Pc =
∫︁
B

𝜑
∂c
∂t dV +

∫︁
B

(∇𝜑c)T∇c dV (14b)

−
∫︁
B

(∇c)Tc ∇𝜎h dV.

Bu is the strain-displacement matrix, computed using the
derivatives of the shape functions. The external nodal
forces arising from the boundary tractions and the flux are
considered in the global residual vector. For temporal dis-
cretization, we employ the backward Euler time integra-
tion scheme. The damping matrix is given by:

Dcc = − 1
𝛥t

∫︁
B

𝜑T𝜑 dV. (15)

All other components of the damping matrix are zero. The
Galerkin procedure leads to a coupled non-linear system
of equations (see Equation (14)). Next, we describe the lin-
earization procedure based on the Taylor’s series expan-
sion of the residual vector. Let d = {u, c}T denote the
vector of unknown displacements and concentration. Let
di+1 = di+𝛿dbe the solution at the (i+1)th iteration that de-
pends on the solution at the ith step and a small increment
𝛿d. The residue at the (i + 1)th step is:

R(d(i+1)) = P(i+1)int − Pext. (16)

Using Taylor’s expansion and upon eliminating the higher
order terms, we get the following linearized form for the
above equation as:

T(di) 𝛿d = −R(di), (17)

where, T is the tangent stiffness matrix, given by:

T(di) = R′(di) (18)
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= ∂K(di)
∂d − ∂f

∂d . (19)

In the present study, we consider only Dirichlet boundary
conditions and hence the derivative of the force term is
zero. The tangent stiffness matrix is given by:

Kuu = −∂P
u

∂u (20a)

=
∫︁
B

(Bu)TC(Bu) dV +
∫︁
B

∂(Bu)T
∂r Cℓ2o

∂Bu

∂r dV ,

Kuc = −∂P
u

∂c =
∫︁
B

1
3(B

u)TC𝛺 𝜑 dV, (20b)

Kcu = −∂P
c

∂u =
∫︁
B

(Bc)Tc ∂∇𝜎h
∂u dV , (20c)

Kcc = −∂P
c

∂c = −
∫︁
B

(Bc)TBc dV +
∫︁
B

(Bc)T∇𝜎h 𝜑 dV (20d)

−
∫︁
B

(Bc)T c ∂∇𝜎h
∂c dV .

The resulting nonlinear equations are solved using the
Newton-Raphson method.

2.1.2 Spatial and temporal discretization

As noted earlier, the presence of the coupling between
the diffusion and the stress and the gradient elasticity
framework requires a high-order continuous function to
discretize the unknown fields, i.e., the displacement ur
and the concentration c. The GRADELA framework intro-
duces the Laplacian of the strain components, which re-
quires a C1 continuous shape functions. One approach to
solve this problem is to employ the commuting property of
the operators as discussed in [12].

In this study, we employ the non-uniform rational
B-spline (NURBS) basis functions within the framework
of isogeometric analysis to represent the unknown fields.
This is because the continuity of the basis functions can
be adapted to suit the geometric modeling and during the
discretization. Thus, the single set of basis functions are
used to represent both the displacement field and the con-
centration within the spherical particle. We give here only
a brief introduction to NURBS. More details on their use in
FEM are given in [13, 14]. Within this framework, the un-
known field, (u, c) is approximated by:

(u, c) = R(𝜂)
{︁
uh , ch

}︁
(21)

where uh and ch are the nodal variables and R(𝜂) are the
NURBS basis functions. The key ingredients in the con-
struction of NURBS basis functions are: the knot vector (a

non decreasing sequence of parameter values, 𝜉i ≤ 𝜉i+1, i =
0, 1, · · · ,m − 1), the control points, Pi, the degree of the
curve p and the weight associated to a control point, w. A
pth degree NURBS basis function is defined as follows:

R(𝜂) =
Ni,p(𝜂)wi
W(𝜂) =

Ni,p(𝜂)wi
n∑︀
i=0

Ni,p(𝜂)wi

(22)

where wi are the weights for the ith B-spline basis func-
tion Ni,p(𝜂). The ith B-spline basis function of degree p, de-
noted by Ni,p is defined as [15]:
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Figure 1: Non-uniform rational B-splines, order of the curve = 3

Ni,0(𝜉) =
{︃
1 if 𝜉i ≤ 𝜉 ≤ 𝜉i+1
0 else

(23)

Ni,p(𝜉) =
𝜉 − 𝜉i

𝜉i+p − 𝜉i
Ni,p−1(𝜉) +

𝜉i+p+1 − 𝜉
𝜉i+p+1 − 𝜉i+1

Ni+1,p−1(𝜉)

The B-spline basis functions has the following properties:
(i) non-negativity, (ii) partition of unity,

∑︀
i
Ni,p = 1; (iii)

interpolatory at the end points. As the same function is
also used to represent the geometry, the exact represen-
tation of the geometry is preserved. It should be noted
that the continuity of the spline functions can be tai-
lored to the needs of the problem. Moreover, the spline
function has limited support. When employed to approx-
imate the FE solution space, the resulting stiffness ma-
trix has similar properties to the stiffness matrix com-
puted by employing Lagrange shape functions. Figure 1
shows the third order NURBS for an open knot vector 𝛯 =
{0, 0, 0, 0, 1/3, 1/3, 1/3, 1/2, 2/3, 1, 1, 1, 1}.
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3 Results
In this section, the effect of the stress-induced diffusion
and the diffusion induced stress in a spherical particle
is numerically studied using the isogeometric analysis
framework. The effect of the dependence of the Young’s
modulus on the concentration and the internal character-
istic length is also studied. The internal length, modelled
within theGRADELA framework, requires boundary condi-
tions for the higher stress order terms, which in this study
are assumed to be zero on the boundary. The domain is
assumed to be subjected only to diffusion boundary con-
ditions and only ‘essential’ boundary conditions for elas-
ticity are enforced to yield a non-singular system of equa-
tions. For the diffusion type boundary condition, only a po-
tentiostatic boundary condition is considered.

For the numerical study, both the domain and the un-
known field variables are discretized with NURBS basis
functions with order p = 3, this allows us to account for
the higher order terms due to the GRADELA framework.
However, one could choose higher order continuous func-
tions, i.e. p > 3 using NURBS basis functions. Based on
successive refinement, a total of 100 NURBS quadratic ele-
ments were found to yield accurate solutions. The NURBS
basis functions are rational functions, hence conventional
numerical quadrature rules are less efficient. We adopt a
nearly optimal quadrature rule proposed in [16] to inte-
grate the terms in the stiffness and mass matrices.

The material properties for the Mn2O4 Cathode mate-
rial are [17]: Young’s modulus, Eo = 10 GPa, partial molar
volume𝛺 =3.497 ×10−6m3mol−1, diffusion coefficientD =
7.08×10−15 m2/s and the maximum concentration cm =
2.29×104 mol m−3. The Young’s modulus is assumed to be
a function of concentration with k = 1 GPa [18] (c.f. Equa-
tion (9)) and ci is the initial Li-ion concentration, which
without loosing generality is assumed to be zero, corre-
sponding to the beginning of lithiation. Before proceed-
ing with the analysis, the governing equations are normal-
ized such that thenonlinear iteration schemedoesnot face
any convergence issues. The possible convergence issues
could be attributed to the different orders of magnitude of
the physical parameters of the chemical and the mechan-
ical properties. The governing equations are normalized
as [19]:

r = 𝜆r*, u = 𝜆u*, c = c*
𝛺
, t = 𝜆2t*

D (24)

where 𝜆 is the characteristic length scale of the domain
considered for the numerical simulation, r, u and t are
the spatial coordinate, displacement and time with ‘*’ rep-
resenting dimensionless quantities. The material parame-

ters are scaled by𝛺/RT such that the stress field becomes
dimensionless. Due to symmetry, the particle is modelled
as being a one-dimensional problem with the following
boundary conditions:

ur(r = 0, t) = 0,
c(r = a, t) = cm ,

where cm is the maximum concentration and a is the ra-
dius of the particle. The boundary at r = a is maintained
at cm for all time steps and the simulation is stoppedwhen
the particle is fully lithiated, i.e. c(r, t) = cm. Two different
particle sizes are considered of radius a = 20 𝜇m and 50
𝜇m, therefore a full electrochemical cycle is not considered
but only the first maximum lithiation. Since small strain
deformation is considered, the volume changes are not sig-
nificatn and the radius (r = a) is not affected by the Li-ion
concentration.

Figure 2 shows the evolution of the normalized con-
centration, normalized radial displacement, normalized
radial stress and normalized hydrostatic stress at the cen-
ter of the particle (r* = 0.5). The influence of the concentra-
tion dependent Young’smodulus and internal length scale
is examined. To study the effect of the internal length scale,
two different values for ℓo are considered (= 0, 0.4), with
ℓo = 0, reducing the equations to those of classical elastic-
ity. Furthermore, for comparison purposes, the case where
the Young’s modulus is a constant and not dependent of
on the Li-ion concentration is also plotted. It is observed
that, using either a constant or concentration dependent
Young’s modulus yields similar results. The gradient elas-
ticity solutions (i.e. when ℓo is different from zero) yield
higher stress and concentration values at the particle cen-
ter.

Next, the influence of the particle size, the inter-
nal length and the effect of the concentration dependent
Young’s modulus on the evolution of the concentration
and the hydrostatic stress at the center of the particle are
shown in Figure 3 for two different particle sizes of radius
a = 20 𝜇m and 50 𝜇m. For comparison, the results are
shown only until 500 min. This is because the larger parti-
cle takes more time to reach the maximum concentration.
From the parameters examined, it is seen that the value of
the internal length does not significantly affect the concen-
tration profile at the center of the particles. Similarly, con-
sidering a concentration dependent elastic modulus gives
a similar concentration and hydostatic stress profiles, as
when a constant modulus was assumed during lithiation.
The most significant effect is that of the particle size on
the hydrostatic stress, which is also significantly affected
by the value of the internal length, but up to 100 mins of
lithiation. It is seen that for the smaller particles this stress
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(a) Concentration, c (b) Radial displacement, ur

(c) Radial stress 𝜎r (d) Hydrostatic stress, 𝜎h

Figure 2: Influence of internal length on the evolution of the concentration, radial displacement, radial stress and hydrostatic stress at the
center of a spherical particle.

Table 1: Effect of internal length and the concentration dependent Young’s modulus on the maximum hydrostatic stress experienced by the
particle of radius a = 20𝜇m.

Internal length, ℓo max(𝜎h) ×107 Pa Effect of (in % difference)
concentration dependent

internal length Young’s modulus

E ≠ E(c) 0 10.610
0.4 13.408 26.37

E = E(c) 0 11.150 5.09
0.4 14.148 26.89 5.52

drops to zero after about 340 min, while the larger ones
experience significant stresses even beyond 500 min. Ta-
ble 1 shows the effect of the internal length and the con-
centration dependent Young’s modulus on the maximum
hydrostatic stress in the particle with a radius of a = 20
𝜇m. It can be seen that the internal length, ℓo has a signif-

icant influence on the maximum hydrostatic stress in the
particle whilst the concentration dependent Young’s mod-
ulus has minimum impact. This is because although the
Young’s modulus is a function of concentration, the rate
of change of Young’s modulus dE/dc is small. Hence, we
do not see an appreciable influence of the concentration
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(a) (b)

(c) (d)

Figure 3: Influence of the particle size, internal length and Young’s modulus on the evolution of (a-b) concentration and (c-d) hydrostatic
stress at the center of a spherical particle.

dependent Young’s modulus on themaximum hydrostatic
stress. It should be noted here that a difference in response
between the 20 and 50micron particles is observed even in
the case of ℓo = 0. This is because, the larger the particle,
the slower is the rate at which the lithium ion concentra-
tion and the hydrostatic stress increases inside the parti-
cle. Hence, the size effects are obtaineddue to the coupling
with concentration.

4 Conclusions
The present article employed gradient elasticity coupled
with stress assisted diffusion within the isogeometric anal-
ysis in order to capture the effect that the particle size has
on the maximum value of the hydrostatic stress at the cen-
ter of the spherical particle during lithiation. Comparing

with the case of classical elasticity, it is seen that the con-
centration profiles are similar either with or without gra-
dient considerations, however, the hydrostatic stress was
significantly higher in the case of gradient elasticity. As ex-
perimental observations have shown that the elastic mod-
ulus is dependent on theLi-ion concentration, the case of a
concentration dependent elastic modulus was considered,
however, similar concentration and hydrostatic stress pro-
files were obtained as when a constant modulus value was
assumed. This can justify the use of constant moduli in
the implementation of more complex frameworks, that ac-
count for damage and fracture within the active material.
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