
Ephemeral Exit Bridges for Tor
Zhao Zhang, Tavish Vaidya

Georgetown University
Kartik Subramanian
Jericho High School

Wenchao Zhou, Micah Sherr
Georgetown University

Abstract—This paper examines an existential threat to Tor—
the increasing frequency at which websites apply discriminatory
behavior to users who arrive via the anonymity network.

Our main contribution is the introduction of Tor exit bridges.
Exit bridges, constructed as short-lived virtual machines on
cloud service providers, serve as alternative egress points for
Tor and are designed to bypass server-side censorship. Due
to the proliferation of managed cloud-based desktop services
(e.g., Amazon Workspaces), there is already a surprisingly large
fraction of web requests that originate in the cloud. Trivially
disrupting exit bridges by blocking requests from the cloud would
thus lead to significant collateral damage.

Our experiments demonstrate that exit bridges effectively
circumvent server-side blocking of Tor with low overhead. Ad-
ditionally, we perform a cost-analysis of exit bridges and show
that even a large-scale deployment can be done at low cost.

Keywords-Tor; Bridge; Exit; Server-side; Blocking;

I. INTRODUCTION

Tor [12] is used by millions of daily users [27, 49], most
of whom use the anonymity network to privately browse the
web [27]. Blocking access to the relays that comprise the
Tor network is trivial: the network locations of the relays are
public (to allow for source routing) and can be straightfor-
wardly enumerated and subsequently blocked. To prevent such
blocking, the Tor Project has responded by developing new
obfuscation protocols [16, 31, 54] that allow Tor clients to
covertly communicate with bridge relays—Tor relays whose
network locations are not advertised by the directory servers.

This paper explores a complementary threat to Tor. Rather
than study how censors prevent their citizenries from accessing
Tor, we focus on attempts to block Tor at the destination. We
are interested in the degree to which websites and hosting
providers discriminate against Tor traffic (for example, by
blocking it) and how users can circumvent such techniques
by concealing that their traffic has been relayed through Tor.

As prior work has shown [26, 41], some websites prevent
access from Tor. Although motivations differ, such blocking
is commonly done due to the inclusion of Tor exit relays in
subscribed IP blacklists (that is, Tor relays are the collateral
damage of subscribing to such lists) or the site operators’
beliefs that a disproportionate amount of attack traffic flows
through Tor [26]. Our measurements show that the rate of
server-side filtering has increased since these prior studies
were conducted, and that that approximately 8% of Alexa top
10,000 sites [4] either significantly alter content for Tor users
or block Tor traffic entirely.

We argue that this trend represents an existential threat to
Tor. Simply put, as more sites block access from Tor users, we

posit that more users will abandon the anonymity service. Our
belief is buoyed by recent work that shows that approximately
80% of Tor visits are to the Alexa top 1 million sites [27];
based on their measurements, we estimate that more than 4.8%
of Tor traffic would go to the blocked sites. We anticipate that a
large fraction of Tor users will indeed be disenfranchised as top
sites continue to block access and Tor becomes increasingly
unable to provide access to the desired content.

The main contribution of this paper is the design, imple-
mentation, and roll-out of ephemeral exit bridges (or simply,
exit bridges). The aim of an exit bridge is to disguise the fact
that Tor is being used by providing a temporary egress point
for Tor traffic. Exit bridges are ephemeral in that they are
short-lived and thus difficult to blacklist.

Exit bridges are inspired by, but are distinct from, traditional
(ingress) Tor bridges. Traditional bridges operate at fixed
(albeit unadvertised) network locations, and are the target of
adversaries intent on preventing people from using Tor.

In contrast, exit bridges are more similar to domain
fronting [21] and operate as ephemeral virtual machines (VMs)
on popular cloud service providers. They assume users who
can access the Tor network (perhaps using a traditional bridge)
but are otherwise stymied by server-side discrimination against
requests originating from the Tor network. The threat model
for exit bridges is thus more constrained and assumes a more
corporate (as opposed to nation-state) adversary who operates
or hosts a website. Whereas traditional bridges are required
for all Tor connections when direct access to Tor is blocked,
exit bridges can be applied in a more ad hoc fashion, as needs
dictate; e.g., their use can be reserved for sites that otherwise
block access from Tor.

We perform an extensive evaluation of exit bridges and show
that they enable access while imposing little overhead. The use
of exit bridges permitted us to access nearly all tested sites,
even those that block connections from Tor. Exit bridges incur
additional latency; however, this cost is overwhelmed by Tor’s
overall end-to-end latency.

At first blush it may seem trivial for sites to effectively
block exit bridges by preventing incoming requests from
cloud providers since sites could expect few requests that
originate from the cloud. However, we argue that such a strat-
egy will likely cause significant collateral damage given the
proliferation of virtualized desktop services such as Amazon
Workspace. We show that a surprising amount of web traffic
already originates from the cloud, thus making it a good
mixing ground for exit bridge traffic.

We consider the anonymity implications of exit bridges, and

find that coalescing egress traffic at cloud service providers in-
creases vulnerability to traffic correlation [25, 33, 37] attacks.
Such a threat is roughly analogous to that faced by domain
fronting techniques (e.g., meek [45]), although in our case a
rogue (or honest-but-curious) cloud operator learns the sites
being visited as opposed to the clients who request them.

As a final contribution, we explore the operational costs of
deploying exit bridges. Unlike domain fronting systems that
are expensive to operate, we argue that the cost of operating an
exit bridge is sufficiently low that it can be fully-funded by its
users. Here, we use nascent web revenue services [23] that pay
website site operators a small amount each time their visitors
complete a short online task. We demonstrate that the revenue
is sufficient for operating an exit bridge, while imposing only
a modest time commitment on the bridge user.

II. BACKGROUND AND RELATED WORK

Tor is an overlay network that provides anonymity by
routing user requests through volunteer operated nodes called
relays. The Tor client typically forms anonymous circuits,
each of which consists of a guard, middle, and exit relay; the
guard and exit respectively serve as ingress and egress points
for the anonymity network. On receiving the user’s requested
destination, the exit relay establishes a TCP connection to
the desired destination and forwards traffic over this TCP
connection. The destination perceives the Tor exit relay to be
the requesting client, rather than the actual Tor user.

When a Tor relay comes online, it publishes various infor-
mation about itself, including its public key fingerprint and
network address, to the Tor directory authorities. This infor-
mation is then consolidated into signed consensus documents
that can be retrieved by Tor clients to discover the relays that
comprise the network, enabling source routing.
Blocking traffic from Tor. Online services can easily block
traffic coming from Tor. By simply creating a blacklist of IP
addresses belonging to exit relays (obtained via the consensus
document), sites can effectively block requests from Tor.

Existing research has looked into the extent of blocking of
Tor users by online services. Khattak et al. [26] provide a
systematic evaluation of Tor exit blocking and the differential
treatment of Tor users by online services. Their results show
that at least 1.3 million IPs block traffic from Tor exits at
the TCP/IP layer. Khattak et al. also found that 3.67% of top
Alexa 1000 websites perform blocking or discrimination of
Tor traffic. Their work points out that most online services
inherit the blocking behavior of their hosting providers while
only a few sites employ their own blocking mechanisms.

Singh et al. [41] extend Khattak et al.’s work by measuring
the extent of blocking of sites’ search and login functionalities.
Their findings show that 20% of Alexa top 500 websites
discriminate against traffic coming from Tor users.
Related work. Tor was originally intended to allow users
to more privately browse the web by separating a user’s
identity from its network location [12]. However, with various
actors trying to block access to the Tor network [55], Tor

has extended its original focus to also take on the role of a
censorship-circumvention tool.

Most of the relevant literature focuses on censors’ efforts to
block access to the Tor network. Preventing access to guards
is trivial since the list of relays is publicly available from the
directory consensus. To mitigate such blocking, the Tor Project
maintains a separate list of relays, called bridges, whose IPs
are not publicly advertised and are thus more difficult to enu-
merate. (However, existing work has shown that discovering
bridge IP addresses is not especially difficult [11, 15].)

Even if the locations of the bridges are not public, censors
can easily identify Tor protocol traffic through traffic anal-
ysis or active probing techniques and can thus still restrict
access to Tor bridges [24, 51, 55]. As a countermeasure, Tor
supports pluggable transports [48] that obfuscate Tor traffic
between Tor users and bridges. Various pluggable transports
have been proposed [16, 17, 20, 31, 46, 47, 54, 56] and
deployed [16, 20, 46, 48, 56], each of them using different
schemes to conceal Tor traffic patterns. For example, the
meek [20] pluggable transport uses HTTP to relay Tor traffic
via cloud-based domain fronting [21], using TLS to hide the
underlying Tor protocol. Using pluggable transports requires
both the Tor user and the bridge to support a particular
transport. (We impose similar requirements for exit bridges.)

Davidson et al. [10] examine how some users are treated
unfairly by content providers because they happen to share a
common IP address with a large pool of users, some of whom
may be malicious. For example, it was previously the case
that Cloudflare imposed multiple CAPTCHAs on Tor users
due to the relatively high volume of malicious activity that it
received from the Tor network [40]. Davidson et al. propose
PrivacyPass, a cryptographic protocol that allows users to
earn “tokens” by providing solutions to a challenge; these
tokens can then be exchanged in the future without interacting
with the challenge again. However, PrivacyPass requires the
participation of the service provider. In contrast, exit bridges
are designed as a more general solution and do not require the
support of either the requested website or its hosting provider.

III. DESIGN PRINCIPLES

We next present an overview of exit bridges, starting with
a motivating analysis of the state of server-side discrimination
against Tor.

A. The state of server-side blocking of Tor

To understand the status quo of how severely Tor traffic
is blocked or censored at various destination websites, we
conduct an analysis of Tor’s accessibility to Alexa’s top 10,000
websites. For each website, we perform three consecutive
HTTP/S requests and collect their responses: one direct request
without using Tor (Direct1) from a local machine, one request
through Tor (Tor), and finally another direct request (Direct2)
from same local machine. The reason for performing two
direct requests is to identify sites that serve significantly
different content for each request (see Figure 1).

Fig. 1: A webpage (livejournal.com) that renders different dynamic
content. Comparing the left and right screenshots, different cover
stories, article feeds, and languages are presented for different users.

We use two techniques to measure the frequency at which
sites block Tor. We first consider the HTTP response codes
returned by the server in the Direct1 and Tor configurations.
We treat a web request as successful if and only if we receive a
2xx or 3xx HTTP response code (which signifies success). We
consider a site to block Tor if we receive an HTTP response
code that indicates success for Direct1, but not for Tor.

We also consider the similarity between a page fetched
directly (Direct1) or via Tor. Here, we quantify similarity
using the HTML similarity score metric [22, 28], where a
score of 1 indicates that two HTML documents are identical,
and a score of 0 reflects completely different content (e.g.,
one request returns an empty response). We consider only
sites that returned 2xx or 3xx HTTP response codes when
their top pages were fetched via Direct1 and whose returned
content was valid HTML. We choose a conservative threshold
and consider a site to be blocked if (i) the HTML similarity
score of the site’s top page between Direct1 and Tor is below
0.01, indicating that the two returned HTML pages are almost
entirely different and (ii) the HTML similarity score of the
site’s top page between Direct1 and Direct2 is above 0.01.
The latter check reduces false positives by not considering sites
that serve radically different content based on geolocations.

We use both pycurl and Selenium [44, 53] to simulate
a user’s activity of browsing a webpage. pycurl generates
simple HTTP/S requests and does not process Javascript.
We instrument Selenium with Firefox’s geckodriver (version
0.24.0) and fully render pages in the headless browser.

Table I reports the block rates—the percentage of top Alexa
10,000 sites that we found to block Tor—for both our HTTP
response header and HTML similarity-based techniques. We
find that the two techniques yield similar block rates, but
that the block rates differ substantially between pycurl and
Selenium. This latter difference is likely due to the Cloudflare
Onion Service (COS) [40], which allows TorBrowser to bypass
CAPTCHAs that Cloudflare otherwise imposes on Tor users
that access its hosted sites.1 Selenium (using the Firefox
driver) is compatible with COS; pycurl is not.

1Cloudflare introduced the Cloudflare Onion Service (COS) in September
2018 [40]. Prior to its release, sites hosted on the popular Cloudflare platform
served CAPTCHAs to users arriving via Tor circuits. COS uses HTTP
Alternative Services [35], which is available in recent versions of the Tor
Browser, to redirect Tor users to hidden service versions of Cloudflare-hosted
sites and avoid CAPTCHAs.

Header HTML Similarity

pycurl 26.86% 27.94%
Selenium 7.99% 9.86%

TABLE I: Tor block rates for Alexa’s top 10,000 sites, including sites
that present CAPTCHAs.

Header HTML Similarity

pycurl 8.01% 8.97%
Selenium 7.39% 9.21%

TABLE II: Tor block rates for Alexa’s top 10,000 sites, after removing
sites that present CAPTCHAs.

When assessing the HTML similarity, only static page
content has been examined. Is it possible that the em-
bedded objects or Javascripts exhibit the discrimination
of anonymous access? It would be useful to clarify if the
static content is sufficient.

We conducted experiments using both pycurl and selenium.
While pycurl returns only the static HTML contents, selenium
in fact renders any Javascript inside the HTML. The results
are presented in Table I and Table II. We observed that
the results for the pycurl and selenium experiments are not
identical, which is reasonable since the Javascript may heavily
modify a page’s DOM. However, the main observation result
stays consistent: the two methods report similar blocking rates
and the ephemeral exit bridges are effective in bypassing the
server-side blocking.

We further refine our results by excluding sites that serve
CAPTCHAs to Tor users, since presumably users could still
access these sites if they are willing to solve puzzles. Table II
shows these filtered results. Here, our results are generally
consistent both between web clients and block detection tech-
niques. Overall, we find that approximately 8% of Alexa top
sites blocks Tor. The modest differences in HTML similarity
scores between the two crawlers is due to the manner in which
pages are constructed: pycurl doesn’t retrieve the embedded
web objects, while Selenium does a full rendering of the page
(including Javascript).

To sanity-check our automated technique, we additionally
randomly sampled 100 sites from the Alexa list and then
manually evaluated whether the sampled sites discriminated
against Tor. To conduct our manual analysis, we loaded
each site directly without using Tor and contemporaneously
requested the site through the TorBrowser. We found that 11%
of the sampled sites either blocked Tor or timed-out when
using the TorBrowser, which generally agrees with the findings
of our more comprehensive automated analysis.

Need to explain more about the motivation of the work.
What will be the impact of the work for the industry and
users?

Server side blocking is becoming popular and is a potential
existential threat for Tor. Tor effectively becomes useless if it
cannot be used to access the web. This work presents a viable
solution to mitigating server-side blocking, ensuring that Tor
users will continue to have unfettered access to information.

Tor-Blocking SitesUser Machine

Tor NetworkTor Browser https://www.iblocktor.com

Request
blocked

Tor-Blocking SitesUser Machine

Tor NetworkTor Browser
(with Extension) https://www.iblocktor.comExit Bridge

Fig. 2: Visiting a Tor-blocking website through Tor (top) without exit
bridges and (bottom) with exit bridges.

Our findings agree with prior studies [26, 41] that similarly
show high rates of server-side blocking of Tor traffic. As such
blocking becomes more commonplace, we posit that more
users may turn away from using Tor, since they will become
increasingly unable to access content on the Internet. This, in
turn, will endanger users’ anonymity as they either decide to
directly access content (at the expense of losing anonymity)
or move to less studied (and sometimes dubious) methods of
achieving anonymity.

B. Threat model

We consider the threat model adopted by Tor [12]. Briefly,
we assume an adversary whose goal is to compromise the
anonymity of Tor users. The adversary can observe, inject,
modify, delete, or delay the traffic within its reach.

The adversary may also operate or compromise some of the
Tor relays. Finally, we allow the adversary to compromise the
entire exit bridge infrastructure.

As a focus of this paper, we additionally consider the
threat posed by adversaries that, as content providers, aim
to discriminate against Tor users by providing differentiated
services between Tor and non-Tor users. (In the remainder of
this paper, we use the shorthand “block” to denote any instance
in which a website discriminates against Tor users.) We
assume this adversary has full knowledge of the operation of
the Tor network, has access to publicly available information,
such as the list of all Tor relays, but has no control and
limited visibility as to how network traffic is routed on the
Internet. This is a reasonable assumption given that such
adversaries are typically web content providers rather than
ISPs or other network-level adversaries, only the latter of
which may be willing or able to attack the network’s routing
infrastructure [42, 43]. In our threat model, the adversary can
block all traffic that comes directly from the Tor network by
filtering all traffic originating from Tor exit relays.

C. Design goals

The intuition behind our system design is simple: since
Tor-blocking websites mostly rely on blacklisting the IPs of
Tor exit relays, we can simply add one (or more) extra hops
between the Tor exit relays and the destination website (as
shown in Figure 2) such that the destination website cannot
reliably differentiate traffic from Tor and non-Tor users. We
name such extra hops exit bridges.

Our high-level goal is to enable practical exit bridges that
are accepted by Tor users as a viable solution to access

websites that are otherwise unavailable due to server-side
blocking. Specifically, we consider the following design goals:
Usability. The exit bridges should be compatible with existing
Tor, to keep Tor users in a familiar and, more importantly,
privacy-preserving environment. To ease deployment, exit
bridges should not require changes to Tor protocols and
should only require the installation of patched Tor Browsers
that are configured to support their use. To achieve this, we
implement the exit bridges as an optional service on top of
Tor that can be accessed by installing an open-source Tor
Browser extension. Our extension recognizes user-maintained
Tor-blocking websites and switches to route Tor traffic through
exit bridges when the user attempts to browse to these sites.
Safety and unlinkability. The use of Tor exit bridges should
not compromise the user’s anonymity or unlinkability. Connec-
tions between the user and bridge are always tunneled through
Tor to ensure that the user’s anonymity is protected. More
detailed analyses of the security and anonymity properties of
exit bridges are provided in §IV-B and §VI.
Ephemerality. The bridges should be ephemeral such that they
are not easily enumerated; bridges with fixed IPs will likely
eventually be exposed and adversaries can block such bridges
just as they block Tor exit relays. Even if an individual exit
bridge is detected and blocked, ephemerality ensures that the
overall system is not significantly impacted. Each exit bridge
is dedicated to serving only one Tor user, and, by design, it
has a short life cycle—an exit bridge self-destructs after a
predefined period.
High collateral damage. Additionally, the exit bridges should
have a wide IP range, such that if the adversaries decide to
block the whole range, as a means to block the ephemeral
bridges, they will suffer significant collateral damage. Practi-
cally, the exit bridges should share IP space with services that
frequently communicate with Tor-blocking sites. For example,
we note that Amazon Workspaces [2], a service that provides
cloud-hosted virtual desktops, uses IP addresses associated
with AWS. Blocking AWS would thus prevent access from
potential customers who use Amazon Workspaces. We provide
further insight on the potential collateral damage due to
blocking clients from cloud service providers in §V-D.
Low overhead. Exit bridges should not add significant over-
head on top of Tor. Tor is designed as a low-latency anonymity
network, and exit bridges should not incur latency and band-
width penalties that impact its usability.
Scalability. The cost of running exit bridges should be mini-
mal such that new bridges can be inexpensively spawned. The
infrastructure should be sufficiently scalable and cost effective
to support Tor’s millions of daily users [27, 49].

IV. IMPLEMENTATION

Having presented the high-level design principles of the exit
bridge infrastructure, we next describe our experiences imple-
menting exit bridges (§IV-A), and discuss our solutions for
addressing two particular challenges: (i) retaining unlinkability
(§IV-B) and (ii) evaluating and covering the system’s operating
costs (§IV-C).

Tor-Blocking SitesUser Machine

Tor Network

http://brokerxyz.onion

Bridge Space

Exit bridge
(SOCKS5 Proxy Server)

Browser
Extension TLS Relay

Sync
config

https req. over
SOCKS5 proxy

Spawn
Instance

Request
Instance

https://www.iblocktor.com

Torified
TLS tunnel

http/https
request and response

Fig. 3: A typical workflow of a Tor user visiting Tor-blocking
websites through an exit bridge. Solid line indicates control flow
and dotted line indicates data flow.

A. Exit Bridge Architecture

Tor exit bridges are created, maintained, and utilized for Tor
users to visit web resources on demand. A typical workflow
is depicted in Figure 3; a concrete demonstration is presented
in §IV-D. The workflow follows the following steps:

1) Request exit bridge: As introduced in §III-C, a Tor
Browser extension serves as the client’s point of entry to using
exit bridges. When a Tor user attempts to visit a URL, the Tor
Browser extension intercepts each request and checks whether
it is on the user-maintained server-side blocking list of known
Tor-blocking websites. (This check occurs locally and the URL
is never leaked.)

If the Tor user’s intended destination is not on the blocking
list, the Tor Browser will proceed as normal and no exit bridge
will be used. Otherwise, the Tor Browser prompts the user that
an exit bridge is needed for visiting the website, and redirects,
if the user so chooses, to a broker site that is responsible
for curating ephemeral exit bridges. The broker site is hosted
within Tor as a hidden service, with the purpose of preserving
the anonymity of the Tor user.

A user may use multiple exit bridges at the same time,
where each exit bridge is dedicated to forwarding traffic only
to a specific site for that user. That is, each exit bridge is
specific to a single user and a single site the user is visiting.
Additionally, we use a separate Tor circuit to connect to each
exit bridge. This design prevents a rogue exit bridge from
linking the user’s activities across different sites. We discuss
this design decision in more detail in §IV-B.

2) Spawn exit bridge: The main task of the broker site is to
control the lifecycle of ephemeral exit bridges. As spawning
and maintaining bridges on a cloud service provider incurs
a financial cost, the broker may optionally ask Tor users
to subsidize the service by contributing human work, for
example, by completing an online image labeling task. This
is advantageous not only for achieving the scalability design
goal (by offsetting the cost of running the bridges), but also
as a means to defend against naı̈ve denial-of-service attacks.
We provide more detailed cost and revenue analyses in §IV-C.

Once a user’s contribution is confirmed, the broker then
spawns an exit bridge. The exit bridge can be deployed on
any IaaS cloud platform; in our current implementation, we

chose AWS EC2 t3-nano instances for a concrete evaluation.
To enforce ephemerality, the EC2 instance is configured to
terminate after 15 minutes or after transmitting 50MB traffic,
whichever comes first. If the user depletes the time or traffic
budget, the user needs to contribute again to spawn another
exit bridge.

Creating an exit bridge on Amazon EC2 takes approx-
imately 50 seconds. Such a delay is likely intolerable to
most web users, even if it enables access to an otherwise
inaccessible website. To decrease this waiting time, the broker
site adopts a self-adaptive buffering mechanism that maintains
a pool of idle, never used exit bridges. When a user’s request
arrives, the broker associates it directly with one of the fresh
exit bridges to minimize startup costs.

Suppose tstart is the time required to create an instance of an
exit bridge on EC2, and tinstance is the average instance lifetime,
that is, the time from when a user starts to use an exit bridge to
the teardown of the exit bridge (either due to expiration of time
or exhaustion of bandwidth budget). We further write Nactive as
the number of instances that are actively being used by users,
and Nspawn as the number of instances that are currently being
spawned.

Without the buffering mechanism, the ratio of Nspawn to
Nactive should roughly match the ratio of tstart to tinstance,
assuming the user requests are flowing into the system at a
relatively steady rate. In other words, Nactive × tstart

tinstance
users

are waiting for the completion of spawning new exit bridges.
Therefore, we use this to predict the number of idle exit
bridges needed to accommodate all incoming requests. A
benefit of this approach is its self-adaptiveness—the number
of idle exit bridges flexibly scales up (or down) as the system
receives an increasing (or decreasing) number of requests.

As the cost for optimizing away the waiting time for
spawning new exit bridges, the buffering mechanism requires
that Nactive× tstart

tinstance
exit bridges are kept idling, which generates

additional operating cost. Considering the typical numbers of
tstart = 50 seconds and tinstance = 15 minutes, the cost for
the additional idling bridges is estimated as 5.5% of the total
instance cost, which translates to $5,759 per year based on
our cost estimates that we derive in the next section; we show
there that this expense is easily covered by asking users to
perform a small amount of work.

Once the exit bridge is ready to operate, it further goes
through a number of initialization steps:
Create login credentials. The exit bridge is dedicated solely
for the Tor user who requested the service. We use a random
username/password pair as the login credentials.
Configure SSL/TLS certificate. When the Tor user connects
through Tor to the exit bridge and presents its login credentials,
the credentials should not be exposed to the Tor exit relay.
This is enforced by protecting the communication between the
Tor user and the exit bridge using TLS (wrapped within Tor’s
protocols). Each exit bridge uses a unique TLS certificate,
signed by the broker.

After these initialization steps, the broker sends back to the
Tor Browser extension the IP address and port of the bridge as

Local machine

Tor Browser
Extension

Exit BridgeTor

TLS Relay

TLS Relay

Destination
Website

SOCKS5
Proxy

Tor Traffic

TLS Tunnel Traffic

HTTP/S Traffic

Fig. 4: Anonymous traffic is relayed via Tor with an exit bridge towards its intended destination.

well as the login credentials; this process is transparent to the
actual human user. In short, after navigating to the broker site
and electing to create an exit bridge instance, the process of
initializing, configuring, and using the exit bridge is automated
and handsfree.

3) Relay traffic through exit bridge: Once the Tor browser
extension receives the IP, port number and login credentials
of the exit bridge, it configures a local relay that encapsulates
the user’s traffic and tunnels it to the exit bridge through Tor.

Figure 4 depicts the end-to-end routing of the traffic from
the Tor user to the destination website, which traverses over
the following architectural components:
Local relay. A local relay accepts local TCP connections
from the browser extension and decides which exit bridge
to use based on the destination hostname. It then sends
communication from the Tor Browser to the exit bridge, via
the Tor-tunneled connection. Similarly, when it receives data
from the exit bridge (via a Tor circuit), it forwards the data
back to the Tor Browser.
Exit bridge. Each exit bridge consists of two modules. The
first is a TLS endpoint, which operates similarly to the afore-
mentioned local relay. Once a TLS connection has been es-
tablished, it extracts the original HTTP/S traffic and forwards
it to the second module, which can be any SOCKS5 proxy
server (we use dante [5] in our implementation). The SOCKS5
proxy then relays traffic to the intended destination website.
Responses from the destination website will be relayed back
in the reverse direction.

The local relay and the exit bridge operate on the data
plane, and form a completed torified TLS tunnel for securely
transmitting HTTP/S requests and responses.

B. Per-destination Exit Bridges

Our design assigns dedicated exit bridges for each unique
user. This potentially risks unlinkability, since a curious exit
bridge operator (or an adversary that can observe traffic from
the exit bridge) could associate traffic to multiple websites as
originating from the same user.

This is more problematic for exit bridges than for exit relays,
since the shared use of exit relays among many Tor users
makes it more difficult for an eavesdropper to determine which
exit streams belong to the same user.

To address this, we require that a user’s traffic to different
Tor-blocking second-level domains2 be handled by different
exit bridges. The Tor Browser extension effectively maintains a

2A second-level domain is a domain that is directly below the top-level
domain, e.g., twitter.com.

pool of exit bridges. Based on the destination of a web request,
it chooses the corresponding exit bridge to route traffic. When
it detects traffic to a new Tor-blocking site that has not been
associated with any of the user’s currently operating exit
bridges, it sends a request to the broker to instantiate a new
exit bridge. In this way, an exit bridge (or an eavesdropper) can
only see the user’s network activity to a single website. A cabal
of curious exit bridges (or an eavesdropper that can observe
traffic traversing multiple exit bridges) still cannot link web
requests, since each exit bridge is accessed over independent
Tor circuits; that is, it cannot discern whether web requests
forwarded through two exit bridges belong to the same or
different Tor users.

One potential concern is that multiple exit bridges are
needed for browsing even just one website, if the site includes
web objects from multiple second-level domains that block
Tor. To determine how often this might happen in practice,
we conducted a short experiment in which we configure the
Tor Browser plugin to use exit bridges for all sites in the Alexa
top 10,000 list that block Tor. We then visit 20 sites that block
Tor, chosen uniformly at random from all such sites on the top
10,000 list. We find that 19 of the visits required just one exit
bridge; the remaining site required the use of two exit bridges.
In summary, we envision that users will require only one exit
bridge to visit the vast majority of sites that block Tor.

C. Operating Cost

The operating cost of exit bridges is dominated by the
instance cost and bandwidth usage. With the current pricing
of AWS EC2 spot instances [1], a t3-nano instance with
one vCPU and 1 GB memory, costing $0.0016 per hour, is
sufficient to host an exit bridge. (All prices are in USD.)
Amazon charges $0.05 per GB for outgoing traffic to the
Internet (for monthly traffic over 100TB). Therefore, running
an exit bridge for 15 mins and 50 MB data transmission costs
under $0.0029.
Cost of running a global service. We further estimate the
cost of providing an exit bridge service for all Tor users
to freely visit all Tor-blocking websites. Hence, we provide
conservative cost estimates in this section.

Is the ”4.8%” in the 4th paragraph of the introduction
supposed to be 6.4%, as 8%*80%?

The 8% blocking rate reflects the percentage of *websites*
that block traffic from Tor; however, it does not directly
translate to the percentage of Tor *web visits* that suffer
from server-side blocking (e.g., the more popular sites do not
block Tor). Therefore, we estimated that 4.8% Tor traffic is

blocked by adopting the following calculation: We assume
that Tor users exhibit similar browsing behavior to general
web users; that is, the distribution of website visits follows the
power-law distribution. Based on this assumption, we estimate
the percentage of website visits that experience server-side
blocking of Tor, using the measurements we collected for the
Alexa Top 10,000 websites. According to our fitted distribution,
we calculated a block rate of 4.8% for Tor’s web traffic.

We assume that Tor users exhibit similar browsing behav-
ior to general web users [27]; that is, the distribution of
website visits follows the power-law distribution [8]. Based
on this assumption, we estimate the percentage of website
visits that experience server-side blocking of Tor, using the
measurements we collected for the Alexa Top 10,000 websites.
Here, we fit the power-law distribution to the Alexa list since
the latter specifies only the ranks of websites but not their
respective popularities. According to our fitted distribution, we
calculated a block rate of 4.8% for Tor’s web traffic. For the
month of May 2019, Tor’s average daily measured bandwidth
across all exit relays was 52.18 Gbps [49]. Given that AWS
only charges for egress traffic to the Internet, the bandwidth
subject to fees is calculated as 11.74 TB per day ($219,584
per year).

Estimating the instance cost is more challenging, since, to
the best of our knowledge, there is no study measuring screen
time on the Tor Browser. We instead take an indirect approach:
we estimate the machine time based on the number of per-day
Tor connections. Prior work has shown that the aggregated
number of Tor connections per day is approximately 148 mil-
lion [27]. Given that an esimated 4.8% of Tor traffic is blocked
at the server side, We then estimate the number of connections
blocked by target websites (and therefore benefitting from exit
bridges) is 710K per day. We conservatively assume that each
blocked connection needs the creation of a new 15-minute
exit bridge, which yields $284 in machine-time cost per day,
or $103,660 for a year.

As brokers only participate in spawning new exit bridges but
not in the actual web communication, their operating cost is
almost negligible. Taking the conservative estimation of 710K
requests per day, we find that 250 AWS t3-nano instances are
sufficient to sustain such a request rate, given that each request
typically lasts under five minutes and communicates around
300 KB data (200 KB ingress and 100 KB egress). Therefore,
the instance cost of running the global broker service is $3,285
per year, and the bandwidth cost is $1,236 per year.

The total yearly cost to allow all Tor users to visit all Tor-
blocking sites is $328K.
Crowdsourcing the operating cost. In principle, the bro-
ker could recover its operating costs using traditional web
monetization techniques—that is, by serving advertisements.
However, since visitors arrive via Tor and are anonymous,
it is both unclear whether ad networks would be willing to
serve ads where they cannot identify users (e.g., via tracking
cookies) and whether the traffic volume and click-through rates
would be sufficient to recover the costs.

We instead consider revenue models that are better suited

for anonymous browsing and do not require the identification
of users. There is a nascent market of companies that present
crowdsourced image labeling tasks to website visitors and
provide some revenue to website operators.3 For example, the
hCaptcha service [23] serves a traditional CAPTCHA (e.g.,
labeling which animals are dogs or identifying dress sizes from
photographs), with the results then being used as the ground-
truth for some machine learning task by a third-party company.
Unlike Google’s popular reCAPTCHA service, hCaptcha pays
the website operator for each completed task (approximately
$0.0017 per task). In our experience, solving an hCaptcha
puzzle takes between five and ten seconds.

Assuming 710K Tor connections are blocked per day (see
the estimation of instance cost), the revenue collected from
hCaptcha is $441K per year, which is enough to cover the
running cost of the exit bridges (and, in fact, earn a small
profit). In short, solving a single labeling task (requiring less
than 10 seconds) provides sufficient funds for the infrastructure
required to provide access to an otherwise inaccessible site.

D. Typical workflow

Finally we describe a typical workflow for using
Tor exit bridges to access a website that otherwise
blocks Tor. For illustrative purposes, we configure our
Tor Browser extension to include http://whatsmyip.com in
its server-side blocking list; that is, the Tor Browser
extension considers the site to block Tor. (Choosing
whatsmyip.com is intended to show that an exit bridge is
indeed used to forward traffic, since the site lists the requesting
IP. In actuality, whatsmyip.com does not block Tor traffic.)

When the user attempts to browse to the site, the Tor
Browser extension detects that it has been tagged as a site
that blocks Tor. The Tor Browser will not load the webpage
directly; instead, it offers the user the option of accessing the
site through an exit bridge (Figure 5a). Should the user choose
to, it will be redirected to the broker and asked to complete a
CAPTCHA to instantiate an exit bridge (Figure 5b).

Once the CAPTCHA is completed, an exit bridge (an
AWS EC2 instance in this case) will be instantiated and be
configured to dedicatedly route traffic for the user to access
http://whatsmyip.com. The instantiation and configuration pro-
cess is transparent to the user. From the user’s perspective, it
will immediately be able to access the website (which would
otherwise block Tor) through a Tor-circuit to the exit bridge
and then to the target destination (Figure 5c). The IP address
displayed on the webpage belongs to the exit bridge.

V. EVALUATION

In this section, we focus on answering the following ques-
tions: (i) how much collateral damage is inflicted when site
operators opt to block all requests originating from cloud
service providers? (ii) what is the effectiveness of exit bridges
in enabling Tor users to access previously blocked websites?

3This is very distinct from and should not be confused with unscrupulous
sites that outsource the solving of CAPTCHAs (primarily to workers in
inexpensive labor markets) in order to bypass site protections.

http://whatsmyip.com
http://whatsmyip.com

(a) (b) (c)
Fig. 5: (a) The Tor Browser extension detects that the user is attempting to access a site that blocks Tor, and offers the user the option
of accessing the site through an exit bridge. (b) The exit bridge requires the user to complete a CAPTCHA to continue. (c) The site (that
otherwise would block Tor) is accessed through the exit bridge. The IP address displayed in the screenshot is the (AWS-hosted) IP address
of the exit bridge.

and (iii) how much performance overhead is introduced by
exit bridges, in terms of the latency and total time spent for
loading a website?

A. Experimental Setup

In our evaluation, we deployed the broker as a Tor hidden
service. Exit bridges were hosted on t3-nano EC2 instances
in Amazon’s US East Region, configured as we described in
§IV-A2. To enable automated evaluation on a large coverage
of websites, we emulated the browsing of a destination website
by calling PYCURL.PERFORM() with a Firefox USER-AGENT
HTTP request header.

As a comparative study, we consider the following four
different configurations:

• DIRECT serves as the baseline of the evaluation, where
the client communicates with the destination website
directly through the Internet.

• TOR represents that the client attempts to visit the desti-
nation website through Tor.

• In PROXYONLY, the client communicates with the des-
tination website through the exit bridge only, but not
through Tor. This configuration enables microbenchmarks
to assess the overheads of exit bridges, but is not intended
for real-world use.

• Finally, EXITBRIDGE is the complete deployment, where
the client-website communication is relayed through both
the Tor network and the exit bridge.

In our evaluation, as the destination websites, we used the
top 1,000 websites in the Amazon Alexa’s top one million
site list [4]. For each website, we sent 10 consecutive requests
using each configuration. As minor complications, we had to
resolve issues caused by HTTP redirects and inconsistent DNS
resolutions:
Handling HTTP redirections. We used Amazon Alexa’s
top 1,000 websites as the destination websites. Since this is
a list of hostnames, a direct connection to http://hostname
(or https://hostname) may be redirected, which can introduce
unpredictable extra traffic and unexpected HTML responses.
To address this, we generated a list of redirected URLs from
the original hostname list before the evaluation: we directly
connected to http://hostname (or https://hostname) and then
noted any redirections.

Fixing DNS resolution. For many websites, a single hostname
could resolve to multiple IP addresses. This can occur when
reverse proxies, load balanced DNS, or (most commonly)
content distribution networks (CDNs) are used. To ensure
that we communicated to the same IP address across all
four configurations, we performed DNS resolution before the
evaluation and ensured that all subsequent experiments would
use consistent IP addresses.

For each request, if a server response is received within
10 seconds, we save the response as well as pcap packet
traces captured from the local machine and the exit bridge.
(We emphasize that we record only our own traffic.) Note
that we fetch the base HTML only and do not retrieve other
web objects or execute embedded Javascript. The collected
HTML and pcap files are used to analyze the HTML similarity
between different configurations, and the latency incurred
when accessing the destination websites.

When emulating the browsing of destination websites,
has the distributed clients’ location been considered?

In our evaluation, we fixed the location of the client.
However, differing the clients’ locations would have negligible
impact on our evaluation results: in terms of the effectiveness
of the exit bridges, whether a web request encounters server-
side blocking is influenced almost exclusively by the IP or
geolocation of the exit bridge that does the “last-hop” (instead
of the client); the performance (i.e., latency) is dominated by
the communication within the Tor network, the geolocation of
the client contributes little in terms of the overall time-to-first-
byte (or time-to-last-byte) latency.

Our results are obtained using a fixed client location. How-
ever, the location of the client should have negligible impact
on our evaluation results since the client’s network location
is protected by Tor—and not available to the destination
website—and thus does not affect server-side blocking of Tor
traffic. In terms of the effectiveness of the exit bridges, whether
a web request encounters server-side blocking is influenced
almost exclusively by the IP or geolocation of the last hop in
the circuit, i.e., the exit relay or exit bridge.

B. Effectiveness of Exit Bridges

By using exit bridges, Tor users should be able to access
websites that block Tor traffic, and the responses received

http://hostname
https://hostname
http://hostname
https://hostname

0.0 0.2 0.4 0.6 0.8 1.0

Similarity

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Baseline
Tor
ExitBridge
ProxyOnly

Fig. 6: CDF of HTML similarity scores.

should be the same or similar to those when the pages are
fetched directly without Tor. To verify this, we calculate the
HTML similarity [28] of DIRECT, TOR, PROXYONLY, and
EXITBRIDGE (see §V-A) against pages fetched directly. Both
this baseline and DIRECT use direct IP to fetch the webpages;
we include DIRECT here to show how HTML similarity
naturally shifts due to dynamic content.

Figure 6 plots the CDF of the similarity scores. A sim-
ilarity score of 1 indicates an exact match and a score of
0 indicates little or no commonalities. As expected, DIRECT
consistently has the highest HTML similarity: over 90% of
the fetched websites are the exact match of their references.
A significant portion of requests in the TOR configuration
yield a similarity score of zero, meaning Tor traffic is blocked
by these websites. We note that this block rate is inflated by
including the websites hosted on Cloudflare—these websites
require a CAPTCHA challenge for accesses from pycurl
but would otherwise have rendered correct content on the
Tor Browser [40]. Even excluding these Cloudflare-hosted
websites, the accurate block rate of Tor is still well above
13.8% (the rate decreases to around 8.97% for the Alexa top
10,000 websites).

The request through Tor may be accomplished based on
the location of the exit relay, resulting in the different page
content and low similarity. Can such a case be effectively
eliminated by the threshold of similarity or it is rare in
reality? Please clarify.

We did observe that the same URL results in different
renderings from different geographic locations due to dynamic
contents customized to different locales or users. To ensure
that our evaluation results do not mistakenly count these cases
as server-side blocking, we adopt an extremely conservative
threshold (to be exact, an HTML similarity score of 0.01 or
below). This threshold counts a server-side blocking only if
the retrieved page is *almost completely* different from the
reference webpage retrieved without using Tor.

On the other hand, the curves for PROXYONLY and EXIT-
BRIDGE track that of DIRECT closely, offering significantly
improved access to the Tor-blocking websites. The relatively
lower similarity scores (compared to DIRECT) are mainly due
to the use of the exit bridge’s geographic location, which
differs from that of the machine in the DIRECT configuration,
leading to differences in sites that customize content based on

clients’ perceived geographic locations. EXITBRIDGE receives
marginally lower similarity scores compared to PROXYONLY.
This is because, in rare cases, the use of Tor caused a
significantly prolonged retrieval time that caused the request
to time out.

C. Performance Overhead

To evaluate the performance overhead of exit bridges,
we measure both the time-to-first-byte and time-to-last-byte
latency for each “browsing action”. We present the analysis re-
sults of time-to-last-byte; similar observations are made in the
time-to-first-byte analysis below. Time-to-last-byte measures
the time elapsed for the pycurl.perform() function call
to complete—that is, for the entire page to be fetched. Time-
to-last-byte additionally reveals the transmission goodput.

Figure 7a shows the CDF of the time-to-last-byte latency.
We observe that PROXYONLY incurred negligible latency
compared to DIRECT for web requests. Similarly, the compar-
ison between EXITBRIDGE and TOR shows that the latency
introduced by the extra hop to the exit bridge was insignif-
icant and would not likely noticeably affect users’ browsing
experience. (This is mostly unsurprising since Tor is known to
incur a large latency penalty [13, 49], which overwhelms the
cost of including an additional hop for the exit bridge.) We
further break down the latency to reveal the time spent in each
step of the communication and our study confirms that Tor is
the main contributing factor to the end-to-end latency. We also
observe that the CDF of TOR plateaus at approximately 92%.
This is mainly because some Tor-blocking websites did not
return responses or returned error codes.

The cumulative distribution of the time-to-first-byte laten-
cies is shown in Figure 7b. The Figure shows a similar trend
as the time-to-last-byte measurements (presented in §V-C): the
performance of EXITBRIDGE is close to that of TOR.

To confirm our conjecture that Tor is the main contributing
factor to the end-to-end latency, we further break down the
time-to-first-byte latency to reveal the time spent in each step
of the communication. This is achieved by analyzing the pcap
files collected at the local relay and the exit bridge (again, we
capture only our own traffic). We consider the following four
contributing factors:

• TLOCALPROXY: the time required to relay traffic through the
local relay;

• TONTHEFLY: the time required for traffic to traverse either
via Tor (in either the TOR or EXITBRIDGE configuration)
or direct IP communication (in the case of PROXYONLY).
In the case of TOR, TONTHEFLY also includes the latency
of direct HTTP/S requests/responses;

• TEXITBRIDGE: the time required to relay traffic through an
exit bridge; and

• TDIRECTHTTP/S: the latency of direct HTTP
requests/responses.

Figure 7c shows the breakdown of the time-to-first-byte la-
tency. We observe that the latency is dominated by the traver-
sal through the Tor network (TONTHEFLY). The performance

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Time to last byte

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Direct
Tor
ExitBridge
ProxyOnly

(a)

0 2 4 6 8 10

Time Elapsed(s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Direct
Tor
ExitBridge
ProxyOnly

(b)

Direct Tor ProxyOnly ExitBridge

0.0

0.1

0.2

0.3

0.4

0.5

T
im

e
E

la
p

se
d

(s
)

TLocalProxy

TOnTheFly

TExitBridge

TDirectHTTP/S

(c)

Fig. 7: Relative performance of Exit Bridges, including (a) the CDF of time-to-last-byte (in seconds); (b) the CDF of the time-to-first-byte
latency (in seconds); and (c) contributing factors of the time-to-first-byte latency.

overheads added by the exit bridge (i.e., TLOCALPROXY and
TEXITBRIDGE) are insignificant in comparison.

In summary, exit bridges enable Tor users to access most
Tor-blocking sites, with similar overall performance as Tor.

D. Assessing Collateral Damage

A website operator may block traffic from exit bridges by
blocking access from the cloud service providers that host
the bridges. We consider the collateral costs of such blocking.
The degree of collateral damage is dependent on the regularity
at which non-Tor traffic to the website originates from these
cloud service providers. Our findings suggest that websites
may already see a surprisingly large fraction of requests
that originate from the cloud, leading to significant collateral
damage if they are blocked.

Amazon provides a managed, cloud desktop service called
Amazon Workspaces [2]. We studied one instance of Amazon
Workspaces by setting up our own cloud desktop and found its
IP to be in the IP range of AWS [3]. This implies that blocking
AWS will also harm the users of AWS-based virtual desktops.
Similar services are also offered by Google Cloud [6] and
Microsoft Azure [7].

We also examined a three-day snapshot of our institution’s
web logs to see if any requests originated from IPs belonging
to AWS [3], Google Cloud, and Microsoft Azure [29]. We
exclude all requests for robots.txt or those containing the
(case-insensitive) substrings bot, crawler, spider, indexer or
b-o-t in the USER-AGENT header. Among the 5.7M total
requests seen by our institution’s web server, we surprisingly
find that 5.6% of client requests originated from IPs residing in
AWS, with smaller amounts coming from Google Cloud and
Microsoft Azure. More than two-thirds of these requests came
from users using Chrome, Internet Explorer/Edge, Firefox,
or Opera (based on the supplied USER-AGENT), suggesting
that most of these cloud-based requests resulted from actual
browsing activity. We posit that losing more than 5% of
potential site requests for the purposes of preventing Tor users
from accessing the site is too high a cost for the website
operator. In addition, with the trend of increasingly more
companies migrating their IT needs to cloud-based solutions,
it will likely become even more costly to blindly block all

accesses from the cloud.

VI. ANONYMITY AND SECURITY CONSIDERATIONS

We discuss the privacy and security implications of our exit
bridge infrastructure, organized by the participating parties.
Exit relays. Exit bridges receive traffic from Tor circuits
that terminate at exit relays (see Figure 3). Our design adds
another hop to the anonymous path, reducing the role of an
exit relay from an egress point to effectively a second middle
relay. The TLS Relays that reside on the client and the exit
bridge encrypt all traffic between them. This prevents the exit
relay from learning the client’s requested destination.

The exit relay could perform traffic analysis (e.g., through-
put [30] or website fingerprinting [9, 38, 52]), just as any other
middle relay. We consider such attacks orthogonal since they
equally apply to Tor’s current design.
Exit bridges. As with traditional exits, an exit bridge learns
the client’s destination, but not the identity of the client.

The risks of using exit bridges are similar to but distinct
from those of using meek bridges. A meek bridge allows the
cloud provider to observe ingress traffic and enumerate the
users (or their IPs) of the meek bridge. This is arguably a
greater anonymity threat than, in the case of exit bridges, the
cloud provider learning the requested destinations. Although
we use AWS in our deployment, multiple independently
operated cloud providers can be used to host distinct exit
bridge networks, offering some decentralization. However,
such providers are limited, and funneling traffic through the
cloud is a fundamental feature (and anonymity risk) of our
design.

To maintain Tor’s unlinkability, an exit bridge is dedicated
for a single user visiting a single website (see §IV-B). Thus,
a malicious exit bridge cannot link multiple sites visited by
a user. Similarly, colluding exit bridges cannot reliably link
traffic as belonging to the same user since each connection to
a bridge uses an independent Tor circuit.

Finally, to prevent trivial traffic correlation attacks [25, 33,
37], the Tor Browser should ensure that the ingress point
(e.g., a guard or bridge) is not hosted by the same provider
as the exit bridge. (Popular cloud providers publish their IP
address ranges.) We are planning on adding such checks to
our implementation.

Broker. The broker operates as a hidden service, and all
connections to the broker occur over independent Tor circuits.
This prevents even a malicious broker from learning the
network locations of the clients, or linking two requests as
belonging to the same client. The broker assigns clients to
exit bridges—forcing users to use a malicious exit bridge is
equivalent to users selecting a malicious exit; this case is
covered above.

To prevent tracking by the broker using client side cookies,
the Tor Browser extension should prevent or delete cookies
from the broker site (this feature is currently under develop-
ment). We additionally rely on the extensive anti-fingerprinting
techniques provided by the Tor Browser [39] to prevent other
methods of breaking unlinkability.

VII. ETHICS

We consider the ethical considerations of this paper from
two dimensions: the ethics of our experiments and the ethics
of a future Tor deployment of exit bridges.
Ethics of experimentation. We believe the experiments
described in §V are well within the bounds of ethical and
responsible research. As a guiding ethical framework, we
consider the Menlo Report [14], an extension of the Belmont
Report [34] for ethical research that is specifically tailored
for computer security research. The Menlo Report describes
four main principles of ethical studies: respect for persons,
beneficence, justice, and respect for law and public interest.
Since our experiments do not concern human users or data
derived from human users (and thus is not covered by our
institutional review board), they trivially achieve the first and
third criteria. To the best of our knowledge, our experiments
pose no significant risks and do not violate any laws (at
least not in our jurisdiction); in general, we simply retrieved
publicly accessible webpages via AWS. Notably, the effects
of our experiments (visiting webpages) are identical to what
would have occurred had we retrieved the webpages using
virtual AWS Workspaces. In summary, we believe that our
experiments meet the ethical criteria of the Menlo Report and
additionally fall well within the norms of computer science
research.
Ethics of an exit bridge deployment. We separately con-
sider the ethics of a publicly accessible exit bridge deployment.
As with many privacy preserving and censorship evading
technologies, the ethics of such a system are multifaceted
and complex. In the remainder of this section, we attempt to
highlight some of the major ethical issues involved in allowing
users to bypass site-based blocking of Tor.

Are we circumventing security? There are many reasons
sites might block access from Tor, including fear of malicious
traffic relayed through the anonymity network. By design, exit
bridges conceal that the traffic traversed through Tor, and thus
could permit malicious traffic to reach a destination which it
otherwise could not have. However, there are myriad other
ways in which attackers already can disguise the origins of
attack traffic, including the use of open proxies, VPNs, and
botnets. We are skeptical that preventing access from Tor

provides websites with much security, but it is important to
acknowledge that exit bridges do bypass such protections.

We note that the CAPTCHA puzzle-solving requirement
provides some mitigation against automated activities (for
example, spamming and crawling) that often irk site opera-
tors. That is, the (human) work required to connect via an
exit relay—while not especially burdensome to an individual
user—makes it more difficult (albeit not impossible) for an an
attacker to use the exit bridge infrastructure to do automated
activities.

If sites purposefully block access to Tor for philosophical
reasons, is it appropriate to permit such access? This is
the reciprocal to “if a country disallows access to Tor, is it
ethical to provide access (e.g., through bridges) anyways?”
Both traditional bridges and exit bridges purposefully violate
policies, just at opposite ends of the communication. There
is also some similarity to the case of ad and web tracker
blockers, which can violate sites’ acceptable use policies but
which protect users’ privacy.

The pertinent section of the Menlo Report [14, see §C.5]
acknowledges that public interest (here, allowing users to
freely and privately access public websites) may conflict with
acceptable use and other policies.4 The Report requires in such
cases that there be “ethically defensible justification” [14, see
§C.5.1], which is admittedly a very subjective criteria. In brief,
we believe that allowing users to browse privately is of such
immense public interest, that it justifies the use of exit bridges.

Are we imposing a burden on the cloud service provider if
Tor users use exit bridges to perform illegal actions? Tor is
used by criminals to access illegal content (e.g., child abuse
imagery) and perform other illegal actions [36]. As happens
with exit relays, the illegal activity could be misattributed to
the exit bridge—and thus the cloud service provider—since
traffic appears to be originating from the provider. From the
(U.S.-centric) legal perspective, the cloud service provider
has little legal liability. In particular, the Digital Millennium
Copyright Act (DMCA) provides indemnification (i.e., so-
called “safe harbor” protections) for entities that act solely
as a “conduit” for forwarding traffic [50]. The Tor Project
does not know of any individuals being sued or prosecuted
for running exit relays [19], and the same would likely apply
to exit bridges.

A potential mitigation that reduces the burden and exposure
of the cloud service provider is to use a whitelisting strategy
in which exit bridges are configured to only create connections
to sites that block Tor. This would likely still permit access
to blocked sites while substantially reducing or even eliminat-
ing abuse complaints. And, as mentioned above, the use of
CAPTCHAs may stymie automated activities (e.g., crawling),
potentially reducing the number of complaints sent to the cloud
provider.

4The Menlo Report focuses on the ethics of computer security research.
While the above paragraph considers the ethics of deploying exit bridges
(and not on performing research), we believe the principles laid in the report
are applicable here too.

VIII. LIMITATIONS

Exit bridges aim to circumvent server-side discrimination
against Tor traffic by making it more difficult to determine
that a given traffic flow traversed through the Tor network.
However, services can still prevent the use of exit bridges by
blocking all traffic that originates from cloud service providers.
As discussed above, doing so could also block (i) users
who either proxy or originate their traffic from cloud service
providers and (ii) automated systems (e.g., web crawlers) that
operate from the cloud service provider.

Rather than identify exit bridge traffic by IP, a site could
attempt to detect the use of the Tor Browser via browser
fingerprinting [18]. The Tor Browser is not intended to be
a covert application. By design, it attempts to reduce the
entropy of an individual user’s browser fingerprint [32, 39]
by making all Tor Browsers look identical—but not identical
to other browsers. A determined website administrator can
likely identify the Tor Browser with high accuracy. However,
this requires the administrator to (i) include Javascript that
performs measurements of the browser and (ii) add website
logic to assess the measurements and produce a browser
fingerprint. This requires making webpages larger and slower
to load. We are skeptical that website operators would be
willing to accept such tradeoffs.

Lastly, it is unclear that website operators would even want
to disallow Tor Browser users if their goal is to eliminate
attacks arriving from Tor. Attackers who use Tor to perform
vulnerability scanning or send malicious content likely do not
use the Tor Browser and instead attach their scripts and tools
directly to the Tor client (e.g., via torsocks). We posit that Tor
users who use the Tor Browser are much more likely to be
non-malicious.

IX. CONCLUSION

This paper highlights the growing threat of server-side
blocking of Tor traffic, and introduces the exit bridge ar-
chitecture to counter such censorship efforts. Ephemeral exit
bridges are difficult to block since they are short-lived and
their network locations are largely indistinguishable from other
cloud-based services (including those used by website users
who do not use Tor). Our experiments show that exit bridges
effectively circumvent server-side efforts to block Tor with a
very modest 14.5% increase in latency relative to normal Tor
usage. Additionally, based on current cloud service provider
pricing models, exit bridges are inexpensive and cost under
$0.01 per bridge per hour. Our implementation is available
as free open-source software and can be downloaded at
https://security.cs.georgetown.edu/tor-exit-bridges.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd Yen-
nun Huang for their valuable comments. This material is based
upon work supported by the Defense Advanced Research
Projects Agency (DARPA) under Contracts Nos. FA8750-
19-C-0500 and HR0011-16-C-0056 and the National Science
Foundation (NSF) under grants CNS-1453392, CNS-1513734,

CNS-1527401, CNS-1704189, and CNS-1718498. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of DARPA or NSF.

REFERENCES

[1] Amazon EC2 Pricing, 2019. Available at https://aws.
amazon.com/ec2/pricing/on-demand/.

[2] Amazon Workspaces, 2019. Available at https://aws.
amazon.com/workspaces/.

[3] AWS IP Address Ranges, 2019. Available at https:
//ip-ranges.amazonaws.com/ip-ranges.json.

[4] AWS Top 1M Sites List, 2019. Available at http://s3.
amazonaws.com/alexa-static/top-1m.csv.zip.

[5] Dante Socks5 Server Implementation, 2019. Available at
http://www.inet.no/dante/.

[6] Google Cloud solutions, 2019. Available at https://cloud.
google.com/solutions/.

[7] Windows virtual desktop, 2019. Available at https:
//azure.microsoft.com/en-us/services/virtual-desktop/.

[8] ADAMIC, L. A., AND HUBERMAN, B. A. Zipf’s Law
and the Internet. Glottometrics 3, 1 (2002), 143–150.

[9] CAI, X., ZHANG, X. C., JOSHI, B., AND JOHNSON,
R. Touching from a Distance: Website Fingerprinting
Attacks and Defenses. In ACM Conference on Computer
and Communications Security (CCS) (2012).

[10] DAVIDSON, A., GOLDBERG, I., SULLIVAN, N.,
TANKERSLEY, G., AND VALSORDA, F. Privacy pass:
Bypassing internet challenges anonymously. Proceedings
on Privacy Enhancing Technologies 2018, 3 (2018),
164–180.

[11] DINGLEDINE, R. Research Problems: Ten
Ways to Discover Tor Bridges (Tor Blog Post),
2011. Available at https://blog.torproject.org/
research-problems-ten-ways-discover-tor-bridges.

[12] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON,
P. Tor: The Second-Generation Onion Router. In
USENIX Security Symposium (USENIX) (August 2004).

[13] DINGLEDINE, R., AND MURDOCH, S. Performance Im-
provements on Tor, or, Why Tor is Slow and What We’re
Going to Do About It. https://svn.torproject.org/svn/
projects/roadmaps/2009-03-11-performance.pdf, March
2009.

[14] DITTRICH, D., KENNEALLY, E., ET AL. The Menlo
Report: Ethical Principles Guiding Information and Com-
munication Technology Research. Tech. rep., US Depart-
ment of Homeland Security, August 2012.

[15] DURUMERIC, Z., WUSTROW, E., AND HALDERMAN,
J. A. ZMap: Fast Internet-wide Scanning and its Security
Applications. In USENIX Security Symposium (USENIX)
(2013).

[16] DYER, K. P., COULL, S. E., RISTENPART, T., AND
SHRIMPTON, T. Protocol Misidentification Made Easy
with Format-Transforming Encryption. In ACM Confer-
ence on Computer and Communications Security (CCS)
(2013).

https://security.cs.georgetown.edu/tor-exit-bridges
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/workspaces/
https://aws.amazon.com/workspaces/
https://ip-ranges.amazonaws.com/ip-ranges.json
https://ip-ranges.amazonaws.com/ip-ranges.json
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://www.inet.no/dante/
https://cloud.google.com/solutions/
https://cloud.google.com/solutions/
https://azure.microsoft.com/en-us/services/virtual-desktop/
https://azure.microsoft.com/en-us/services/virtual-desktop/
https://blog.torproject.org/research-problems-ten-ways-discover-tor-bridges
https://blog.torproject.org/research-problems-ten-ways-discover-tor-bridges
https://svn.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf
https://svn.torproject.org/svn/projects/roadmaps/2009-03-11-performance.pdf

[17] DYER, K. P., COULL, S. E., AND SHRIMPTON, T. Mar-
ionette: A Programmable Network Traffic Obfuscation
System. In USENIX Security Symposium (USENIX)
(Aug. 2015).

[18] ECKERSLEY, P. How Unique is Your Browser? In Pri-
vacy Enhancing Technologies Symposium (PETS) (2010).

[19] ELECTRONIC FRONTIER FOUNDATION (EFF). The
Legal FAQ for Tor Relay Operators, 2014. Available
at https://www.torproject.org/eff/tor-legal-faq.html.en.

[20] FIFIELD, D. meek. https://trac.torproject.org/projects/
tor/wiki/doc/meek.

[21] FIFIELD, D., LAN, C., HYNES, R., WEGMANN, P., AND
PAXSON, V. Blocking-resistant Communication through
Domain Fronting. In Privacy Enhancing Technologies
Symposium (PETS) (2015).

[22] GOWDA, T., AND MATTMANN, C. A. Clustering Web
Pages Based on Structure and Style Similarity. In
International Conference on Information Reuse and In-
tegration (IRI) (2016).

[23] HCAPTCHA. https://hcaptcha.com/.
[24] HOUMANSADR, A., BRUBAKER, C., AND SHMATIKOV,

V. The Parrot is Dead: Observing Unobservable Network
Communications. In IEEE Symposium on Security and
Privacy (Oakland) (2013).

[25] JOHNSON, A., WACEK, C., JANSEN, R., SHERR, M.,
AND SYVERSON, P. Users Get Routed: Traffic Cor-
relation on Tor By Realistic Adversaries. In ACM
Conference on Computer and Communications Security
(CCS) (November 2013).

[26] KHATTAK, S., FIFIELD, D., AFROZ, S., JAVED, M.,
SUNDARESAN, S., MCCOY, D., PAXSON, V., AND
MURDOCH, S. J. Do You See What I See? Differen-
tial Treatment of Anonymous Users. In Network and
Distributed System Security Symposium (NDSS) (2016).

[27] MANI, A., BROWN, T. W., JANSEN, R., JOHNSON,
A., AND SHERR, M. Understanding Tor Usage with
Privacy-Preserving Measurement. In ACM SIGCOMM
Conference on Internet Measurement (IMC) (October
2018).

[28] MARCA, E. HTML Similarity Tool, 2018. Available at
https://github.com/matiskay/html-similarity.

[29] MICROSOFT. Microsoft Azure Datacenter IP Ranges.
Available at https://www.microsoft.com/en-us/download/
details.aspx?id=41653.

[30] MITTAL, P., KHURSHID, A., JUEN, J., CAESAR, M.,
AND BORISOV, N. Stealthy Traffic Analysis of Low-
latency Anonymous Communication using Throughput
Fingerprinting. In ACM Conference on Computer and
Communications Security (CCS) (2011).

[31] MOGHADDAM, H. M., LI, B., DERAKHSHANI, M.,
AND GOLDBERG, I. SkypeMorph: Protocol Obfuscation
for Tor Bridges. In ACM Conference on Computer and
Communications Security (CCS) (2012).

[32] MOWERY, K., AND SHACHAM, H. Pixel Perfect: Fin-
gerprinting Canvas in HTML5. In Web 2.0 Security &
Privacy (2012).

[33] MURDOCH, S. J., AND DANEZIS, G. Low-Cost Traffic
Analysis of Tor. In IEEE Symposium on Security and
Privacy (Oakland) (2005).

[34] NATIONAL COMMISSION FOR THE PROPTECTION OF
HUMAN SUBJECTS OF BIOMEDICAL AND BEHAV-
IORAL RESEARCH. The Belmont Report: Ethical Princi-
ples and Guidelines for the Protection of Human Subjects
of Research. U.S. Government Printing Office, 1978.

[35] NOTTINGHAM, M., MCMANUS, P., AND RESCHKE, J.
HTTP Alternative Services. Tech. Rep. 7838, Internet
Engineering Task Force, April 2016.

[36] O’NEILL, P. H. Tor’s Ex-director: ‘The
Criminal Use of Tor has Become Overwhelming’.
In Cyberscoop (online news article) (May
2017). Available at https://www.cyberscoop.com/
tor-dark-web-andrew-lewman-securedrop/.

[37] ØVERLIER, L., AND SYVERSON, P. Locating Hidden
Servers. In IEEE Symposium on Security and Privacy
(Oakland) (2006).

[38] PANCHENKO, A., NIESSEN, L., ZINNEN, A., AND EN-
GEL, T. Website Fingerprinting in Onion Routing Based
Anonymization Networks. In ACM Workshop on Privacy
in the Electronic Society (WPES) (2011).

[39] PERRY, M., CLARK, E., MURDOCH, S., AND
KOPPEN, G. The Design and Implementation of
the Tor Browser [DRAFT], 2018. Available at
https://2019.www.torproject.org/projects/torbrowser/
design/#fingerprinting-linkability.

[40] SAYRAFI, M. Introducing the Cloudflare Onion Service
(Blog post), September 2018. Available at https://blog.
cloudflare.com/cloudflare-onion-service/.

[41] SINGH, R., NITHYANAND, R., AFROZ, S., PEARCE, P.,
TSCHANTZ, M. C., GILL, P., AND PAXSON, V. Charac-
terizing the nature and dynamics of tor exit blocking. In
26th USENIX Security Symposium (USENIX Security).
USENIX Association, Vancouver, BC (2017).

[42] SUN, Y., EDMUNDSON, A., VANBEVER, L., LI, O.,
REXFORD, J., CHIANG, M., AND MITTAL, P. RAPTOR:
Routing Attacks on Privacy in Tor. In USENIX Security
Symposium (USENIX) (Aug. 2015).

[43] TAN, H., SHERR, M., AND ZHOU, W. Data-plane
Defenses against Routing Attacks on Tor. In Privacy
Enhancing Technologies Symposium (PETS) (July 2016),
vol. 4, pp. 276–293.

[44] THE SELENIUM PROJECT. The Selenium Project, 2018.
Available at https://www.seleniumhq.org/.

[45] THE TOR PROJECT. Meek Pluggable Transport
Overview. https://trac.torproject.org/projects/tor/wiki/
doc/meek#Overview.

[46] THE TOR PROJECT. obfs4 (The obfourscator). Avail-
able at https://gitweb.torproject.org/pluggable-transports/
obfs4.git/tree/doc/obfs4-spec.txt.

[47] THE TOR PROJECT. List of Pluggable Transports,
2018. Available at https://trac.torproject.org/projects/tor/
wiki/doc/PluggableTransports/list.

[48] THE TOR PROJECT. Tor: Pluggable Transports,

https://www.torproject.org/eff/tor-legal-faq.html.en
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://hcaptcha.com/
https://github.com/matiskay/html-similarity
https://www.microsoft.com/en-us/download/details.aspx?id=41653
https://www.microsoft.com/en-us/download/details.aspx?id=41653
https://www.cyberscoop.com/tor-dark-web-andrew-lewman-securedrop/
https://www.cyberscoop.com/tor-dark-web-andrew-lewman-securedrop/
https://2019.www.torproject.org/projects/torbrowser/design/#fingerprinting-linkability
https://2019.www.torproject.org/projects/torbrowser/design/#fingerprinting-linkability
https://blog.cloudflare.com/cloudflare-onion-service/
https://blog.cloudflare.com/cloudflare-onion-service/
https://www.seleniumhq.org/
https://trac.torproject.org/projects/tor/wiki/doc/meek#Overview
https://trac.torproject.org/projects/tor/wiki/doc/meek#Overview
https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfs4.git/tree/doc/obfs4-spec.txt
https://trac.torproject.org/projects/tor/wiki/doc/PluggableTransports/list
https://trac.torproject.org/projects/tor/wiki/doc/PluggableTransports/list

2018. Available at https://www.torproject.org/docs/
pluggable-transports.html.

[49] TOR PROJECT, INC. Tor Metrics Portal. https://metrics.
torproject.org/.

[50] U.S. GOVERNMENT. Digital Millennium Copyright Act
(DMCA). U.S. Code Title 17, Chapter 5, §512. Available
at https://www.law.cornell.edu/uscode/text/17/512.

[51] WANG, L., DYER, K. P., AKELLA, A., RISTENPART, T.,
AND SHRIMPTON, T. Seeing through Network-Protocol
Obfuscation. In ACM Conference on Computer and
Communications Security (CCS) (2015).

[52] WANG, T., CAI, X., NITHYANAND, R., JOHNSON, R.,
AND GOLDBERG, I. Effective Attacks and Provable
Defenses for Website Fingerprinting. In USENIX Security
Symposium (USENIX) (2014).

[53] WEBFP. A Python library to automate Tor Browser with

Selenium, 2018. Available at https://github.com/webfp/
tor-browser-selenium.

[54] WEINBERG, Z., WANG, J., YEGNESWARAN, V.,
BRIESEMEISTER, L., CHEUNG, S., WANG, F., AND
BONEH, D. StegoTorus: A Camouflage Proxy for the Tor
Anonymity System. In ACM Conference on Computer
and Communications Security (CCS) (2012).

[55] WINTER, P., AND LINDSKOG, S. How the Great Fire-
wall of China is Blocking Tor. In USENIX Workshop on
Free and Open Communications on the Internet (FOCI)
(2012).

[56] WINTER, P., PULLS, T., AND FUSS, J. ScrambleSuit: A
Polymorphic Network Protocol to Circumvent Censor-
ship. In ACM Workshop on Privacy in the Electronic
Society (WPES) (2013).

https://www.torproject.org/docs/pluggable-transports.html
https://www.torproject.org/docs/pluggable-transports.html
https://metrics.torproject.org/
https://metrics.torproject.org/
https://www.law.cornell.edu/uscode/text/17/512
https://github.com/webfp/tor-browser-selenium
https://github.com/webfp/tor-browser-selenium

	Introduction
	Background and Related Work
	Design Principles
	The state of server-side blocking of Tor
	Threat model
	Design goals

	Implementation
	Exit Bridge Architecture
	Request exit bridge
	Spawn exit bridge
	Relay traffic through exit bridge

	Per-destination Exit Bridges
	Operating Cost
	Typical workflow

	Evaluation
	Experimental Setup
	Effectiveness of Exit Bridges
	Performance Overhead
	Assessing Collateral Damage

	Anonymity and Security Considerations
	Ethics
	Limitations
	Conclusion

