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Abstract

Graphical models are ubiquitous tools to describe the interdependence between variables
measured simultaneously such as large-scale gene or protein expression data. Gaussian
graphical models (GGMs) are well-established tools for probabilistic exploration of de-
pendence structures using precision matrices and they are generated under a multivariate
normal joint distribution. However, they suffer from several shortcomings since they are
based on Gaussian distribution assumptions. In this article, we propose a Bayesian quantile
based approach for sparse estimation of graphs. We demonstrate that the resulting graph
estimation is robust to outliers and applicable under general distributional assumptions.
Furthermore, we develop efficient variational Bayes approximations to scale the methods
for large data sets. Our methods are applied to a novel cancer proteomics data dataset
where-in multiple proteomic antibodies are simultaneously assessed on tumor samples using
reverse-phase protein arrays (RPPA) technology.

Key-words : Graphical model, Quantile regression, Variational Bayes

1. Introduction

Probabilistic graphical models are the basic tools to represent dependence structures among
multiple variables. They provide a simple way to visualize the structure of a probabilistic
model as well as provide insights into the properties of the model, including conditional in-
dependence structures. A graph comprises with vertices (nodes) connected by edges (links
or arcs). In a probabilistic graphical model, each vertex represents a random variable (sin-
gle or vector) and the edges express probabilistic relationship between these variables. The
graph defines the way the joint distribution over all the random variables can be decomposed
into a product of factors contacting subset of the variables. There are two types of prob-
abilistic graphical models: (1) Undirected graphical models where the edges do not carry
the directional information (Schéfer and Strimmer (2005); Dobra et al. (2004); Yuan and
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Lin (2007)); (2) The other major class of graphical models is the directed graphical models
(DAG) or Bayesian networks where the edges of the graphs have a particular directional-
ity which expresses causal relationships between random variables (Friedman (2004); Segal
et al. (2003); Mallick et al. (2009)). In this paper, we focus on the undirected graphical
models.

One popular tool of undirected graphical models is Gaussian Graphical Models (GGM)
which assume that the stochastic variables follow a multivariate normal distribution with
a particular structure of the inverse of the covariance matrix, called the precision or the
concentration matrix. This precision matrix of the multivariate normal distribution has the
interpretation of the conditional dependence. Compared with the marginal dependence, this
conditional dependence can capture the direct link between two variables when all other
variables are conditioned on. Furthermore, it is usually assumed that one of the variables
can be predicted by those of a small subset of other variables. This assumption leads
to sparsity (many zeros) in the precision matrix and reduces the problem to well known
covariance selection problems (Dempster (1972); Wong et al. (2003)). Sparse estimation of
precision matrix, thus plays a center role in Gaussian graphical model estimation problem
(Friedman et al. (2008)).

There has been an intense development of Bayesian graphical model literature over the
past decades but mainly in a Gaussian graphical model setup. In a Bayesian setup, this
joint modeling is done by hierarchically specifying priors on inverse covariance matrix (or
precision matrix) using global priors on the space of positive-definite matrices. This prior
specification is done through inverse Wishart priors or hyper-inverse Wishart priors (Lau-
ritzen (1996)). Wishart priors show conjugate formulation and exact marginal likelihoods
can be computed (Scott and Carvalho (2008)) but overall inflexible due to its restrictive
forms. In the space of decomposable graph the marginal likelihood are available upto nor-
malizing constants (Giudici (1996); Roverato (2000)). The marginal likelihoods are used
to calculate the posterior probability of each graph, resulting an exact solution for smaller
dimension but for a moderately large P(number of nodes) or outside such restrictive class
the computation may be prohibitively expensive. For non decomposable graph the com-
putation is non trivial and maybe prohibitive using reversible jump MCMC (Giudici and
Green (1999); Brooks et al. (2003)). A novel Monte Carlo technique can be found in Atay-
Kayis and Massam (2005). There have been approaches by shrinking the covariance matrix
using matrix factorization. For example, factorization of covariance matrix in terms of stan-
dard deviation and correlation (Barnard et al. (2000)), decomposition of correlation matrix
(Liechty et al. (2004)) explore such technique. Writing the inverse covariance matrix as the
product of inverse partial variance and the matrix of partial correlations, Wong et al. (2003)
used reversible-jump-based Markov chain Monte Carlo (MCMC) algorithms to identify the
zeros among the off-diagonal elements.

An equivalent formulation of GGM is via neighborhood selection through the condi-
tional mean under normality assumption (Peng et al. (2009)). The method is based on the
conditional distribution of each variable, conditioning on all other variables. In a GGM
framework, this conditional distribution is a normal distribution with the conditional mean
function linearly related to the other variables. Furthermore, the conditional independence
relationship among variables can be inferred by the variable selection techniques of the re-
gression coefficients of the conditional mean function (Meinshausen and Biihlmann (2006)).
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GGM fit

Figure 1: Left panel shows the true graph and right panel shows GGM fit in a typical case.

More specifically, if a specific regression coefficient appeared to be zero, the corresponding
variables are conditionally independent. Of course, the joint distribution approach and the
conditional approach based on linear regressions are essentially equivalent.

Due to ease of computation and the presence of a nice interpretation, the vast majority
of works on graphical model selection have been centered around the multivariate Gaussian
distribution. In a multivariate Gaussian setup the conditional mean conveys necessary and
sufficient information to infer the conditional independence structure. In contrast, for other
distributions, this may not be true. For instance, for the multivariate t-distribution, the
conditional independence can not be captured only using the conditional mean as it also
depends on the conditional variance which is a nonlinear function of other variables (Kotz
and Nadarajah (2004)). For more complex distributions, the conditional independence
structure may depend nonlinearly on higher order moments of the conditional distribution.
Hence, the inference of a graph can be significantly affected by deviations from the normality
and can lead to a wrong graph. The following example, which we discuss in details in
section 5 (Example 1 (A)), demonstrates the effect of deviation from normality in a simple
case. We assume the following structure for a graph with 30 variables/nodes X7, ..., X3
with 400 observations from each variable. Here Xji,..., X9 is generated from a heavy
tailed distribution induced by a common scale parameter, and X;, X; for 10 < 4,7 < 20
is connected in the network iff |i — j| < 2, given the scale parameter, and X ..., X9 has
some nonlinearity and non-normality and they form a subgraph G disjoint from G2 formed
by Xi1,...,X2. We have Xop,..., Xog independent of the rest and X3¢ is the function
of the latent scale parameter. The fitted and true graphs for Xi,..., Xo9 given the scale
parameter, are given in Figure 1 where index ¢ denotes i th vertex corresponding to Xj,
and it is clear that with deviation from Gaussianity we have a large number of falsely
detected edges. This poses serious restriction in a variety of applications which contain
non-Gaussian data as well as data with outliers. Liu et al. (2012) used Gaussian Copula
model to allow flexible marginal distributions. Alternatively, non-Gaussian distributions
have been directly used for modeling the joint distribution to obtain the graph (Finegold
and Drton (2011),Yang et al. (2016)).
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In this paper, we propose a novel Bayesian quantile based graphical model. The main
intention is to model the conditional quantile functions (rather than the mean) in a regres-
sion setup. This is well known that the conditional quantile regression coefficients can infer
the conditional independence between variables. Under linearity of the conditional quantile
regression function, conditional distribution of the kth variable is independent of the jth
variable if the corresponding regression coefficient of the quantile regression is zero for all
quantiles. Hence by performing a neighborhood selection of these quantile regression coef-
ficients, we can explore the graphical structure. Thus, in our framework this neighborhood
selection boils down to a variable selection problem in the quantile regression setup. A
spike and slab prior formulation has been used for that purpose (George and McCulloch
(1993)). Using Bayesian approach through spike and slab type prior, we can characterize
the uncertainty regarding selected graph through the posterior distribution.

A natural development would be to investigate the asymptotic property of the proposed
estimated graph. We study the asymptotic behaviors of the graph when the dimension as
well as the number of observations increases to infinity. The posterior probability of a small
Hellinger neighborhood around the true graph approaches to one, under conditions similar
to Jiang (2007). Subsequently, we extend this proof of consistency under the assumption of
model misspecification, even under distribution with sub-exponential tail bound.

The posterior distribution is not in an explicit form, hence we resort to simulation
based MCMC method. However, carrying out MCMC in this complex setup could be
computationally intensive. Therefore along with MCMC, we also propose a variational
algorithm for the mean field approximation of the posterior density (Beal et al. (2003);
Wand et al. (2011); Neville et al. (2014)).

The main contributions of our paper are: (1) development of robust graphical models
based on quantiles in a Bayesian hierarchical modeling framework, (2) proving the con-
sistency of those resultant graph estimates under truly specified as well as misspecified
models and, (3) proposing the MCMC based posterior simulation technique as well as a
fast computationally efficient approximation of the posterior distribution.

In next section, we formulate the neighborhood selection problem for a particular node
and write down the corresponding likelihood and the posterior density. In section 3, we
discuss the estimation consistency. Later in section 4, we discuss the posterior approxima-
tion in details and write down the network construction algorithm. In section 5, we discuss
some of the examples and in section 6, we use the proposed method in establishing a protein
network.

2. Methodology

An undirected graph G can be represented by the pair (V| E), where V represents the set
of vertices and E = (i,7) represents the set of edges, for some i,7 € V. Two nodes, i
and j, are called neighbors if (i,j) € E. A graph is called complete, if all possible pair of
nodes are neighbors, (i,j) € E for every i,j € V. C C G, is called complete if it induces a
complete subgraph. A Gaussian graphical model (GGM) uses a graphical structure to define
a set of pairwise conditional independence relationships on a P-dimensional constant mean,
normally distributed random vector x ~ Np(u, ). Here 3 denotes the dependence
of the covariance matrix X on the graph G and this is the key difference of this class of
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models with the usual Gaussian models. Thus, if G = (V, E) is an undirected graph and
if x = (x,)yey is a random vector in RIVI that follows a multivariate normal distribution
with mean vector g and covariance matrix 3G then the unknown covariance matrix g
in GGM is restricted by its Markov properties; given Q¢ = 3¢~ !, elements x; and x;
of the vector x are conditionally independent, given their neighbors, iff w;; = 0 where
w;j is the ijth element of Qg. If G = (V, E) is an undirected graph describing the joint
distribution of x, w;; = 0 for all pairs (i,j) ¢ E. Thus, the elements of the adjacency
matrix of the graph G have a very specific interpretation, in the sense that they model
conditional independence among the components of the multivariate normal. This way,
the covariance matrix ¥ (or the precision matrix ) depends on the graph G and this
dependence is denoted as Y (). The equivalent results can be obtained by using the
conditional regression setup where the conditional distribution of one variable X given all
other variables is [X| X _x] ~ N(Z#k Bijj,ai) where fSi; = —wrj/ Wik, O']% = 1/wgi and
X_j is the vector containing all X's except the kth one. It is clear that the variable X, is
conditionally independent of X; given all other variables iff the corresponding conditional
regression coefficient By is 0. This result transforms the Gaussian graphical model problem
to a variable selection (or neighborhood selection) problem in a conditional regression setup
(Meinshausen and Bithlmann (2006)).

If multivariate normality assumption on x does not hold, then the conditional mean does
not characterize the dependence among the variables. Under general distribution, it can be
helpful to study the full conditional distribution. The absence of an edge between kth and
jth node implies that the conditional distribution of X} given the rest X3|X_j, does not
depend on j and vice versa. Any distribution is characterized by its quantiles. Therefore,
we can look at the conditional quantile functions of X and check if it depends on Xj.
Hence, the main idea is to model the quantiles of X}, and perform a variable selection over
all quantiles. We use linear model for modeling the quantile functions and perform variable
selection in the set up of quantile regression (Koenker and Bassett Jr (1978); Koenker
(2004)).

Thus, we generalize the concept of Gaussian graphical model in a quantile domain where
we consider the conditional quantile regression of each of the node variable X given all
others say X _j for k =1--- P. See Belloni et al. (2016) for some very recent developments
in quantile based graph estimation in frequentist set up. In a conditional linear quantile
regression model if X (7) is the 7 th quantile of kth variable X} then the conditional
quantile of X}, given X_j, that is X}, _4(7), can be expressed as

Xie k(1) = Bro(T) + Zﬁk,j(f)Xj, j=1,---P. (1)
i#k
We summarize the above discussion in the following result.

Proposition 1 Under the assumption of linearity of the conditional quantile function of
Xk, as in model (1), X}, is conditionally independent of X; iff By ;(7) = 0,V7.

Therefore from Proposition 1, we obtain a similar framework as in the Gaussian graphical
model problem. That way, we transform the quantile graphical modeling problem to a
quantile regression problem.
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Furthermore, instead of looking at a single quantile such as median, considering a set
of quantiles will be useful to address a more general dependence structure. To induce
sparsity, it will be helpful to look at the coefficients for a set of quantiles 7, and assume
that the condition f j(7s) = 0 for all s implies the conditional independence among the
corresponding variables. Indeed, the sparse graphical model based on (1) addresses more
general cases than just modeling the conditional mean. In practice instead of the continuum,
grid points 0 < 7 < -+ < 7y, < 1 are used for the selection process.

In many practical scenarios, conditional quantiles may not be linear over all quantiles
and over all the variables. In that case, we consider i/(Xk,_k(T)) = Bk70(7)+2#k Bk’j(T)Xj,
the best linear approximation that minimizes the expected quantile loss function E[p, (X —
L(Xk,—1(7))] where L(X} _j) varies over all linear functions of variables/covariates other
than X}, and, the quantile loss function is given by p,(z) = 27,2 > 0; p-(2) = —(1—-7)z,2 <
0. We also assume that this minimizer is unique. Next, we assume,

Cl1. If Xy _(7) does not depend on X for some j, for any 7, then the coefficient of X in
L(Xy,_1(7)) is zero over all quantiles, that is BAM(T) =0 for all 7;

C2. If X} _(7) depends on X, for some 7, then there exists €,4,¢’ > 0 such that for 7
on the interval [e,1 — €], we have |3} ;(7)| > ¢ for 7 in an open subset of [e,1 — €] of
radius ¢’ and Sy ;(7) is a continuous function of 7 for 7 € (0, 1).

Condition C'1 enforces that conditional independence implies the same for best linear quan-
tile function and condition C2 implies that X;’s that are connected to a particular Xj
are ‘detectable’ through linear quantile regression. Condition C2 can be relaxed by using
polynomial/spline basis to accommodate general functions, but here we restrict ourselves
to linear functions and linear quantile regression.

Suppose we have n independent observations which can be presented as a n x P data
matrix X* = {X;;,i = 1,---,n,j = 1,---,P}. We write X* = [X,---, Xp] where X;
is the n x 1 dimensional ¢th column vector containing the data corresponding to the ith
variable. Since we consider the conditional quantile regression for each of the variable X;
given all the other variables, for the sake of simplicity we describe the general methodology
only for a specific variable Xj. For notational convenience, we assume Y is the kth column
of X* containing the data related to Xj. Furthermore, X = X_\* is a n x P dimensional
matrix containing data corresponding to all other variables except the kth one. Hence, we
redefine X having X; in the ¢ + 1 th column if ¢ < k£ and X; in the ith column for ¢ > k.
We also allow the intercept term as a vector of ones in the first column. In the quantile
regression for X, we treat Y as the response and X as the covariates. For the 7 th quantile
regression, we obtain the estimates of the regression coefficients by minimizing the loss
function ! such as min g Y ; pr(y; — X 3) the regression coefficient vector 8 = {fo, 51, .. .,
Br—1, Bk+1s---, 8P}, yi is the ith element of Y and x; is the ith row of X.

Mathematically minimizing this loss function [ is equivalent to maximizing —[ where
exp(—1) is proportional to the likelihood function. This duality between a likelihood and
loss, particularly viewing the loss as the negative of the log-likelihood, is referred to in the
Bayesian literature as a logarithmic scoring rule (see, for example, Bernardo (1979), page
688). Using loss function to construct likelihood may cause model misspecification. Later
we address the issue and show even under model misspecification, we have the posterior
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concentration around the best linear approximation of the conditional quantile functions.
Accordingly, the corresponding likelihood based method can be formulated by developing
the model as y; = x,8 + u; where w;s are independent and identically distributed (iid)
random variables with the scale parameter t as f(ult) = t7(1 — 7)exp(—tp,(u)).

Using the likelihood corresponding to the quantile regression gives the consistent esti-
mate of the coefficients of the conditional quantile regression (Sriram et al. (2013)). Mis-
specified likelihood (see Chernozhukov and Hong (2003); Yang et al. (2016) ) may impact
the posterior inference such as confidence interval for coefficients. But here our main goal
is to model the conditional quantile function through linear approximation and perform a
model selection for the quantile function through a likelihood equation. Also, we do not
enforce any ordering restriction between the quantile functions for different quantiles. If the
linear representation holds for conditional quantile then the posterior estimates from the
likelihood based on the loss function should show the desired ordering, as we can estimate
the coefficients of the quantile regressions consistently.

The quantile based conditional distributions may not correspond to a joint distribution.
However, here we model the linear approximation of the conditional quantile functions over
a grid of quantiles and construct posterior probability of the selecting the neighbors of a
particular node/variable by constructing the pseudo likelihood function based on quantile
loss. Later we show that even if we have misspecified model, we have posterior probability
of selecting wrong edge/neighbor will go to zero under this loss based pseudo likelihood.

Using the results from Li et al. (2010) and Kozumi and Kobayashi (2011), we can express

1
s = §1v; + 7 262./0%, where & = %, & = ﬁ , v~ Ezp(t) and z ~ N(0,1).
Furthermore, the variables indexed by different ¢ s are independent.
The final model can be represented by integrating previous results as

yi = X;B8+&v+ fzféx/iizi
(% E(/Up(t),
zi ~ N(0,1). (2)

For selecting the adjacent nodes (neighborhood selection) for node k, a Bayesian variable
selection technique has been performed. The stochastic search variable selection (SSVS)
is adapted using a spike and slab prior for the regression coefficients as : p(5;]1;) =
I;N(0,g%v3) + (1 — I;)N(0,v3), (George and McCulloch (1993)) for j = 1,...,P,j # k
and I; is the indicator variable related to the inclusion of the jth variable. Let v be the
vector of indicator function I;’s. We denote the spike variance as v% and the slab variance
as gzvg, where g is a large constant. Alternatively, writing £, ; = (;I; (Kuo and Mallick
(1998)) can be helpful, where we use the indicator function in the likelihood and model the
quantile of y by «'(,. Further, a Beta-Binomial prior is assigned for I;. The corresponding
Bayesian hierarchical model is described as

ﬁj ~ N(Ovt_lo-%)v

I; ~ Ber(m),
m ~ Beta(ai,b),
t ~ Gamma(ag,bo). (3)
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The Beta Binomial prior opposed to a fixed binomial distribution with a fixed 7 induces
sparse selection (Scott and Berger (2010)).

For a sparse estimation problem we consider m different quantile grid points in (0, 1)
as Ti...,Tm. Let ﬁl ={Bo, - Br—1,1:Bk+1,---Bpy} be the coefficient vector corresponding
to the 7, and g’y,l = {60,17 . ﬁk—l,l-[k—l,la Bk—i-l,llk—i-l,h - ,Bp’lfp’l}. Let é be the vector of all
the ﬁl’s; ﬁ(lil)Pﬂ. = ﬁj—l,l if j <k and ﬁ(lil)PH = ﬂjJ for j > k. In this setup, I;; = 0 for
all [ implies that X is not in the model, and I;; = 1 for some [ implies that X is included
in the model. Let ; be the scale parameter for 7;. For 75, we write v;, & and & from
(2) as viy, &1 and &, respectively. Let v be the vector of v;;’s. Using 71, 7o,..., 7y the
corresponding loss function for 7, is  1(3,) = pr, (y—x' év,l) and the corresponding likelihood
function is

))- (4)

Jrilte, B;,7) o< trexp(—tipr, (yi — Xéﬁ%l

The hierarchical model can be written as follows:

B~ MVNp(0p,Xspxp)l=1,....m,
Ijvl ~ Ber(ﬂl)a
™o Beta(al,bl),

t; ~ Gamma(ag,by),

fr(Ylt, B,,7) t?eXP(_tlZPTz(yi_Xééw))‘ (5)
=1

Here, 0p is a vector of zeros of length P and, MV Np(0p,Xs3 pxp) denotes P dimen-
sional multivariate normal distribution with the mean vector Op and the covariance matrix
Y pxp. We use II(.) to denote prior distributions.

Using the setting in (5) and (2), we can express the posterior distribution of the un-
knowns as

( yi—xB - &1,10i1)?

I (B, {1} jsrs ™, vis i Y) 0<t3n/2{Hvzl 2 exp(— — ) x
Qville
exp(—toi) YI(B)} [ [ (L) TW(m)TI(H). — (6)
J7#k

Each of the posteriors II;(-) gives probability to the parameters and hyper-parameters
corresponding to 7; in particular, on ®; = {él’ {L1} i, vi, i} Let, ©® = {©;};. The
distribution on © induced by II;(-)’s given by II(®) = [[11;(©;).

The posterior distribution given in 6 is not available in an explicit form and we have to
use simulation based approach like Markov Chain Monte Carlo (MCMC) to obtain realiza-
tions from it which is described in section 4. Even more, we have to repeat this procedure
for each k over all quantiles, which makes it more computationally demanding. Due to these
reasons, we also develop an approximate method based on the variational technique.
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3. Graph estimation consistency

In this section, we consider the consistency of the proposed graphical model. Two ap-
proaches can be adopted. One method is to look at the variable selection consistency for
each of the nodes and the alternative way will be to consider the fitted density induced by
the graphical model. We take the latter approach first and show the predictive consistency
of the proposed network in scenarios encompassing the P > n case. The dimension is
adaptively increased with increasing n, the number of observations for each variable. Let
P = p, be the number of nodes. We show that with n increasing to infinity under some
appropriate conditions on the prior, the fitted density lies in the Hellinger ball of radius ¢,
approaching to zero, around the true density with high probability, if the proposed model is
correct. Next, we consider the case of model miss-specification and neighborhood selection
consistency.

3.1. Consistency under true model

Convergence in terms of Hellinger distance between the posterior graph and the true graph
can be achieved under conditions similar to Jiang (2007). Here we briefly define the conver-
gence criterion, describing the conditions required and discuss their implications in terms
of the graph estimation.

Let, G* be the true graph and fj ¢+ be the density associated with the £ the node of
true graph under the proposed model and II(.|.) be the posterior density and fi be the
density under the model given in Equation 4 . Convergence in terms of Hellinger distance
such as,

Pe-[1[d( fr, fkg*) <] XF|>1—=06,]>1- X\,

where €,,6,, A, going to zero as n — oo can be achieved, where §, goes to zero in expo-

nential rate. Here, d(f, f*) = \/ f (v/f(x) — /f*(2))2d(v(x)) denotes the scaled standard

Hellinger distance in some measure space xy with measure v, where f* be the true data gen-
erating density, and Pg+[-] or P*[-] be the probability under true data generating density.

For the neighborhood of Y = X}, writing the coefficients é(ﬁk /Bvl’ ﬂl(fk) = ﬁl,
ﬁj(;k) = Bj1, Vi, = vig, using (6) we have
Hl(él(ik)a{I('?k)}jaﬂ'lvvlytl’-) (7)
n (=k
n ) (Xip — X", '5 — &10i08)>
{2 viik 2 exp(—t L X
l{l{il:[l ’ ( 2Uukfgl )
exp(—tiv k) HI(B }HH R JI(t) }
J#k

where x* k; is the ¢ th row of X* ;. Through this conditional modeling, we show the posterior
concentration of f(xg|z;,i # k) f*(x;,i # k) around f*(z1,...,zp).

For the indicator function for the neighborhood selection of k£ th node, we assume
I;; ~ Ber(my,),j # k, with the restriction Zp " L1 < 7. Let 7, = ppmy,. The restriction
on the maximum possible dimension can be relaxed by assuming a small probability on the
set Y b i 11;1 > 7. Also, the scale parameter ¢; = ¢ is assumed to be fixed. The following
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results also hold for the Beta-Binomial prior on the indicator function and we address it

later.
2

n’
2—2 — 00. We have the following prior specifications, gl(_k) ~ MV Np(Op, Sﬁ_ll), where S,B_zl
is a diagonal matrix in our setting.

Let €, be a positive sequence decreasing to zero and 1 < ne;, where a,, < b, implies

Under the true data generating model given in Equation 4 , let Aﬁc (1) = infly)=rn Zj@,#k |/B*§;k) |.
Here the superscript '+’ denotes the true coefficient values. Let chq(M) denote the largest
eigenvalue of the some positive definite matrix M. Let le_k) ~ N(0,V5,), i.e the distribution

restricted to the variables included in the model. Let, B(ry) = max{ch1(Vy,),chi(V;1)}.
Suppose the following conditions hold.

Al. Fnlog(pn) < ne2.

A2. Frlog(1/€2) < ne2.

A3. 1< r, <7y < pp.

Ad. S 1870 < o0,

Ab5. 1<r, <p, <n%a>0.
A6. B(7) < ne2.

AT. prAL(rn) < €2.

Conditions similar to A1-A7 can be found in Jiang (2007). Condition A1l is needed for
establishing the entropy bound on a smaller restricted model space, that is an upper bound
on the number of Hellinger balls needed to cover the restricted model space. Conditions A2
and A6 ensure that we have sufficiently large prior probability on the Kullback-Leibler(KL)
neighborhood of true model. Assumption A7 is needed to ensure sparsity that is coefficients
from all but few variables are close to zero and the total residual effect is small. Also, it has
pn, multiplied on the L.H.S as we may not have the boundedness of the node values. Also,
the eigenvalue condition is satisfied trivially.

The main idea is to show negligible prior probability for models with dimension larger
than 7, or where the coefficient vector lies outside a compact set. Then next step would be to
cover the smaller model space with N (e,) many Hellinger balls of size €,, with log(N(€,)) <
ne2. Tests can be constructed similar to Ghosal et al. (2000). Then by showing that
the prior probability of KL neighborhood around the true model has lower bound of some
appropriate order, the following results can be achieved.

Let, hy = \/(fx(\/f(wk]a:z,z # k) — /[ (x|zi,i # k)2 f*(i1)d(x)). Let the generic
term D,, denotes the data matrix. Then we have the following theorem.

Theorem 3.1 Suppose sup;E|X;| = M* < oo . Then from (6) under AI-A7, for some
¢y > 0 and for n® < p, < n® a >8>0 and for SUPjy < {01 (Va,), chi (Vo 1)} < Bry;
v, B > 0, for large enough 7, the following convergence results hold in terms of the Hellinger
distance if the true data is generated by the likelihood given by equation (4) for some T, as
the number of observations goes to infinity

a)
P (hy < €n|Dy) > 1 — e "] — 1.

Proof Given in the Appendix section. [ ]
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Remark 1 In particular, for 7, < n® with b = min{€,5,£/v} and e, = n~1=/2 with

€€ (0,1), we have ne2 = n¢ and the decaying rate of the order e™™ .

Remark 2 If each of the node has finitely many neighbors, then some assumptions on tail

k)

conditions such as A4, A7 become redundant as only finitely many ﬂ*ﬁ ’s are mon zero

for each k. For p, = O(n*),0 < a < 1, we can have 7, = p, and €, = n—(=8/2 with

€€ (a,).

Remark 3 The results in Theorem 3.1 hold for Beta-Binomial prior on the indicator func-
tion as well and given in the Appendiz section.

3.2. Consistency under model misspecification
3.2.1. DENSITY ESTIMATION

Model (4) has been developed from a loss function and may not be the true data generating
model. Therefore, we extend our consistency results under the condition of model misspeci-
fication. Let, f,g_k be the true density of Y = X}, given X* | and .7}, be the set of densities
fik,—k's given by (4). Let fgk, be the true data generating density for X_j, the variables
other that than Xj. Let f , € Z,. be the density in (4) such that fl”:k,_kfgk has the
smallest Kullback-Leibler (KL) distance with f,? k fo - We show that the posterior given
in (6) concentrates around fl’fk’_ i for 7. We fix the scale parameter t;. It should be noted
that for miss-specified case, we use fO for the true density and f* for the nearest point to
the true density in KL sense, slightly changing earlier notation from Section 3.1.

_ « o=k o=k) .
Let lTLl(fk) = E(pr(zk — 278 7)) and B, ~ = arg mlnﬁllﬁél@m and suppose the

C . . ~(=k . _
minimizers are unique. Let, 3 k) be the combined vector, analogous to ﬁ( k). Then under

s (—k
some conditions, the posterior converges to fl,k,—k(ﬁl( )), the density corresponding to the

best linear quantile approximation for 7;. Let inf}(L(f,g_kak,fl7k7,k(ﬁl(_k))f9k) =5
k)

which is achieved at the parameter value él(i .

Posterior concentration under model misspecification needs more involved calculations
and can be shown under carefully constructed test functions, as given in Kleijn et al. (2006).
However, such approach may depend on the convexity or boundedness of the model space.
We take a route similar to Sriram et al. (2013)) based on the quantile loss function and show
the convergence directly. To prove the consistency, we make a few assumptions. Without
loss of generality, we assume that the variables are centered around zero.

Let dj be the degree (the number of neighbors) of the k th node. Under the following
conditions we prove the convergence theorem.

B1. maxgd, < My — 1 for some universal constant M.

B2. E[MNXl=EIXDI] < 53 for || < b~!Vk,v > 0 (sub-exponential tail condi-
tion).

B3. There exists € > 0, such that for |X;| < ¢,Vk, any m < My dimensional joint
density of any m number of covariates X}’s is uniformly bounded away from zero. We
also assume that E|Xy|’s are uniformly bounded.

11
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B4. logp, < n.
(k)
B5. supy||f oo < 00.

Theorem 3.2 From (4) and (6), under conditions B1-B5, for any § > 0, H(KL(f£77kf9k, fie—£f%)
>+ 0y, for some k|-) goes to zero almost surely, as the number of observations n goes to
nfinity.

Next, we derive the posterior convergence rate under the model misspecification. For a
sequence €, converging to zero, we assume

B6. €, ~n~¢, € < .25,
B7. logp, < ne:.

Theorem 3.3 From (4) and (6), under conditions B1-B7, as the number of observations
n goes to infinity, I(KL(fY _ f%u fir—kf°y) > 6n+05,, for some k|-) goes to zero almost
surely, where 8, = 4€2.

Proofs of Theorems 3.2 and 3.3 are given in the Appendix section. We first show the results
for bounded X}’s and later extend our results for heavy-tailed sub-exponential distributions,
at the end of the proof of Theorem 3.3.

3.2.2. NEIGHBORHOOD SELECTION CONSISTENCY

Next, we state the following Theorems about the neighborhood selection. For Xj or k£ th
node, let N; ={i #k;ie{l,...,P=pp}: X; < X;}, where X; <+ X, implies that there
is an edge between j th and k th node. Let, N, = {i£kyie{l,...,P=py}: B]M‘(Tl) # 0},
be the neighborhood corresponding to best linear conditional quantile for 77, where Bk,i(n)’s
are given in conditions C'1,C2 in Section 2 and Bk,z‘(TZ) is the coefficient corresponding to

Xi,i# k, in @l(_k) from Section 3.2.1.

Lemma 1 Under C; and Cs, for O =19 <71 < To+ < T < 1 and 7, — 15,1 < §;, there
exists dg,mo > 0 such that for 6; < dg for all i, m > mqg and N = UlN[fk-

Let M}, be the model corresponding to the neighborhood N;, and M’ corresponds to N
We assume the following.

BS. I;; ~ Ber(m,) and —logm, = O(n®%t¢);0 < ¢ < 0.5.
B9. logp, = O(logn).

The above condition B8 puts a strong penalty on the model size which penalizes the
neighborhood size of a node, and selection probability under posterior distribution of any
bigger model, containing the true model for a node, goes to zero with high probability.

Next, we assume the following for the conditional densities and the quantiles. This
conditions are similar to the conditions in Angrist et al. (2006) in the context of estimating
the conditional quantile regression coefficient for miss-specified linearity. For a model M ,}:

12
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at node k, let Z denote the |M}'|+1 dimensional random variable consisting of 1 in the first
place and X;’s, j # k that are in the model M} in the remaining places and |M}| is the
size of model M. Let é (1) m} be the corresponding coefficients for the unique best linear
conditional quantile solution.

C3. The true conditional density f°(zx|r_g) is bounded and uniformly continuous in zy
uniformly over support of X_p.

C4 J(1) = E[fO(Zlé(T)Mé |Z)Z Z'] is positive definite for all 7 with Eigen values uniformly
bounded away from zero for 7 in any open subset of [0, 1], for Z defined above for any
M}, and E[||Z||**] is uniformly bounded for some e > 0, over all possible model of
size |M}.|, for any finite dimensional model M}.

Let é(n) m; be the coefficient vector that minimizes the linear conditional quantile
regression loss Elp, (Y — 'X ML )] where YV = X, X ML stands for the variables other
than X} that are in model M, ,i, including the one in first coordinate for the intercept term,
and én(n) m; be the corresponding MLE for the likelihood based on this loss function. In

~n

Angrist et al. (2006), convergence of the process J(-)/n(3 (-)M% —é(-)M%) was shown, for 7
in a subinterval of (0,1). Using those results we show the following neighborhood selection
related result.

Let, IT7 | (My, M) = 11}, (M7, M2) denote the ratio of posterior probabilities of model
Mj and Ms, at node k for 7; based on n observations. Let Ml’fk be model based on the
neighborhood N}, for 7;, and for a model Mj, corresponding to some node, let || be its
size or number of covariates/neighbors in the model. We assume t; is fixed and equal to
one, without loss of generality.

Theorem 3.4 For quantiles 0 < 71 < -+ < Ty, < 1, 0; = 73 — Ti—1, for equations (4) and
(6), under B1, B2, B5, B8,B9,C1 — C4 we have supl{H?k(M,i,Ml*k) : M,i # M/} — 0,
in probability, for any alternative model Mé, as n goes to infinity.

Remark 4 Let M,i be any model corresponding to a neighborhood at node k, N, which
does not contain Ny'. Let B(7)ypn be the corresponding minimizer of the expected linear
— k

conditional quantile loss for that model. Suppose, we assume @(T)M% to be continuous on

-1 > 0 for any € > 0, where ZTB = Elps(zx — Z’é(T)M;)]

T and nfrcicq—e)l
Bl

T’éM% T’él\ll’:
and Z 1is the |M,§| + 1 dimensional random wvariable with one in the first coordinate and
variables corresponding to M,% in others. Then under the set up of Theorem 8.4, we have
supTe(e’l_E){Hﬁ’k(Mk, M)« My, # M} — 0, in probability.

Therefore heuristically, for large n, choosing quantiles on [1e,1 — 7|, 7e > 0, even if
we choose quantile densely, the false discovery rate should not keep on increasing with the
number of quantile grids, and should stabilize. This conclusion is later verified in our
simulation.

13
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4. Posterior analysis

We first describe the MCMC steps for posterior simulation. Next, we derive the variational
approximation algorithm steps for our case. For simplicity, we illustrate the posterior
sampling for Y = X}, ;1 and X = X_¢*; i.e the neighborhood selection for the k th node.
For notational convenience, we will not use the suffix £ in this section and formulate the
method for a regression setup. Let us introduce some notations which will be used in both
formulations.

Let X, ; is n x P dimensional covariate matrix containing X;I;; in ¢ + 1 th column for
t < k and X;I;; in ith column for ¢ > k and the vector of ones in the first column.

To write the steps for variational approximation and MCMC, we define the following
quantities.

e Let Y1 =1,,4x1 ®Y be an n x m length vector formed by replicating Y, m times.

e Let Xy, be the matrix by arranging the X,’s diagonally. Let, va denotes the
matrix X ., with indicators replaced by their expectations. Similarly, we have XWE .
Distributions corresponding to the Expectation calculation will be specified later and
will arise in variational approximation set up. Similarly, the expectation calculation
for the following steps will be specified later.

o Let Y9,V are mn length vector such that, Y, (l i = Y1(-1)nti —§10(E ( ))_1 for

l=1,...,mand ¢ = 1,...,n, and similarly, Y(l Vi = Y1(=1)nti — 5171(”[)’1, and
Yol Y9l be the analogous n length vectors for 7.
e Let ¥; be the n x n diagonal matrix, where i th diagonal entry is E(tl)E(v e, ) for

l=1,... m Similarly, El be the n x n diagonal matrix, where ¢ th diagonal entry
is (t) (- 52 ) for 1 =1,.

o Let S, = X;'¥X; and S, Ty = X1 72X1 ~. Similarly, SE is the expectation of S ..
Let S, and S iy be the matrices corresponding to 7.

e Let 3 be the mP length vector such that (1-1)P+j =Bj_1yif j <k and é(lil)PH =
Bj,1 otherwise, for I = 1,...,m. Also, note that we denote the prior for 8 as 8 ~
N(0, 5’51) as in Section 3. For 71, 8, ~ N(0, Sl;ll)

4.1. MCMC steps

Here, we describe the implementation of the MCMC algorithm to draw realizations from
the posterior distribution. More specifically, we use Gibbs sampling by simulating from the
complete conditional distributions which are described below (for the k’th node).

(a) For the coefficient vector j;:
Given rest of the parameters the conditional distribution is:

" (B,].) := MVN((Se0 +850) " (X)) S (S + S50 7).

14
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1

Ui,l%l) forl=1,...,m and

¥} be the n x n diagonal matrix, where i th diagonal entry is ;(

Sy = X’WE}X%l.
(b) For 7 :

p p
¢""(m|.) == Beta(ay + Y L, P—1— Y Ij+b).
j=1,5#k j=1,5#k

(c) For v;’s:

new (

q Vij|-) o< v frna (i, Aigs 1)

(yi—xéﬁwf)
€.

and p;; = % This step involves a further Metropolis-Hastings sampling with a
2tl+tlgé7’l
2,1

proposal density for @-js as frng(Vij, Nig, Hil)-
(d) For t;:

where frng(vij, Aig, i) is a Inverse Gaussian density with parameters A; ; = #;(

q""(t].) := Gammal(az, ba)

(yi—xiB —€1vi)”

where ap = ag+ % +n and by = by + 1 >°,(

)+ i vi

'Ui,lfg,l
(e) For the indicator functions:
/ 2
P(L;; =1].) ) 1 (yi —x3B. , — &Lvia)
IOg B S} L L) Qe log _ _ tl 28 _
B, =op) = loeei=5) 2{i 12_1 ( €2, )

i — Xgﬁw — & vi0)?

Ui,lf%,l

Z tl((

i1, =0

We simulate from this conditional distributions iteratively to obtain the realizations
from the joint posterior distribution.

4.2. Variational approximation

As explained in section 2 , we approximate the posterior distribution to facilitate a faster
algorithm. We use the variational Bayes methodology for this approximation. First, we
briefly review the variational approximation method for posterior estimation. For observed
data Y with parameter ® and prior II(®) on it, if we have a joint distribution p(Y, ©) and
a posterior II(®|Y) respectively then

logp(Y) = /logmq((a)d(@)

B p(Y,0)
_ / log 57 4(©)d(®) + KL(4(©).T(O]V))

15
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for any density ¢(®). Here K L(p,q) = Ep(logg), the Kullback-Leibler distance between p
and ¢g. Thus,

logp(Y) = KL(q(©),I(O[Y)) + L(q(O©),p(Y,®))
—L(q(©),p(Y,0)) = KL(q(©),1I(8]Y)) —logp(Y). (8)

With given Y, we minimize —L(q(0),p(Y,®)) = flogpl(lége)))q((-))d@. Minimization of
the L.H.S of (8) analytically may not be possible in general and therefore, to simplify the
problem, it is assumed that the parts of ® are conditionally independent given Y. That is

9(®) =[] a(©:)
=1

and U;_,0; = © is a partition of the set of parameters ®. Minimizing under the sepa-
rability assumption, an approximation of the posterior distribution is computed. Under
this assumption of minimizing L.H.S of (8) with respect to ¢;(©;), and keeping the other
q;(.),j # 1 fixed, we develop the following mean field approximation equation:

¢i(©i) x exp(E_;log(p(Y, ®)), 9)

where E_; denotes the expectation with respect to ¢—;(®) = H§:1 ki ¢;(0;). We keep on
updating ¢;(.)’s sequentially until convergence.

For 7;, we have ® = ©; = {QI,I = {Li},m,t,v = {vi}} with @ = 1,...,n5j =
1,... P,j # k. To proceed, we assume that the posterior distributions ofﬁl, L ={L},mwv
{vi;} and t;’s are independent given Y. Hence,

9(®) = q(t)q(B) [ [ a@) [ [ alwis)a(m).

i#k i

Under (3), (6), we have,

Z _1 (yi—xgﬁ —fl,lvi,l)2
p(Y,0) ti {7 LTz via ™2 exp(—ti——— " )exp(—twi) }}
xexp(—5(8)(Sg)B,))ma#h Lo (1 — ) PrIm 2 Latbrygo=Leqp(—boty).

(10)

Using the expression given in (9), we have the variational algorithm given in Table 1.

The densities under this variational approximation algorithm converge very fast and
that makes the algorithm many time faster than the standard MCMC algorithms. From
(9) we have an explicit form of ¢"“"(.) and for our case the updations inside the algorithm
are given next.

4.2.1. SEQUENTIAL UPDATES

If ¢°'4(m), ¢°(t), ¢°'%(viy), ¢°'%(1;) are the proposed posteriors of m;, {t;},v;; and I;;’s at
the current step of iteration, we update

" (B)) oc exp(Eq%, o, .1, 5109 (p(Y, ©)))
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Table 1: Variational Update Algorithm

1. Set the initial values qo(él),qo(vl), °(I)), ¢°(t;) and ¢°(m).

current density by ¢??4().
For iteration in 1:N :
2. Find ¢"*(B,) by

q"(8,) = arg min —£ (¢°(8))a™ (T)a" (vi)g"(m)a" (1),

- a*(8,) -

Initialize qOZd(ﬁl) =q""(8,).

3. Find ¢"**(I;) by

¢" (1) = arg min —£ (¢7(8))q" (1)q" (vo)g™(m)q" (1),

q*(L;)

Initialize ¢?4(I;) = ¢"**(I;).
4. Find ¢"*"(v;) by

1 q*(vi)

We initialize ¢°¢(v;) = ¢"%(v;).
5. Find ¢""(m;) by

qnew (7Tl) = arg min —~L (qud(@l)qud(Il)qud(Vl)q* (Wl)qud(tl),

q*(m)

Initialize ¢°4(m;) = q
6. Find ¢""(¢;) by

new (7Tl)

q"(t) = arg min —£ (¢”(8)q™ (1)g" (vi)g™ (m)q" (1),

q*(t)

Initialize ¢®(t;) = ¢™"(t;).
We continue until the stop criterion is met.
end for

9. Return the approximation q(’ld(ﬁl)qOZd(Il)q"ld(vl)q"ld(m)q"ld(tl).

new (Vl> = arg min —L (qud(él)qud(Il)q* (Vl)qud(Wl)qud(tl),

We denote the

p(Y, @z)) :

p(Y, @l)> -

p(Y, 91)) :

p(Y, @z)) :

p(Y, @l)) -

17
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where Eﬁffwiyh Iy denotes the expectation with respect to the joint density given by

¢”*(m)q”(t) g™ [T, ¢ (via) T1; a”(Lj)-
We have the following closed form expression for updating the densities sequentially. At
each step, the expectations are computed with respect to the current density function.
Thus, for the coefficient vector writing the update across [ quantiles:
E —1/E 51 (oFE -1
qnew(ﬁl> = MVN((SQ:,%Z + Sﬂl) (X'y,l)lzly ) (Sx,'y,l + Sﬁl) )

For m; we have,

P P
¢""(m) = Beta(ar + Y E(I;y)),P—1- Y E(I;;)+b).
J=Ll3#k j=1,j#k
For v;;’s
q" (vij) X Vi1 frnG(Vigs Nigs i)

where frnG(vij, Aig, 1ti1) is a Inverse Gaussian density with parameters \;; = E(t;) E( &
2,1
Ai
and i = T
2B(t)+E () 7
2,1

For the indicator function we have

(i —xiB_, — &1vig)?
) - o S BB )
00 =1

Ui,lf%,z

T

log(M) = E(log

P(I;; = 0) 1—m

(yi — Xgﬁw — &10vi0)?

Ui,lgg,l

> Et)E(

i,1;,=0

For the tuning parameter ¢;,

q"“(t;) := Gammal(ag, ba)

(yi—x}B_ —€11v:i1)?
where a2 = ag + § +n and by Zbo-i-%ZiE( 777'711631 )+ > E(viy).

All the moment computations in our algorithnf involve standard class of densities.
Hence, moments can be explicitly calculated and used in the variational approximation

algorithm. Later in the examples we standardize the data and use t; = 1.

4.3. Algorithm for graph construction

Let A be the P x P adjacency matrix of the target graphical model. Fixing 71,..., 7y, for
k=1,..., P, we compute the posterior neighborhood for each node as follows:

e Construct Y = X}, and X_y* as in section 2.

e Compute the posterior of II1(©®;|Y), by using MCMC or the Variational algorithm,
where ©; = {8, L, = {I;i}, m,t;,vi = {vig}} with i = 1,... ,n;j =1,... P,j # k for
all [.

18
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e As mentioned earlier in Section 2, I;; = 0 for all [, implies that 3;; is not in the
model, and [;; = 1 for some [ implies that they are included in the model for some .
If P(I;; =1|Y) > 0.5 for some I, then A(j,k) =1, and A(j, k) = 0 otherwise.

Two nodes ¢ and j are connected if at least one of the two is in the neighborhood of the
other according to the adjacency matrix A.

5. Some illustrative examples

In this section, we consider three simulation settings to illustrate the application of the pro-
posed methodology. We compare our methodology with the neighborhood selection method
for Gaussian graphical model (GGM), using the R package "huge’(Zhao et al. (2012)) where
the model is selected by ‘huge.select’ function. We considered graphical Lasso (GLASSO)
for graph estimation. We use a1 = 1,07 = 1 in the Beta-Binomial prior. Using the setting
of (3) and (10), we use an independent mean zero Normal prior on the components of 3.

5.1. Example 1

EXAMPLE 1(A)

To illustrate our method, we consider the following example. We consider P = 30 variables
X1,...,X30. We construct X1,..., X9 in the following sequential manner:

X1,...,X10 ~ Gamma(1l,.1) — 10,

Xo = 44X+ e,
X = 1.1X1+4X4+ 1.3Xg9+ €9,
_1, exp(Xa)
X, = o (—2 Y 4e ,
7 (1 + e:np(Xg)) 3

where €; ~ N(0,1), €2 ~ .5N(2,1)+.5N(—2,1), e3 ~ N(0, 1) and they are independent and
independent of the X;’s for each step. The quantity ® denotes the cdf of standard normal
distribution.

Next, we construct X71,...Xog from hierarchical multivariate normal random variables
Y1,...,Y10. That is for i th observation, ¥} ,,...,y10; ~ MVN(0,%), xj; = yjiri, j =
1,...,10, with 0 is a vector of zeros and ¥j; = .7/*~! and r% ~ Gamma(3,3),i=1,...,n,

ri’s are independent, and we have Xy91; = Yj;,j > 1. We generate independent normal
random variables with mean zero and variance 1 for Xo; till X99 and X303 be the vector
of log(r;)’s. Hence, we have total number of nodes/variables P = 30, and given the scale
parameter X3, the graph has two disjoint parts namely: G; = {X;,..., X9} and Gz =
{X11,...,X20}. In addition, non-linear relationships are present between the variables.

Generating n = 400 independent observations over 100 replications, we construct the
network by our algorithm and compare it with the GGM based neighborhood selection
method as mentioned earlier. For GGM we use ‘huge.select’ from the R package ‘huge’
which uses GLASSO and the implementations of the formulation from Meinshausen and
Biithlmann (2006) (MB). The stability based selection criterion (argument ‘stars’in the R
function) performs relatively better in this example and is therefore compared with our
method.
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Table 2: A comparison between GGM and quantile based variational Bayes method(QVB)
for Example 1.

Method FDR e €9 es
QVB({r} ={5}) 0.31 0.33 0 0
QVB({r}=1{3,5,.7}) | 0.69 0.19 0 0
GGM(MB) 496 1.62 0.14 .05
GGM(GLASSO) 14.96 3.20 0.04 .03

For quantile based variational Bayes (QVB), the data is standardized, and we use t = 1,
independent N(0,v), v = 1 prior on the coefficients. The QVB graph is robust to prior
variance over a range 1 < v < 100. A typical fitted subgraph for X, ..., Xo9 conditional on
the scale parameter X3 is presented in Figure 2 for QVB and MCMC based fits with same
parameter specifications. The QVB method has successfully recovered the connected part
inducing sparsity whereas GGM has estimated wrong connections. Moreover, the quantile
based method performs better to separate the independent parts. Using MCMC algorithm,
we obtain the similar graphs but the QVB is several hundred times faster than the MCMC.
In Table 2, an account of false positivity ( detecting an edge, where there is none) has been
provided along with the average number of undetected edges for the QVB. Here, FFDR
denotes the number of falsely detected edges on average per graph, e1, es and ez denote the
average number of undetected edges in GGy, G2 and the average number of falsely detected
connectors between them. It can be seen that the misspecifications are significantly higher
in GGM. The GGM detects a lot of extra edges along with the existing edges. Also, G
and Gy are generally well separated by the quantile based method. Overall, the quantile
based variational Bayes provides a sparser and a more accurate solution. A typical MCMC
fit is similar to QVB fit (Figure 2) but MCMC fits generally have slightly sparser graph
with QVB detecting weaker connections more frequently.

EXAMPLE 1(B): P > n CASE.

In the next example, we consider a sparse P > n scenario. We construct Xy, ..., X similar
to Example 1 (A). Next, we construct X1, ... X9 from a similar hierarchical multivariate
normal random variables Y7,...,Y19. That is 4} ,,..., ¥}, ~ MVN(0,%), zj; = y;.i"j,

j = 1,...,10, with 0 is a vector of zeros and ¥ = .7%~! and T]l—z ~ Gamma(3,3),
t=1,...,n, rj;’s are independent, and we have X194; =Yj;,7 > 3 and
XH = 3Y3 -+ 2Y5 + €4,
X112 = 3Ys+2Y7 +¢5,
X10+j7 = ijv] > 3.

Like the previous setup of Example 1(A) with n = 350 and with adding further noise
variables Xo1,..., X370 which are generated from a standard normal distribution. Thus,
we have n = 350 and P = 370. The data is standardized and we use the same setting
as of Example 1(A). The proposed method performs well to detect the underlying latent
structure, as well as provides a sparse solution (see Figure 3).
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Quantile based fit

14 5 16

mcMm fit

GGM fit

2% 28
1] ¢

Figure 2: Example 1(a). Network for Xj,.

.., Xo9, conditional on the scale parameter.

Top left panel shows the true subgraph. Top middle and right panel show the
network constructed by the quantile based variational Bayes (QVB) and MCMC

with {7} = {0.3,0.5,0.7}, respectively.

Bottom right and left panel show constructions by GGM based method using
GLASSO and MB in huge.select, respectively. Index ¢ denotes i th vertex corre-

sponding to Xj.
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QVB fit

Figure 3: Right panel shows a sparse fitted graph by variational Bayes for Example 1 P > n
case (P = 370,n = 350), with {7} = {.5} and left panel shows the connected
variables.

5.2. Example 2: Performance under Gaussianity

Here, we compare quantile based method with the GGM based methods, where the true data
is Gaussian. First we construct simple structured graph such as hub-graph and band graph
(with banded structure in inverse covariance and adjacency matrix), and then generate
multivariate normal data matrices with those underlying structures. We use quantile based
fit and compare with GGM based fit for such Gaussian data. For the next example, we
consider sparse graphs. The parameter specification for quantile based variational Bayes
(QVB) is similar to that of last example.

5.2.1. HUB-GRAPH AND BAND GRAPH

Using n = 300, P = 50 and 3 hubs, we generate hub graph using huge.generate function.
A typical generated graph, with adjacency and inverse covariance given in Figure 4 along
with the GGM fit. Here the nodes correspond to 1,...,50 are Xq,..., X5 and the hub
centers are located at X, X7 and X34. From the fitted graphs for 7 = {0.5},{0.3,0.5,0.7}
for QVB in Figure 4, it is evident that quantile based method’s performance is similar to
GGM based methods, with QVB resulting slightly sparser graphs.

Next, we generate graph with underline inverse covariance matrix having a band struc-
ture with n = 300 and P = 50, with nodes/covariates Xj, ..., X509, where for |i — j| < 3
there is an edge between X; and X;. The fitted and true adjacency matrices are given in
Figure 5, where the QVB’s performance compares favorably to that of GGM’s.

5.2.2. SPARSE (GAUSSIAN GRAPH

We generate graphs for different sparsity levels using the R function simulategraph and
compare the quantile based fit with the GGM fit. Here, P = 40,n = 100 and sparsity
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GGM(MB) fit GGM(MB) fit

0 05 08 10

00 0z 04 06 08 10

00 02 04 08 08 10

Qub fit; tau=0.5

GGM(GLASSO) fit

GGM(GLASSO) fit GGM(MB) fit QVE fit; tau=0.5

Figure 4: Example 2, part 1. Upper row, left panel shows the true and generated quantities
for hub-graph through huge.generate. Upper row, middle and right panel show the
GGM(MB) fit for stability and information based selection criterion, respectively.
Middle row shows the fit for GLASSO and the fitted graphs for QVB.

Bottom row shows the fit for another replication with same set up. Here the
fitted networks for 7 = 0.5 and 7 = {0.3,0.5,0.7} are same for QVB, and GGM
selection criterions are stability based.
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Figure 5: Example 2, part 1. Upper panel shows the true adjacency matrix and the GGM
(MB) fitted adjacency for band graph, in left and right panel. Lower left,middle
and right panel show the adjacency matrix for the GGM fit (GLASSO), QVB fit
for 7 = {0.5}, and QVB for 7 = {0.3,0.5,0.7}, respectively. Index i denotes i th
vertex corresponding to X;. In the adjacency matrix (i,7) th place is given by
black iff X; <+ X; or the corresponding value is 1, and otherwise given by white
for zero or no edge.
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Figure 6: Example 2, sparse graph case. Here n = 100, P = 40, and sparsity level = 0.05.
Left panel shows the absolute value of partial correlation between variables, when
data is generated from Gaussian graphical model. Middle and right panel shows
the fitted adjacency matrices for QVB and GGM, respectively. We have 7 =
{0.5},{0.3,0.5,0.7} with both resulting same adjacency matrix for QVB. Index ¢
denotes i th vertex corresponding to X;. In the adjacency matrix (7, j) th place
is given by black iff X; <+ X or the corresponding value is 1, and otherwise given
by white for zero or no edge.

levels are .05,.1 and thus, we have nodes corresponding to Xi,..., Xp. Figure 6 shows the
matrix of absolute values of the true partial correlation for the underlying true covariance
matrix, for the sparsity level 0.05 and the corresponding adjacency matrices of the fitted
network by QVB method for 7 = {0.5},{0.3,0.5,0.7} and the GGM based fitted graph.
The partial correlation is zero if and only if there is no edge between corresponding indices.
The strength of the edge is proportional to the magnitude of this partial correlation. It
can be seen that QVB results in a sparse graph similar to GGM. Generally QVB generates
a sparse graph where very weak connections may not be detected, similar to GGM based
method. Figure 7 shows a case with sparsity level 0.1 where the partial correlation values
for the most of the undetected edges are close to zero and we have a sparse graph where
the relatively stronger connections are detected in both cases. We use M B specification
in GGM with default information criterion(ric) based selection, which performs relatively
better in this example.

5.3. Example 3: Effect of quantiles and computational gain

5.3.1. EXAMPLE A. DETECTING THE EFFECT ON EXTREME VALUES

Example 3.A.i. Next, we consider the case where the conditional distribution of one
variable depends on the other in extreme values. For X7, ..., X5 independent normal with
mean zero and variance one, X| = 2|X4| 4+ 1.5|X7| + .5N(0,1) and X} = 1.5|X5| + 2| Xg| +
HN(0,1). Let, Z1 = X{IX{>6 + N(-2, 1)IX1<6 and Z = XéIXé>5.5 + N(-2, 1)IX§<5.5, and
Zp=|Xpl,p=3...,10 and Z, = X,,,p > 10.
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Figure 7: Example 2, sparse Gaussian graph. Top left panel shows the true graph for the
Gaussian graphical model.Top middle and right panel shows the fitted graphs for
QVB and GGM, respectively. Here n = 100, P = 40, and sparsity level = 0.1.
Bottom panel shows the absolute value of the partial correlations corresponding
to the undetected connections, for QVB and GGM, in left and right panels,
respectively. Mostly weaker connections have not been detected both in GGM
and QVB.
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True network QVB fit with median (tau=0.5] QVB fit tau=0.2 QVB fit tau=0.8

Figure 8: Left panel shows the true network. From left, second to fourth panel show fitted
graph by variational Bayes for 7 = {0.5}, 7 = {0.2} and 7 = {0.8}, respectively
for n = 350 in Example 3(A)(ii).

We observe Zi,...,Z15. Depending on the value of a latent variable, a connection

becomes active or ‘switched on’, if it crosses some cutoff and remains ‘switched off’ or
inactive otherwise; namely, the connections: 1 <> 4, 1 <+ 7, 2 <> 5, 2 <» 8. Here, ¢ <> j
or X; <+ Xj, implies that there is an edge between i th and j th node. Let e, be the
average number of such undetected connections for n observations. Table 3 shows the
average number of e, based on 100 replications for n = 200,300,500 for {7} = {0.3},
{r} = {0.5} and {7} = {0.9} for quantile based MCMC. Higher quantile is able to detect
these connections and has smaller average e,. Also, e, decreases with n, as with large n
small signal is more likely to be detected. We use standardized version of the observations,
t =1 and N(0,1) for the prior for the coefficients for MCMC and we use 9000 samples with
5000 burn ins for this particular simulation setting.
Ex 3.A.ii. We construct variables Xi,..., X6 in the following hierarchical manner us-
ing moving average type covariance structure. For wxi;,x9,...,%15,4, the i th observa-
tion for Xi,...,Xy5, we assume the following hierarchical model: 1 ;/r;,...,x10,:/ri ~
MVN(0,Y%), with 0 is a vector of zeros and ¥y = 7%~ and L ~ Gamma(3,3) and
Z11,--.,T15, are independent normal variable with mean zero and variance 1, and X6, =
log(r;). We have n = 350 and the data is standardized.

Hence, the network has connections X; <> Xj; |1 — j| < 2,4,5 < 10 and X; < Xy,
i < 10. Using 7 = {0.2},{0.5},{0.8}, the QVB fitted networks are given in Figure 8. The
connections X; <> Xig, ¢ < 10 are not detected for 7 = 0.5, whereas most of them are
detectable for two extreme quantiles.

5.3.2. EXAMPLE 3 B. GRANULARITY OF QUANTILE GRID

If we make the quantile grids denser, then we will have neighborhood selected for each of
the quantiles and the neighborhood selected would be the union of those neighborhood.
But if we use more and more quantiles the FDR stabilizes, as it is implied by Theorem 3.4
and the following Remark 4, where we can have the ratio of posterior probability of any
wrong alternate model with respect to true model, going to zero uniformly over all quantiles,
with high probability. The following examples demonstrate this robustness of quantile-grid
selection using the variational Bayes method.
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Figure 9: Fit for different quantile grids. Example 3(B)

Table 3: A comparison between different quantiles for the extreme value dependence case
for Example 3.A using MCMC

T en,n =200 e,,n=300 e,,n=>500
{r} ={3} 3.88 3.60 2.82
{r} = {5} 2.87 2.31 1.22
{r} ={.9} 1.65 0.91 0.29

We consider the set up similar to Example 1(A) with n = 400, with quantile grids of
width 0.1,.05 and .025, that are {0.2,...,0.8}, {0.2,0.25,...,0.75,0.8} and {0.2,0.225,...,
0.775,0.8}. We have 30 nodes With X7, ..., X1 generated similar to Ex 1(A), X171 ..., X2
follows multivariate normal MV N (0,X) with X; ; = 71731 and Xo, ..., X3o follows inde-
pendent normal with mean zero and variance one. A typical QVB fit for different quantile
set up is given in Figure 9, where 7 = 0.5 captures all but one edge, and 7 = {0.3,0.5,0.7},
7 =1{0.2,0.25,..,0.75,0.8}, gives the correct graph. The FDR’s are given in Table 4. Let G
be the subgraph based on X1, ..., X9, and G5 is the subgraph based on Xi1, ..., X9g,which
is disjoint from G;. Here e; is the average number of undetected edges in G1, e2 in G2 and
e3 be the average number of connectors detected between them. We can see that the FDR
and eq, e, e3, stabilize even when we increase the number of grids.

5.3.3. COMPUTATIONAL GAIN DUE TO QVB

In all the cases the variational approximation based algorithm performs well to detect the
true graphs. Moreover, QVB is many times faster than the MCMC. We use 40 iterations

Table 4: Effect of granularity of quantile grid

Quantile FDR e ey e3

QVB({r} ={0.5}) 037 032 0 0
QVB({r} ={0.3,.0.5,0.7}) 0.60 0.16 0 0.01
QVB({r}=1{2,3,...,.7,.8}) 0.77 0.13 0 0.03
QVB({r}=1{2,.25,3,...,.7,.75,.8}) | 0.82 0.13 0 0.03
QVB({r} ={2,.225,...,.775,.8}) | 0.86 0.13 0 0.03
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for QVB but in all the examples considered, the convergence happens within 20 iterations.
Using 5000 samples for each node, and 5000 burn ins, the MCMC runtime is nearly 100
times or more of that of the QVB. For example for P = 20,60 and n = 400 in the set up
for example 1, QVB was found to be 170 and 134 times faster over a typical run using one
quantile grid. Also, computational cost scales linearly with the number of quantile grids.
Our computation is parallelizable over nodes and the grids of quantiles, though we do not
implement it here.

6. Protein network

The Cancer Genome Atlas (TCGA) is a source of molecular profiles for many different
tumor types. Functional protein analysis by reverse-phase protein arrays (RPPA) is in-
cluded in TCGA and looking at the proteomic characterization the signaling network can
be established.

Proteomic data generated by RPPA across > 8000 patient tumors obtained from TCGA
includes many different cancer types. We consider lung squamous cell carcinoma (LUSC)
data set. The data set considered, has n = 121 observations with P = 174 high-quality
antibodies. The antibodies encompass major functional and signaling pathways relevant to
human cancer and a relevant network gives us their interconnection subject to LUSC. A
comprehensive analysis of similar network can be found in Akbani et al. (2014) for various
cancers, where the EGFR family along with MAPK and MEK lineage was found to be
dominant determinant of signaling, where for LUSC it was mainly EGFR.

We use our quantile based variational approach with {r;} = {.1,.2,.3,...,.7,.8,.9} and
a normal prior on § (independent N(0,1)). Overall, the QVB graph is robust to this prior
variance(v) selection in the range v = [1, 100] with very few of the edges/weaker connections
may be missing for a relatively higher variance. The data is standardized and we use ¢ = 1.
The graphical LASSO method cannot select a sparse (using huge.select) network both using
criterion ‘MB’ or ‘GLASSO’ and using criterions for tuning parameter selection. Choosing
the penalization by direct cross validation in GLASSO in Akbani et al. (2014), the network
has been generated and it reports the important connections.

The network and the connection tables with variable index can be found in Figure 10 and
Table 5. The type of the connection (positive/negative) is also provided. We can say that
one variable effects other variable positively (negatively), conclusively, if the coefficients in
the corresponding quantile regression is greater (less) than zero for at least one quantile, and
greater (less) than equal to zero for other quantiles. A network of protein was established for
different cancer types in Akbani et al. (2014), where important connections were established.
We compare our network for the LUSC network from Akbani et al. where we find some of
the known established connections are detected and also some connection not mentioned
in Akbani et al. have been detected. Though we refrain from making any inferential claim
about the new connections, some further study may be helpful for possibly new biological
insight.

In our fitted network, the strong EGFR/HER2 connections are detected as seen in Ak-
bani et al. (2014). The connection between EGF RpY 1068 and H ER2p Y1248 is detected
which are known to cross react. The connection between E.Cadherin and alph/beta.Catenin
is detected as expected. Unlike Akbani et al., pAkt and Pras40 are found to be connected
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Figure 10: Active proteins and connections for the LUSC data set.

in LUSC. This connection was reported for few other cancer types. Also, M EK is active
and connected to PMAPK. EGFR is known to be active in lung cancer and mutation
of MAPK , MEK are known to be present for various cancers (see Yatabe et al. (2008),
Hilger et al. (2002)). Few connections, such as the new negative connection between p85
and claudin7, mentioned in Akbani et al. (2014) are not detected in this current set up.

We have detected some new connections not given in Akbani et al. for LUSC data set,
such as between SNAI2 and PARP1. Here, SNAI2 is a DNA-transcriptional repressor and
PARP1 modulates transcription.

Proteins, casp8 and FRCC1 are found to be connected with M ET, which are not
given in AKbani et al. casp8 performs protein metabolism and EFRCC1 is related to
structure specific DNA repairing and known to be important in lung cancer treatment
(Ryu et al. (2014)). They both are connected to growth factor receptor M ET. The detected
connections between K RAS and smad4, YW HAFE and K RAS are not given in the network
from Akbani et al. for LUSC data set and need further study.
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Table 5: Connections and corresponding nodes in LUSC data set
Proteins Sign
MSH6 +» MSH?2
AktPT308 <> AktPS473
ACC1 «+ ACC
beta.cantenin < E.Cadherin
SNAI2 + PARP1
CCND1.Cyclin +» CD20
SrcepY 416 < Src
GSK3.alpha.beta.pS21 < GSk3pS9
Pail < Fibrocentin
PRAS40_pT246 < Akt_pS473
Chk2_pT68 <> chk2.M
Tuberin <> STAT5.alpha
YAP_PS127+ Y AP
AMPK _alpha <+ CDK1
AMPK _PT172 <+ AMPK _alph
EIFAEBP1 pT37 <» EIFAEBP1
EIFAEBP1 pT37 <» EIFAEBP1_PS65
alpha.Catenin <> E.Cadherin
cKit <> GAB2
HER2 pY 1248 ++ EGFR_PY 1068
HER2 pY 1248 <+ Src_PY 416
MET < SNAI2
MET < CASPS
ERCC1 + MET
BCL2 <+ Bim
KRAS <+ YWHAFE
KRAS < Smad4
MAPK pT202.Y204 <> MEK1 pS217_5221
PKC.alpha_pS657 <+ PKC.alpha
EGFR <+ EGFR,Y1068
Rab25 «+» SETD?2
N.Cadherin <» BCL2
N.Cadherin +» MRE11

e B R R R R R B B B I I I I I I I e et B B B R B R R B U
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7. Discussion

The proposed approach offers a robust, non-Gaussian model as well as easily implementable
algorithms for sparse graphical models. Even with large values of P and relatively smaller
value of n, it is possible to detect underlying connections as shown in example 1 and in the
analysis of the LUSC data set. In the protein network construction, we are able to establish
the known signaling network with some newly discovered connections, which need to be
validated.

In this development, we prove the density estimation and neighborhood selection con-
sistency and posterior concentration rate under both the true model and the misspecified
model. Under misspecified model the posterior concentration occurs around the minimum
KL distance point from the true density and the set of proposed densities. From simulation
examples where we do not assume any density structure in the data generating model, the
proposed method performs well. In future, we will further investigate the model selection
properties for each node and related convergence rate.
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8. Appendix
Proof of the theoretical results

Proof of Theorem 3.1:

The sketch of the proof is following. At first we construct the KL neighborhood and show
that it has sufficient prior probability. The sieve is constructed thereon and outside the
sieve the prior probability is decreased exponentially. The construction from Jiang (2007),
Jiang (2005) can be used as long as an equivalent KL ball around the true density can be
constructed under the quantile model.
First, we show our calculation for the nelghborhood construction of k£ th node. Let
hf =x' B*( k) hi, = B*( k) D3, = ﬁ . Here, coefficient vector with subscript ~,
denotes the coefﬁment is set to be zero if the correspondlng variable is not in ,. Similarly,
it is defined for the subscript 7;,. Also, x denotes a generic row of X = X* .

In model ~,, let H be the set of ﬁl(_k)’s such that ﬁj(;k) € (ﬁ;’l(_k) :I:n%) for j # k € vy,

where |y,| = 7y, such that Al (r,) is minimized. Let h, = x’ﬁ(v_lk) then for ﬁl(_k) in H, we
have

f(xk,h;*)’ i Flag, h*) flzrhyy)

LUf) = leg e Ty 1 = ez h’;n Sk, )
<tAL(ra) Y gl + Dty "ijl
JEn i€

where f(zg, h) o< 7(1 —7)exp(—tp;(zr — h)). This step follows from the Lemma 1 of Sriram
et al. (2013).
Therefore,

/L(f)f*(xkl — k) (@ipn)dx < LM (pu () +1€p) < €

for some appropriately chosen 7 (by A7). Hence, H lies in the €2 KL neighborhood.

For normal prior on the coefficient, II(H) > exp(—cne2) and II(y = v,) > exp(—cne?)
for any ¢ > 0 for large n, similar to Jiang (2007). Therefore, they provide sufficient prior
mass on small KL neighborhood around the true density.

Let f’n be the set such that regression coefficients lies in [—C),, C,,] and 7, is the maximum

model size. For § = 77% covering each of the coefficients by d radius [*° balls, in those balls
we have Hellinger distance less than €2. Hence, we have the total Hellinger covering number
of P, as N(en) < S0 ph (% +1)" < (Fn + 1) (pa( S + 1)) (see Jiang; 2005, 2007).

This step follows as dQ(p, q) < K L(p, q), where d is the Hellinger metric defined in
section 3 and KL is the Kullback-Leibler distance. Note that, log(N (ey,)) = O(7(log(Cy) +
log(pn) + log(1/€2))).

We have from Al, A2, using C), as a power (greater than one) of n, from Jiang (2005),
Jiang (2007), or any K; > 0, for large n

log(N (e), 15”) ne%,
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Therefore, Theorem 3.1 follows from verification of conditions for Theorems 5, 6 and
Proof of Theorem 3, from Jiang (2005) or Proposition 1 from Jiang (2007).

From Proposition 1 part (i) from Jiang (2007), P*[II(hy > €,|Dy) > e~€1"n] — 0 for
some ¢ > 0.

BETA-BINOMIAL PRIOR

We have shown the result for I;; ~ Bernouli(n,) with r, = p,m,,r, satisfying A1-A7. We
use the same 7, for Beta-Binomial prior calculation. For v, with model size r,, constructed
as in proof of Theorem 3.1, we show that the prior mass condition holds.

For Beta-Binomial prior on I;;, we have for a; = b; =1,

I(y =) = ((pn +1) <p”>)‘1.

Tn

From A1, TI(y = ) > (pn + 1)~ > exp(—cne2) for any ¢ > 0 for large n. Therefore,
the condition on prior mass holds. Hence, from the earlier proof, Theorem 3.1 follows.

Proof of Theorem 3.2

We prove this part for fixed ¢; = ¢, and without loss of generality ¢ is assumed to be
1. For Theorem 3.2 and 3.3 we first prove under the assumption of bounded covariate
with | Xj| < M for a simplified proof. Later, we relax the condition to accommodate sub
exponential tail bound. For the case where covariates are not bounded, we assume M large
enough such that E|Xg| < M for all k. To show the concentration of fj; _ under II;(-),
around f[‘:k’f i the closest point in conditional quantile based likelihood for 7;, we drop the

suffix in f 5 5 (-), él(_k), 05, and II;(-) for convenience and show for one general quantile.
We have

fKC fl?—k(ﬁ(_k))n(/@(_k)7 V)d(ﬂ(_k)vfﬂ
O(KL(f_ 9’ . (BR) 0 S+ 65 = 5 T RR Ay Lk ud
(KL(fyo— i f s Fr— (B ) f24) > k) ff,?’_k(ﬁ({k))ﬂ(ﬁ(*k)yV)d(ﬁ(fk),'y)

Jicg SR8 B, 7)Y, )
Jop IR (BTHIEER, 5)dp P

N,
= = 11
D, (1)

IN

8’0

Here, vy the vector of 0 and 1 corresponding to the true active set (i.e present in
the model) of covariates for k th node for the model with the KL distance ¢;, and let
|70| = M}, the cardinality of the active set and vy 5, be the set with 4y active and where

(=k) _ =R
EE :
the f0 = f,g}_kfgk is more than § 4+ ;. On Kf§, Efo(log;:::) = KL(f,g_kak, fe—kf%)) —
KL(f,a_kfgk, f,j’_kfgk) > §. Also, n in the density [t —k denotes the likelihood based on
n observations. We divide N,, and D,, by fﬁ’i  Which is likelihood based on n observations
under this minimum KL distance model at k th node for 7.

~ < ¢'. Here, K§ denotes the set of densities where the K'L distance from
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Under Beta-Binomial prior II(y = ) > ((pn + 1)(]1\04”,))_1 > e~ Molog(pn+1) Note that
if the difference between coefficient vectors is 6* in suproemurn norm, then the difference
between corresponding log likelihood is at most M Myo*, by Bl and Lemma 1(b) from
Sriram et al. (2013), if we assume M > 1 without loss of generality.

Therefore, for the denominator, we have e"cyfg—*”k > e*Molog(p"H)H(vgwo) ee=M(Mo+1))8"
1if ¢ > M(My + 1), for large n. 7

We split the numerator in two parts. First part contains the part where each of the
entry of ﬁ(fk) lies in [—K. —mg, K.+ mg] a compact set with mg = Hé(ik)HOo and K. > 0.
We denote the set by S and its compliment by 8¢ Also, let mj = supk||é(_k)\|oo. For
notational convenience, we will drop the index k from the coefficient.

CALCULATION ON S:

For any of the at most ¢, < 2Mo (p}\jol) many covariate combinations ( a conservative bound)
for the kth node, we show the part in the S decreases to zero exponentially fast. Note that
(p" 1) < p . For any covariate combination, we break the My dimensional model space in
(M My)~ 15" width M, dimensional grids along the axes corresponding to coefficients and
look at the induced grid points in S.

Let, Jn(éﬁ) be the number of grid points and for density fj _ associated with each nodal

point of the (M M) 16" width grids, we have f’fw k< =5 for large n with probability

i
one, as n_llogﬁzl:{: — Eo (log?}i::) < —0.
Also, over all possible covariate combinations at some grid point on the set where the KL
distance is more than 0+6;: P(;’f;;k > ¢7%" infinitely often (i.0) over all nodes and models)
k,—k

Ti—k Te—k

= P(n_llogfg’ik > —.50,1.0 over all nodes and models) < P(n_llogfg’* ; E’fo(logfk _’“) >

_ené?
:58,1.0 over all nodes and models) < J,, (8" )2M0lim, 100 300 pupMoe “7 - 0, by Ho-
effding inequality and Borel-Cantelli lemma using B4. Here, t; = Mo(M + 1)(K. + m3)

and ¢ > 0 is a generic constant and |logf'“ *k| < 2.

)
fe 1B

)
grid
application of Lemma 1(b), Sriram et al.,2013). If the nearest grid point is in the set where

For any point 3 = ﬁ ) and its nearest grid point ﬁgm. o we have < end (an

KL distance from the truth is more than ¢ we follow the earlier argument ;’f;; B o< gmnd
k,—k

for large n uniformly over nodes and models, with probability one. Note that if the nearest

grid point not in the set KL(f,g}_kfgk, fk7_k(§(*k))f9k) > 0 + d;, then at the nearest grid

point KL(f,Sﬁkfgk,fk7_k(é(_k))f9k) > 756 + 0], for 6" < .256 from Lemma 1(b), Sriram
et al.,(2013) by generalizing for multiple covariates and taking expectation. From a similar

Hoeffding inequality argument ;n* < e~ for large n uniformly over covariate choices
and nodes for such grid points, Wlth probability one.

Hence, choosing 6 less than .258, for large n we have for all the combinations of v/ on
S, pro, = E fs,y I HRTI(L) < eMologpngMop—ndid where dy > 0 is a constant depending

fn*
—.5nd16

upon 5. Also, logp, < n. Therefore, pr , <e almost surely.
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CALCULATION ON S¢:

Next, we look at S¢. Let, ¢; = min{n,1 —7}. On S¢ at least one 3, is outside

[— K. —mg, K.+ mg|. Without loss of generality we assume 3,; — 5, ,’s have same sign as

Boy — BO,Z (otherwise we change X = —X; and work with the reflected variable). Without
loss of generality, we denote the covariate X/, i # k encompassing both reflected and non
reflected scenarios. As there are only finitely many orderings, it is sufficient to consider only
one such case and prove in that case. Furthermore without loss of generality, the variables
are assumed to be centered.

First, we consider the case when 50,l > Bo,l' The case BO’Z < Bo,l follows identically.
For notational convenience, we show our calculation for 7, y = Xj; and the covariates
X1, X} for a ‘model of size 2 where k #* 1,2. For general case, it follows similarly. Let
bz‘,l = 60,[ — ,30,1 + (51,1 — 517l)x,172~ + (52,1 — ,62’l)$,27i. Note that if xll,i7$,2,i > € > 0, then
bu > 0.

Let

0i1 = pr(yi — Bog — Braxy i — Baarh ;) — pr(Yi — Bog — Prax; — Pogxy ;).

Then from Lemma 1 and Lemma 5 from Sriram et al. (2013)
Oip 2 Crelely sea >e = 20y — Bog — Braxh ; — Boah,l.

Here I is the indicator function. Let, AL = {z ; > €, 2% ; > €} and B! = {2 ; < —e, 0% ; <
—e}. The previous step follows from the proof of the Lemma 1 in Sriram et al. (2013) by

writing down the loss function explicitly and from the fact that b;; = [LEQZ) — [Ll(ll) > 0 on

: 1) _ 3 A A (2 .
Ag, where M;l) = Poj + B ; + Bayxh; and M;l) = Poj + P17 ; + Bagay ;. Considering

the ordering of y;, ﬂgll), /152[), such as y; < ﬂgll) < /152[); ,&Ell) <y < [1,52[) and so on, the above

claim can be verified.

Let min{E(Iy:), E(Ip:)} = ae > 0 (by B3, choosing appropriate ¢ > 0) and r; =
lyi _BO,Z —Bl,lac'u —3271:):’271-] and E(r;) < €, over all nodes and all possible model combination
of size at most M for some constant ¢ > 0, at each node (follows from uniformly bounded
HB(_MHOO and bounded E|Xj|’s). Without loss of generality, the constant a. > 0 is the
minimum of expectations of T Ai» Ipi where A%, B! are constructed similarly for models of

size less than My over all nodes (i.e. sets of the type {2 ; > €,25; > ¢,2}, > ¢,---} etc.
for X1, X2, X;,--- in the model where k # 1,2, 7, ..).

ESTABLISHING BOUND ON THE AVERAGE OF THE INDICATORS AND r;

By Hoeffding bound P(3>"} n_l(IAi) < %) < e ?% and similar bound holds for Bl

Similarly, P(n=1 3" | (r;) > 2¢€') < e~e2(€)? for some constant ¢z > 0 as X},’s are bounded.

TS U) g

Hence by Borel-Cantelli lemma, the probability Ty < g infinitely often is less
1=1"'7

than equal to

(o] a2
limy 0 Z oMo Mo (o —canle . e E) =0
n=N
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by B4.

-1
Therefore for all the possible at most My neighbors, we have, % > dg > 0 for

some dg for all but finitely many cases, with probability 1. The calculation holds for each
quantile.

a?

Also, lim ) >7 pnpfyo(e*c?"(ﬁ/)2 4 e72") — 0 similarly. Therefore, this result holds
over the union over all the vertices /nodes of the graph, over all possible model combination
of maximum size My — 1.

Hence choosing K. large enough, on S¢ we have log fi! ;. ()—log fi'* , = —>_,; i1 < —nuo,
where ug > 0, for large n, almost surely, over all nodes and model of maximum size My — 1.

COMBINING THE PARTS

min{uo,.5d10}
2M (Mo+1) , from

choosing ¢ = 1.5M (Mp + 1).

(11) LHS goes to zero almost surely, as e — 0, by

Choosing §' < oned’ an

Proof of Theorem 3.3

This proof follows similar construction of S and S¢ from the previous proof of Theorem 3.2.
Here we show for bounded X}’s first.

On S

For any of the at most ¢, < 2Mo (p }([01) many covariate combinations for the kth node, we
show the part in the S decreases to zero exponentially fast. We break the My dimensional
model space in (M Mo)_l(S” width My dimensional squares.

Let, J,(6")be the number of grids and for each nodal point we show f’;—;’“ < em2nen
k,—k

almost surely. This step follows from the following application of Hoeffding inequality.
Note that, J,,(8") = (9((6,/ )Moy,

SHOWING fg*’; < e~"€n FOR LARGE n ON S
Let, tp, = Mo(M + 1)(Kc +mg), ts = Mo(M + 1)(K. +mj). We have E(n_llog(ﬁ:f:)) <

2
—4e;.

4

Then, P(n‘llog(fk"’“) > —2¢2, for some grid points in S) < Jn(é/')e_%ﬁ. Here,

ey,
fe,—k

|log | < 2t

n

Choosmg 5" , we have P( ks em2ne, infinitely often for some grid points in S) <

kfk

sf}L _ e%
m Nooo Dopen Jn(éu)e_%m. Now from B6 and B7 we get 3 .J, (6 )e Tl < .

Therefore using Borel-Cantelli lemma, % < e 2 almost surely for large n for grid
k,—k

points in S.
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4
_ontn

Moreover, 3, pnpMoJ, (6" )e ~ 42 < oo (by B7). Therefore, this almost surely conver-
gence happens over all possible covariate combinations and over all p,, vertices/nodes of the
graph.

For any point 8 and its nearest grid point 5 . ,we haveM < e . Therefore
= Tgrid fk,fk(ﬁgm'd)

on S, we have f’“’lgf (k@ < e~ almost surely (following the proof of Theorem 3.2).
COMBINING THE PARTS
Calculation on S:

Ch . 5/ — 5 5% h —loall = Ol 1 d ned’ _Dn —Mologpn

oosing, § = .5y, we have —logll(vy ) = (ogg) and e g > e

H(v5/770)e"(c’MM0)5/ > 1if ¢ > M My, for large n, from B6, BT.

Therefore on S, choosing ¢ > M My and .5e2 < b < 752

Sors fExBITBNABA)

fv 0 flg,fk(g,y)ﬂ-(éy 7)d§

&y

On S°¢
On 8¢, the result from Theorem 3.2 holds and logfi —i(.) — logf; _, < —nug almost
surely for large n.

Therefore, with n, p,, going to infinity, P(IN(K L(f{ ¢ %y, fik,—kf°}) > 6,40 for some node |.)
goes to zero almost surely.

Relaxing boundedness condition

From B2, using Holder inequality, we have that for any My dimensional linear combination
of absolute values of X;’s with bounded coefficient (where coefficient of X;’s are bounded
by 1), denoting the random variable by generic symbol W:

E(e)‘(W_E(W))) < BN for |A| < bt
for some global b*, v* < oo, for all possible such combinations. This is the condition for

sub-exponential distribution with parameters (v*,b*) with v*? = Myv?, b* = Myb.

Showing for linear combinations

This result follows from the following argument using Holder’s inequality for |a;| < 1,Vi,
for [\ < b*71,

E(e\kzﬁ‘il ai(lXil_EuXiD)‘) < E(ep\\Zﬁl |ai(|Xi|_E(|Xi|))|) < {6.5)\2M2y2}ﬁ < 6'5>\2M0V2'

n2¢/2

Then for w1, ..., wy, i.i.d W with mean W, we have P(|W — E(W)| > /) < 2e  2(n(x)Z+nbt)
(Bernstein-type inequality). Also, we have uniform tail bound on the variables/nodes and
their linear combinations, as we have the same for the absolute values.
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SHOWING THEOREM 3.3 FOR SUB-EXPONENTIAL TAIL BOUND

From the tail bound result for linear combinations

n
P(n! Z(m]l\ + -+ |z5,,|) > K for some ji, ..., 0m € {1,...,pn};m < My — 1)
i=1
< pMoe=an (12)

with some ¢; > 0, Ky = 1.5MomaxE(|Xg|), as b < oco. Hence, n= 1> (|zij,| + -+ +
|zij,.|) < K for all but finitely many cases, with probability one by Borel-Cantelli lemma,
as Y pMoe=an < oo,

We can choose 0" = Wile%
(KTSJA)E%H_I Do 2jen |Tigl < 5e2 as n goes to infinity (using Lemma 1(b), Sriram et al.,

and for D,,, on vy ~, we have n_l\logfﬁik - logf£7k| <

2013). Similarly, for N,,, on S we choose ((Kjs + 1)) 6" size grids and the conclusion for
bounded case holds.

On S the absolute value of the coefficients are bounded by K4, = K.+ m% For linear
combination with bounded coefficient, we assumed sub-exponential distribution. Same holds
for differences of such functions with bounded intercept terms, similarly (without loss of
generality, we bound the absolute value of coefficients and intercept terms by one, to get the
global b*, v* in sub exponential formulation, using Holder’s inequality). We assume global
constants b, v , in the sub-exponential condition, slightly abusing the earlier notation.

Finally, for each of the grid points,

n 2
P(n_l(logf’:l’*_k) > —26%) = P(n_1 1 (logfi _x — logfﬁ*_k) > —2 ‘n )

k,—k Kmaz Kmaz

_ €2 4
(Ke+mg)2"n

< e
for some fixed c2 > 0 . This step follows using the sub-exponential property for the quantile
loss functions at nodes and their linear combination, as we have shown it for absolute value
the linear combinations of the covariates earlier, as b, v are global constants, in the sub-
exponential assumption in this case. On S¢ the bound on n~! S ri follows similarly, as
the intercept BO,Z and the coefficients are bounded. Hence, the proof of Theorem 3.3 holds

under relaxed assumptions.
Theorem 3.2 holds similarly.

Proof of Proposition 2.1

The proof follows trivially from model given in Equation (1) and the linearity of conditional
quantile function.

Proof of Lemma 1

Follows readily from the fact that under Cy, if X; is not connected to X then j is not
contained in any Nl’fk, and if X; <+ X}, then from C2, Xj is in some N[’:k if we choose small
enough quantile grid width.
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Proof of Theorem 3.4

Let, Ml .. be the model for 7; at k th node induced by N/ = and Mk + Ml . be any competing
model at node k. Let Tk, (B) = f% x5 be the likelihood under Equation 4, for n
vy 77]\/[1

observations for coefficient § = @ ) ), for some model M7, at node k . Then,

fznk e, ML=
J e r(B)dp

b By,

fl k,—k, Ml*k(@”(ﬁ) a3

o, S I B (B)d

—S +S]\41

B
/ fz,k,—k,lek@)W(@dé -

IR(Mg, M) < emy,

Here the suffix | denote the likelihood used corresponds to 77, ¢ < 2Mo is a constant as

7, < 0.5 without loss of generality. Let ﬂ or the vector of Gy, Bl, ceey Bm* be the true

k
values of coefficients that minimizes the expected quantile loss and the KL distance with

the data generating density. Without loss of generality we can choose them to be first m*
variables. Let s* = m™* be the size of true model for k£ th node and sy, = sp11 be the size
of the competing model. For convenience we drop the [ and writing M, instead of M}, , we

write BM*.
"k

3 I
For Q) = {8 : Bi € (B = ¢,*/(2Kx))ii = 0,...,m*}, we have n”"|logz="2| <

¢/ ? with probability one, for B e Q using the fact that for Ky = 1.5M0maXE(|Xk\),

nTESE (@ [+l ) < Ku for large n with probability one (the conclusion following
12; m < My). For bounded covariate, we can use Ky = MoM where | X;| < M for all j.
Note that E|X| is bounded by C4.
As —log(IT (Qﬁ )) = O(logn), for €/, — 0, €, ~ n~ 491§, > 0 and we have eQ"EEQDTEL;F >
1 with probablhty one.
Next we consider two cases, M} C M} and M} ¢ M.

THE CASE M} ¢ M}

Let ﬁ . be the Maximum likelihood estimate of B the minimizer of the expected loss

M17
under mlsspeciﬁed model. Then ,6 1 converges to B Bag in probability. Consequently, we

T kpm |
show that, n llognift’c < —4 in probability, for some & > 0.
ko =k By
k
Th-k, A f’?"’“’ﬁﬁﬂ
This step follows form the following argument writing logni’“ = logfni’“ +
k, k@M}: k,fk,éMé
f]? kBM f'?’*k’éMl
logz——*. Now, n~Hog—= k< —¢ almost surely and hence, in probability, where
k,—k ﬂ]\l* k *k@M;
Lg —lz >20
"o g
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Note that |log;:§_i:[’“| < /nn~t S ZJ o w] nlxji|, where zg; = 1, where n™ 5wj,n =
k ) Ie —kp7
|5 — ]M1| Therefore ‘BZMé —B];M]ﬂ = 0p(1), wj,, = Op(1) and n5n 1|logﬁ| =
(’)p(l) ( from Theorem 3, Angrist et al. (2006) and from the fact, n~? Z}? AR k -t
\iﬁz’jm’) < Ky for large n with probability one), and as a result n 1log;_::;’: < —0 in
k

probability.
Hence, from equation (13), multiplying numerator and denominator by "

n
f’“’—kwéx/ﬂ
n[n~'logsm k]

k,—k,B
7]Mk

I(My, Mfy) < emy " T et (14)

Hence, logll}! L (ML My ) < —¢'n for any 0 < ¢ < 6 for large n in probability and
therefore, I}, (M i Ml’k) Converges to zero in probability.

THE CASE M} C M}

Without loss of generality assume that M} has first sy, > s* variable active. Note that,

fk —k 5”
\logfniﬂ < Tt 12; _& w "x;;|, where zo; = 1, where n™"w, ,, = 185 — Bjmel.
viM*
Note that 3 Bz = =3 B by uniqueness of the minimizer of expected quantile loss and condition

C1.
Syl
As w;,’s are Op(1), therefore, n= 1> " ZJZ’I“ w?|xj;| is Op(1). Hence, from equation
(14) using BS,

logﬂﬁk(Mli, Ml*k;) < —(spy — s*)con'5+€/ +vnO,(1) + 2ne;12 + ¢

for generic constants ¢y > 0,cf. Choosing €, < n=?°, we have II?, (M}, M},) goes to zero
in probability.

Proof of Remark 4

Let, w;,(7) is defined similar to w;, when we use 7 as our quantile. Note that for M} C M}
SUPre(e1—o)|Wjn(T)] is Op(1), for € > 0 and therefore, sup, H’Tﬁk(M,%, M) is op(1) from
the earlier calculation. This step follows from the conclusion about the process over 7 in
Theorem 3 of Angrist et al. (2006).

Suppose, we have minimizer of the quantile loss at T, @ M (1) and @ M (1), under M;* and

M ,i, respectively, for the case Where M, ! does not contain M. Then, for any 6 > 0, there

1 k —kB 1) 1 kﬁMl(T
exists €1 > 0 such that, [n~ logfni’c -n logfn7| < d0/4 for |7 — 77| < ey,
k,—k BA[*(T) k,—k 31\4*(7—”)
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€1 > 0 a small number. This step follows using n=' 37, >~ 3" [ < Ky for large n (shown
in the proof of Theorem 3.3) and the continuity of BM* (1) and BMl (7).
"k "k

fk —k Bn S..1
Again, n~ supT|logf,17’c| < sup,n 130 ij’g |wjn||zji| = Op(1). Hence, using
—kByn

finitely many €; equi-spaced grid at different 7’s we have the set S;. For 7 € S; we have

H? w(M kl:, M) goes to zero in probability from the calculation before equation 14, by showing
Ii, k2 ()

_1logﬁ7 < —4§/2 in probability, for 7’s in the set S; for some § > 0. Here, we use
Bomk B (7)

the fact 1nfTe(6,1 ol —1 > ¢ for some § > 0 for a given € > 0. Then, we repeat

T’EAM% T’QM;;
the argument for the case M/, ¢ M} in Theorem 3.4 proof. As S; is a finite set, this
convergence to zero in probability, is uniformly over S.

For 7 € (¢,1 — €) NS¢, from the earlier calculation,

m_
Rk (1)
n[n~'log m k
n 1 * —s"+sa 2ne k=B (7)
T,k(Mkka) < cmy 6 k
n .
Te—k,87 | (r) S Ry
[n’llog%—i—n’llogﬁ%’“—‘ré/ﬂ
< on 7;8 “+sary 27@126 k,fk,é]\/[%(‘r) Rk (1)
. s —kB7 ( 1 Us kBMl(T’>
for |[7—7'| < €1, 7" € S;. We have, sup,|nn log F——— | = Op(1) and n™'log 72—
. mMuf) kb By (1)

—4/2 in probability. Hence, II", (M}, M}) < e~"%/8 _5 0 in probability uniformly over 7.

Sequential updates for variational formulation

For the formulation in Equation 9, we have

q*(B,) o exp ( - %E((Z(Zﬁ —-xiB. - él,lvi,l)Q)(%)) - %ﬁ;sﬁzél))

EHSH

= o (= g (0 Xl SO OB )~ 588, + )
= exp (— GEAY X BBV X B) + 8558} + o)

= e (- %{(Q’E(XV’EZXW)Q 8,558, ~ 2BECGYEY ) + )

= 1c %{(@l — (SE 4 85) IXE'S YOl (SE. 4 85

_ !/
(8, — (SE, 1+ 85) ' XE'mY ) 4+ )

where cp,c; and ¢ are free of 3 ’ Therefore, we have the multivariate normal form for 3 .
and hence the result follows.
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For m;:
P P
log(q*(m)) = (a1 + Y E(j))logm+(P—1— Y E(I;)+b))log(l—m)+c
J=1,j#k j=1,j#k

for some constant c free of w. Therefore,

P P
¢""(m) = Beta(ar + > E(I;y)),P—1- Y E(I;;)+b).
J=Ll3#k j=1,j#k
For v;;:
From Equation (10)
. 1 (wi—-xiB_ ) &, 1
log q*(vig) = *g{E(%)%l L B() (5 + 2)o) — 51055 vy + ¢,
2,1 2,1

where ¢ is free of v; ;.
Note that inverse Gaussian density with parameter p and A has the form

\ (@ = p)?

flx, m,A) o 273 exp(—

Equating the coefficients of z and %, i.ev;; and 7%[, we have A = \;; = E(tl)E((yﬁz+é
L 2,1
Ai
and p = ;) = —152
2E(tl)+E(tl)fé—’l
2,1
Indicator function :
We have,
log(P(Ij; =1)) = E(jlog(m)+ (1—1j;)log(l —m)) —
1 (vi —xiB_, — &1,vi0)?
51 > E()E( 7752 ) +ca
00 =1 IS
/ 2
) 1 (yi - Xz’é,yl - gl,lvi,l) ,
= E(log ) — *{ E(tl)E( ’ ) + ¢4
1—m7 2 i,Ij,Zz:=1 Ui,lé%,l
where ¢4’ is a constant and
1 (yi —xiB_, — &1vi0)?
log(P(Ijy =0)) = E(log(l—m))—={ > Et)E( sl )+ cq
2 v 1€
i,I;,=0 1,169 ]
1 (yi = xiB_, — E11vi1)?
_ _ = E(t)E — /.
32 BB ) e

i,15,,=0
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Therefore,

(yi — Xéﬁw — & vig)?

P =1) o 1
tog(BL =1y paog Ly LS gy -
P(IjJ = 0) 1-— uy 2 i,Ij,ZL:l /Ui,lf%,[
(yi — %38, — &1vi)?
> BB
i,15,=0 vi’l£27l
Here, E(log 7% l) is computed numerically by a Monte-Carlo estimate.
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