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Abstract
It is well known that the standard greedy algo-
rithm guarantees a worst-case approximation fac-
tor of 1− 1/e when maximizing a monotone sub-
modular function under a cardinality constraint.
However, empirical studies show that its perfor-
mance is substantially better in practice. This
raises a natural question of explaining this im-
proved performance of the greedy algorithm. In
this work, we define sharpness for submodular
functions as a candidate explanation for this phe-
nomenon. We show that the greedy algorithm
provably performs better as the sharpness of the
submodular function increases. This improve-
ment ties in closely with the faster convergence
rates of first order methods for sharp functions in
convex optimization.

1. Introduction
During the last decade, the interest in constrained submodu-
lar maximization has increased significantly, especially due
to its numerous applications in real-world problems. Com-
mon examples of these applications are influence modeling
in social networks (Kempe et al., 2003), sensor placement
(Krause et al., 2008a), document summarization (Lin &
Bilmes, 2009), or in general constrained feature selection
(Krause & Guestrin, 2005a; Das & Kempe, 2008; Krause
et al., 2008b; 2009; Powers et al., 2016). To illustrate the
submodular property, consider a simple example of select-
ing the most influential nodes S in a social network where
information is seeded at S and is passed around in the net-
work based on a certain stochastic process. Submodularity
captures the natural property that the total number of nodes
influenced marginally decreases as more nodes are seeded
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(Kempe et al., 2003). Given the importance of submodular
optimization, there has been significant progress in design-
ing new algorithms with provable guarantees (Calinescu
et al., 2011; Ene & Nguyen, 2016; Buchbinder & Feldman,
2016; Sviridenko, 2004).

The most fundamental problem in submodular optimiza-
tion is to maximize a monotonically increasing submodu-
lar function subject to a cardinality constraint. A classi-
cal result (Nemhauser et al., 1978; Nemhauser & Wolsey,
1978) shows that the greedy algorithm is a multiplicative
(1− 1/e)-approximation algorithm. Moreover, no other ef-
ficient algorithm can obtain a better guarantee (Nemhauser
& Wolsey, 1978). However, empirical observations have
shown that standard algorithms such as the greedy algorithm
performs considerably better in practice. Explaining this
phenomenon has been a tantalizing challenge. Are there
specific properties in real world instances that the greedy
algorithm exploits? An attempt to explain this phenomenon
has been made with the concept of curvature (Conforti &
Cornuéjols, 1984). In simple words, this parameter mea-
sures how close to linear the objective function is. This line
of work establishes a (best possible) approximation ratio of
1− γ/e using curvature γ ∈ [0, 1] as parameter (Sviridenko
et al., 2015).

In this work, we focus on giving an explanation for those
instances in which the optimal solution clearly stands out
over the rest of feasible solutions. For this, we consider
the concept of sharpness initially introduced in continu-
ous optimization (Łojasiewicz, 1963) and we adapt it to
submodular optimization. Roughly speaking, this property
measures the behavior of the objective function around the
set of optimal solutions. Sharpness in continuous optimiza-
tion translates in faster convergence rates. Equivalently, we
will show that the greedy algorithm for submodular maxi-
mization performs better as the sharpness of the objective
function increases, as a discrete analog of ascent algorithms
in continuous optimization.

Our main contributions in this work are: (1) to introduce
the sharpness criteria in submodular optimization as a novel
candidate explanation of the performance of the greedy al-
gorithm; (2) to show that the standard greedy algorithm
automatically adapts to the sharpness of the objective func-
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tion, without requiring this information as part of the input;
(3) to provide provable guarantees that depend only on the
sharpness parameters; and (4) to empirically support our
theoretical results with a detailed computational study in
real-world applications.

1.1. Problem Formulation

In this work, we study the submodular function maximiza-
tion problem subject to a single cardinality constraint. For-
mally, consider a ground set of n elements V = {1, . . . , n}
and a non-negative set function f : 2V → R+. We denote
the marginal value for any subset A ⊆ V and e ∈ V by
fA(e) := f(A + e) − f(A), where A + e := A ∪ {e}.
A set function f is submodular if, and only if, it satisfies
the diminishing returns property. Namely, for any e ∈ V
and A ⊆ B ⊆ V \{e}, fA(e) ≥ fB(e). We say that f is
monotone if for any A ⊆ B ⊆ V , we have f(A) ≤ f(B).
To ease the notation, we will write the value of singletons
as f(e) := f({e}). For simplicity, we assume throughout
this work that f is normalized, i.e., f(∅) = 0. Our results
still hold when f(∅) 6= 0, but an additive extra term has to
be carried over.

As we mentioned before, our work is mostly focused on the
optimization of non-negative monotone submodular func-
tions subject to a single cardinality constraint. In this setting,
we are given a non-negative integer k and the goal is to opti-
mally select a subset S that contains at most k elements of
V . Formally, the optimization problem is the following

max{f(S) : |S| ≤ k}. (P1)

Throughout the rest of the paper, we denote the optimal
value as OPT. In this context, we assume the value oracle
model, i.e., the decision-maker queries the value of S and the
oracle returns f(S). It is well known that (P1) is NP-hard to
solve exactly under the value oracle model. Therefore, most
of the literature has focused on designing algorithms with
provable guarantees. A natural approach is the standard
greedy algorithm which constructs a set by adding in each
iteration the element with the best marginal value while
maintaining feasibility (Fisher et al., 1978). The authors
show that the greedy algorithm achieves a 1− 1/e approxi-
mation factor for problem (P1), which is tight (Nemhauser
& Wolsey, 1978; Feige, 1998). We give a detailed descrip-
tion of the related work in Section 1.3. Even though the best
possible guarantee is 1−1/e, the standard greedy algorithm
usually performs better in practice.

To explain this phenomenon we adapt the concept of sharp-
ness used in continuous optimization (Hoffman, 1952;
Łojasiewicz, 1963; Polyak, 1979; Lojasiewicz, 1993; Bolte
et al., 2007). The notion of sharpness is also known as
Hölderian error bound on the distance to the set of optimal
solutions. Broadly speaking, this property characterizes

the behavior of a function around the set of optimal so-
lutions. The sharpness criteria along with other similar
conditions have been proposed in the continuous optimiza-
tion literature for which better convergence rates are ob-
tained (Karimi et al., 2016). In this work, we will adapt
some of these notions to their discrete analog in submodu-
lar optimization. To exemplify these properties, consider a
concave function F , a feasible region X , a set of optimal
solutions X∗ = argmaxx∈X F (x) and a distance function
d(·, X∗) : X → R≥0. Then, F is said to be (c, θ)-sharp if
for any x ∈ X

F (x∗)− F (x) ≥
(
d(x,X∗)

c

)1/θ

,

where F ∗ = maxx∈X F (x). Since F is concave, we we
have

∇F (x) · (x∗ − x) ≥
(
d(x,X∗)

c

)1/θ

. (1)

Sharpness implies another related condition: the Polyak-
Łojasiewicz (PL) inequality (Polyak, 1963; Łojasiewicz,
1963) or Gradient Dominated property. We say that the
function F satisfies the PL inequality if there exists c ≥ 1
and θ ∈ [0, 1] such that for all x ∈ X

‖∇F (x)‖ ≥ 1

c
(F (x∗)− F (x))1−θ. (2)

As we mentioned earlier sharpness and similar criteria have
been widely used to study convergence rates in convex and
non-convex optimization, see e.g., (Nemirovskii & Nes-
terov, 1985; Karimi et al., 2016; Bolte et al., 2014; Roulet &
d’Aspremont, 2017; Kerdreux et al., 2019). For a detailed re-
view on the sharpness condition in continuous optimization,
we refer the interested reader to (Roulet & d’Aspremont,
2017).

1.2. Our Contributions and Results

Our main contribution is to introduce multiple concepts of
sharpness in submodular optimization that mimic conditions
previously studied in continuous optimization. We show that
the greedy algorithm performs better than the worst-case
guarantee 1−1/e for functions that are sharp with appropri-
ate parameters. Empirically, we obtain improved guarantees
on real data sets when using more refined conditions.

1.2.1. MONOTONIC SHARPNESS

Given parameters c ≥ 1 and θ ∈ [0, 1], we define monotonic
sharpness as follows.

Definition 1 (Monotonic Sharpness). A non-negative mono-
tone submodular set function f : 2V → R+ is said to be
(c, θ)-monotonic sharp, if there exists an optimal solution
S∗ for Problem (P1) such that for any subset S ⊆ V with
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|S| ≤ k the function satisfies∑
e∈S∗\S

fS(e) ≥
( |S∗\S|

k · c

) 1
θ

·OPT . (3)

The property can be interpreted as implying that the opti-
mal set S∗ is not just unique but any solution which differs
significantly from S∗ has substantially lower value. Ob-
serve that Inequality (3) resembles Inequality (1), where the
marginal values around the optimal solution play the role of
the gradient of the function and the distance to the optimal
set corresponds to the cardinality of the difference. Our first
main result for Problem (P1) is stated in the next theorem.
Theorem 1. Consider a non-negative monotone submodu-
lar function f : 2V → R+ which is (c, θ)-monotonic sharp.
Then, the greedy algorithm returns a feasible set Sg for (P1)
such that

f(Sg) ≥
[

1−
(

1− θ

c

) 1
θ

]
· f(S∗).

We remark that any monotone set function f is (c, θ)-
monotonic sharp for a pair of parameters satisfying c→ 1
and θ → 0 (Lemma 1 in the Appendix). Corollary 1
in Section 2 shows that the guarantee 1 − (1− θ/c)1/θ
tends to 1 − 1/e when (c, θ) goes to (1, 0), recovering
the classical guarantee for any monotone submodular func-
tion (Nemhauser et al., 1978). However, if the parameters
(c, θ) are bounded away from (1, 0), we obtain a strict im-
provement over this worst case guarantee. In Section 3, we
show experimental results to illustrate that real data sets
do show improved parameters. In the Appendix, we also
discuss the sharpness of simple submodular functions such
as linear and concave over linear functions.

Definition 1 can be considered as a static notion of sharp-
ness, since parameters c and θ do not change with respect to
the size of S. We generalize this definition by considering
the notion of dynamic monotonic sharpness, in which the
parameters c and θ depend on the size of the feasible sets,
i.e., c|S| ≥ 1 and θ|S| ∈ [0, 1]. This allows us to obtain
improved guarantees for the greedy algorithm based on how
the monotonic sharpness changes dynamically. Formally,
we define dynamic sharpness as follows.
Definition 2 (Dynamic Monotonic Sharpness). A non-
negative monotone submodular function f : 2V → R+

is said to be dynamic (c, θ)-monotonic sharp, where c =
(c0, c1, . . . , ck−1) ∈ [1,∞)k and θ = (θ0, θ1, . . . , θk−1) ∈
[0, 1]k, if there exists an optimal solution S∗ for Problem
(P1) such that for any subset S ⊆ V with |S| ≤ k the
function satisfies∑

e∈S∗\S

fS(e) ≥
( |S∗\S|
k · c|S|

) 1
θ|S| · f(S∗).

In other words, we say that a function f is (ci, θi)-
monotonic sharp for any subset such that |S| = i, where
i ∈ {0, . . . , k − 1}. Note that since we have k pairs of
parameters (ci, θi), then there are at most k − 1 intervals in
which sharpness may change. If the parameters are identical
in every interval, then we recover Definition 1 of monotonic
sharpness. We obtain the following guarantee for dynamic
monotonic sharpness.

Theorem 2. Consider a non-negative monotone submodu-
lar function f : 2V → R+ that is dynamic (c, θ)-sharp
with parameters c = (c0, c1, . . . , ck−1) ∈ [1,∞)k and
θ = (θ0, θ1, . . . , θk−1) ∈ [0, 1]k. Then, the greedy algo-
rithm returns a set Sg for (P1) such that

f(Sg) ≥
[

1−
(((

1− θ0
c0k

) θ1
θ0 − θ1

c1k

) θ2
θ1

− · · ·

− θk−1
ck−1k

) 1
θk−1

]
· f(S∗).

In Section 3, we empirically show that the guarantees shown
in Theorem 2 strictly outperforms the factors provided by
Theorem 1.

1.2.2. SUBMODULAR SHARPNESS

Definition 1 measures the distance between a feasible set
S and S∗ as the cardinality of its difference. However, this
distance may not be a precise measure, since the value f(S)
could be quite close to OPT. Therefore, we introduce the
concept of submodular sharpness as a natural generalization
of Definition 1. To ease the notation, in this section we will
use the same letters c and θ for the parameters which not nec-
essarily correspond to the parameters in Definition 1. Given
parameters c ≥ 1 and θ ∈ [0, 1], we define submodular
sharpness as follows

Definition 3 (Submodular Sharpness). A non-negative
monotone submodular function f : 2V → R+ is said to be
(c, θ)-submodular sharp, if there exists an optimal solution
S∗ for Problem (P1) such that for any subset S ⊆ V with
|S| ≤ k the function satisfies

max
e∈S∗\S

fS(e) ≥ 1

kc
[f(S∗)− f(S)]

1−θ
OPTθ (4)

Inequality (4) can be interpreted as the submodular ver-
sion of the Polyak-Łojasiewicz inequality (2) with respect
to the `∞-norm, where the marginal values play the role
of the gradient of the function and we consider a general
exponent θ. We observe that any non-negative monotone
submodular function that is (c, θ)-monotonic sharp is also
(c, θ)-submodular sharp (see Lemma 2 in the Appendix).
We obtain the following main result for submodular sharp-
ness.
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Theorem 3. Consider a non-negative monotone submod-
ular function f : 2V → R+ which is (c, θ)-submodular
sharp. Then, the greedy algorithm returns a feasible set Sg

for (P1) such that

f(Sg) ≥
[

1−
(

1− θ

c

) 1
θ

]
· f(S∗).

Observe that any monotone submodular function f is (c, θ)-
submodular sharp as c ← 1 and θ ← 0 (see Lemma 2
in the Appendix). Thus, Theorem 3 recovers the classical
guarantee 1 − 1/e (Nemhauser et al., 1978). The reader
might think that the approximation guarantee in Theorem
3 is the same as in Theorem 1, but this is not the case.
Since Definition 3 is weaker than Definition 1 (see Lemma
2 in the Appendix), the approximation factor guaranteed
by Theorem 3 is at least as good as in Theorem 1. More
importantly, we will empirically show in Section 3 that
there is a significant improvement in the approximation
guarantees when using Definition 3.

Similar to dynamic monotonic sharpness, we introduce the
concept of dynamic submodular sharpness.

Definition 4 (Dynamic Submodular Sharpness). A non-
negative monotone submodular function f : 2V → R+

is said to be dynamic (c, θ)-submodular sharp, where c =
(c0, c1, . . . , ck−1) ∈ [1,∞)k and θ = (θ0, θ1, . . . , θk−1) ∈
[0, 1]k, if there exists an optimal solution S∗ for Problem
(P1) such that for any subset S ⊆ V with |S| ≤ k the
function satisfies

max
e∈S∗\S

fS(e) ≥ 1

kc|S|
[f(S∗)− f(S)]

1−θ|S| f(S∗)θ|S|

(5)

Finally, we obtain the following result for Problem (P1).

Theorem 4. Consider a non-negative monotone sub-
modular function f : 2V → R+ that is dy-
namic (c, θ)-submodular sharp with parameters c =
(c0, c1, . . . , ck−1) ∈ [1,∞)k and θ = (θ0, θ1, . . . , θk−1) ∈
[0, 1]k. Then, the greedy algorithm returns a set Sg for (P1)
such that

f(Sg) ≥
[

1−
(((

1− θ0
c0k

) θ1
θ0 − θ1

c1k

) θ2
θ1

− · · ·

− θk−1
ck−1k

) 1
θk−1

]
· f(S∗).

Due to space constraints, we prove Theorems 3 and 4 in the
Appendix.

Experimental Results. In Section 3, we provide a com-
putational study in real-world applications such as movie

recommendation, non-parametric learning, and clustering.
We emphasize that our goal is to experimentally verify the
performance of the sharpness guarantees and contrast our
theoretical results with the existing literature, such as the
concepts of curvature (Conforti & Cornuéjols, 1984) and
submodular stability (Chatziafratis et al., 2017). While all
these results try to explain the improved performance of
greedy, sharpness provides an alternate explanation for this
improved behavior. Given that the sharpness definitions
require an optimal solution, experiments on large datasets
are not possible. However, we stress that the greedy algo-
rithm does not require prior knowledge of the sharpness
parameters. In addition, we show in Appendix A.3 that the
computation of monotonic sharpness can be done efficiently
in some specific classes of monotone submodular functions.

1.3. Related Work

As remarked earlier, the greedy algorithm gives a (1 −
1
e )-approximation for maximizing a submodular function
subject to a cardinality constraint (Nemhauser et al., 1978)
and is optimal (Feige, 1998; Nemhauser & Wolsey, 1978).

The concept of curvature, introduced in (Conforti &
Cornuéjols, 1984), measures how far the function is from
being linear. Formally, a monotone submodular function
f : 2V → R+ has total curvature γ ∈ [0, 1] if

γ = 1− min
e∈V ∗

fV−e(e)

f(e)
, (6)

where V ∗ = {e ∈ V : f(e) > 0}. For a submodular func-
tion with total curvature γ ∈ [0, 1], Conforti and Cornuéjols
(1984) showed that the greedy algorithm guarantees an ap-
proximation factor of (1− e−γ)/γ. The notion of curvature
has been also used when minimizing submodular functions
(Iyer et al., 2013), and the equivalent notion of steepness
in supermodular function minimization (Il’ev, 2001); as
well as maximizing submodular functions under general
combinatorial constraints (Conforti & Cornuéjols, 1984;
Sviridenko, 2004; Sviridenko et al., 2015; Feldman, 2018);
we refer to the interested reader to the literature therein for
more details.

Close to our setting is the concept of stability widely stud-
ied in discrete optimization. Broadly speaking, there are
instances in which the unique optimal solution still remains
unique even if the objective function is slightly perturbed.
For example, the concept of clusterability has been widely
studied in order to show the existence of easy instances in
clustering (Balcan et al., 2009; Daniely et al., 2012), we
refer the interested reader to the survey (Ben-David, 2015)
for more details. Stability has been also studied in other con-
texts such as influence maximization (He & Kempe, 2014),
Nash equilibria (Balcan & Braverman, 2017), and Max-Cut
(Bilu & Linial, 2012). Building on (Bilu & Linial, 2012),
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the concept of stability under multiplicative perturbations in
submodular optimization is studied in (Chatziafratis et al.,
2017). Formally, given a non-negative monotone submodu-
lar function f , f̃ is a γ-perturbation if: (1) f̃ is non-negative
monotone submodular; (2) f ≤ f̃ ≤ γ · f ; and (3) for any
S ⊆ V and e ∈ V \S, 0 ≤ f̃S(e)− fS(e) ≤ (γ − 1) · f(e).
Now, assume we have an instance of problem (P1) with
a unique optimal solution, then this instance is said to be
γ-stable if for any γ-perturbation of the objective function,
the original optimal solution remains being unique. Chatzi-
afratis et al. (2017) show that the greedy algorithm recovers
the unique optimal solution for 2-stable instances. However,
it is not hard to show that 2-stability for problem (P1) is a
strong assumption, since 2-stable instances can be easily
solved by maximizing the sum of singleton values and thus
2-stable functions do not capture higher order relationship
among elements.

2. Monotonic Sharpness Analysis
In this section, we focus on the analysis of the standard
greedy algorithm for Problem (P1) when the objective func-
tion is (c, θ)-monotonic sharp. We emphasize that the
greedy algorithm automatically adapts to the sharpness of
the function and does not require explicit access to the sharp-
ness parameters in order to obtain the desired guarantees.
For completeness, we recall the standard greedy algorithm
in Algorithm 1.

Recall that given parameters c ≥ 1 and θ ∈ [0, 1], a function
is (c, θ)-monotonic sharp if there exists an optimal set S∗

such that for any set S with at most k elements, then

∑
e∈S∗\S

fS(e) ≥
( |S∗\S|

k · c

) 1
θ

· f(S∗)

Algorithm 1 Greedy (Nemhauser et al., 1978)
Input: ground set V = {1, . . . , n}, monotone submodular

function f : 2V → R+, and k ∈ Z+.
Output: set S with |S| ≤ k.

1: Initialize S = 0.
2: while |S| < k do
3: S ← S + argmaxe∈V \S fS(e)
4: end while

Proof of Theorem 1. Let us denote by Si the set we obtain
in the i-th iteration of Algorithm 1. Note that Sg := Sk.
By using the properties of the function f , we can obtain the

following sequence of inequalities

f(Si)− f(Si−1) =

∑
e∈S∗\Si−1

f(Si)− f(Si−1)

|S∗\Si−1|
(7)

≥
∑
e∈S∗\Si−1

fSi−1(e)

|S∗\Si−1|
(choice of greedy)

Now, from the sharpness condition we know that

1

|S∗\Si−1|
≥ f(S∗)θ

kc
·

 ∑
e∈S∗\Si−1

fSi−1
(e)

−θ

so we obtain the following bound

f(Si)− f(Si−1) ≥ f(S∗)θ

kc
·

 ∑
e∈S∗\Si−1

fSi−1
(e)

1−θ

(sharpness)

≥ f(S∗)θ

kc
· [f(Si−1 ∪ S∗)− f(Si−1)]1−θ

(submodularity)

≥ f(S∗)θ

kc
· [f(S∗)− f(Si−1)]1−θ.

(monotonicity)

Therefore, we need to solve the following recurrence

ai ≥ ai−1 +
aθ

kc
· [a− ai−1]1−θ (8)

where ai = f(Si), a0 = 0 and a = f(S∗).

Define h(x) = x + aθ

kc · [a − x]1−θ, where x ∈
[0, a]. Observe that h′(x) = 1 − aθ(1−θ)

kc · [a −
x]−θ. Therefore, h is increasing in the interval I :={
x : 0 ≤ x ≤ a ·

(
1−

(
1−θ
kc

)1/θ)}
. Let us define

bi := a ·
[

1−
(

1− θ

c
· i
k

) 1
θ

]
.

First, let us check that bi ∈ I for all i ∈ {0, . . . , k}. Namely,
for any i we need to show that

a ·
[

1−
(

1− θ

c
· i
k

) 1
θ

]
≤ a ·

(
1−

(
1− θ
kc

)1/θ
)

⇔

(kc− iθ) ≥ 1− θ

The expression kc− iθ is decreasing on i. Hence, we just
need the inequality for i = k, namely k(c − θ) ≥ 1 − θ,
which is true since c ≥ 1 and k ≥ 1.

Our goal is to prove by induction that ai ≥ bi. First, let us
prove that a1 ≥ b1. Since a0 = 0, the recursion implies that
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a1 ≥ a/kc. On the other hand, note that b1 = a · [1− (1−
θ/kc)1/θ]. Given that (1− θ/kc)1/θ is decreasing in θ, we
conclude that a1 ≥ b1.

Now, let us assume that ai−1 ≥ bi−1 is true and prove
that ai ≥ bi. For this part, we consider the case in which
ai−1 ∈ I for all i ∈ {1, . . . , k}. If this is not the case,
namely, there exists i ∈ [k] such that ai−1 /∈ I , then we
have that

ai−1 > a ·
(

1−
(

1− θ
kc

)1/θ
)
,

and since ak ≥ ai−1 (because of monotonicity of the func-
tion f ) we obtain a 1 −

(
1−θ
kc

)1/θ
approximation factor,

which is better than the guarantee we want to prove. There-
fore, in the worst-case ai−1 ∈ I for all i ∈ {1, . . . , k}.
Given the monotonicity of h on the interval I and the in-
ductive hypothesis, we get h(ai−1) ≥ h(bi−1). Also, ob-
serve that recurrence (8) is equivalent to write ai ≥ h(ai−1)
which implies that ai ≥ h(bi−1). To finish the proof we
will show that h(bi−1) ≥ bi.
Assume for simplicity that a = 1. For x ∈ [0, k], define

g(x) :=

(
1− θ

kc
· x
)1/θ

.

Note that g′(x) = − 1
kc · g(x)1−θ and g′′(x) = 1−θ

(kc)2 ·
g(x)1−2θ. Observe that g is convex, so for any x1, x2 ∈
[0, k] we have g(x2) ≥ g(x1) + g′(x1) · (x2 − x1). By
considering x2 = i and x1 = i− 1, we obtain

g(i)− g(i− 1)− g′(i− 1) ≥ 0 (9)

On the other hand,

h(bi−1)− bi = 1−
(

1− θ

c
· i− 1

k

) 1
θ

+
1

kc
·
(

1− θ

c
· i− 1

k

) 1−θ
θ

− 1 +

(
1− θ

c
· i
k

) 1
θ

=

(
1− θ

c
· i
k

) 1
θ

−
(

1− θ

c
· i− 1

k

) 1
θ

+
1

kc
·
(

1− θ

c
· i− 1

k

) 1−θ
θ

which is exactly the left-hand side of (9), proving h(bi−1)−
bi ≥ 0.

Finally, f(Sg) = ak ≥ bk =
[
1−

(
1− θ

c

) 1
θ

]
· f(S∗),

proving the desired guarantee.

As we mentioned earlier, we recover the classical 1− 1/e
approximation factor, originally proved in (Nemhauser et al.,
1978).

Corollary 1. The greedy algorithm achieves a 1 − 1
e -

approximation for any monotone submodular function.

Proof. We prove in Lemma 1 (see Appendix) that any mono-
tone submodular function is (c, θ)-monotonic sharp when
θ → 0 and c → 1. On the other hand, we know that
1 −

(
1− θ

c

) 1
θ is increasing on θ, so for all c ≥ 1 and

θ ∈ [0, 1] we have 1 −
(
1− θ

c

) 1
θ ≥ 1 − e−1/c. By taking

limits, we obtain limc→1,θ→0 1−
(
1− θ

c

) 1
θ ≥ 1−e−1.

2.1. Monotonic Dynamic Sharpness

In this section, we focus on proving the main results for dy-
namic sharpness, Theorem 2. We emphasize that the greedy
algorithm automatically adapts to the dynamic sharpness of
the function without requiring parameters (ci, θi) as part of
the input.

Proof of Theorem 2. Observe that in the i-th iteration of the
greedy algorithm |Si| = i, so the change of the sharpness
parameters will occur in every iteration i. The proof is
similar to Theorem 1, but the recursion needs to be separated
in each step i. Let us recall recursion (8): for any i ∈ [k]

ai ≥ ai−1 +
aθ

kci−1
· [a− ai−1]1−θi−1 ,

where ai = f(Si), a0 = 0, and a = f(S∗). For simplicity
assume that a = 1.

We proceed the proof by induction. Note that for i = 1 we
need to prove that a1 ≥ 1

kc0
. For c0 and θ0, the sharpness

inequality (3) needs to be checked only for S = ∅, which
is trivially satisfied with c0 = θ0 = 1. From the proof
of Theorem 1, we can conclude the following for i = 1:

a1 ≥
[
1−

(
1− θ0

kc0

) 1
θ0

]
, and given that c0 = θ0 = 1

is valid pair of parameters, then this inequality is simply
a1 ≥ 1

kc0
, proving the desired base case. Let us denote

bj :=

[
1−

(((
1− θ0

c0k

) θ1
θ0

· · · − θj−2
cj−2k

)θj−1/θj−2

− θj−1
cj−1k

) 1
θj−1

]

for 1 ≤ j ≤ k. We assume that ai ≥ bi is true, and will
prove that ai+1 ≥ bi+1.

Similarly to the proof of Theorem 1, we define h(x) :=
x + 1

kci
[1 − x]1−θi for x ∈ [0, 1], which is increasing in

the interval I :=

{
x : 0 ≤ x ≤ 1−

(
1−θi
kci

)1/θi}
. Let us

prove that bi ∈ I . First, observe that bi ≥ 0. For the other
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inequality in I we have

bi ≤ 1−
(

1− θi
kci

)1/θi

⇔((
1− θ0

c0k

)θ1/θ0
. . .− θi−1

ci−1k

)θi/θi−1

≥ 1− θi
kci

,

which is satisfied for sufficiently large k.

Similarly than the proof of Theorem 1, for x ∈ [i, k] define

g(x) :=

(((
1− θ0

c0k

) θ1
θ0 · · ·− θi−1

ci−1k

) θi
θi−1

− θi
cik
·(x−i)

) 1
θi

Note that g′(x) = − 1
kci
· g(x)1−θi and g′′(x) = 1−θi

(kci)2
·

g(x)1−2θi . Observe that g is convex, so for any x1, x2 ∈
[i, k] we have g(x2) ≥ g(x1) + g′(x1) · (x2 − x1). By
considering x2 = i+ 1 and x1 = i, we obtain

g(i+ 1)− g(i)− g′(i) ≥ 0 (10)

Inequality (10) is exactly h(bi)−bi+1 ≥ 0, since g(i+1) =
1 − bi+1 and g(i) = 1 − bi. Finally, since we assumed
ai ≥ bi, then ai+1 ≥ h(ai) ≥ h(bi) ≥ bi+1, where the
first inequality is the definition of the recursion, the second
inequality is due to the monotonicity of h in the interval I ,
and finally, the last inequality was proven in (10). Therefore,
ak ≥ bk which proves the desired guarantee since f(Sg) =
ak.

Note that we recover Theorem 1 when (ci, θi) = (c, θ) for
all i ∈ {0, . . . , k − 1}.

2.2. Contrasting Sharpness with Curvature

A natural question is how our results compare to the cur-
vature analysis proposed in (Conforti & Cornuéjols, 1984).
Specifically, is there any class of functions in which the
sharpness criterion provides considerable better guarantees
than the curvature analysis? Consider an integer k ≥ 2, a
ground set V = [n] with n = 2k, a monotone submodular
set function f(S) = min{|S|, k+1} and problem (P1). Ob-
serve that any set of size k is an optimal set, so consider S∗

any set with k elements. Note also that the curvature of the
function is γ = 1, since f(V ) = k+1 and f(V −e) = k+1
for any e ∈ V . Therefore, the curvature analysis guaran-
tees a 1 − 1/e factor. Let us analyze the sharpness of this
function. Pick any subset S ⊆ V such that |S| ≤ k and
S 6= S∗, then we have f(S) = |S| and fS(e) = 1 for any

e ∈ S∗\S. Hence,
∑
e∈S∗\S fS(e)

f(S∗) = |S∗\S|
k , which implies

that parameters θ = 1 and c = 1 are feasible in the sharp-
ness inequality (3). Therefore, the sharpness analysis gives
us an approximation factor of 1. From this simple exam-
ple, we observe that curvature is a global parameter of the

function that does not take into consideration the optimal set
and can be easily perturbed, while the sharpness criterion
focuses on the behavior of the function around the optimal
solution. More precisely, take any non-negative monotone
submodular function f with curvature close to 0, which
means an approximation guarantee close to 1. Then, take
f̃(S) = min{f(S), f(S∗)}. This function is still monotone
and submodular, but its curvature now is 1, while its sharp-
ness is the same as the original function f . Conforti and
Cornuéjols (1984) also define the notion of greedy curvature
in which the parameter is computed only with respect to the
subsets constructed by the greedy algorithm. This notion
does provide better guarantees than the total curvature and
our previous example does not apply. Similarly, we could
define greedy sharpness, but we do not pursue this since the
definition would become algorithmically dependent. One
of the main contributions of this work is that the greedy
algorithm automatically adapts to sharpness without prior
knowledge or dependency between these two.

3. Computational Study
In this section, we provide a computational study of the
sharpness criteria in three real-world applications: movie
recommendation, non-parametric learning and exemplar-
based clustering. In these experiments, we aim to explicitly
obtain the sharpness parameters of the objective function
for different small ground sets. With these results, we will
empirically show how the approximation factors vary with
respect to different instances defined by the cardinality bud-
get k. We will observe that the curvature analysis (Conforti
& Cornuéjols, 1984), submodular stability (Chatziafratis
et al., 2017) and monotonic sharpness are not enough, but
more refined concepts as dynamic monotonic sharpness and
submodular sharpness in its two versions provide strictly
better results.

Search for monotonic sharpness. Fix an optimal solu-
tion S∗. For each ` ∈ [k], compute

W (`) := min
S

 ∑
e∈S∗\S

fS(e) : |S| ≤ k, |S∗\S| = `

 .

To find parameters (c, θ) we follow a simple search: we
sequentially iterate over possible values of c in a fixed range
[1, cmax] (we consider granularity 0.01 and cmax = 3).
Given c, we compute θ = min`∈[k]

{
log(kc/`)

log(OPT /W (`))

}
.

Once we have c and θ, we compute the corresponding ap-
proximation factor. If we improve we continue and update
c; otherwise, we stop. A similar procedure is done for the
case of dynamic sharpness.

Search for submodular sharpness. Fix an optimal so-
lution S∗. To find parameters (c, θ) we follow a sim-
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ple search: we sequentially iterate over possible values
of c in a fixed range [1, cmax] (we consider granular-
ity 0.01 and cmax = 3). Given c, we compute θ =

min|S|≤k

{
log(kcW2(S)/W (S))
log(OPT /W (S))

}
, where

W (S) := OPT−f(S) and W2(S) := max
e∈S∗\S

fS(e).

Once we have c and θ, we compute the corresponding ap-
proximation factor. If we improve we continue and update
c; otherwise, we stop. A similar procedure is done for the
case of dynamic submodular sharpness.

Experiments setup. For each application, we will run
experiments on small ground sets. For each budget size k,
we sample n = 2k elements from the data sets which will be
considered as the ground set. In each graph, we will plot the
approximation factor (y-axis) obtained by the corresponding
method in each instance (x-axis). The analysis we will
study are: curvature (defined in Section 1.3), monotonic and
submodular sharpness (computed as described above), and
finally, the greedy ratio (worst possible value output by the
greedy algorithm in the corresponding instance).

3.1. Non-parametric Learning

For this application we follow the setup in (Mirzasoleiman
et al., 2015). Let XV be a set of random variables cor-
responding to bio-medical measurements, indexed by a
ground set of patients V . We assume XV to be a Gaus-
sian Process (GP), i.e., for every subset S ⊆ V , XS

is distributed according to a multivariate normal distribu-
tion N (µS ,ΣS,S), where µS = (µe)e∈S and ΣS,S =
[Ke,e′ ]e,e′∈S are the prior mean vector and prior covari-
ance matrix, respectively. The covariance matrix is given
in terms of a positive definite kernel K, e.g., a common
choice in practice is the squared exponential kernel Ke,e′ =
exp(−‖xe − xe′‖22/h). Most efficient approaches for mak-
ing predictions in GPs rely on choosing a small subset of
data points. For instance, in the Informative Vector Machine
(IVM) the goal is to obtain a subset A such that maximizes
the information gain, f(A) = 1

2 log det(I +σ−2 ΣA,A),
which was shown to be monotone and submodular in
(Krause & Guestrin, 2005b).

In our experiment, we use the Parkinson Telemonitoring
dataset (Tsanas et al., 2010) consisting of a total of 5, 875
patients with early-stage Parkinson’s disease and the corre-
sponding bio-medical voice measurements with 22 attributes
(dimension of the observations). We normalize the vectors
to zero mean and unit norm. With these measurements we
computed the covariance matrix Σ considering the squared
exponential kernel with parameter h = 0.75. For the ob-
jective function we consider σ = 1. As we mentioned
before, the objective in this application is to select the k
most informative patients.

The objective function in this experiment is highly non-
linear which makes difficult to obtain the sharpness pa-
rameters. Therefore, for this experiment we consider dif-
ferent small random instances with n = 2k where k =
{5, . . . , 10}. In Figure 1 (a) we plot the variation of the
approximation factors with respect to different instances
of size n = 2k. Observe that the greedy algorithm finds
a nearly optimal solution in each instance. The best ap-
proximation factor is obtained when using the concept of
dynamic submodular sharpness, which is considerably close
to the greedy results. These results significantly improve
the ones obtained by the curvature analysis and monotonic
sharpness, providing evidence that more refined notions of
sharpness can capture the behavior of the greedy algorithm.

3.2. Movie Recommendation

For this application we consider the MovieLens data-set
(Harper & Konstan, 2016) which consists of 7,000 users and
13,977 movies. Each user had to rank at least one movie
with an integer value in {0, . . . , 5} where 0 denotes that the
movies was not ranked by that user. Therefore, we have a
matrix [rij ] of rankings for each user i and each movie j.
The objective in this application is to select the k highest
ranked movies among the users. To make the computations
less costly in terms of time, we use only m = 1000 random
users. In the same spirit, we will choose a small number n
from the 13,977 movies.

In our first experiment, we consider the following function

f(S) =
(

1
m

∑
i∈[m]

∑
j∈S rij

)α
where α ∈ (0, 1]. We

consider α = 0.8 and different small random instances
with n = 2k where k = {5, . . . , 10}. First, we noticed
in our experiment that the instance is not submodular sta-
ble (Chatziafratis et al., 2017) since it had multiple optimal
solutions. In Figure 1 (b) we plot the variation of the approx-
imation factors with respect to different k’s. We observe
that monotonic sharpness already gives us improved guaran-
tees with respect to the worst-case 1− 1/e, although worse
results than the curvature analysis. More refined definitions
as the submodular sharpness slightly improve the results for
any instance.

In the next experiment, we consider the facility-location
function f(S) = 1

m

∑
i∈[m] maxj∈S rij . This function

is known to be non-negative, monotone, and submodular.
Most of the time this function is not 2-stable (Chatziafratis
et al., 2017) since it has multiple optimal solutions. For this
function, we consider different small random instances with
n = 2k elements in the ground set where k = {5, . . . , 10}.
In Figure 1 (c) we plot the variation of the approximation
factors with respect to different values of k. We observed
that the greedy algorithm (orange) always finds an optimal
solution. We note that the curvature analysis and monotonic
sharpness barely improve the worst-case ratio 1− 1/e. We
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Figure 1. Approximation factors with respect to different budgets k. Non-parametric learning: (a); Movie recommendation: (b) concave
over modular with α = 0.8 and (c) facility location function; Exemplar-based clustering: (d).

obtain a significant improvement if we use the submodular
sharpness approach. However, the gap between the greedy
results and the dynamic submodular sharpness is still sub-
stantial, which may be due to the shape of this objective
function: facility-location functions are known to be flat and
have multiple optimal solutions.

3.3. Exemplar-based Clustering

We follow the setup in (Mirzasoleiman et al., 2015). Solving
the k-medoid problem is a common way to select a subset
of exemplars that represent a large dataset V (Kaufman &
Rousseeuw, 2009). This is done by minimizing the sum of
pairwise dissimilarities between elements in A ⊆ V and V .
Formally, define L(A) = 1

V

∑
e∈V minv∈A d(e, v), where

d : V × V → R+ is a distance function that represents the
dissimilarity between a pair of elements. By introducing
an appropriate auxiliary element e0, it is possible to define
a new objective f(A) := L({e0}) − L(A + e0) that is
monotone and submodular (Gomes & Krause, 2010), thus
maximizing f is equivalent to minimizing L.

In our experiment, we use the VOC2012 dataset (Evering-
ham et al., 2012) which contains around 10,000 images. The
ground set V corresponds to images, and we want to select
a subset of the images that best represents the dataset. Each
image has several (possible repeated) associated categories
such as person, plane, etc. There are around 20 categories in
total. Therefore, images are represented by feature vectors
obtained by counting the number of elements that belong to

each category, for example, if an image has 2 people and one
plane, then its feature vector is (2, 1, 0, . . . , 0) (where zeros
correspond to other elements). We choose the Euclidean
distance d(e, e′) = ‖xe−xe′‖ where xe, xe′ are the feature
vectors for images e, e′. We normalize the feature vectors
to mean zero and unit norm, and we choose e0 as the origin.

For this experiment, we consider different random small
instances with n = 2k where k = {5, . . . , 10}. The objec-
tive function in this experiment is non-linear which makes
difficult to obtain the sharpness parameters. In Figure 1
(d) we plot the variation of the approximation factors with
respect to different instances defined by k. The dynamic
submodular sharpness approach outperforms the rest of the
procedures, although the greedy algorithm always finds an
optimal solution.
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