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Abstract

We propose a novel method for combining synthetic and

real images when training networks to determine geomet-

ric information from a single image. We suggest a method

for mapping both image types into a single, shared domain.

This is connected to a primary network for end-to-end train-

ing. Ideally, this results in images from two domains that

present shared information to the primary network. Our

experiments demonstrate significant improvements over the

state-of-the-art in two important domains, surface normal

estimation of human faces and monocular depth estimation

for outdoor scenes, both in an unsupervised setting.

1. Introduction

Understanding geometry from images is a fundamental

problem in computer vision. It has many important applica-

tions. For instance, Monocular Depth Estimation (MDE) is

important for synthetic object insertion in computer graph-

ics [18], grasping in robotics [21] and safety in self-driving

cars. Face Normal Estimation can help in face image edit-

ing applications such as relighting [39, 49, 54]. However,

it is extremely hard to annotate real data for these regres-

sion tasks. Synthetic data and their ground truth labels, on

the other hand, are easy to generate and are often used to

compensate for the lack of labels in real data. Deep mod-

els trained on synthetic data, unfortunately, usually perform

poorly on real data due to the domain gap between synthetic

and real distributions. To deal with this problem, several re-

search studies [30, 53, 52, 3] have proposed unsupervised

domain adaptation methods to take advantage of synthetic

data by mapping it into the real domain or vice versa, either

at the feature level or image level. However, mapping ex-

amples from one domain to another domain itself is a chal-

lenging problem that can limit performance.

We observe that finding such a mapping solves an unnec-
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Figure 1: We propose to reduce the domain gap between

synthetic and real by mapping the corresponding domain

specific information related to the primary task (δs, δr) into

shared information δsh, preserving everything else.

essarily difficult problem. To train a regressor that applies

to both real and synthetic domains, it is only necessary that

we map both to a new representation that contains the task-

relevant information present in both domains, in a common

form. The mapping need not alter properties of the original

domain that are irrelevant to the task since the regressor will

learn to ignore them regardless.

To see this, we consider a simplified model of our prob-

lem. We suppose that real and synthetic images are formed

by two components: domain agnostic (which has semantic

information shared across synthetic and real, and is denoted

as I) and domain specific. We further assume that domain

specific information has two sub-components: domain spe-

cific information unrelated to the primary task (denoted as

δ′s and δ′r for synthetic and real images respectively) and

domain specific information related to the primary task (δs,

δr). So real and synthetic images can be represented as:

xr = f(I, δr, δ
′
r) and xs = f(I, δs, δ

′
s) respectively.

We believe the domain gap between {δs and δr} can af-

fect the training of the primary network, which learns to ex-

pect information that is not always present. The domain gap

between {δ′s and δ′r}, on the other hand, can be bypassed

by the primary network since it does not hold information

needed for the primary task. For example, in real face im-

ages, information such as the color and texture of the hair is

unrelated to the task of estimating face normals but is dis-

criminative enough to distinguish real from synthetic faces.

This can be regarded as domain specific information unre-

lated to the primary task i.e., δ′r. On the other hand, shad-
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ows in the real and synthetic images, due to the limitations

of the rendering engine, may have different appearances but

may contain depth cues that are related to the primary task

of MDE in both domains. The simplest strategy, then, for

combining real and synthetic data is to map δs and δr to a

shared representation, δsh, while not modifying δ′s and δ′r
as shown in Figure 1.

Recent research studies show that a shared network for

synthetic and real data can help reduce the discrepancy

between images in different domains. For instance, [39]

achieved state-of-the-art results in face normal estimation

by training a unified network for real and synthetic data.

[25] learned the joint distribution of multiple domain im-

ages by enforcing a weight-sharing constraint for different

generative networks. Inspired by these research studies,

we define a unified mapping function G, which is called

SharinGAN, to reduce the domain gap between real and

synthetic images.

Different from existing research studies, our G is trained

so that minimum domain specific information is removed.

This is achieved by pre-training G as an auto-encoder on

real and synthetic data, i.e., initializing G as an identity

function. Then G is trained end-to-end with reconstruction

loss in an adversarial framework, along with a network that

solves the primary task, further pushing G to map informa-

tion relevant to the task to a shared domain.

As a result, a successfully trained G will learn to re-

duce the domain gap existing in δs and δr, mapping them

into a shared domain δsh. G will leave I unchanged. δ′s
and δ′r can be left relatively unchanged when it is difficult

to map them to a common representation. Mathematically,

G(xs) = f(I, δsh, δ
′
s) and G(xr) = f(I, δsh, δ

′
r). If suc-

cessful, G will map synthetic and real images to images that

may look quite different to the eye, but the primary task net-

work will extract the same information from both.

We apply our method to unsupervised monocular depth

estimation using virtual KITTI (vKITTI) [1] and KITTI

[29] as synthetic and real datasets respectively. Our method

reduces the absolute error in the KITTI eigen test split and

the test set of Make3D [37] by 23.77% and 6.45% respec-

tively compared with the state-of-the-art method [52]. Ad-

ditionally, our proposed method improves over SfSNet [39]

on face normal estimation. It yields an accuracy boost of

nearly 4.3% for normal prediction within 20◦ (Acc < 20◦)
of ground truth on the Photoface dataset [51].

2. Related Work

Monocular Depth Estimation has long been an active

area in computer vision. Because this problem is ill-posed,

learning-based methods have predominated in recent years.

Many early learning works applied Markov Random Fields

(MRF) to infer the depth from a single image by model-

ing the relation between nearby regions [36, 37, 24]. These

methods, however, are time-consuming during inference

and rely on manually defined features, which have limita-

tions in performance.

More recent studies apply deep Convolutional Neural

Networks (CNNs) [8, 7, 22, 16, 50, 33, 32, 34] to monoc-

ular depth estimation. Eigen et al. [8] first proposed a

multi-scale deep CNN for depth estimation. Following this

work, [7] proposed to apply CNNs to estimate depth, sur-

face normal and semantic labels together. [22] combined

deep CNNs with a continuous CRF for monocular depth es-

timation. One major drawback of these supervised learning-

based methods is the requirement for a huge amount of an-

notated data, which is hard to obtain in reality.

With the emergence of large scale, high-quality synthetic

data [1], using synthetic data to train a depth estimator net-

work for real data became popular [53, 52]. The biggest

challenge for this task is the large domain gap between syn-

thetic data and real data. [3] proposed to first train a depth

prediction network using synthetic data. A style transfer

network is then trained to map real images to synthetic im-

ages in a cycle consistent manner [56]. [30] proposed to

adapt the features of real images to the features of syn-

thetic images by applying adversarial loss on latent fea-

tures. A content congruent regularization is further pro-

posed to avoid mode collapse. T2Net [53] trained a network

that translates synthetic data into real at the image level

and further trained a task network in this translated domain.

GASDA [52] proposed to train the network by incorporat-

ing epipolar geometry constraints for real data along with

the ground truth labels for synthetic data. All these methods

try to align two domains by transferring one domain to an-

other. Unlike these works, we propose a mapping function

G, also called SharinGAN, to just align the domain specific

information that affects the primary task, resulting in a min-

imum change in the images in both domains. We show that

this makes learning the primary task network much easier

and can help it focus on the useful information.

Self-supervised learning is another way to avoid col-

lecting ground truth labels for monocular depth estimation.

Such methods need monocular videos [55, 48, 6, 13], stereo

pairs [11, 28, 31, 27], or both[13] for training. Our proposed

method is complementary to these self-supervised methods,

it does not require this additional data, but can use it when

available.

Face Geometry Estimation is a sub-problem of in-

verse face rendering which is the key for many applica-

tions such as face image editing. Conventional face ge-

ometry estimation methods are usually based on 3D Mor-

phable Models (3DMM) [4]. Recent studies demonstrate

the effectiveness of deep CNNs for solving this problem

[44, 42, 10, 39, 46, 45, 23]. Thanks to the 3DMM, gen-

erating synthetic face images with ground truth geometry is

easy. [44, 42, 39] make use of synthetic face images with
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Figure 2: Overview of the model architecture. Red dashed arrows indicate the loss computations.

ground truth shape to help train a network for predicting

face shape using real images. Most of these works initially

pre-train the network with synthetic data and then fine-tune

it with a mix of real and synthetic data, either using no su-

pervision or weak supervision, overlooking the domain gap

between real and synthetic face images. In this work, we

show that by reducing the domain gap between real and syn-

thetic data using our proposed method, face geometry can

be better estimated.

Domain Adaptation using GANs There are many

works [47, 5, 25, 43, 40] that use a GAN framework to per-

form domain adaptation by mapping one domain into an-

other via a supervised translation. However, most of these

show performance on just toy datasets in a classification set-

ting. We attempt to map both synthetic and real domains

into a new shared domain that is learned during training and

use this to solve complex problems of unsupervised geom-

etry estimation. Moreover, we apply adversarial loss at the

image level for our regression task, in contrast to some of

the above previous works where domain invariant feature

engineering sufficed for classification tasks.

3. Method

To compensate for the lack of annotations for real data

and to train a primary task network on easily available syn-

thetic data, we propose SharinGAN to reduce the domain

gap between synthetic and real. We aim to train a primary

task network on a shared domain created by SharinGAN,

which learns the mapping function G : xr 7→ xsh
r and

G : xs 7→ xsh
s , where xk = f(I, δk, δ

′

k); xsh
k =

f(I, δsh, δ
′

k); k ∈ {r, s} as shown in Figure 1. G allows the

primary task network to train on a shared space that holds

the information needed to do the primary task, making the

network more applicable to real data during testing.

To achieve this, an adversarial loss is used to find the

shared information, δsh. This is done by minimizing the

discrepancy in the distributions of xsh
r and xsh

s . But at

the same time, to preserve the domain agnostic informa-

tion (shared semantic information I), we use reconstruction

loss. Now, without a loss from the primary task network,

G might change the images so that they don’t match the la-

bels. To prevent that, we additionally use a primary task

loss for both real and synthetic examples to guide the gen-

erator. It is important to note that both the translations from

synthetic to real and vice versa are equally crucial for this

symmetric setup to find a shared space. To facilitate that,

we use a form of weak supervision we call virtual super-

vision. Some possible virtual supervisions include a prior

on the input data or a constraint that can narrow the solu-

tion space for the primary task network (details discussed

in 3.2.2). For synthetic examples, we use the known labels.

Adversarial, Reconstruction and Primary task losses to-

gether train the generator and primary task network to align

the domain specific information {δs, δr} in both the do-

mains into a shared space δsh, preserving everything else.

3.1. Framework

In this work, we propose to train a generative network

which is called SharinGAN, to reduce the domain gap be-

tween real and synthetic data so as to help to train the pri-

mary network. Figure 2 shows the framework of our pro-

posed method. It contains a generative network G, a dis-

criminator on image-level D that embodies the SharinGAN

module and a task network T to perform the primary task.

The generative network G takes either a synthetic image xs

or real image xr as input and transforms it to xsh
s or xsh

r

in an attempt to fool D. Different from existing works that

transfer images in one domain to another [3, 53, 52], our
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generative network G tries to map the domain specific parts

δs and δr of synthetic and real images to a shared space δsh,

leaving δ′s and δ′r unchanged. As a result, our transformed

synthetic and real images (xsh
s and xsh

r ) have fewer differ-

ences from xs and xr. Our task network T then takes the

transformed images xsh
s and xsh

r as input and predicts the

geometry. The generative network G and task network T

are trained together in an end-to-end manner.

3.2. Losses

In this section, we describe the losses we use for the gen-

erative and task networks.

3.2.1 Losses for Generative Network

We design a single generative network G for synthetic and

real data since sharing weights can help align distributions

of different domains [25]. Moreover, existing research stud-

ies such as [42, 39] also demonstrate that a unified frame-

work works reasonably well on synthetic and real images.

In order to map δs and δr to a shared space δsh, we ap-

ply adversarial loss [14] at the image level. More specif-

ically, we use the Wasserstein discriminator [2] that uses

the Earth-Mover’s distance to minimize the discrepancy

between the distributions for synthetic and real examples

{G(xs), G(xr)}, i.e.:

LW (D,G) = Exs
[D(G(xs))]− Exr

[D(G(xr))], (1)

D is a discriminator and Ge is the encoder part of the gener-

ator. Following [15], to overcome the problem of vanishing

or exploding gradients due to the weight clipping proposed

in [2], a gradient penalty term is added for training the dis-

criminator:

Lgp(D) = (||∇
ĥ
D(ĥ)||2 − 1)2 (2)

Our overall adversarial loss is then defined as:

Ladv = LW (D,G)− λLgp(D) (3)

where λ is chosen to be 10 while training the discriminator

and 0 while training the generator.

Without any constraints, the adversarial loss may learn

to remove all domain specific parts δ and δ′ or even some of

the domain agnostic part I in order to fool the discrimina-

tor. This may lead to loss of geometric information, which

can degrade the performance of the primary task network

T . To avoid this, we propose to use the self-regularization

loss similar to [41] to force the transformed image to keep

as much information as possible:

Lr = ||G(xs)− xs||
2

2
+ ||G(xr)− xr||

2

2
. (4)

3.2.2 Losses for the Task Network

The task network takes transformed synthetic or real im-

ages as input and predicts geometric information. Since the

ground truth labels for synthetic data are available, we ap-

ply a supervised loss using these ground truth labels. For

real images, domain specific losses or regularizations are

applied as a form of virtual supervision for training accord-

ing to the task. We apply our proposed SharinGAN to two

tasks: monocular depth estimation (MDE) and face nor-

mal estimation (FNE). For MDE, we use the combination

of depth smoothness and geometric consistency losses used

in GASDA [52] as the virtual supervision. For FNE how-

ever, for virtual supervision we use the pseudo supervision

used in SfSNet [39]. We use the term “virtual supervision”

to summarize these two losses as a kind of weak supervision

on the real examples.

Monocular Depth Estimation. To make use of ground

truth labels for synthetic data, we apply L1 loss for pre-

dicted synthetic depth images:

L1 = ||ŷs − y∗s ||1 (5)

where ŷs is the predicted synthetic depth map and y∗s is

its corresponding ground truth. Following [52], we apply

smoothness loss on depth LDS to encourage it to be con-

sistent with local homogeneous regions. Geometric con-

sistency loss LGC is applied so that the task network can

learn the physical geometric structure through epipolar con-

straints. LDS and LGC are defined as:

LDS = e−∇xr ||∇ŷr|| (6)

LGC = η
1− SSIM(xr, x

′
rr)

2
+ µ||xr − x′

rr||, (7)

ŷr represents the predicted depth for the real image and ∇
represents the first derivative. xr is the left image in the

KITTI dataset [29]. x′
rr is the inverse warped image from

the right counterpart of xr based on the predicted depth ŷr.

The KITTI dataset[29] provides the camera focal length and

the baseline distance between the cameras. Similar to [52],

we set η as 0.85 and µ as 0.15 in our experiments. The

overall loss for the task network is defined as:

LT = β1LDS + β2L1 + β3LGC , (8)

where β1 = 0.01, β2 = β3 = 100.
Face Normal Estimation. SfSnet [39] currently

achieves the best performance on face normal estimation.

We thus follow its setup for face normal estimation and ap-

ply “SfS-supervision” for both synthetic and real images

during training.

LT = λreconLrecon + λNLN + λALA + λLightLLight, (9)

where Lrecon, LN and LA are L1 losses on the recon-

structed image, normal and albedo, whereas Llight is the

13977



Method Supervised Dataset Cap
Error Metrics, lower is better Accuracy Metrics, higher is better

Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [8] Yes K 80m 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu et al. [22] Yes K 80m 0.202 1.614 6.523 0.275 0.678 0.895 0.965

All synthetic (baseline) No S 80m 0.253 2.303 6.953 0.328 0.635 0.856 0.937

All real (baseline) No K 80m 0.158 1.151 5.285 0.238 0.811 0.934 0.970

GASDA [52] No K+S 80m 0.149 1.003 4.995 0.227 0.824 0.941 0.973

SharinGAN (proposed) No K+S 80m 0.116 0.939 5.068 0.203 0.850 0.948 0.978

Kuznietsov et al. [19] Yes K 50m 0.117 0.597 3.531 0.183 0.861 0.964 0.989

Garg et al. [9] No K 50m 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Godard et al. [11] No K 50m 0.140 0.976 4.471 0.232 0.818 0.931 0.969

All synthetic (baseline) No S 50m 0.244 1.771 5.354 0.313 0.647 0.866 0.943

All real (baseline) No K 50m 0.151 0.856 4.043 0.227 0.824 0.940 0.973

Kundu et al. [30] No K+S 50m 0.203 1.734 6.251 0.284 0.687 0.899 0.958

T2Net [53] No K+S 50m 0.168 1.199 4.674 0.243 0.772 0.912 0.966

GASDA [52] No K+S 50m 0.143 0.756 3.846 0.217 0.836 0.946 0.976

SharinGAN (proposed) No K+S 50m 0.109 0.673 3.77 0.190 0.864 0.954 0.981

Table 1: MDE Results on eigen test split of KITTI dataset [8] . For the training data, K: KITTI dataset and S: vKITTI dataset.

Methods highlighted in light gray, use domain adaptation techniques and the non-highlighted rows correspond to supervised

methods.

L2 loss over the 27 dimensional spherical harmonic coeffi-

cients. The supervision for real images is from the “pseudo

labels”, obtained by applying a pre-trained task network on

real images. Please refer to [39] for more details.

3.3. Overall loss

The overall loss used to train our geometry estimation

pipeline is then defined as:

L = α1Ladv + α2Lr + α3LT . (10)

where (α1, α2, α3) = (1, 10, 1) for monocular depth esti-

mation task and (α1, α2, α3) = (1, 10, 0.1) for face normal

estimation task.

4. Experiments

We apply our proposed SharinGAN to monocular depth

estimation and face normal estimation. We discuss the de-

tails of the experiments in this section.

4.1. Monocular Depth Estimation

Datasets Following [52], we use vKITTI [1] and KITTI

[29] as synthetic and real datasets to train our network.

vKITTI contains 21, 260 image-depth pairs, which are all

used for training. KITTI [29] provides 42, 382 stereo pairs,

among which, 22, 600 images are used for training and 888
are used for validation as suggested by [52].

Implementation details We use a generator G and a

primary task network T , whose architectures are identical

to [52]. We pre-train the generative network G on both

synthetic and real data using reconstruction loss Lr. This

results in an identity mapping that can help G to keep as

much of the input image’s geometry information as possi-

ble. Our task network is pre-trained using synthetic data

with supervision. G and T are then trained end to end using

Equation 10 for 150,000 iterations with a batch size of 2, by

using an Adam optimizer with a learning rate of 1e−5. The

best model is selected based on the validation set of KITTI.

Results Table 1 shows the quantitative results on the

eigen test split of the KITTI dataset for different methods on

the MDE task. The proposed method outperforms the pre-

vious unsupervised domain adaptation methods for MDE

[52, 53] on almost all the metrics. Especially, compared

with [52], we reduce the absolute error by 19.7% and 21.0%
on 80m cap and 50m cap settings respectively. Moreover,

the performance of our method is much closer to the meth-

ods in a supervised setting [8, 22, 19], which was trained on

the real KITTI dataset with ground truth depth labels. Fig-

ure 3 visually compares the predicted depth map from the

proposed method with [52]. We show three typical exam-

ples: near distance, medium distance, and far distance. It

shows that our proposed method performs much better for

predicting depth at details. For instance, our predicted depth

map can better preserve the shape of the car (Figure 3 (a)

and (c)) and the structure of the tree and the building behind

it (Figure 3 (b)). This shows the advantage of our proposed

SharinGAN compared with [52]. [52] learns to transfer real

images to the synthetic domain and vice versa, which solves

a much harder problem compared with SharinGAN, which

removes a minimum of domain specific information. As a

result, the quality of the transformation for [52] may not

be as good as the proposed method. Moreover, the unsuper-

vised transformation cannot guarantee to keep the geometry

information unchanged.

To understand how our generative network G works, we

show some examples of synthetic and real images, their

transformed versions, and the difference images in Figure 4.

This shows that G mainly operates on edges. Since depth
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(a) First row from left to right: real image, ground truth depth map, depth map by GASDA [52] and depth map by SharinGAN. The second

row shows the corresponding region in the red box of the first row. The depth of the faraway car is better estimated by SharinGAN than

GASDA.

(b) First row from left to right: real image, ground truth depth map, depth map by GASDA [52] and depth map by SharinGAN. The second

and third row shows the corresponding region in the green and red box of the first row. The depth of the tree to the left (green) and shrubs

behind the tree in the right are better estimated by SharinGAN.

(c) First row from left to right: real image, ground truth depth map, depth map by GASDA [52] and depth map by SharinGAN. The second

and third row shows the corresponding region in the green and red box of the first row. The boundaries and the depth of the cars are better

estimated by SharinGAN.

Figure 3: Qualitative comparisons of SharinGAN with GASDA [52]. Ground truth (GT) has been interpolated for visualiza-

tion. We mask out the top regions where ground truth depth is not available for visualization purposes. Note that in addition

to various other aspects mentioned above, we are also able to remove the boundary artifacts present in the depth maps of

GASDA.

(a) xr (b) xsh

r = G(xr) (c) |xr − x
sh

r | (d) xs (e) xsh

s = G(xs) (f) |xs − x
sh

s |

Figure 4: (a), (b) and (c) show real image xr, translated real image xsh
r and their difference |xr − xsh

r | respectively. (d), (e)

and (f) show synthetic image xs, translated synthetic image xsh
s and their difference |xs − xsh

s | respectively.
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(a) Input Image (b) Ground Truth (c) GASDA[52] (d) SharinGAN

Figure 5: Qualitative results on the test set of the Make3D dataset [37]. In the top row, some far tree structures that are missing

in the depth map predicted by GASDA were better captured on using the SharinGAN module. For the bottom row, GASDA

wrongly predicts the depth map of the houses behind the trees to be far, which is correctly captured by the SharinGAN.

maps are mostly discontinuous at edges, they provide im-

portant cues for the geometry of the scene. On the other

hand, due to the difference between the geometry and ma-

terial of objects around the edges, the rendering algorithm

may find it hard to render realistic edges compared with

other parts of the scene. As a result, most of the domain

specific information related to geometry lies in the edges,

on which SharinGAN correctly focuses.

4.1.1 Generalization to Make3D

To demonstrate the generalization ability of the proposed

method, we test our trained model on Make3D [37]. Note

that we do not fine-tune our model using the data from

Make3D. Table 2 shows the quantitative results of our

method, which outperforms existing state-of-the-art meth-

ods by a large margin. Moreover, the performance of

Method Trained
Error Metrics, lower is better

Abs Rel Sq Rel RMSE

Karsh et al. [17] Yes 0.398 4.723 7.801

Laina et al. [20] Yes 0.198 1.665 5.461

Kundu et al. [30] Yes 0.452 5.71 9.559

Goddard et al. [12] No 0.505 10.172 10.936

Kundu et al. [30] No 0.647 12.341 11.567

Atapour et al. [3] No 0.423 9.343 9.002

T2Net [53] No 0.508 6.589 8.935

GASDA [52] No 0.403 6.709 10.424

SharinGAN (proposed) No 0.377 4.900 8.388

Table 2: MDE results on Make3D dataset [37]. Trained in-

dicates whether the model is trained on Make3D or not. Er-

rors are computed for depths less than 70m in a central im-

age crop [12]. It can be concluded that our proposed method

generalized better to an unseen dataset.

SharinGAN is more comparable to the supervised meth-

ods. We further visually compare the proposed method with

GASDA [52] in Figure 5. It is clear that the proposed depth

map captures more details in the input images, reflecting

more accurate depth prediction.

4.2. Face Normal Estimation

Datasets We use the synthetic data provided by [39] and

CelebA [26] as real data to train the SharinGAN for face

normal estimation similar to [39]. Our trained model is then

evaluated on the Photoface dataset [51].

Implementation details We use the RBDN network

[35] as our generator and SfSNet [39] as the primary task

network. Similar to before, we pre-train the Generator on

both synthetic and real data using reconstruction loss and

pre-train the primary task network on just synthetic data in

a supervised manner. Then, we train G and T end-to-end

using the overall loss (10) for 120,000 iterations. We use a

batch size of 16 and a learning rate of 1e−4. The best model

is selected based on the validation set of Photoface[51].

Results Table 4 shows the quantitative performance

of the estimated surface normals by our method on the

test split of the Photoface dataset. With the proposed

SharinGAN module, we were able to significantly improve

over SfSNet on all the metrics. In particular, we were able

to significantly reduce the mean angular error metric by

roughly 1.5◦.

Additionally, Figure 6 depicts the qualitative compari-

son of our method with SfSNet on the test split of Photo-

face. Both SfSNet and our pipeline are not finetuned on this

dataset, and yet we were able to generalize better compared

to SfSNet. This demonstrates the generalization capacity of

the proposed SharinGAN to unseen data in training.
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Components
Cap

Error Metrics, lower is better Accuracy Metrics, higher is better

SharinGAN Reconstruction loss Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

x x 50m 0.137 0.804 4.12 0.210 0.816 0.940 0.978

X x 50m 0.1113 0.6705 3.80 0.192 0.861 0.954 0.980

X X 50m 0.109 0.673 3.77 0.190 0.864 0.954 0.981

Table 3: Ablation study for monocular depth estimation to understand the role of the SharinGAN module and Reconstruction

loss. We need both to get the best performance for this task.

Algorithm MAE < 20◦ < 25◦ < 30◦

3DMM [4] 26.3◦ 4.3% 56.1% 89.4%

Pix2Vertex [38] 33.9◦ 24.8% 36.1% 47.6%

SfSNet[39] 25.5◦ 43.6% 57.7% 68.7%

SharinGAN (proposed) 24.0◦ 47.88% 61.53% 72.1%

Table 4: Quantitative results for Face Normal estimation on

the test split of Photoface dataset [51]. All the listed meth-

ods are not fine-tuned on Photoface. The metrics MAE:

Mean Angular Error and < 20◦, 25◦, 30◦ refer to the nor-

mals prediction accuracy for different thresholds.

(a) Input Image (b) GT (c) SfSNet[39] (d) SharinGAN

Figure 6: Qualitative comparisons of our method with SfS-

Net on the examples from the test set of Photoface dataset

[51]. Our method generalizes much better to unseen data

during training.

5. Ablation studies

We carried out our ablation study using the KITTI and

Make3D datasets on monocular depth estimation. We study

the role of the SharinGAN module by removing it and train-

ing a primary network on the original synthetic and real data

using (8). We observe that the performance drops signif-

icantly as shown in Table 3 and Table 5. This shows the

importance of the SharinGAN module that helps train the

primary task network efficiently.

To demonstrate the role of reconstruction loss, we re-

move it and train our whole pipeline α1Ladv + α3LT . We

show the results on the testset of KITTI in the second row

of Table 3 and on the testset of Make3D in the second row

of Table 5. For both the testsets, we can see the perfor-

mance drop compared to our full model. Although the drop

is smaller in the case of KITTI, it can be seen that the drop is

significant for Make3D dataset that is unseen during train-

ing. This signifies the importance of reconstruction loss to

generalize well to a domain not seen during training.

Components
Cap

Error Metrics, lower is better

SharinGAN Reconstruction loss Abs Rel Sq Rel RMSE

x x 70m 0.476 8.058 9.449

X x 70m 0.401 5.318 8.377

X X 70m 0.377 4.900 8.388

Table 5: Ablation study for monocular depth estimation to

understand the role of the SharinGAN module and Recon-

struction loss on the Make3D test dataset. We need both to

get the best performance for this task.

6. Conclusion

Our primary motivation is to simplify the process of

combining synthetic and real images in training. Prior ap-

proaches often pick one domain and try to map images into

it from the other domain. Instead, we train a generator to

map all images into a new, shared domain. In doing this,

we note that in the new domain, the images need not be in-

distinguishable to the human eye, only to the network that

performs the primary task. The primary network will learn

to ignore extraneous, domain-specific information that is re-

tained in the shared domain.

To achieve this, we propose a simple network architec-

ture that rests on our new SharinGAN, which maps both real

and synthetic images to a shared domain. The resulting im-

ages retain domain-specific details that do not prevent the

primary network from effectively combining training data

from both domains. We demonstrate this by achieving sig-

nificant improvements over state-of-the-art approaches in

two important applications, surface normal estimation for

faces, and monocular depth estimation for outdoor scenes.

Finally, our ablation studies demonstrate the significance of

the proposed SharinGAN in effectively combining synthetic

and real data.
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