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Abstract

We propose a novel method for combining synthetic and
real images when training networks to determine geomet-
ric information from a single image. We suggest a method
for mapping both image types into a single, shared domain.
This is connected to a primary network for end-to-end train-
ing. Ideally, this results in images from two domains that
present shared information to the primary network. Our
experiments demonstrate significant improvements over the
state-of-the-art in two important domains, surface normal
estimation of human faces and monocular depth estimation
for outdoor scenes, both in an unsupervised setting.

1. Introduction

Understanding geometry from images is a fundamental
problem in computer vision. It has many important applica-
tions. For instance, Monocular Depth Estimation (MDE) is
important for synthetic object insertion in computer graph-
ics [18], grasping in robotics [21] and safety in self-driving
cars. Face Normal Estimation can help in face image edit-
ing applications such as relighting [39, 49, 54]. However,
it is extremely hard to annotate real data for these regres-
sion tasks. Synthetic data and their ground truth labels, on
the other hand, are easy to generate and are often used to
compensate for the lack of labels in real data. Deep mod-
els trained on synthetic data, unfortunately, usually perform
poorly on real data due to the domain gap between synthetic
and real distributions. To deal with this problem, several re-
search studies [30, 53, 52, 3] have proposed unsupervised
domain adaptation methods to take advantage of synthetic
data by mapping it into the real domain or vice versa, either
at the feature level or image level. However, mapping ex-
amples from one domain to another domain itself is a chal-
lenging problem that can limit performance.

We observe that finding such a mapping solves an unnec-
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Figure 1: We propose to reduce the domain gap between
synthetic and real by mapping the corresponding domain
specific information related to the primary task (Js, d,.) into
shared information dsp, preserving everything else.

essarily difficult problem. To train a regressor that applies
to both real and synthetic domains, it is only necessary that
we map both to a new representation that contains the task-
relevant information present in both domains, in a common
form. The mapping need not alter properties of the original
domain that are irrelevant to the task since the regressor will
learn to ignore them regardless.

To see this, we consider a simplified model of our prob-
lem. We suppose that real and synthetic images are formed
by two components: domain agnostic (which has semantic
information shared across synthetic and real, and is denoted
as I) and domain specific. We further assume that domain
specific information has two sub-components: domain spe-
cific information unrelated to the primary task (denoted as
! and 0. for synthetic and real images respectively) and
domain specific information related to the primary task (Js,
d:). So real and synthetic images can be represented as:
xr = f(I,0,,00) and x5 = f(I,ds,0%) respectively.

We believe the domain gap between {4 and §,-} can af-
fect the training of the primary network, which learns to ex-
pect information that is not always present. The domain gap
between {4/, and 4.}, on the other hand, can be bypassed
by the primary network since it does not hold information
needed for the primary task. For example, in real face im-
ages, information such as the color and texture of the hair is
unrelated to the task of estimating face normals but is dis-
criminative enough to distinguish real from synthetic faces.
This can be regarded as domain specific information unre-
lated to the primary task i.e., §... On the other hand, shad-
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ows in the real and synthetic images, due to the limitations
of the rendering engine, may have different appearances but
may contain depth cues that are related to the primary task
of MDE in both domains. The simplest strategy, then, for
combining real and synthetic data is to map s and J,. to a
shared representation, d55, while not modifying ¢ and &/,
as shown in Figure 1.

Recent research studies show that a shared network for
synthetic and real data can help reduce the discrepancy
between images in different domains. For instance, [39]
achieved state-of-the-art results in face normal estimation
by training a unified network for real and synthetic data.
[25] learned the joint distribution of multiple domain im-
ages by enforcing a weight-sharing constraint for different
generative networks. Inspired by these research studies,
we define a unified mapping function G, which is called
SharinGAN, to reduce the domain gap between real and
synthetic images.

Different from existing research studies, our G is trained
so that minimum domain specific information is removed.
This is achieved by pre-training G as an auto-encoder on
real and synthetic data, i.e., initializing G as an identity
function. Then G is trained end-to-end with reconstruction
loss in an adversarial framework, along with a network that
solves the primary task, further pushing G to map informa-
tion relevant to the task to a shared domain.

As a result, a successfully trained G will learn to re-
duce the domain gap existing in J and d,., mapping them
into a shared domain ds,. G will leave I unchanged. ¢/,
and ¢/ can be left relatively unchanged when it is difficult
to map them to a common representation. Mathematically,
G(zs) = f(I,0sn,0%) and G(z,) = f(I,dsp,9..). If suc-
cessful, G will map synthetic and real images to images that
may look quite different to the eye, but the primary task net-
work will extract the same information from both.

We apply our method to unsupervised monocular depth
estimation using virtual KITTI (vKITTI) [1] and KITTI
[29] as synthetic and real datasets respectively. Our method
reduces the absolute error in the KITTT eigen test split and
the test set of Make3D [37] by 23.77% and 6.45% respec-
tively compared with the state-of-the-art method [52]. Ad-
ditionally, our proposed method improves over SfSNet [39]
on face normal estimation. It yields an accuracy boost of
nearly 4.3% for normal prediction within 20° (Acc < 20°)
of ground truth on the Photoface dataset [51].

2. Related Work

Monocular Depth Estimation has long been an active
area in computer vision. Because this problem is ill-posed,
learning-based methods have predominated in recent years.
Many early learning works applied Markov Random Fields
(MRF) to infer the depth from a single image by model-
ing the relation between nearby regions [36, 37, 24]. These

methods, however, are time-consuming during inference
and rely on manually defined features, which have limita-
tions in performance.

More recent studies apply deep Convolutional Neural
Networks (CNNGs) [8, 7, 22, 16, 50, 33, 32, 34] to monoc-
ular depth estimation. Eigen et al. [8] first proposed a
multi-scale deep CNN for depth estimation. Following this
work, [7] proposed to apply CNNs to estimate depth, sur-
face normal and semantic labels together. [22] combined
deep CNNs with a continuous CRF for monocular depth es-
timation. One major drawback of these supervised learning-
based methods is the requirement for a huge amount of an-
notated data, which is hard to obtain in reality.

With the emergence of large scale, high-quality synthetic
data [1], using synthetic data to train a depth estimator net-
work for real data became popular [53, 52]. The biggest
challenge for this task is the large domain gap between syn-
thetic data and real data. [3] proposed to first train a depth
prediction network using synthetic data. A style transfer
network is then trained to map real images to synthetic im-
ages in a cycle consistent manner [56]. [30] proposed to
adapt the features of real images to the features of syn-
thetic images by applying adversarial loss on latent fea-
tures. A content congruent regularization is further pro-
posed to avoid mode collapse. T2Net [53] trained a network
that translates synthetic data into real at the image level
and further trained a task network in this translated domain.
GASDA [52] proposed to train the network by incorporat-
ing epipolar geometry constraints for real data along with
the ground truth labels for synthetic data. All these methods
try to align two domains by transferring one domain to an-
other. Unlike these works, we propose a mapping function
G, also called SharinGAN, to just align the domain specific
information that affects the primary task, resulting in a min-
imum change in the images in both domains. We show that
this makes learning the primary task network much easier
and can help it focus on the useful information.

Self-supervised learning is another way to avoid col-
lecting ground truth labels for monocular depth estimation.
Such methods need monocular videos [55, 48, 6, 13], stereo
pairs [11, 28, 31, 27], or both[13] for training. Our proposed
method is complementary to these self-supervised methods,
it does not require this additional data, but can use it when
available.

Face Geometry Estimation is a sub-problem of in-
verse face rendering which is the key for many applica-
tions such as face image editing. Conventional face ge-
ometry estimation methods are usually based on 3D Mor-
phable Models (3DMM) [4]. Recent studies demonstrate
the effectiveness of deep CNNs for solving this problem
[44, 42, 10, 39, 46, 45, 23]. Thanks to the 3DMM, gen-
erating synthetic face images with ground truth geometry is
easy. [44, 42, 39] make use of synthetic face images with
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Figure 2: Overview of the model architecture. Red dashed arrows indicate the loss computations.

ground truth shape to help train a network for predicting
face shape using real images. Most of these works initially
pre-train the network with synthetic data and then fine-tune
it with a mix of real and synthetic data, either using no su-
pervision or weak supervision, overlooking the domain gap
between real and synthetic face images. In this work, we
show that by reducing the domain gap between real and syn-
thetic data using our proposed method, face geometry can
be better estimated.

Domain Adaptation using GANs There are many
works [47, 5, 25, 43, 40] that use a GAN framework to per-
form domain adaptation by mapping one domain into an-
other via a supervised translation. However, most of these
show performance on just toy datasets in a classification set-
ting. We attempt to map both synthetic and real domains
into a new shared domain that is learned during training and
use this to solve complex problems of unsupervised geom-
etry estimation. Moreover, we apply adversarial loss at the
image level for our regression task, in contrast to some of
the above previous works where domain invariant feature
engineering sufficed for classification tasks.

3. Method

To compensate for the lack of annotations for real data
and to train a primary task network on easily available syn-
thetic data, we propose SharinGAN to reduce the domain
gap between synthetic and real. We aim to train a primary
task network on a shared domain created by SharinGAN,

which learns the mapping function G : z, +— 23" and
G : xs — z", where 7, = f(I,6,0,); a3h =

f(I,0sn,6}); k € {r,s}as shownin Figure 1. G allows the
primary task network to train on a shared space that holds
the information needed to do the primary task, making the
network more applicable to real data during testing.

To achieve this, an adversarial loss is used to find the
shared information, d55,. This is done by minimizing the
discrepancy in the distributions of 3" and x3". But at
the same time, to preserve the domain agnostic informa-
tion (shared semantic information I), we use reconstruction
loss. Now, without a loss from the primary task network,
G might change the images so that they don’t match the la-
bels. To prevent that, we additionally use a primary task
loss for both real and synthetic examples to guide the gen-
erator. It is important to note that both the translations from
synthetic to real and vice versa are equally crucial for this
symmetric setup to find a shared space. To facilitate that,
we use a form of weak supervision we call virtual super-
vision. Some possible virtual supervisions include a prior
on the input data or a constraint that can narrow the solu-
tion space for the primary task network (details discussed
in 3.2.2). For synthetic examples, we use the known labels.

Adversarial, Reconstruction and Primary task losses to-
gether train the generator and primary task network to align
the domain specific information {ds,d,-} in both the do-
mains into a shared space d,j,, preserving everything else.

3.1. Framework

In this work, we propose to train a generative network
which is called SharinGAN, to reduce the domain gap be-
tween real and synthetic data so as to help to train the pri-
mary network. Figure 2 shows the framework of our pro-
posed method. It contains a generative network G, a dis-
criminator on image-level D that embodies the SharinGAN
module and a task network 7' to perform the primary task.
The generative network G takes either a synthetic image x
or real image x, as input and transforms it to 3" or xs"
in an attempt to fool D. Different from existing works that
transfer images in one domain to another [3, 53, 52], our
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generative network G tries to map the domain specific parts
05 and §,. of synthetic and real images to a shared space dp,
leaving ¢/, and §. unchanged. As a result, our transformed
synthetic and real images (25" and z5") have fewer differ-
ences from x4 and x,. Our task network 7" then takes the
transformed images 5" and 3" as input and predicts the
geometry. The generative network G and task network T’
are trained together in an end-to-end manner.

3.2. Losses

In this section, we describe the losses we use for the gen-
erative and task networks.

3.2.1 Losses for Generative Network

We design a single generative network G for synthetic and
real data since sharing weights can help align distributions
of different domains [25]. Moreover, existing research stud-
ies such as [42, 39] also demonstrate that a unified frame-
work works reasonably well on synthetic and real images.
In order to map &4 and J,. to a shared space d,;,, we ap-
ply adversarial loss [14] at the image level. More specif-
ically, we use the Wasserstein discriminator [2] that uses
the Earth-Mover’s distance to minimize the discrepancy
between the distributions for synthetic and real examples

(G(xs), G(w)}, i

Lw(D,G) = E, [D(G(2,))] - Ex, [D(G(x,))], (D)
D is a discriminator and G is the encoder part of the gener-
ator. Following [15], to overcome the problem of vanishing
or exploding gradients due to the weight clipping proposed
in [2], a gradient penalty term is added for training the dis-
criminator:

Lgp(D) = ([V;,D(h)]]2 — 1)? 2)
Our overall adversarial loss is then defined as:

Lagw = LW(DaG) - )‘Lgp(D) 3)
where A is chosen to be 10 while training the discriminator
and 0 while training the generator.

Without any constraints, the adversarial loss may learn
to remove all domain specific parts 6 and 4’ or even some of
the domain agnostic part I in order to fool the discrimina-
tor. This may lead to loss of geometric information, which
can degrade the performance of the primary task network
T. To avoid this, we propose to use the self-regularization
loss similar to [41] to force the transformed image to keep
as much information as possible:

L, =[|G(zs) — xSHg + G (2r) — xr”% 4)

3.2.2 Losses for the Task Network

The task network takes transformed synthetic or real im-
ages as input and predicts geometric information. Since the
ground truth labels for synthetic data are available, we ap-
ply a supervised loss using these ground truth labels. For
real images, domain specific losses or regularizations are
applied as a form of virtual supervision for training accord-
ing to the task. We apply our proposed SharinGAN to two
tasks: monocular depth estimation (MDE) and face nor-
mal estimation (FNE). For MDE, we use the combination
of depth smoothness and geometric consistency losses used
in GASDA [52] as the virtual supervision. For FNE how-
ever, for virtual supervision we use the pseudo supervision
used in SfSNet [39]. We use the term “virtual supervision”
to summarize these two losses as a kind of weak supervision
on the real examples.

Monocular Depth Estimation. To make use of ground
truth labels for synthetic data, we apply L; loss for pre-
dicted synthetic depth images:

Ly =119s — yslh ®)

where g is the predicted synthetic depth map and y is
its corresponding ground truth. Following [52], we apply
smoothness loss on depth Lpg to encourage it to be con-
sistent with local homogeneous regions. Geometric con-
sistency loss Lgc is applied so that the task network can
learn the physical geometric structure through epipolar con-
straints. L pg and Lo are defined as:

Lps = e V||V, || (6)

1—-SSIM(zy,x).,)
2

yr represents the predicted depth for the real image and V
represents the first derivative. x, is the left image in the
KITTI dataset [29]. «.,. is the inverse warped image from
the right counterpart of z,. based on the predicted depth ,.
The KITTI dataset[29] provides the camera focal length and
the baseline distance between the cameras. Similar to [52],
we set 17 as 0.85 and p as 0.15 in our experiments. The
overall loss for the task network is defined as:

Lt = B1Lps + f2L1 + B3Lac, (8)

where 5; = 0.01, 85 = 83 = 100.

Face Normal Estimation. SfSnet [39] currently
achieves the best performance on face normal estimation.
We thus follow its setup for face normal estimation and ap-
ply “SfS-supervision” for both synthetic and real images
during training.

Lgoc =1 + pllzy — 2, (D)

LT = >\7’€CO7I,L7’€COTL + ANLN + )\ALA + )\LightLLight7 (9)

where L,ccon, Ln and L4 are L; losses on the recon-
structed image, normal and albedo, whereas Ly;gps is the
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Method Supervised | Dataset | Cap Error Metrics, lower is better Accuracy Metrics, higher is better
) AbsRel [ SqRel [ RMSE | RMSElog | § <1.25 [ 6 < 1.257 | § < 1.25%
Eigen et al. [8] Yes K 80m 0.203 1.548 | 6.307 0.282 0.702 0.890 0.958
Liu et al. [22] Yes K 80m 0.202 1.614 | 6.523 0.275 0.678 0.895 0.965
All synthetic (baseline) No S 80m 0.253 2.303 | 6.953 0.328 0.635 0.856 0.937
All real (baseline) No K 80m 0.158 1.151 | 5.285 0.238 0.811 0.934 0.970
GASDA [52] No K+S 80m 0.149 1.003 | 4.995 0.227 0.824 0.941 0.973
SharinGAN (proposed) No K+S 80m 0.116 0.939 | 5.068 0.203 0.850 0.948 0.978
Kuznietsov et al. [19] Yes K 50m 0.117 0.597 | 3.531 0.183 0.861 0.964 0.989
Garg et al. [9] No K 50m 0.169 1.080 | 5.104 0.273 0.740 0.904 0.962
Godard et al. [11] No K 50m 0.140 0976 | 4.471 0.232 0.818 0.931 0.969
All synthetic (baseline) No S 50m 0.244 1.771 | 5.354 0.313 0.647 0.866 0.943
All real (baseline) No K 50m 0.151 0.856 | 4.043 0.227 0.824 0.940 0.973
Kundu et al. [30] No K+S | 50m 0.203 1.734 | 6.251 0.284 0.687 0.899 0.958
T2Net [53] No K+S | 50m 0.168 1.199 | 4.674 0.243 0.772 0.912 0.966
GASDA [52] No K+S | 50m 0.143 0.756 | 3.846 0.217 0.836 0.946 0.976
SharinGAN (proposed) No K+S | 50m 0.109 0.673 3.77 0.190 0.864 0.954 0.981

Table 1: MDE Results on eigen test split of KITTI dataset [8] . For the training data, K: KITTI dataset and S: vKITTI dataset.
Methods highlighted in light gray, use domain adaptation techniques and the non-highlighted rows correspond to supervised

methods.

L2 loss over the 27 dimensional spherical harmonic coeffi-
cients. The supervision for real images is from the “pseudo
labels”, obtained by applying a pre-trained task network on
real images. Please refer to [39] for more details.

3.3. Overall loss

The overall loss used to train our geometry estimation
pipeline is then defined as:

L = aiLagy + a2y +azly. (10)

where (a1, as,a3) = (1,10,1) for monocular depth esti-
mation task and (a1, ag, a3) = (1,10,0.1) for face normal
estimation task.

4. Experiments

We apply our proposed SharinGAN to monocular depth
estimation and face normal estimation. We discuss the de-
tails of the experiments in this section.

4.1. Monocular Depth Estimation

Datasets Following [52], we use vKITTI [1] and KITTI
[29] as synthetic and real datasets to train our network.
VvKITTI contains 21, 260 image-depth pairs, which are all
used for training. KITTI [29] provides 42, 382 stereo pairs,
among which, 22, 600 images are used for training and 888
are used for validation as suggested by [52].

Implementation details We use a generator G and a
primary task network 7', whose architectures are identical
to [52]. We pre-train the generative network G on both
synthetic and real data using reconstruction loss L,.. This
results in an identity mapping that can help G to keep as
much of the input image’s geometry information as possi-
ble. Our task network is pre-trained using synthetic data

with supervision. G and 7" are then trained end to end using
Equation 10 for 150,000 iterations with a batch size of 2, by
using an Adam optimizer with a learning rate of 1e —5. The
best model is selected based on the validation set of KITTI.

Results Table 1 shows the quantitative results on the
eigen test split of the KITTI dataset for different methods on
the MDE task. The proposed method outperforms the pre-
vious unsupervised domain adaptation methods for MDE
[52, 53] on almost all the metrics. Especially, compared
with [52], we reduce the absolute error by 19.7% and 21.0%
on 80m cap and 50m cap settings respectively. Moreover,
the performance of our method is much closer to the meth-
ods in a supervised setting [8, 22, 19], which was trained on
the real KITTT dataset with ground truth depth labels. Fig-
ure 3 visually compares the predicted depth map from the
proposed method with [52]. We show three typical exam-
ples: near distance, medium distance, and far distance. It
shows that our proposed method performs much better for
predicting depth at details. For instance, our predicted depth
map can better preserve the shape of the car (Figure 3 (a)
and (c)) and the structure of the tree and the building behind
it (Figure 3 (b)). This shows the advantage of our proposed
SharinGAN compared with [52]. [52] learns to transfer real
images to the synthetic domain and vice versa, which solves
a much harder problem compared with SharinGAN, which
removes a minimum of domain specific information. As a
result, the quality of the transformation for [52] may not
be as good as the proposed method. Moreover, the unsuper-
vised transformation cannot guarantee to keep the geometry
information unchanged.

To understand how our generative network G works, we
show some examples of synthetic and real images, their
transformed versions, and the difference images in Figure 4.
This shows that G mainly operates on edges. Since depth

3978



] e mea N

(a) First row from left to right: real image, ground truth depth map, depth map by GASDA [52] and depth map by SharinGAN. The second
row shows the corresponding region in the red box of the first row. The depth of the faraway car is better estimated by SharinGAN than
GASDA.

(b) First row from left to right: real image, ground truth depth map, depth map by GASDA [52] and depth map by SharinGAN. The second
and third row shows the corresponding region in the green and red box of the first row. The depth of the tree to the left (green) and shrubs
behind the tree in the right are better estimated by SharinGAN.

(c) First row from left to right: real image, ground truth depth map, depth map by GASDA [52] and depth map by SharinGAN. The second
and third row shows the corresponding region in the green and red box of the first row. The boundaries and the depth of the cars are better
estimated by SharinGAN.

Figure 3: Qualitative comparisons of SharinGAN with GASDA [52]. Ground truth (GT) has been interpolated for visualiza-
tion. We mask out the top regions where ground truth depth is not available for visualization purposes. Note that in addition
to various other aspects mentioned above, we are also able to remove the boundary artifacts present in the depth maps of
GASDA.

Wﬁ- [

(@) zr (b) x; ©) |z — " (d) x5 (e 23" = G(zs) @) s — x|

Figure 4: (a), (b) and (c) show real image z.., translated real image xih and their difference |z, — xih| respectively. (d), (e)
and (f) show synthetic image x, translated synthetic image 25" and their difference |z, — 25" | respectively.
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(b) Ground Truth

(a) Input Image

(c) GASDA[52] (d) SharinGAN

Figure 5: Qualitative results on the test set of the Make3D dataset [37]. In the top row, some far tree structures that are missing
in the depth map predicted by GASDA were better captured on using the SharinGAN module. For the bottom row, GASDA
wrongly predicts the depth map of the houses behind the trees to be far, which is correctly captured by the SharinGAN.

maps are mostly discontinuous at edges, they provide im-
portant cues for the geometry of the scene. On the other
hand, due to the difference between the geometry and ma-
terial of objects around the edges, the rendering algorithm
may find it hard to render realistic edges compared with
other parts of the scene. As a result, most of the domain
specific information related to geometry lies in the edges,
on which SharinGAN correctly focuses.

4.1.1 Generalization to Make3D

To demonstrate the generalization ability of the proposed
method, we test our trained model on Make3D [37]. Note
that we do not fine-tune our model using the data from
Make3D. Table 2 shows the quantitative results of our
method, which outperforms existing state-of-the-art meth-
ods by a large margin. Moreover, the performance of

. Error Metrics, lower is better
Method Trained | s Rel T SqRel | RMSE
Karsh et al. [17] Yes 0.398 4.723 7.801
Laina et al. [20] Yes 0.198 1.665 5.461
Kundu et al. [30] Yes 0.452 5.71 9.559
Goddard et al. [12] No 0.505 10.172 | 10.936
Kundu et al. [30] No 0.647 12.341 | 11.567
Atapour et al. [3] No 0.423 9.343 9.002
T2Net [53] No 0.508 6.589 8.935
GASDA [52] No 0.403 6.709 10.424
SharinGAN (proposed) No 0.377 4.900 8.388

Table 2: MDE results on Make3D dataset [37]. Trained in-
dicates whether the model is trained on Make3D or not. Er-
rors are computed for depths less than 70m in a central im-
age crop [12]. It can be concluded that our proposed method
generalized better to an unseen dataset.

SharinGAN is more comparable to the supervised meth-
ods. We further visually compare the proposed method with
GASDA [52] in Figure 5. It is clear that the proposed depth
map captures more details in the input images, reflecting
more accurate depth prediction.

4.2. Face Normal Estimation

Datasets We use the synthetic data provided by [39] and
CelebA [26] as real data to train the SharinGAN for face
normal estimation similar to [39]. Our trained model is then
evaluated on the Photoface dataset [51].

Implementation details We use the RBDN network
[35] as our generator and SfSNet [39] as the primary task
network. Similar to before, we pre-train the Generator on
both synthetic and real data using reconstruction loss and
pre-train the primary task network on just synthetic data in
a supervised manner. Then, we train G and T end-to-end
using the overall loss (10) for 120,000 iterations. We use a
batch size of 16 and a learning rate of 1e—4. The best model
is selected based on the validation set of Photoface[51].

Results Table 4 shows the quantitative performance
of the estimated surface normals by our method on the
test split of the Photoface dataset. With the proposed
SharinGAN module, we were able to significantly improve
over SfSNet on all the metrics. In particular, we were able
to significantly reduce the mean angular error metric by
roughly 1.5°.

Additionally, Figure 6 depicts the qualitative compari-
son of our method with SfSNet on the test split of Photo-
face. Both SfSNet and our pipeline are not finetuned on this
dataset, and yet we were able to generalize better compared
to SfSNet. This demonstrates the generalization capacity of
the proposed SharinGAN to unseen data in training.
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Components Cap Error Metrics, lower is better Accuracy Metrics, higher is better
SharinGAN | Reconstruction loss AbsRel [ SqRel | RMSE | RMSElog | 6 <1.25 [ § <1.252 | 0 < 1.25°
X X 50m 0.137 0.804 4.12 0.210 0.816 0.940 0.978
v X 50m || 0.1113 | 0.6705 | 3.80 0.192 0.861 0.954 0.980
v v 50m 0.109 0.673 3.77 0.190 0.864 0.954 0.981

Table 3: Ablation study for monocular depth estimation to understand the role of the SharinGAN module and Reconstruction

loss. We need both to get the best performance for this task.

| Algorithm | MAE [ <20° [ <25° | <30° |
3DMM [4] 26.3° 4.3% 56.1% | 89.4%
Pix2Vertex [38] 33.9° | 24.8% 36.1% | 47.6%
SfSNet[39] 25.5° | 43.6% 57.7% | 68.7%
SharinGAN (proposed) | 24.0° | 47.88% | 61.53% | 72.1%

Table 4: Quantitative results for Face Normal estimation on
the test split of Photoface dataset [51]. All the listed meth-
ods are not fine-tuned on Photoface. The metrics MAE:
Mean Angular Error and < 20°,25°,30° refer to the nor-
mals prediction accuracy for different thresholds.

(a) Input Image (b) GT (c) SfSNet[39]

Figure 6: Qualitative comparisons of our method with SfS-
Net on the examples from the test set of Photoface dataset
[51]. Our method generalizes much better to unseen data
during training.

5. Ablation studies

We carried out our ablation study using the KITTI and
Make3D datasets on monocular depth estimation. We study
the role of the SharinGAN module by removing it and train-
ing a primary network on the original synthetic and real data
using (8). We observe that the performance drops signif-
icantly as shown in Table 3 and Table 5. This shows the
importance of the SharinGAN module that helps train the
primary task network efficiently.

To demonstrate the role of reconstruction loss, we re-
move it and train our whole pipeline o Lgq, + as L. We

(d) SharinGAN

show the results on the testset of KITTI in the second row
of Table 3 and on the testset of Make3D in the second row
of Table 5. For both the testsets, we can see the perfor-
mance drop compared to our full model. Although the drop
is smaller in the case of KITTI, it can be seen that the drop is
significant for Make3D dataset that is unseen during train-
ing. This signifies the importance of reconstruction loss to
generalize well to a domain not seen during training.

Components Ca Error Metrics, lower is better
SharinGAN | Reconstruction loss P | "Abs Rel SqRel | RMSE
X X 70m 0.476 8.058 9.449
v X 70m 0.401 5.318 8.377
v v 70m 0.377 4.900 8.388

Table 5: Ablation study for monocular depth estimation to
understand the role of the SharinGAN module and Recon-
struction loss on the Make3D test dataset. We need both to
get the best performance for this task.

6. Conclusion

Our primary motivation is to simplify the process of
combining synthetic and real images in training. Prior ap-
proaches often pick one domain and try to map images into
it from the other domain. Instead, we train a generator to
map all images into a new, shared domain. In doing this,
we note that in the new domain, the images need not be in-
distinguishable to the human eye, only to the network that
performs the primary task. The primary network will learn
to ignore extraneous, domain-specific information that is re-
tained in the shared domain.

To achieve this, we propose a simple network architec-
ture that rests on our new SharinGAN, which maps both real
and synthetic images to a shared domain. The resulting im-
ages retain domain-specific details that do not prevent the
primary network from effectively combining training data
from both domains. We demonstrate this by achieving sig-
nificant improvements over state-of-the-art approaches in
two important applications, surface normal estimation for
faces, and monocular depth estimation for outdoor scenes.
Finally, our ablation studies demonstrate the significance of
the proposed SharinGAN in effectively combining synthetic
and real data.
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