

1 Verification and Computation in Restricted Tile 2

Automata

3 David Caballero
4 Department of Computer Science, University of Texas - Rio Grande Valley

5 david.caballero01@utrgv.edu

6 Timothy Gomez
7 Department of Computer Science, University of Texas - Rio Grande Valley

8 timothy.gomez01@utrgv.edu

9 Robert Schweller
10 Department of Computer Science, University of Texas - Rio Grande Valley

11 robert.schweller@utrgv.edu

12 Tim Wylie
13 Department of Computer Science, University of Texas - Rio Grande Valley

14 timothy.wylie@utrgv.edu

15

16 Many models of self-assembly have been shown to be capable of performing computation. Tile 17 Automata was

recently introduced combining features of both Celluar Automata and the 2-Handed 18 Model of self-assembly both

capable of universal computation. In this work we study the complexity 19 of Tile Automata utilizing features

inherited from the two models mentioned above. We first present a

20 construction for simulating Turing Machines that performs both covert and fuel efficient computation.

21 We then explore the capabilities of limited Tile Automata systems such as 1-Dimensional systems 22 (all

assemblies are of height 1) and freezing Systems (tiles may not repeat states). Using these 23 results we provide

a connection between the problem of finding the largest uniquely producible 24 assembly using n states and the

busy beaver problem for non-freezing systems and provide a freezing

25 system capable of uniquely assembling an assembly whose length is exponential in the number of 26

 states of the system. We finish by exploring the complexity of the Unique Assembly Verification 27 problem in Tile

Automata with different limitations such as freezing and systems without the power 28 of detachment.

29 2012 ACM Subject Classification Theory of computation → Turing machines; Computer systems

30 organization → Molecular computing; Theory of computation → Problems, reductions and com31

 pleteness

32 Keywords and phrases Tile Automata, Turing Machines, Unique Assembly Verification

33 Digital Object Identifier 10.4230/LIPIcs.DNA.2020.10

34 Funding This research was supported in part by National Science Foundation Grant CCF-1817602.

© David Caballero, Tim Gomez, Robert Schweller, and Tim Wylie; licensed under Creative

Commons License CC-BY

https://doi.org/10.4230/LIPIcs.DNA.2020.10

10:2 Verification and Computation in Restricted Tile Automata

26th International Conference on DNA Computing and Molecular Programming (DNA 26).
Editors: Cody Geary and Matthew J. Patitz; Article No.10; pp.10:1–10:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

 35 1 Introduction

36 Self-assembly systems have quickly become an intense area of research due to fabrication

37 simplicity [13], the ability to create systems at the DNA level [16], the control of nanobots

38 [14], and the maturity of experimental techniques [12]. Self-assembly is a naturally occur39 ring

process where simple particles come together to form complex structures. These are 40

computationally of interest since computing at the molecular level yields a lot of power.

41 There are several models of tile self-assembly, and they each strive to capture some 42 aspect of self-

assembling systems. A few of the better known models are the Abstract 43 Tile Assembly Model (aTAM)

[24], the 2-Handed Assembly Model (2HAM) [3], the Staged

44 self-assembly model [10], and the Signal-passing Tile Assembly Model (STAM) [19]. There 45 are several

other models designed to model different aspects of DNA/RNA or laboratory 46 conditions. A recent

model of tile self-assembly, called Tile Automata [5], was introduced as 47 an intentional mathematical

abstraction designed to implement the key features of active 48 algorithmic self-assembly while avoiding

specifics tied to any one particular implementation 49 (using state change rules and tile

attachments/detachments based on local affinities between 50 states). By abstracting away

implementation details, TA strives to serve as a proving ground 51 for exploring the power of active

algorithmic self-assembly, along with providing a central hub 52 through which various disparate models

of self-assembly can be related by way of comparison 53 to TA. One recent example of this type of

application includes [2] in which TA is shown 54 capable of simulating the Amoebots model [8] of

programmable matter.

55 Given the goal of TA to connect many models of self assembly, in this paper we explore 56 the

computational power of limited Tile Automata systems such as versions of TA that do 57 not allow

detachment (not possible in some models). To facilitate this, we first show how to 58 create general

Turing Machines, and then we explore the complexity of a common question

59 within self-assembly models: the unique assembly verification problem. If given a system, 60

 can the output be guaranteed? This is a natural problem that is polynomial in some models, 61 yet

uncomputable in others.

 62 1.1 Previous Work

63 In his Ph.D. thesis, Winfree presented the Abstract Tile Assembly model (aTAM) and 64 showed it was

capable of universal computation by simulating a Turing Machine [24], and 65 the computational power

is explored in depth in other works such as [15]. The 2-Handed 66 Assembly Model (2HAM) [3] introduced

a more powerful model and is capable of fuel efficient 67 computation [20] along with the Signal-passing

Tile Assembly Model [19] which has tiles 68 that can interact to turn glues on or off.

69 In [10, 25], the authors show a connection between finding the smallest Context Free 70 Grammar and

optimization problems in the Staged Assembly model. In the staged assembly

71 model, it was show that while only using a constant number of tile types, a system can

72 construct length-n lines using O(logn) bins and mixes [9]. Repulsive forces have been shown 73 to

aid in constructing shapes at constant scale [18]. Further, by utilizing the temperature to 74

 encode information, shapes can be constructed with constant (or nearly) tile types [6, 22].

75 The Unique Assembly Verification problem asks if a given system uniquely produces a 76 given assembly.

In the aTAM this problem was shown to be solvable in polynomial time 77 [1]. In the 2HAM this problem

was shown to be in coNP with certain generalizations 78 being coNP-Complete [3, 21]. In the staged

assembly model, this problem is known to be

79 coNPNP-hard and conjectured to be PSPACE-Complete [23]. Adding the power of negative 80 glues also

vastly changes the complexity of this problem making in uncomputable in models

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de/

 D. Caballero et al. 10:3

DNA 26

Turing Machine Tile Automata System States Transition Rules

Determinisic Non-Freezing 1D O(|Q||Γ|) O(|δ|)

Bounded Time Freezing 1D O(|Q||Γ|TIME(M)) O(|δ|TIME(M)2)

 Table 1 Given a Turing Machine M = (Q,Σ,Γ,δ,qa,qr,qs), simulating Tile Automata systems are given in

Theorems 3.4 and 3.5, respectively.

81 that include it due to the ability for pieces of assemblies to break off [11]. However, adding 82

 negative glues but restricting the ability for assemblies to detach we still see an increase in 83

 difficulty with UAV in aTAM without detachment being coNP-complete [4].

84 The Tile Automata model was introduced in [5] merging ideas from Cellular Automata 85 and Tile Self-

Assembly. The authors showed that freezing tile automata (where a tile 86 cannot repeat states) is

capable of simulating non-freezing systems. This powerful model has 87 also been shown to be capable

of simulating models of programmable matter [2]. Cellular 88 Automata has been shown to be Turing

Complete even in 1-dimension [7].

89 1.2 Our Contributions

90 In Tile Automata, cases may occur where systems contain one terminal assembly but exhibit 91

 behavior that does not naturally seem to uniquely produce that assembly. We define unique 92

 assembly later, but note that the final requirement addresses a feature of Tile Automata and 93

 other models with detachment where there exist assemblies that are not terminal but are 94

 never part of the final assembly. Cycles in the production graph are not possible in many 95 self-

assembly models so we add this restriction. However many of our results work with or 96 without this

restriction, so we explore both cases.

97 In this work we explore Tile Automata systems that uniquely assemble n-length lines and 98 the

complexity of determining whether a system uniquely assembles a given assembly. We

99 first present a Turing Machine simulation capable of covert and fuel-efficient computation.

100 We use this construction to show a connection between the largest finite assembly problem 101

 and Busy Beaver Machines (Turing Machines that print a certain number of symbols using a 102

 minimum number of states). In the more restricted case of Freezing Systems we show we can

103 construct n-length lines using O(n) states. Results are shown in Table 1.

104 We then explore the Unique Assembly Verification problem. An overview of the results

105 are shown in Table 2. We show that UAV is uncomputable via Turing Machine simulation.

106 We also extend this to 2-Dimensional freezing systems (this reduction results in a system with

107 cycles). By removing the ability for assemblies to break apart we achieve a model closer to 108

traditionally studied models. We restrict this by studying what we call Affinity-Strengthening

109 systems where a state can never lose affinity by a transition. In this case, we show the UAV 110

 problem is PSPACE-Complete utilizing bounded-space Turing Machine simulation. When 111

 restricting the model to both Affinity Strengthening and Freezing we show membership in 112

 coNPNP. We then provide reductions to show coNPNP-completeness for 2-dimensional UAV 113 and

coNP-hardness in 1 dimension.

114 2 Model and Definitions

115 A Tile Automata system is a marriage between cellular automata and 2-handed self-assembly.

116 Systems consist of a set of monomer tile states, along with local affinities between states 117

denoting the strength of attraction between adjacent monomer tiles in those states. A set

10:4 Verification and Computation in Restricted Tile Automata

Transition Rules Freezing 1D Result 2D Result Theorem

Affinity Strengthening Freezing coNP-hard coNPNP-Complete Thms. 6.8, 6.7

Affinity Strengthening Non-freezing PSPACE-Complete PSPACE-Complete Thm. 6.3

General Freezing Open Undecidable Thm. 5.2∗

General Non-freezing Undecidable Undecidable Thm. 5.1

 Table 2 Results for the Unique Assembly Verification in Tile Automata. Transition Rules describes the types

of transition rules allowed in the system. In Affinity Strengthening Systems all transition rules increase affinity

so no detachment may occur. Freezing indicates whether the system is freezing where tiles cannot repeat

states. Result 1D is the complexity of UAV in 1 Dimension and Result 2D is the complexity of 2 Dimensions.

Theorem is where these can be found. ∗This result is only true when cycles in the production graph are allowed.

All other results are true regardless of which definition is used.

118 of local state-change rules are included for pairs of adjacent states. Assemblies (collections

119 of edge-connected tiles) in the model are created from an initial set of starting assemblies

120 by combining previously built assemblies given sufficient binding strength from the affinity 121

 function. Further, existing assemblies may change states of internal monomer tiles according

122 to any applicable state change rules. An example system is shown in Figure 1.

 123 2.1 States, tiles, and assemblies

124 Tiles and States. Consider an alphabet of state types1 Σ. A tile t is an axis-aligned unit 125 square

centered at a point L(t) ∈ Z2. Further, tiles are assigned a state type from Σ, where

126 S(t) denotes the state type for a given tile t. We say two tiles t1 and t2 are of the same tile

127 type if S(t1) = S(t2).

128 Affinity Function. An affinity function takes as input an element in Σ2 × D, where

129 D = {⊥,`}, and outputs an element in N. This output is referred to as the affinity strength 130

between two states, given direction d ∈ D. Directions ⊥ and ` indicate above-below and 131 side-

by-side orientations of states, respectively.

132 Transition Rules. Transition rules allow states to change based on their neighbors.

133 A transition rule is a 5-tuple (S1a,S2a,S1b,S2b,d) with each S1a,S2a,S1b,S2b ∈ Σ and 134 d ∈ D = {⊥,`}. (S1a

and S1b being the left state or the top state.) Essentially, a transition 135 rule says that if states S1a

and S2a are adjacent to each other, with a given orientation d, 136 they can transition to states S1b

and S2b respectively.

137 Assemblies. A positioned shape is any subset of Z2. A positioned assembly is a set of 138 tiles

at unique coordinates in Z2, and the positioned shape of a positioned assembly A is 139 the set of

coordinates of those tiles, denoted as SHAPEA. For a positioned assembly A, let 140 A(x,y) denote

the state type of the tile with location (x,y) ∈ Z2 in A.

141 For a given positioned assembly A and affinity function Π, define the bond graph GA to 142 be

the weighted grid graph in which:

143 each tile of A is a vertex,

144 no edge exists between non-adjacent tiles,

145 the weight of an edge between adjacent tiles T1 and T2 with locations (x1,y1) and (x2,y2), 146

 respectively, is

 147 Π(S(T1),S(T2),⊥) if y1 > y2,

1
We note that Σ does not include an “empty” state. In tile self-assembly, unlike cellular automata, positions in Z2

may have no tile (and thus no state).

 D. Caballero et al. 10:5

DNA 26

148Π(S(T2),S(T1),⊥) if y1 < y2,

149Π(S(T1),S(T2),`) if x1 < x2,

150Π(S(T2),S(T1),`) if x1 > x2.

151 A positioned assembly A is said to be τ-stable for positive integer τ provided the bond 152

 graph GA has min-cut at least τ.

153 For a positioned assembly A and integer vector ~v = (v1,v2), let A~v denote the positioned 154 assembly

obtained by translating each tile in A by vector ~v. An assembly is a set of all 155 translations A~v of a

positioned assembly A. A shape is the set of all integer translations for 156 some subset of Z2, and the

shape of an assembly A is defined to be the set of the positioned

157 shapes of all positioned assemblies in A. The size of either an assembly or shape X, denoted 158

 as |X|, refers to the number of elements of any positioned assembly of X.

159 Breakable Assemblies. An assembly is τ-breakable if it can be split into two assemblies 160 along a cut

whose total affinity strength sums to less than τ. Formally, an assembly C is

161 breakable into assemblies A and B if the bond graph GC for some positioned assembly C ∈ C 162

 has a cut (A,B) for positioned assemblies A ∈ A and B ∈ B of affinity strength less than τ.

163 We call assemblies A and B pieces of the breakable assembly C.

164 Combinable Assemblies. Two assemblies are τ-combinable provided they may attach 165

 along a border whose strength sums to at least τ. Formally, two assemblies A and B are 166

 τ-combinable into an assembly C provided GC for any C ∈ C has a cut (A,B) of strength at 167

 least τ for some positioned assemblies A ∈ A and B ∈ B. C is a combination of A and B.

168 Transitionable Assemblies. Consider some set of transition rules ∆. An assembly A 169 is transitionable,

with respect to ∆, into assembly B if and only if there exist A ∈ A and 170 B ∈ B such that for some pair of

adjacent tiles ti,tj ∈ A:

171∃ a pair of adjacent tiles th,tk ∈ B with L(ti) = L(th) and L(tj) = L(tk)

172∃ a transition rule δ ∈ ∆ s.t. δ = (S(ti),S(tj),S(th),S(tk),⊥) or

173δ = (S(ti),S(tj),S(th),S(tk),`)

174A − {ti,tj} = B − {th,tk}

175 2.2 Tile Automata model (TA)

176 A tile automata system is a 5-tuple (Σ,Π,Λ,∆,τ) where Σ is an alphabet of state types, Π

177 is an affinity function, Λ is a set of initial assemblies with each tile assigned a state from Σ,

178 ∆ is a set of transition rules for states in Σ, and τ ∈ N is the stability threshold. When the 179

 affinity function and state types are implied, let (Λ,∆,τ) denote a tile automata system. An 180

 example tile automata system can be seen in Figure 1.

181 I Definition 2.1 (Tile Automata Producibility). For a given tile automata system Γ = 182 (Σ,Λ,Π,∆,τ), the

set of producible assemblies of Γ, denoted PRODΓ, is defined recursively:

183(Base) Λ ⊆ PRODΓ

184(Recursion) Any of the following:

185(Combinations) For any A,B ∈ PRODΓ such that A and B are τ-combinable into C,

186then C ∈ PRODΓ.

187(Breaks) For any C ∈ PRODΓ such that C is τ-breakable into A and B, then A,B ∈

188PRODΓ.

189(Transitions) For any A ∈ PRODΓ such that A is transitionable into B (with respect to 190 ∆), then B ∈

PRODΓ.

10:6 Verification and Computation in Restricted Tile Automata

 Producibles Terminals

 (a) Tile

Automata

System Γ. (b)

The producibles and terminals of Γ.

 Figure 1 An example of a tile automata system Γ.

Recursively applying the transition rules and affinity

functions to the initial assemblies of a system yields a set

of producible assemblies. Any producibles that cannot

combine with, break into, or transition to another

assembly are considered to be terminal.

191 For a system Γ = (Σ,Λ,Π,∆,τ), we say A →Γ
1 B for assemblies A and B if A is τ-

192 combinable with some producible assembly to form B, if A is transitionable into B (with

193 respect to ∆), if A is τ-breakable into assembly B and some other assembly, or if A = B.

194 Intuitively this means that A may grow into assembly B through one or fewer combinations, 195

transitions, and breaks. We define the relation →Γ to be the transitive closure of →Γ
1, i.e., 196 A

→Γ B means that A may grow into B through a sequence of combinations, transitions, 197 and/or

breaks.

198 I Definition 2.2 (Production Graph). The production graph of a Tile Automata system Γ is 199 a

directed graph where each vertex corresponds to an assembly in PRODΓ and there exists a 200

 directed edge between assemblies A and B if A →Γ B.

201 I Definition 2.3 (Terminal Assemblies). A producible assembly A of a tile automata system 202 Γ =

(Σ,Λ,Π,∆,τ) is terminal provided A is not τ-combinable with any producible assembly 203 of Γ, A is not

τ-breakable, and A is not transitionable to any producible assembly of Γ. Let 204 TERMΓ ⊆ PRODΓ denote

the set of producible assemblies of Γ which are terminal.

205 I Definition 2.4 (Freezing). Consider a tile automata system Γ = (Σ,Λ,Π,∆,τ) and a 206 directed graph G

constructed as follows:

207each state type σ ∈ Σ is a vertex

208for any two state types α,β ∈ Σ, an edge from α to β exists if and only if there exists a 209

 transition rule in ∆ s.t. α transitions to β

210 Γ is said to be freezing if G is acyclic and non-freezing otherwise. Intuitively, a tile 211 automata system

is freezing if any one tile in the system can never return to a state which 212 it held previously. This implies

that any given tile in the system can only undergo a finite 213 number of state transitions.

214 I Definition 2.5 (Affinity Strengthening). An Affinity-Strengthening system is a Tile Au-

215 tomata system where all transition rules can only increase a states affinity with all other states

216 so no detachments ever occur. Formally a tile automata system Γ = (Σ,Λ,Π,∆,τ) is an Affin217 ity

Strengthening system if for each s,s0 ∈ Σ where s transitions to s0, ∆(s,t) ≤ ∆(s0,t)∀t ∈ Σ.

218 I Definition 2.6 (Bounded). A tile automata system Γ is bounded if and only if there exists 219 a k ∈ Z>0

such that for all A ∈ PRODΓ, |A| < k.

220 I Definition 2.7 (Unique Assembly). A Tile Automata system Γ uniquely produces an

States

A B C D E
Transition Rules

Affinity Functions

A C =1

=1

=2

A

=2

=2

 B

B D

 C

B E

D

Stability

Threshold=2

B D B E

Initial Assemblies

A B C D

A B C D

A C A C A C A

B D B D B E B E

A

B E

 D. Caballero et al. 10:7

DNA 26

221 assembly A if

222A is the only assembly in TERMΓ

223for all B ∈ PRODΓ, B →Γ A.

224Γ is bounded.

225there does not exist a pair of assemblies B,C ∈ PRODΓ, such that B →Γ C →Γ B.1

226 3 One Dimensional Turing Machine

227 Since Tile Automata is a generalization of 2HAM and borrows from Cellular Automata it 228

 is expected that it is as powerful as both of these models. Here we present a construction 229 that

is capable of both covert and fuel-efficient computation. We present informal definitions 230 of

each of these. For rigorous definitions, we refer the reader to [20, 19] for fuel-efficiency, 231 and

[4] for covert computation.

232 I Definition 3.1 (Simulation). A Tile Automata system T is said to simulate a Turing 233 Machine M, if for

every producible assembly a of T can be mapped to a configuration m of

234 M and any other producible assembly b such that a →Γ
1 b, b either also maps to m or maps to 235 another

configuration m0 such that m0 is the next step of m. Finally, each terminal assembly 236 of T maps to an

output of M.

237 I Definition 3.2 (Covert Computation). Given a Tile Automata system T that simulates a 238 Turing

Machine M, T covertly simulates M if for each output of M, there exits a single 239 terminal assembly that

maps to it.

240 I Definition 3.3 (Fuel Efficient Computation). A fuel efficient Turing machine simulation in 241 Tile

Automata represents the tape of a Turing machine as one assembly, and requires that 242 each

computational step of the Turing machine occurs by way of the attachment of at most a 243

 constant number of assemblies of at most constant size. Thus, the simulation of n steps of a 244

 computation “uses up" at most O(n) tiles worth of fuel.

245 I Theorem 3.4. For any Turing Machine M = (Q,Σ,Γ,δ,qa,qr,qs), there exists a covert, 246 fuel-efficient,

1-dimensional Tile Automata system T = (ΣTA,Π,Λ,∆)23 that can simulate M 247 such that |ΣTA| =

O(|Q||Γ|) and |∆| = O(|δ|).

248 Proof. Given a Turing Machine M = (Q,Σ,Γ,δ,qa,qr,qs), we construct the Tile Automata 249

 system T = (ΣTA,Π,Λ,∆) as follows.

250 States. Conceptually, we partition the set of states (ΣTA) into three subsets for clarity:

251 head states H, symbol states S, and utility states W. Let H = {h(q,s)|q ∈ Q,s ∈ Σ} and

252 let S = {σs|s ∈ Σ} (Figure 2a). All states in H and S have affinity with all states in ΣTA.

253 There are eight states in W: signal accept states, final accept states, signal reject states,

254 final reject states, and four buffer states BL, BL
0 , BR, and BR

0 . The signal accept state has 255

 affinity with all states in ΣTA, and the final accept state has affinity with all states other 256 than

itself and the four buffer states. The two reject states have corresponding affinity rules 257 as

those of the accept states. The buffer states ensure that no two assemblies attach during 258

 the computation. Each of the four buffer states have affinity with each state in H and S.

1 When we refer to Unique Assembly allowing cycles, this requirement is omitted.
2

3 -Dimensional Tile Automata systems always have τ = 1 so we omit that parameter from T

10:8 Verification and Computation in Restricted Tile Automata

259 BL and BR have affinity with BL
0 or BR

0 respectively.

260 Transitions. We create a transition rule such that for each Tile Automata state h(q,s) ∈ H 261 and σi ∈

S, the rule represents a step in M (Figure 2b). WLOG, assume an assembly A 262 representing

the a configuration of a Turing Machine M has the state h(q,s) with states,

263 σL,σR ∈ S to the left and right of h(q,s), respectively. If the head of M moves right then the

264 transition rule will take place between h(q,s) and σR. If the TM head moves left then the

265 transition rule will be between σL and h(q,s). h(q,s) will transition into the state representing

266 the symbol that is to be written on the tape in M after a state q reads symbol s. Either

267 σL or σR would then transition into the state h(q0,σL) or h(q0,σR) respectively where q0 is the 268 new state

of the head of M after reading s from state q. There also exists an additional

269 transition rule if σL or σR is a buffer state. This will transition BL or BR to state
B

L
0 or

B
R

0
270

 respectively. BL
0 /BR

0 transitions into the symbol state representing the blank symbol when

271 it is to attached to state BL/BR.

272 Accept/Reject. For transitions where M enters the accept state, we create transition 273 rules where

both tiles enter the signal accept state. This state has transition rules with each

274 other state transitioning that state into the signal accept state as well. If it transitions with a 275 buffer

state or the final accept state, both tiles enter the final accept state. The final accept 276 state also

transitions with every other state and both tiles become the final accept state.

277 The reject states follow the same rules.

278 Input. We construct a Tile Automata system that runs M on a string x. We construct

279 the system as described and create an initial assembly A that represents x. A will have a

280 length of |x| + 2. The left most state of A will be BL. (WLOG assume the head of M starts

281 on the left most cell.) The next state of A will be s(q,s) where q is the initial state of M and 282

 s is the first symbol in x. The next states of A each represent the symbols in the string x in 283

 order. The rightmost state of A is BR (Figures 2c, 2d).

284 The buffer states BL and BR are always an initial assembly and are used to extend the 285 tape

if the head attempts to move past the right edge. First, the head state causes BR to 286 transition to

BR
0 . With BR

0 on the edge of the assembly a new BR tile will attach. Once 287 this attachment occurs

BR
0 transitions to the symbol state representing the blank symbol on 288 the tape. Then the head state

may transition with the blank symbol if needed. The same 289 process occurs with BL when the head

attempts to move off the left end of the tape.

290 Terminal Assemblies. If M accepts the input x, then by the rules of our system the 291 accept states will

appear in our assembly. The signal accept state will be the first to appear 292 and will propagate to the

edges of the assembly. Once the signal accept state reaches the

293 buffer states on the edge of the assembly they will transition into the final accept states. Any 294 final

accept state that is attached to any other state will make that tile into a final accept 295 state. Any two

final accept states that are next to each other do not have affinity and will 296 detach. After the accept

state appears in an assembly the only terminal assemblies that will 297 exist are single final accept states.

The same will occur if the machine rejects.

298 Since there are only two possible terminal assemblies, the final accept state and the final 299 reject

state, this construction performs covert computation. This computation is also fuel

300 efficient since the only time a new assembly is attached is when the Turing Machine writes on 301 a

blank symbol at the edge of the tape, which can only occur once per computation step. J

 D. Caballero et al. 10:9

DNA 26

 302 3.1 Freezing Systems

303 Here we present modifications to the construction above for freezing 1-dimensional systems

304 to perform bounded time computation.

305 I Theorem 3.5. For any bounded-time Turing Machine M = (Q,Σ,Γ,δ,qa,qr,qs), there

306 exists a covert, fuel-efficient, 1-dimensional freezing Tile Automata system T = (ΣTA,Π,Λ,∆) 307 that can

simulate M such that. |ΣTA| = O(|Q||Γ|TIME(M)) and |∆| = O(|δ|TIME(M)2).

{q1, q2, ... qk} Q =

q1, 0 q2, 0, R

q1,1 q2,1 qk,1

q1,0 1

0 q2,1

B q1,0 1 1 0 B

B 1 q2,1 1 0 B

 (a) (b) (c) (d)

 Figure 2 (a) Tile automata states (Below) created from the states of Turing Machine (Above) over a binary

alphabet. (b) State change rules (Below) created from the Turing Machine transition rules (Above). (c) A

Turing Machine (Above) configuration and the representative TA assembly (Below) . (d) The same Turing

Machine (Above) after making one step and the assembly (Below) after the same step.

308 Proof. We modify the construction from Theorem 3.4. We have ΣTA partitioned into three 309 sets H, S,

and W. In a freezing system states can not be repeated, so for each state in H

310 and S we create a number of states equal to the number of steps the Turing Machine M 311 can take.

Each head state will not only represent the state of the Turing machine and the

312 symbol on the tape, but it will also represent how many steps the Turing Machine has taken.

313 Each symbol state will represent the symbol on the tape and also the last step that it was 314

 modified. The head states will have a transition rule with each symbol state regardless of 315

 the last step that symbol was modified. When a head state transitions into a symbol state it 316

 will represent the step that the transition took place.

317 This increase in state-space ensures no tile will ever become the same state twice. Symbol

318 states written at step x can only transition into a head state. The head state will always

319 represent a step y > x. When the head state transitions back to a symbol state it will go to 320 a

symbol state written at state y. Since x < y, no tile will ever repeat states. J

321 4 Shapebuilding and the Largest Assembly Problem

322 Given a Tile Automata system with limited states, we examine how large of an assembly 323 may be

constructed. We first consider the case of one-dimensional assemblies and leverage 324 Theorems 4.2

and 4.3 to show that the longest buildable line’s length is related to the 325 Busy Beaver function in

general, and exponential in the case of freezing systems. We then 326 consider the Largest Assembly

problem, and apply Theorem 4.3 to show that this problem is 327 uncomputable for general TA even in

one-dimension.

328 4.1 General

329 The Busy Beaver function BB(n), for any positive integer n, is the maximum number of

q1,0 q2,0

qk,0

q 1

1 0 1 0

q 2

1 0 1 1

10:10 Verification and Computation in Restricted Tile Automata

330 symbols printable by a Turing Machine using n states.4

331 I Definition 4.1 (String Representation). An assembly A is said to represent a string x if

332 there exists a mapping of the states in A to the symbols in x such that the nth state of A 333 maps to

the nth symbol of x for all 0 < n ≤ |x|

334 I Lemma 4.2. For any n-state 2-symbol (not including the blank symbol) Turing Machine 335 M which

produces an output x, there exists a O(n)-state Tile Automata System T which 336 uniquely assembles an

assembly A, such that A represents x.

337 Proof. We modify the construction from Theorem 3.4 so that once M halts the head state 338 transitions

into a symbol state. The resulting assembly will be terminal since symbol states 339 do not transition with

each other. This final assembly will consist of symbol states that each

340 represent the symbols in x. The number of states used by T is 2n head states, 2 symbol

341 states, and 4 buffer states which is bounded by O(n). Note there is no need for accept/reject

342 states since the head state just turns into a symbol state when the TM halts. J

343 I Theorem 4.3. For any positive integer n, there exists a 1-dimensional Tile Automata 344 system that

uniquely assembles a BB(n)-length line using O(n) states.

345 Proof. Using Lemma 4.2 we can take any Busy Beaver Machine and create a Tile Automata 346 system

which uniquely produces an assembly the same size as the number of symbols printed

 347 on the tape. J

 348 4.2 Freezing

349 For freezing Tile Automata systems, we can create systems that uniquely produce n-length 350 lines and

only require states that are logarithmic in the length of the line. For clarity we 351 begin with a helping

lemma.

352 I Lemma 4.4. For all n = 2x for x ∈ N, there exists a 1-dimensional freezing Tile Automata 353 system that

uniquely assembles an n length line using O(logn) states.

354 Proof. The cases for x = 0,1,2 are trivial. A system that uniquely builds a length 23 line 355 is shown in

Figure 3. The only initial states are 1A and 1B. The affinities are between 356 adjacent states. The transition

rules are highlighted in red which transition to make the next 357 producible assembly depicted. Our

unique terminal assembly is a length 23 line. We will 358 show that by adding a constant number of states,

transitions, and affinities to this system 359 the length of the uniquely assembled line will double, and

that this process can be repeated 360 to uniquely assemble any length 2n line.

361 For n > 3, Let Tn be the system that uniquely assembles a length 2n line derived by 362 recursively

applying the following process to T3 n − 3 times. Assuming that Tn uniquely

363 assembles a length 2n line of the form (1A,nD,...,nD,nA,nB,nF, ...,nF,1B), Tn+1 is 364 constructed as follows.

First we add the non-initial states n+1A,...,n+1F, and a transition 365 from (nA,nB) to both (n + 1E,nB) and

(nA,n + 1C). We add six new transitions involving 366 n + 1C or n + 1E which allow that state to propagate

left/right respectively and transition 367 to n + 1D and n + 1F respectively when the end to the line assembly

is reached. There will 368 be 6 additional transition rules added to allow states n + 1D and n + 1F to

propagate in the

369 opposite direction and eventually transition 1A and 1B to n + 1B and n + 1A respectively.

4 For this definition we consider Turing Machines using a binary alphabet.

 D. Caballero et al. 10:11

DNA 26

370 Adding the affinity rule (n + 1A,n + 1B) will allow the two length 2n lines to bond uniquely 371

assembling a length 2n+1 line. This new system uniquely produces a length 2n+1 line of the 372 same

form previously described, to which the process can be repeated to once again double

373 the length of the unique assembly. J

374 I Theorem 4.5. For all positive integers n, there exists a 1-dimensional freezing Tile 375 Automata

system that uniquely assembles an n length line using O(logn) states.

376 Proof. We modify the construction from Lemma 4.4 to build arbitrary length-n lines.

377 To build any length-n line using O(logn) states we modify T = Tdlog2 ne. Let bi indicate

378 the ith least significant bit of n’s binary expansion. For all i > 2 such that bi is equal to 1

379 we add a transition rule from (iA,iB) to (iL,iL) in T. When these two states are adjacent

 1 A 1 B 1 A

 1 B

 1 A D F B

 1 A D F B

1 A 3 D 3 D 3 A 3 B 3 F 3 F 1 B

 Figure 3 A system that uniquely builds a length 23 line. The only initial states are 1A and

1B. The affinities are between adjacent states. The transition rules are highlighted in red which transition to

make the next producible depicted.

380 they exist in an assembled line of length 2i. This transition “locks” this producible, stopping 381 it

from growing. Four more transition rules are added to allow this state to propagate to

382 the ends of the line. Finally, we add a transitions between all iL states and the states 1B

383 and 1A, which are the endpoints of the lines. These endpoints transition to states that have 384 affinity

with the next largest locked producible on one side. If b1 or b2 is equal to 1 we add 385 in an assembly

of size b1 × 1 + b2 × 2 that connects to the last locked producible. J 386 4.3 Largest Finite

Assembly Problem

387 Given a positive integer n, the Largest Finite Assembly Problem asks what is the largest 388 assembly

that can be uniquely assembled in a Tile Automata system using n states.

389 I Theorem 4.6. The Largest Finite Assembly problem in Tile Automata is uncomputable.

390 Proof. Let σn be the size of the largest assembly that can be constructed using n states. From

391 Theorem 4.3, there must exists a system that can construct a line of length BB(n) using O(n)

392 states so σO(n) ≥ BB(n). This means σn grows asymptotically as fast as the Busy Beaver

3 D

3 C

3 E

3 F

1 A 1 B

1 A 1 B

1 A 2 A 2 B 1 B

1 A 2 A 3 C 1 B 1 A 3 E 2 B 1 B

1 A 3 C 3 C 1 B 1 A 3 E 3 E 1 B

1 A 3 D 3 C 1 B 1 A 3 E 3 F 1 B

1 A 2 A 2 B 1 B

1 A 2 A 2 B 1 B
... ...

3 3 D 1 B

3 3 D 3 A

1 A 3 F 3 1

3 B 3 F 3 1

10:12 Verification and Computation in Restricted Tile Automata

393 function, which grows faster than any computable function. Thus, σn is uncomputable. J 394 5

Unique Assembly Verification

395 A well-studied problem in self-assembly is the Unique Assembly Verification problem. This 396

 asks whether a given system uniquely produces a given assembly. We show that the general

397 problem is undecidable. Again, we consider two definitions of Unique Assembly one where

398 systems with cycles are allowed in the production graph, and the other where they are not.

399 5.1 Undecidability

400 I Theorem 5.1. Tile Automata Unique Assembly Verification is undecidable even in one 401 dimension.

402 Proof. Using Theorem 3.4 we reduce from the halting problem. Given a Turing Machine M

403 we can construct a Tile Automata system Γ that simulates M. If M halts then there exists 404 a

single terminal assembly which is the final accept state tile. If M does not halt then there

405 exists no terminal assemblies. This is true under both definitions of Uniquely Assembly since 406 the

only time there would exist a cycle in the production graph of Γ is if M ever revisited

407 a configuration. If M revisits a configuration then M will not halt so our system will not

408 uniquely assemble the final accept state tile. J

409 I Theorem 5.2. Freezing 2-Dimensional Tile Automata Unique Assembly Verification is 410 undecidable

under the definition of Unique Assembly allowing cycles even when all assemblies 411 are of constant

height.

412 Proof. To prove undecidability we reduce from UAV for 1-Dimensional Tile Automata 413 systems

(Theorem 5.1). Given an instance of UAV asking if a system Γ uniquely produces an 414 assembly A we use

the simulation provided in [5] to create a freezing Tile Automata system 415 Γ0. By the definition of Γ0

simulating Γ if TERMΓ only contains one terminal assembly A then 416 TERM0
Γ will only contain one

assembly A0 that maps to A.

417 The simulation utilizes constant scale macroblocks to represent tiles so the height of the 418 assemblies

in T will be constant height. This simulation also uses a token passing scheme that

419 results in cycles in the production graph so this system will not uniquely produce assemblies

420 if cycles are not allowed. J

 421 6 Affinity Strengthening UAV

422 Many self-assembly models where UAV is well-studied do not have detachment (and are thus

423 decidable). Here, we investigate versions of TA without this power and show hardness. We 424

 do this by exploring Affinity-Strengthening Tile Automata (ASTA). We start by considering 425

 the non-freezing case, then consider the added restriction of freezing.

 426 6.1 Non-Freezing

427 I Lemma 6.1. The Unique Assembly Verification problem in Affinity-Strengthening Tile 428 Automata is

in PSPACE.

429 Proof. The UAV problem can be solved by the following co-nondeterministic algorithm.

430 Given an Assembly A and an ASTA system T, nondeterministically build an assembly B

 D. Caballero et al. 10:13

DNA 26

431 of less than size 2|A| where |A| is the size of the given assembly. We now have a branch 432 for

every producible assembly and we check the following about B in order. If any branch 433 rejects, the

whole algorithm rejects.

434If B = A, accept.

435If |B| ≥ |A|, reject.

436If B 6= A and B is terminal, reject.

437Continue nondeterministically performing construction steps (attachments and transitions)

438 on B. If B is reached again, reject. If A is reached, accept.

439 Only assemblies up to size 2|A| can be checked since if any assembly exists larger than 440 2|A|, it

would have been built using at least one assembly of size greater than |A|, which 441 would have already

been rejected. We can also check if B is terminal using a nondeterministic 442 subroutine by non-

deterministically building a second assembly and checking if it can attach 443 to B. Checking if an assembly

is breakable or if it is transitionable can be done in polynomial

444 time and space. The final step of the algorithm checks for cycles in the production graph.

445 By the definition of unique assembly, B →Γ A, by continuing to perform construction steps 446 on B

we will eventually reach A. If we ever end up reaching B again we know that there 447

 exists a cycle in the production graph (cycle checking in a directed graph is in P).

448 This algorithm shows the UAV problem for Affinity-Strengthening Tile Automata is in

449 coNPSPACE which equals PSPACE. For the case of unique assembly where cycles in the 450

production graph are allowed, the last step of the algorithm is skipped. J

451 I Lemma 6.2. The Unique Assembly Verification problem in Affinity-Strengthening Tile 452 Automata is

PSPACE-hard.

453 Proof. We show UAV in Affinity-Strengthening TA is PSPACE-hard by describing how 454 to reduce from

any problem L ∈ PSPACE. Consider a Turing Machine M that decides 455 L. The construction from Theorem

3.4 can be modified to be an Affinity-Strengthening 456 system that results in a system capable of

performing bounded space computation (a Linear 457 Bounded Automata, which is equivalent to parsing

a context-sensitive grammar and is 458 PSPACE-complete [17]). The only transition where a state loses

affinity is from the signal 459 accept and reject state to the final accept and reject state. We remove the

final states from 460 the system. This will result in two possible terminal assemblies one consisting of a

buffer 461 state, then accept states, then another buffer state, and the other being the same with reject

462 states. We remove the buffer state from the set of initial assemblies. We change the length 463 of the

assembly representing the input to be the amount of space used by M.

464 Given a bounded space deterministic Turing machine and its input, construct a Tile 465 Automata

system that uniquely produces the assembly with accept states if and only if the 466 Turing machine

accepts. If the Turing Machine rejects, then the reject assembly will be the 467 only terminal assembly. If

the TM ever enters an infinite loop then there will exist a cycle 468 in our system and there will not exist

any terminal assemblies, so the TA system will not

469 uniquely produce any assembly regardless of whether there exists a restriction on cycles. J

470 I Theorem 6.3. The Unique Assembly Verification problem in Affinity-Strengthening Tile 471

 Automata is PSPACE-complete.

472 Proof. Follows from Lemmas 6.1 and 6.2. J

10:14 Verification and Computation in Restricted Tile Automata

473 6.2 Freezing

474 In this section we show the complexity of Unique Assembly Verification in a freezing Affinity475

Strengthening Tile Automata system. In 2-dimensions, we show UAV is coNPNP-Complete.

476 We utilize the same reduction strategy as in [23]. We conclude by showing coNP-hardness

477 for UAV in one dimension. Note that cycles cannot occur in Freezing Affinity-Strengthening 478 Tile

Automata, so we only consider one definition of Unique Assembly.

479 I Definition 6.4 (∀∃3SAT). Given a 3SAT formula φ(x1,...,xk,xk+1,...,xn), is it true

480 that for every assignment to variables x1,...,xk, there exists an assignment to xk+1,...,xn 481 such

that φ(x1,...,xn) is satisfied?

482 I Lemma 6.5. The Unique Assembly Verification problem in freezing Affinity-Strengthening 483 Tile

Automata is in coNPNP.

484 Proof. Take the construction and algorithm from Lemma 6.1, we prove that the running 485

 time is polynomial. When building an assembly B, since the system is freezing we know the 486 time

to build B is |Σ||B| where |Σ| is the number of states in the system. Since we reject if 487 one branch

rejects, this is a coNP algorithm.

488 We utilize one subroutine that is in coNP to check if B is terminal. This is done in

489 polynomial time by nondeterministically building a second assembly and checking if they can 490

attach. If there is an assembly that can attach to B, then the assembly is not terminal. Using 491

the coNP algorithm and using the subroutines as oracles, this problem is in coNPNP J

492 I Lemma 6.6. The Unique Assembly Verification problem in freezing Affinity-Strengthening 493 Tile

Automata is coNPNP-Hard.

 Variable 1 Variable 2 Variable 3 Variable 4

 (a) (b)

 Figure 4 Part of the construction for Theorem 6.6. (a) The base assemblies are constructed

nondeterministically. One is constructed for every possible variable assignment. (b) An example of a base

assembly fitting into a frame. Cx binds cooperatively to Cx−1 and the frame states.

494 Proof. Given an instance of ∀∃3-SAT, this reduction produces a τ = 2 freezing ASTA system

495 which uniquely assembles a target assembly if and only if the instance of ∀∃3-SAT is true.

496 This system has stability threshold 2 to allow for cooperative binding in which two assemblies 497

attach using affinities at two separate points, when one of the affinities alone would not be 498 strong

enough for this attachment to be stable.

499 Overview. We first create an ‘L’-shaped base assembly contained in a larger frame

500 (Figure 4b) that encodes a variable assignment. Rows of this assembly represent clauses and 501

 columns represent variables. Each clause is evaluated by cooperatively placing tiles that 502

 represent the assignment of the variable in its column, and whether the clause of its row is 503

 currently satisfied. Once the assignments are evaluated, additional tiles fill out the rest of 504

 the frame. If the assignment evaluates to false, then frame will be filled. If the assignment 505

 evaluates to true, then there will be remaining spaces representing the assignment to the 506

 variables in the first quantifier. We construct a test assembly for every possible assignment 507

 to thee variables that can attach into that space. Once an assembly has completely filled out

C3

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 C

C2
C1
A

C3
C2
C1
A

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 D. Caballero et al. 10:15

DNA 26

508 its frame, all states inside transition into a target state and create our target

assembly.

509 Base Assemblies. We construct a rectangular base assembly for every possible variable

510 assignment to x1,...,xn, with the rows of this assembly representing clauses and columns 511

representing variables. There are two sets of initial states for each variable: one for 0, and one

512 for 1. These sets of states attach to form length-4 line assemblies. The line assemblies have

513 affinities with both the 0 and 1 line assemblies of the next variable. The nondeterministic

514 nature of the model will ensure the creation of all possible combinations of these 0 and 1

515 line assemblies (Figure 4a). Given m clauses in our 3SAT formula, the TA system includes 516 tiles with

initial states C1,...,Cm. These states cooperatively attach to state A and a frame 517 (Figure 4b). The

frame ensures there is no unbounded growth. Tiles then cooperatively bind 518 to fill out this

structure. The affinities between these states and the variable line assemblies 519 are encoded such

that they evaluate if the variable assignment, represented by the base 520 assembly, satisfies the

3SAT formula (Figure 5a). The row containing Ci evaluates whether 521 the ith clause is satisfied by the

variable assignment of the base. U and S states cooperatively 522 attach to fill out a row- U indicating

the clause has not yet been satisfied, and S indicating 523 that it has. This is done by “passing” the

assignment of the variable line upwards with a 524 specific encoding of the affinities. When an S state

attaches, only S states can attach to its 525 right side. This allows a Y state to attach at the end of the

row if a previous clause was not 526 already evaluated to be unsatisfied. If it is not satisfied, the

rightmost state of that row will 527 be N, which does not allow a Y state to attach above it.

528 Once the rectangle is filled out an assembly will be marked as “True” or “False”, rep-

529 resented by the top right Y /N state in the construction. (Figure 5b, 5c). True assemblies 530 grow

downward, leaving a space between the base assembly and the frame. The shape of this

531 space is an encoding of this assembly’s original variable assignment of x1,...,xk (Figure 5b). 532 False

assemblies also grow downward, but entirely fill out the frame of the base construction.

 (b) (c)

Figure 5 (a) Initial states needed to evaluate if the variable assignment satisfies the 3SAT formula. Choose

1 from A/B/C for each clause/variable combination. Choose A if 1 assigned to variable y satisfies the xth clause,

B if 0 satisfies, and C if the variable does not appear in that clause. T is a placeholder for U or S, depending on

which was chosen for each clause/variable combination. (b) Example of a 4-variable, 3-clause base assembly

that is marked as true (top right “Y”). The assembly grows downward, but interacts with the variable tile line

to encode their variable assignment in the assembly’s geometry. (c) Example of a 4-variable 3-clause base

assembly marked as false (top right “N”). The assembly grows to fill out the entire frame.

Affinity = 1

A E

 (a) (b) (c)

 Figure 6 (a) Test assemblies are nondeterministically built by allowing the possibility for each assignment of

one variable construction to attach to either assignment of the next variable construction. (b) Affinities

between test assemblies and base assemblies. (c) Example of a test assembly binding to a base assembly that

encodes the same variable assignment of x1,...,xk.

D B

B 0

1
D

10:16 Verification and Computation in Restricted Tile Automata

533 Test Assemblies. A set of test assemblies are also built using the same nondeterministic 534 method

used to create the base assemblies’ variable assignments. A test assembly is created 535 for each

assignment to variables x1,...,xk (Figure 6a). The geometry of a test assembly 536 encodes this variable

assignment in a complementary fashion to that of a “True” base assembly 537 representing the same

assignment to x1,...,xk. This allows a test assembly to attach to a 538 “True” base assembly with the same

variable assignment to x1,...,xk, but not to any other 539 due to that causing overlapping geometry. The

test assemblies cooperatively bind with two 540 strength-1 affinities at two points (Figure 6b). A test

assembly will only be terminal if there 541 is no base assembly matching its variable assignment that was

marked as “True”.

542 Transition to Uniform Assembly. If the solution to the instance of ∀∃3SAT is true,

543 all assemblies eventually grow/transition to one unique target assembly. To achieve this, there

544 are state transitions which allow every “True”/“False” flagged base assembly to grow into one

545 uniform assembly. For base assemblies marked “True”, to which a test assembly attached,

546 the states needed to cooperatively bind these test assemblies to base assemblies having a 547

 transition rule to transition to state T. For assemblies marked “False”, a transition to state 548

 T occurs when A and F (Figure 5c) are adjacent. Additional transition rules between state 549

 T and all other states (excluding the frame states) allow this state to propagate throughout 550

 the entire assembly. The transitions used are shown in Figure 7a. These transitions will 551

 change every state besides the frame states to state T. This is the target assembly for our 552

 created instance of ASTA UAV (Figure 7b).

553 The only terminal assembly possibly produced that is not the target assembly is a 554 test assembly

representing a specific assignment to x1,...,xk that could not attach to an

555 assignment assembly marked “True”, which represents the same variable assignment. Thus,

556 the system only uniquely assembles the target assembly if the instance of ∀∃3SAT is true. J
For all states X excluding Frame

T
X

T X
T

 (a) (b)

 Figure 7 (a) Transitions Utilized. All states will take the place of X, excluding those that

are part of the frame. (b) Target Assembly after the T state has fully propagated through

the assembly.

557 I Theorem 6.7. The Unique Assembly Verification problem in freezing Affinity-

Strengthening 558 Tile Automata is coNPNP-Complete.

559 Proof. Follows from Lemmas 6.5 and 6.6. J

560 I Theorem 6.8. The Unique Assembly Verification problem in freezing Affinity-Strengthening 561 Tile

Automata is coNP-hard in one dimension.

562 Proof. We show Affinity Strengthening Freezing UAV is coNP-hard by describing how to 563 reduce from

any problem in coNP. Given a problem L ∈ coNP take a nondeterministic 564 Turing Machine M that

decides L. From Theorem 3.5, we construct systems that simulate 565 bounded-time Turing Machines.

Since we are considering polynomial-time machines, the 566 size of this Tile Automata system is also

polynomial. We change the system to be Affinity

567 Strengthening in the same way as in Lemma 6.2. Further, since the Tile Automata model 568 includes

nondeterminism in selecting possible transitions for an assembly, we can simulate

569 nondeterministic Turing Machines. We simply have transition rules for each possible outcome.

570 Using the method described above we can simulate M on x. If any of the possible

 T X

 T T

 T T

 T T T

X

T T

T
T

T D

B
A

E
A
F

T
T

 D. Caballero et al. 10:17

DNA 26

571 computation paths lead to M accepting, the assembly with the accept states will appear as

572 a terminal assembly. If all possible computations path reject, the only terminal assembly

573 will be the assembly with the reject states. J

 574 7 Conclusion

575 In this paper we looked at a powerful new model of self-assembly that combines properties 576 of both

cellular automata and hierarchical self-assembly models. We showed that even

577 extremely limited and simple constructions in Tile Automata are powerful and capable of 578

 arbitrary computation. We also showed how difficult it is to determine the output of these 579

 limited systems. This opens several directions for future work.

580 One direction is further exploring the assembly of length-n lines in freezing systems. Does 581 there

exist a bound on buildable length? Is the finite assembly problem in freezing or other 582 restricted system

decidable? Also attempting to construct lines in systems with additional 583 restrictions such as limits on

the number of transition rules per state.

584 For the UAV problem, we show that the general case is undecidable. However, the 585 complexity of

the problem in freezing 1-dimensional systems is open. If the problem of asking 586 whether a system is

bounded is decidable, then UAV is decidable by first identifying whether 587 a system is bounded and

then constructing the production graph and finding the terminal 588 assemblies. The problem for freezing

2-dimensional systems with no cycles is also open.

589 Since Tile Automata can be seen as a generalization of 2HAM, our results can be compared 590 to the

open problem of UAV in that model which is known to be in coNP. The most restricted 591 version of Tile

Automata we explore is Affinity Strengthening and freezing, which is only one

592 level of the polynomial hierarchy above other generalizations of 2HAM such as allowing tiles

593 to go into 3-dimensions or allowing a variable temperature. Further limiting Tile Automata 594

 may provide more insight into the hardness of these problems.

595

596 1 Leonard M. Adleman, Qi Cheng, Ashish Goel, Ming-Deh A. Huang, David Kempe, Pablo Mois-

597 set de Espanés, and Paul W. K. Rothemund. Combinatorial optimization problems in 598 self-assembly. In

Proceedings of the 34th Annual ACM Symposium on Theory of Computing, 599 pages 23–32, 2002.

600 2 John Calvin Alumbaugh, Joshua J. Daymude, Erik D. Demaine, Matthew J. Patitz, and

601 Andréa W. Richa. Simulation of programmable matter systems using active tile-based self602 assembly. In

Chris Thachuk and Yan Liu, editors, DNA Computing and Molecular Programming, 603 pages 140–158, Cham,

2019. Springer International Publishing.

604 3 Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz,

605 Robert T. Schweller, Scott M Summers, and Andrew Winslow. Two Hands Are Better Than 606 One (up to

constant factors): Self-Assembly In The 2HAM vs. aTAM. In 30th International 607 Symposium on Theoretical

Aspects of Computer Science (STACS 2013), volume 20 of Leibniz 608 International Proceedings in Informatics

(LIPIcs), pages 172–184. Schloss Dagstuhl–Leibniz609 Zentrum fuer Informatik, 2013.

610 4 Angel A. Cantu, Austin Luchsinger, Robert Schweller, and Tim Wylie. Covert Computation 611 in Self-Assembled

Circuits. In 46th International Colloquium on Automata, Languages, and 612 Programming (ICALP 2019), volume 132

of Leibniz International Proceedings in Informatics 613 (LIPIcs), pages 31:1–31:14, 2019.

614 5 Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew Winslow, and 615 Tim Wylie. Freezing

simulates non-freezing tile automata. In International Conference on 616 DNA Computing and Molecular

Programming, pages 155–172. Springer, 2018.

617 6 Cameron Chalk, Austin Luchsinger, Robert Schweller, and Tim Wylie. Self-assembly of any 618 shape with

constant tile types using high temperature. In Proc. of the 26th Annual European 619 Symposium on Algorithms,

ESA’18, 2018.

620 7 Matthew Cook. Universality in elementary cellular automata. Complex systems, 15(1):1–40,

621 2004.

10:18 Verification and Computation in Restricted Tile Automata

622 8 Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Scheideler. Com623 puting by

programmable particles. In Distributed Computing by Mobile Entities: Current 624 Research in Moving and

Computing, pages 615–681. Springer, Cham, 2019.

625 9 Erik D Demaine, Martin L Demaine, Sándor P Fekete, Mashhood Ishaque, Eynat Rafalin,

626 Robert T Schweller, and Diane L Souvaine. Staged self-assembly: nanomanufacture of arbitrary 627 shapes with

o (1) glues. Natural Computing, 7(3):347–370, 2008.

628 10 Erik D. Demaine, Sarah Eisenstat, Mashhood Ishaque, and Andrew Winslow. One-dimensional 629 staged self-

assembly. In Proceedings of the 17th international conference on DNA computing 630 and molecular programming,

DNA’11, pages 100–114, 2011.

631 11 David Doty, Lila Kari, and Benoît Masson. Negative interactions in irreversible self-assembly.

632 Algorithmica, 66(1):153–172, 2013.

633 12 Constantine Evans. Crystals that Count! Physical Principles and Experimental Investigations 634 of DNA

Tile Self-Assembly. PhD thesis, California Inst. of Tech., 2014.

635 13 Antonios G Kanaras, Zhenxin Wang, Andrew D Bates, Richard Cosstick, and Mathias Brust.

636 Towards multistep nanostructure synthesis: Programmed enzymatic self-assembly of dna/gold 637 systems.

Angewandte Chemie International Edition, 42(2):191–194, 2003.

638 14 Ryuji Kawano. Synthetic ion channels and dna logic gates as components of molecular robots. 639

ChemPhysChem, 19(4):359–366, 2018. doi:10.1002/cphc.201700982.

640 15 Alexandra Keenan, Robert Schweller, Michael Sherman, and Xingsi Zhong. Fast arithmetic in 641

 algorithmic self-assembly. Natural Computing, 15(1):115–128, Mar 2016.

642 16 Ceren Kimna and Oliver Lieleg. Engineering an orchestrated release avalanche from hydrogels

643 using dna-nanotechnology. Journal of Controlled Release, 04 2019. doi:10.1016/j.jconrel.

644 2019.04.028.

645 17 Sige-Yuki Kuroda. Classes of languages and linear-bounded automata. Information and 646 Control,

7(2):207 – 223, 1964. URL: http://www.sciencedirect.com/science/article/pii/

647 S0019995864901202, doi:https://doi.org/10.1016/S0019-9958(64)90120-2.

648 18 Austin Luchsinger, Robert Schweller, and Tim Wylie. Self-assembly of shapes at constant scale

649 using repulsive forces. Natural Computing, Aug 2018. doi:10.1007/s11047-018-9707-9.

650 19 Jennifer E. Padilla, Matthew J. Patitz, Raul Pena, Robert T. Schweller, Nadrian C. Seeman,

651 Robert Sheline, Scott M. Summers, and Xingsi Zhong. Asynchronous signal passing for tile 652 self-

assembly: Fuel efficient computation and efficient assembly of shapes. In Unconventional 653

Computation and Natural Computation, pages 174–185. Springer, 2013.

654 20 Robert Schweller and Michael Sherman. Fuel efficient computation in passive self-assembly.

655 In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’13, 656 pages 1513–

1525. SIAM, 2013.

657 21 Robert Schweller, Andrew Winslow, and Tim Wylie. Complexities for high-temperature 658 two-handed tile self-

assembly. In Robert Brijder and Lulu Qian, editors, DNA Computing and 659 Molecular Programming, pages 98–109,

Cham, 2017. Springer International Publishing. 660 22 Robert Schweller, Andrew Winslow, and Tim Wylie. Nearly

constant tile complexity for any 661 shape in two-handed tile assembly. Algorithmica, 81(8):3114–3135, 2019.

662 23 Robert Schweller, Andrew Winslow, and Tim Wylie. Verification in staged tile self-assembly.

663 Natural Computing, 18(1):107–117, 2019.

664 24 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,

665 June 1998.

666 25 Andrew Winslow. Staged self-assembly and polyomino context-free grammars. Natural 667

Computing, 14(2):293–302, 2015.

http://dx.doi.org/10.1002/cphc.201700982
http://dx.doi.org/10.1002/cphc.201700982
http://dx.doi.org/10.1016/j.jconrel.2019.04.028
http://dx.doi.org/10.1016/j.jconrel.2019.04.028
http://dx.doi.org/10.1016/j.jconrel.2019.04.028
http://www.sciencedirect.com/science/article/pii/S0019995864901202
http://www.sciencedirect.com/science/article/pii/S0019995864901202
http://www.sciencedirect.com/science/article/pii/S0019995864901202
http://dx.doi.org/https:/doi.org/10.1016/S0019-9958(64)90120-2
http://dx.doi.org/https:/doi.org/10.1016/S0019-9958(64)90120-2
http://dx.doi.org/10.1007/s11047-018-9707-9
http://dx.doi.org/10.1007/s11047-018-9707-9

