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s Abstract

16 Many models of self-assembly have been shown to be capable of performing computation. Tile 17 Automata was

recently introduced combining features of both Celluar Automata and the 2-Handed 1s Model of self-assembly both

capable of universal computation. In this work we study the complexity 10 of Tile Automata utilizing features

inherited from the two models mentioned above. We first present a

20 construction for simulating Turing Machines that performs both covert and fuel efficient computation.

21 We then explore the capabilities of limited Tile Automata systems such as 1-Dimensional systems 2 (all
assemblies are of height 1) and freezing Systems (tiles may not repeat states). Using these 2 results we provide
a connection between the problem of finding the largest uniquely producible 22assembly using n states and the
busy beaver problem for non-freezing systems and provide a freezing

25 system capable of uniquely assembling an assembly whose length is exponential in the number of 2

states of the system. We finish by exploring the complexity of the Unique Assembly Verification 27 problem in Tile

Automata with different limitations such as freezing and systems without the power s of detachment.
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| Introduction

3 Self-assembly systems have quickly become an intense area of research due to fabrication
;7 simplicity [13], the ability to create systems at the DNA level [16], the control of nanobots
;s [14], and the maturity of experimental techniques [12]. Self-assembly is a naturally occurs ring
process where simple particles come together to form complex structures. These are
computationally of interest since computing at the molecular level yields a lot of power.
aThere are several models of tile self-assembly, and they each strive to capture some s aspect of self-
assembling systems. A few of the better known models are the Abstract . Tile Assembly Model (aTAM)
[24], the 2-Handed Assembly Model (2HAM) [3], the Staged
uself-assembly model [10], and the Signal-passing Tile Assembly Model (STAM) [19]. There s are several
other models designed to model different aspects of DNA/RNA or laboratory s conditions. A recent
model of tile self-assembly, called Tile Automata [5], was introduced as «7an intentional mathematical
abstraction designed to implement the key features of active salgorithmic self-assembly while avoiding
specifics tied to any one particular implementation s (using state change rules and tile
attachments/detachments based on local affinities between s states). By abstracting away
implementation details, TA strives to serve as a proving ground s for exploring the power of active
algorithmic self-assembly, along with providing a central hub s:through which various disparate models
of self-assembly can be related by way of comparison s:to TA. One recent example of this type of
application includes [2] in which TA is shown s capable of simulating the Amoebots model [8] of
programmable matter.
ss Given the goal of TA to connect many models of self assembly, in this paper we explore ss the
computational power of limited Tile Automata systems such as versions of TA that do s» not allow
detachment (not possible in some models). To facilitate this, we first show how to sscreate general
Turing Machines, and then we explore the complexity of a common question
59 within self-assembly models: the unique assembly verification problem. If given a system, «
can the output be guaranteed? This is a natural problem that is polynomial in some models, «  yet
uncomputable in others.

2 1.1 Previous Work

&sIn his Ph.D. thesis, Winfree presented the Abstract Tile Assembly model (aTAM) and «showed it was
capable of universal computation by simulating a Turing Machine [24], and & the computational power
is explored in depth in other works such as [15]. The 2-Handed ss Assembly Model (2HAM) [3] introduced
a more powerful model and is capable of fuel efficient zcomputation [20] along with the Signal-passing
Tile Assembly Model [19] which has tiles esthat can interact to turn glues on or off.
elIn [10, 25], the authors show a connection between finding the smallest Context Free Grammar and
optimization problems in the Staged Assembly model. In the staged assembly
n model, it was show that while only using a constant number of tile types, a system can
7 construct length-n lines using O(logn) bins and mixes [9]. Repulsive forces have been shown »to
aid in constructing shapes at constant scale [18]. Further, by utilizing the temperature to 7

encode information, shapes can be constructed with constant (or nearly) tile types [6, 22].
s The Unique Assembly Verification problem asks if a given system uniquely produces a »given assembly.
In the aTAM this problem was shown to be solvable in polynomial time 77 [1]. In the 2HAM this problem
was shown to be in coNP with certain generalizations s being coNP-Complete [3, 21]. In the staged
assembly model, this problem is known to be
7coNPNP-hard and conjectured to be PSPACE-Complete [23]. Adding the power of negative sglues also
vastly changes the complexity of this problem making in uncomputable in models
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Turing Machine Tile Automata System States Transition Rules
Determinisic Non-Freezing 1D o(/allr]) o(/6])
Bounded Time Freezing 1D o(/Q]|T|TIME(M)) O(/6|TIME(M)?)

Table 1 Given a Turing Machine M = (Q3,T,6,94,9,9s), simulating Tile Automata systems are given in
Theorems 3.4 and 3.5, respectively.

81 that include it due to the ability for pieces of assemblies to break off [11]. However, adding s
negative glues but restricting the ability for assemblies to detach we still see an increase in s

difficulty with UAV in aTAM without detachment being coNP-complete [4].

s The Tile Automata model was introduced in [5] merging ideas from Cellular Automata ssand Tile Self-
Assembly. The authors showed that freezing tile automata (where a tile ss cannot repeat states) is
capable of simulating non-freezing systems. This powerful model has s7also been shown to be capable
of simulating models of programmable matter [2]. Cellular ss Automata has been shown to be Turing
Complete even in 1-dimension [7].

s 1.2 Our Contributions

90 In Tile Automata, cases may occur where systems contain one terminal assembly but exhibit o
behavior that does not naturally seem to uniquely produce that assembly. We define unique «
assembly later, but note that the final requirement addresses a feature of Tile Automata and o
other models with detachment where there exist assemblies that are not terminal but are o
never part of the final assembly. Cycles in the production graph are not possible in many s self-
assembly models so we add this restriction. However many of our results work with or s without this
restriction, so we explore both cases.
o7 In this work we explore Tile Automata systems that uniquely assemble n-length lines and s the
complexity of determining whether a system uniquely assembles a given assembly. We
9 first present a Turing Machine simulation capable of covert and fuel-efficient computation.
100 We use this construction to show a connection between the largest finite assembly problem i1
and Busy Beaver Machines (Turing Machines that print a certain number of symbols using a 12
minimum number of states). In the more restricted case of Freezing Systems we show we can
103 construct n-length lines using O(n) states. Results are shown in Table 1.

104 We then explore the Unique Assembly Verification problem. An overview of the results
105 are shown in Table 2. We show that UAV is uncomputable via Turing Machine simulation.
106 We also extend this to 2-Dimensional freezing systems (this reduction results in a system with

w7 cycles). By removing the ability for assemblies to break apart we achieve a model closer to s
traditionally studied models. We restrict this by studying what we call Affinity-Strengthening
109 systems where a state can never lose affinity by a transition. In this case, we show the UAV 110
problem is PSPACE-Complete utilizing bounded-space Turing Machine simulation. When 111
restricting the model to both Affinity Strengthening and Freezing we show membership in 11
coNPNP, We then provide reductions to show coNPNP-completeness for 2-dimensional UAV 113 and
coNP-hardness in 1 dimension.

w2 Model and Definitions

us A Tile Automata system is a marriage between cellular automata and 2-handed self-assembly.
us  Systems consist of a set of monomer tile states, along with local affinities between states 17
denoting the strength of attraction between adjacent monomer tiles in those states. A set

DNA 26
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Transition Rules Freezing 1D Result 2D Result Theorem
Affinity Strengthening Freezing coNP-hard coNPNP-Complete Thms. 6.8, 6.7
Affinity Strengthening Non-freezing PSPACE-Complete PSPACE-Complete Thm. 6.3

General Freezing Open Undecidable Thm. 5.2*
General Non-freezing Undecidable Undecidable Thm. 5.1

Table 2 Results for the Unique Assembly Verification in Tile Automata. Transition Rules describes the types
of transition rules allowed in the system. In Affinity Strengthening Systems all transition rules increase affinity
so no detachment may occur. Freezing indicates whether the system is freezing where tiles cannot repeat
states. Result 1D is the complexity of UAV in 1 Dimension and Result 2D is the complexity of 2 Dimensions.
Theorem is where these can be found. *This result is only true when cycles in the production graph are allowed.
All other results are true regardless of which definition is used.

us  of local state-change rules are included for pairs of adjacent states. Assemblies (collections
19 of edge-connected tiles) in the model are created from an initial set of starting assemblies
120 by combining previously built assemblies given sufficient binding strength from the affinity 1z
function. Further, existing assemblies may change states of internal monomer tiles according
122 to any applicable state change rules. An example system is shown in Figure 1.

wm 2.1 States, tiles, and assemblies

14 Tiles and States. Consider an alphabet of state types! Z. A tile t is an axis-aligned unit s square

centered at a point L(t) €Z2. Further, tiles are assigned a state type from %, where

126 S(t) denotes the state type for a given tile t. We say two tiles t1and t: are of the same tile

127 type if S(t1) = S(t2).

128 Affinity Function. An affinity function takes as input an element in 22 x D, where

129 D = {1,’}, and outputs an element in N. This output is referred to as the affinity strength 1

between two states, given direction d €D. Directions £ and " indicate above-below and 1 side-
by-side orientations of states, respectively.

132 Transition Rules. Transition rules allow states to change based on their neighbors.

133 A transition rule is a 5-tuple (S14,524,515,S25,d) With each S14,520,515,520 €Z and 12.d €D ={L,’}. (S1a
and Sip being the left state or the top state.) Essentially, a transition srule says that if states Siq
and Sxqare adjacent to each other, with a given orientation d, 1sthey can transition to states Si»
and Sasrespectively.

137 Assemblies. A positioned shape is any subset of Z2. A positioned assembly is a set of 13z tiles
at unique coordinates in Z2, and the positioned shape of a positioned assembly Ais s  the set of
coordinates of those tiles, denoted as SHAPE4. For a positioned assembly A, let 140 A(x,y) denote

the state type of the tile with location (x,y) €Z%in A.

111 For a given positioned assembly A and affinity function N, define the bond graph Gato 1:be
the weighted grid graph in which:

143 each tile of A is a vertex,

14 no edge exists between non-adjacent tiles,

15 the weight of an edge between adjacent tiles T1 and T2 with locations (x3,y1) and (x2,y2), 16

respectively, is
147 N(S(T1),S(T2), L) if y1> y2,

1
We note that  does not include an “empty” state. In tile self-assembly, unlike cellular automata, positions in Z2
may have no tile (and thus no state).
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148”(5(T2),5(T1),_[) if yi<ya,
149”(5(T1),S(T2), ) if x1< X2,
150[1(S(72),5(T1), ) if x1> x2.

151 A positioned assembly A is said to be t-stable for positive integer T provided the bond s
graph Gahas min-cut at least t.

13For a positioned assembly A and integer vector ~v = (v1,v2), let A~ denote the positioned ssassembly
obtained by translating each tile in A by vector ~v. An assembly is a set of all isstranslations A~ of a
positioned assembly A. A shape is the set of all integer translations for 1sssome subset of 72, and the
shape of an assembly A is defined to be the set of the positioned

157 shapes of all positioned assemblies in A. The size of either an assembly or shape X, denoted 15
as [ X[, refers to the number of elements of any positioned assembly of X.

1o Breakable Assemblies. An assembly is t-breakable if it can be split into two assemblies walong a cut
whose total affinity strength sums to less than . Formally, an assembly Cis

161 breakable into assemblies A and B if the bond graph Gcfor some positioned assembly C € C 1
has a cut (A, B) for positioned assemblies A €A and B & B of affinity strength less than t.

13 We call assemblies A and B pieces of the breakable assembly C.

1« Combinable Assemblies. Two assemblies are t-combinable provided they may attach s
along a border whose strength sums to at least 7. Formally, two assemblies A and B are 15
T-combinable into an assembly C provided Gcfor any C € C has a cut (A,B) of strength at 17
least T for some positioned assemblies A €A and B €B. Cis a combination of A and B.

wsTransitionable Assemblies. Consider some set of transition rules A. An assembly A wsis transitionable,
with respect to 4, into assembly B if and only if there exist A €A and 1B € B such that for some pair of
adjacent tiles t,t; €A:

17 a pair of adjacent tiles tn, tx € B with L(t;) = L(ts) and L(t}) = L(t)
mJ a transition rule 6 €A s.t. & = (S(ti),S(t;),S(tn),S(tx), L) or
1736 = (S(t1),S(t7),S(tn), S(tx), )

A - {t, ti} = B - {tn, tx}

v 2.2 Tile Automata model (TA)

s A tile automata system is a 5-tuple (2,1,A,A,T) where 2 is an alphabet of state types, N
177 is an affinity function, A is a set of initial assemblies with each tile assigned a state from z,

s A is a set of transition rules for states in £, and © € N is the stability threshold. When the 17
affinity function and state types are implied, let (A, A,T) denote a tile automata system. An 10
example tile automata system can be seen in Figure 1.

151 | Definition 2.1 (Tile Automata Producibility). For a given tile automata system T = 12 (£,A,1,A,T), the
set of producible assemblies of I, denoted PROD:, is defined recursively:

1s3(Base) N € PRODr

wa(Recursion) Any of the following:

1ssCombinations) For any A,B € PRODr such that A and B are t-combinable into C,

1sthen C € PRODr.

w(Breaks) For any C € PRODrsuch that C is t-breakable into A and B, then A,B €

18sPRODr.

1o(Transitions) For any A € PRODrsuch that A is transitionable into B (with respect to 10 A), then B €
PRODr.

10:5
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States Affinity Functions
=1 Producibles Terminals
ABCDE G| e B L
Transition Rules =1 B
( B/D_5 B E| BIDls Tile AlC Acm B E
Initial Assemblies o 5 Automata
B/ D/ [BID| [BIE| [BIE sysiemr o)
The C producibles and terminals of I'.
=2
B E | Figure 1 An example of a tile automata system T.
D Recursively applying the transition rules and affinity
functions to the initial assemblies of a system yields a set
of producible assemblies. Any producibles that cannot
Stability combine with, break into, or transition to another
Threshold=2 assembly are considered to be terminal.
191 For a system I = (£,A,,A,T), we say A >'1 B for assemblies A and B if A is T-
192 combinable with some producible assembly to form B, if A is transitionable into B (with
193 respect to A), if A is -breakable into assembly B and some other assembly, or if A = B.
19 Intuitively this means that A may grow into assembly B through one or fewer combinations, 1

transitions, and breaks. We define the relation ->'to be the transitive closure of >y, i.e., 1A
—TB means that A may grow into B through a sequence of combinations, transitions, s>and/or
breaks.

18| Definition 2.2 (Production Graph). The production graph of a Tile Automata system T is 10 a
directed graph where each vertex corresponds to an assembly in PRODrand there exists a 20

directed edge between assemblies A and B if A " B.

.01 | Definition 2.3 (Terminal Assemblies). A producible assembly A of a tile automata system .2 T =
(%,A\,N,A,7) is terminal provided A is not tT-combinable with any producible assembly s of T, A is not
T-breakable, and A is not transitionable to any producible assembly of T. Let 2 TERMr € PRODy denote

the set of producible assemblies of I which are terminal.

205 | Definition 2.4 (Freezing). Consider a tile automata system T = (£,A,N,A,T) and a s directed graph G

constructed as follows:

wreach state type o €% is a vertex

wsfor any two state types a,8 €2, an edge from a to 8 exists if and only if there exists a 9
transition rule in A s.t. a transitions to 8

210l is said to be freezing if G is acyclic and non-freezing otherwise. Intuitively, a tile .1 automata system
is freezing if any one tile in the system can never return to a state which it held previously. This implies
that any given tile in the system can only undergo a finite »snumber of state transitions.

2. | Definition 2.5 (Affinity Strengthening). An Affinity-Strengthening system is a Tile Au-

2us  tomata system where all transition rules can only increase a states affinity with all other states
26 SO no detachments ever occur. Formally a tile automata system I = (3, A,1,A,T) is an Affina ity
Strengthening system if for each s,s° €3 where s transitions to s°, A(s,t) < A(s%t) bt €3.

25| Definition 2.6 (Bounded). A tile automata system T is bounded if and only if there exists xnsa k € Z>0

such that for all A €PRODy, |A] < k.

20 | Definition 2.7 (Unique Assembly). A Tile Automata system I uniquely produces an
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a assembly A if
A is the only assembly in TERMr
a=sfor all B €PRODy, B > A.
24l is bounded.

asthere does not exist a pair of assemblies B,C € PRODy, such that B->'C >"B.}

2 3 One Dimensional Turing Machine

27 Since Tile Automata is a generalization of 2HAM and borrows from Cellular Automata it 2

is expected that it is as powerful as both of these models. Here we present a construction 2 that
is capable of both covert and fuel-efficient computation. We present informal definitions 20 of
each of these. For rigorous definitions, we refer the reader to [20, 19] for fuel-efficiency, 2a and

[4] for covert computation.

22| Definition 3.1 (Simulation). A Tile Automata system T is said to simulate a Turing s Machine M, if for
every producible assembly a of T can be mapped to a configuration m of

2«M and any other producible assembly b such that a "1 b, b either also maps to m or maps to »sanother
configuration m°such that m°is the next step of m. Finally, each terminal assembly xsof T maps to an

output of M.

237 | Definition 3.2 (Covert Computation). Given a Tile Automata system T that simulates a 2s Turing
Machine M, T covertly simulates M if for each output of M, there exits a single :sterminal assembly that
maps to it.

0| Definition 3.3 (Fuel Efficient Computation). A fuel efficient Turing machine simulation in 2 Tile
Automata represents the tape of a Turing machine as one assembly, and requires that ».; each
computational step of the Turing machine occurs by way of the attachment of at most a s

constant number of assemblies of at most constant size. Thus, the simulation of n steps of a 2

computation “uses up" at most O(n) tiles worth of fuel.

25| Theorem 3.4. For any Turing Machine M = (Q,3,T,6,q4,q1,Gs), there exists a covert, s  fuel-efficient,
1-dimensional Tile Automata system T = (374,1,A,A)3 that can simulate M 2 such that [Z7a] =
o(/QlIr])and [A] = O(/5]).

28 Proof. Given a Turing Machine M = (QZ,1,6,94,9r,qs), we construct the Tile Automata s
system T = (Z74,M,A,A) as follows.

250 States. Conceptually, we partition the set of states (Z74) into three subsets for clarity:

251 head states H, symbol states S, and utility states W. Let H = {higs)/q €Q,s €%} and

252 let S = {os/s €%} (Figure 2a). All states in H and S have affinity with all states in 27a.

253 There are eight states in W: signal accept states, final accept states, signal reject states,

254 final reject states, and four buffer states By, B.%, Br, and Bi°. The signal accept state has ass

affinity with all states in 274, and the final accept state has affinity with all states other s than
itself and the four buffer states. The two reject states have corresponding affinity rules xs-as
those of the accept states. The buffer states ensure that no two assemblies attach during 2
the computation. Each of the four buffer states have affinity with each state in H and S.

1 When we refer to Unique Assembly allowing cycles, this requirement is omitted.
2

3 -Dimensional Tile Automata systems always have t = 1 so we omit that parameter from T DNA 26
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x5 Brand Brhave affinity with B.% or Bz’ respectively.

%0 Transitions. We create a transition rule such that for each Tile Automata state h(gs) EH s:and oi €
S, the rule represents a step in M (Figure 2b). WLOG, assume an assembly A »: representing
the a configuration of a Turing Machine M has the state h(q,s) with states,

%3 OL,0R €S to the left and right of hqs), respectively. If the head of M moves right then the

s transition rule will take place between h(gs)and or. If the TM head moves left then the

s transition rule will be between orand h(g,s). higs) will transition into the state representing

w6 the symbol that is to be written on the tape in M after a state g reads symbol s. Either

27 oLor ogwould then transition into the state higoon OF higoor) respectively where g%is the ::new state
of the head of M after reading s from state g. There also exists an additional

269 transition rule if o, or oris a buffer state. This will transition B, or Bg to state BLO or BRO 270

respectively. B.° /Br°transitions into the symbol state representing the blank symbol when

o itis to attached to state Bi/Br.

o» Accept/Reject. For transitions where M enters the accept state, we create transition 2 rules where
both tiles enter the signal accept state. This state has transition rules with each

aaother state transitioning that state into the signal accept state as well. If it transitions with a s buffer

state or the final accept state, both tiles enter the final accept state. The final accept s state also

transitions with every other state and both tiles become the final accept state.

77 The reject states follow the same rules.

278 Input. We construct a Tile Automata system that runs M on a string x. We construct

279 the system as described and create an initial assembly A that represents x. A will have a

280 length of [x| + 2. The left most state of A will be B.. (WLOG assume the head of M starts

281 on the left most cell.) The next state of A will be s(,s) where g is the initial state of M and 2

s is the first symbol in x. The next states of A each represent the symbols in the string x in 2
order. The rightmost state of A is Br (Figures 2c, 2d).

284 The buffer states B.and Brare always an initial assembly and are used to extend the :ss  tape
if the head attempts to move past the right edge. First, the head state causes Brto s transition to
Br°. With Bz%on the edge of the assembly a new Brtile will attach. Once 27 this attachment occurs
Br%transitions to the symbol state representing the blank symbol on s the tape. Then the head state
may transition with the blank symbol if needed. The same s process occurs with B, when the head
attempts to move off the left end of the tape.

0 Terminal Assemblies. If M accepts the input x, then by the rules of our system the 21 accept states will
appear in our assembly. The signal accept state will be the first to appear »:and will propagate to the
edges of the assembly. Once the signal accept state reaches the

203 buffer states on the edge of the assembly they will transition into the final accept states. Any 2ufinal
accept state that is attached to any other state will make that tile into a final accept 25 state. Any two
final accept states that are next to each other do not have affinity and will .ss detach. After the accept
state appears in an assembly the only terminal assemblies that will .7 exist are single final accept states.
The same will occur if the machine rejects.

28 Since there are only two possible terminal assemblies, the final accept state and the final 2 reject
state, this construction performs covert computation. This computation is also fuel

a0 efficient since the only time a new assembly is attached is when the Turing Machine writes on sz a

blank symbol at the edge of the tape, which can only occur once per computation step. J
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o 3.1 Freezing Systems

303 Here we present modifications to the construction above for freezing 1-dimensional systems
304 to perform bounded time computation.

s | Theorem 3.5. For any bounded-time Turing Machine M = (Q,3,1,6,q4,q1,qs), there

w06 exists a covert, fuel-efficient, 1-dimensional freezing Tile Automata system T = (274,1,A,A) s that can
simulate M such that. [Za] = O(/Q[[T|TIME(M)) and |A] = O(| 8| TIME(M)?).

Q= {q1, gz, ... qi}
a1 0 a2 0,R I
—

ol o [ Ple[[ L[]

(@ (b) (c) (d)

Figure 2 (a) Tile automata states (Below) created from the states of Turing Machine (Above) over a binary
alphabet. (b) State change rules (Below) created from the Turing Machine transition rules (Above). (c) A
Turing Machine (Above) configuration and the representative TA assembly (Below) . (d) The same Turing
Machine (Above) after making one step and the assembly (Below) after the same step.

;08 Proof. We modify the construction from Theorem 3.4. We have Z7a partitioned into three swsets H, S,

and W. In a freezing system states can not be repeated, so for each state in H

swand S we create a number of states equal to the number of steps the Turing Machine M s can take.

Each head state will not only represent the state of the Turing machine and the

sz symbol on the tape, but it will also represent how many steps the Turing Machine has taken.

sz Each symbol state will represent the symbol on the tape and also the last step that it was .
modified. The head states will have a transition rule with each symbol state regardless of s:s
the last step that symbol was modified. When a head state transitions into a symbol state it a1
will represent the step that the transition took place.

317 This increase in state-space ensures no tile will ever become the same state twice. Symbol
318 states written at step x can only transition into a head state. The head state will always
319 represent a step y > x. When the head state transitions back to a symbol state it will go to s»a

symbol state written at state y. Since x <y, no tile will ever repeat states. J

| Shapebuilding and the Largest Assembly Problem

s Given a Tile Automata system with limited states, we examine how large of an assembly 3:: may be
constructed. We first consider the case of one-dimensional assemblies and leverage . Theorems 4.2
and 4.3 to show that the longest buildable line’s length is related to the ;s Busy Beaver function in
general, and exponential in the case of freezing systems. We then s consider the Largest Assembly
problem, and apply Theorem 4.3 to show that this problem is s, uncomputable for general TA even in
one-dimension.

2 4.1 General

129 The Busy Beaver function BB(n), for any positive integer n, is the maximum number of

10:9
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10:10 Verification and Computation in Restricted Tile Automata

s symbols printable by a Turing Machine using n states.*

;1 | Definition 4.1 (String Representation). An assembly A is said to represent a string x if

s there exists @ mapping of the states in A to the symbols in x such that the n*" state of A ssmaps to
the n symbol of x forall 0 <n < [x|

14| Lemma 4.2. For any n-state 2-symbol (not including the blank symbol) Turing Machine s M which
produces an output x, there exists a O(n)-state Tile Automata System T which s uniquely assembles an
assembly A, such that A represents x.

;37 Proof. We modify the construction from Theorem 3.4 so that once M halts the head state sstransitions
into a symbol state. The resulting assembly will be terminal since symbol states 2 do not transition with
each other. This final assembly will consist of symbol states that each

a0 represent the symbols in x. The number of states used by T is 2n head states, 2 symbol

a1 States, and 4 buffer states which is bounded by O(n). Note there is no need for accept/reject

s states since the head state just turns into a symbol state when the TM halts. J

s | Theorem 4.3. For any positive integer n, there exists a 1-dimensional Tile Automata . system that

uniquely assembles a BB(n)-length line using O(n) states.

us Proof. Using Lemma 4.2 we can take any Busy Beaver Machine and create a Tile Automata s system
which uniquely produces an assembly the same size as the number of symbols printed

.7 on the tape. J

w 4.2  Freezing

ausFor freezing Tile Automata systems, we can create systems that uniquely produce n-length ssolines and
only require states that are logarithmic in the length of the line. For clarity we 31 begin with a helping
lemma.

;21 Lemma 4.4. For all n = 2*for x €N, there exists a 1-dimensional freezing Tile Automata ssssystem that

uniquely assembles an n length line using O(logn) states.

ssa Proof. The cases for x = 0,1,2 are trivial. A system that uniquely builds a length 23 line sssis shown in
Figure 3. The only initial states are 1aand 1s. The affinities are between sssadjacent states. The transition
rules are highlighted in red which transition to make the next 57 producible assembly depicted. Our
unique terminal assembly is a length 23line. We will sssshow that by adding a constant number of states,
transitions, and affinities to this system sssthe length of the uniquely assembled line will double, and
that this process can be repeated s to uniquely assemble any length 2" line.

1 For n > 3, Let T, be the system that uniquely assembles a length 2" line derived by se recursively
applying the following process to Tsn — 3 times. Assuming that T, uniquely

ssassembles a length 2" line of the form (14,np,...,np,n4,n8,NF, ...,NF 18), Ta+1is s constructed as follows.
First we add the non-initial states n+14,...,n+1f, and a transition ssfrom (ns,ns) to both (n + 1¢ns) and
(na,n + 1¢). We add six new transitions involving ssn + 1cor n + 1 which allow that state to propagate
left/right respectively and transition ss7to n + 1pand n + 1rrespectively when the end to the line assembly
is reached. There will s be 6 additional transition rules added to allow states n + 1pand n + 1rto
propagate in the

w0 Opposite direction and eventually transition 1aand 1sto n + 1gand n + larespectively.

4 For this definition we consider Turing Machines using a binary alphabet.
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Adding the affinity rule (n + 14n + 1) will allow the two length 2" lines to bond uniquely s»
assembling a length 2™ line. This hew system uniquely produces a length 2! line of the s2same
form previously described, to which the process can be repeated to once again double

the length of the unique assembly. J

| Theorem 4.5. For all positive integers n, there exists a 1-dimensional freezing Tile ss Automata

system that uniquely assembles an n length line using O(logn) states.

Proof. We modify the construction from Lemma 4.4 to build arbitrary length-n lines.
To build any length-n line using O(logn) states we modify T = Tuiog: ne. Let biindicate
the /™ least significant bit of n’s binary expansion. For all i > 2 such that bjis equal to 1

we add a transition rule from (ia,is) to (i, it) in T. When these two states are adjacent

o [ EEEE B, [B
L& |GEPE CEEE| B EEE B EEEE

v

E& 26 |GEEE EEEE EEE  EEE

EEEE |EGEE . BEEE| I — g
1)

A D F B
A D F B
0.EE-BEEEE

Figure 3 A system that uniquely builds a length 23line. The only initial states are 1,and

15. The affinities are between adjacent states. The transition rules are highlighted in red which transition to
make the next producible depicted.

they exist in an assembled line of length 2. This transition “locks” this producible, stopping ss: it
from growing. Four more transition rules are added to allow this state to propagate to
the ends of the line. Finally, we add a transitions between all i states and the states 1s

and 14, which are the endpoints of the lines. These endpoints transition to states that have s affinity

with the next largest locked producible on one side. If b1or bz2is equal to 1 we add sssin an assembly

of size b1 x 1 + by x 2 that connects to the last locked producible. J s 4.3 Largest Finite

Assembly Problem

;57 Given a positive integer n, the Largest Finite Assembly Problem asks what is the largest sssassembly
that can be uniquely assembled in a Tile Automata system using n states.

389

390

392

| Theorem 4.6. The Largest Finite Assembly problem in Tile Automata is uncomputable.

Proof. Let on be the size of the largest assembly that can be constructed using n states. From
Theorem 4.3, there must exists a system that can construct a line of length BB(n) using O(n)

states so gom) > BB(n). This means on grows asymptotically as fast as the Busy Beaver
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w3 function, which grows faster than any computable function. Thus, oa is uncomputable. J 34 5

Unique Assembly Verification

395 A well-studied problem in self-assembly is the Unique Assembly Verification problem. This 196
asks whether a given system uniquely produces a given assembly. We show that the general
397 problem is undecidable. Again, we consider two definitions of Unique Assembly one where
398 systems with cycles are allowed in the production graph, and the other where they are not.

» 5.1  Undecidability

w0l Theorem 5.1. Tile Automata Unique Assembly Verification is undecidable even in one « dimension.

w2 Proof. Using Theorem 3.4 we reduce from the halting problem. Given a Turing Machine M

w3 We can construct a Tile Automata system I that simulates M. If M halts then there exists w0« a
single terminal assembly which is the final accept state tile. If M does not halt then there

w05 €Xists no terminal assemblies. This is true under both definitions of Uniquely Assembly since ssthe

only time there would exist a cycle in the production graph of I'is if M ever revisited

w7 a configuration. If M revisits a configuration then M will not halt so our system will not

w8 uniquely assemble the final accept state tile. J

w | Theorem 5.2. Freezing 2-Dimensional Tile Automata Unique Assembly Verification is snoundecidable
under the definition of Unique Assembly allowing cycles even when all assemblies «1are of constant
height.

a2 Proof. To prove undecidability we reduce from UAV for 1-Dimensional Tile Automata xs systems

(Theorem 5.1). Given an instance of UAV asking if a system I uniquely produces an szassembly A we use

the simulation provided in [5] to create a freezing Tile Automata system s Y. By the definition of I

simulating T if TERMr only contains one terminal assembly A then s TERMY will only contain one

assembly A%that maps to A.

.7 The simulation utilizes constant scale macroblocks to represent tiles so the height of the ssassemblies
in T will be constant height. This simulation also uses a token passing scheme that
a0 results in cycles in the production graph so this system will not uniquely produce assemblies

a0 if cycles are not allowed. J

o 6 Affinity Strengthening UAV

a2 Many self-assembly models where UAV is well-studied do not have detachment (and are thus

.3 decidable). Here, we investigate versions of TA without this power and show hardness. We 4
do this by exploring Affinity-Strengthening Tile Automata (ASTA). We start by considering s
the non-freezing case, then consider the added restriction of freezing.

= 6.1  Non-Freezing

«71 Lemma 6.1. The Unique Assembly Verification problem in Affinity-Strengthening Tile »s Automata is
in PSPACE.

w9 Proof. The UAV problem can be solved by the following co-nondeterministic algorithm.
a0 Given an Assembly A and an ASTA system T, nondeterministically build an assembly B
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a1 of less than size 2/A[ where [A] is the size of the given assembly. We now have a branch . for
every producible assembly and we check the following about B in order. If any branch ssrejects, the
whole algorithm rejects.

«alf B=A, accept.
wslf [B] 2 |A], reject.
a6lf B 6= A and B is terminal, reject.

«7Continue nondeterministically performing construction steps (attachments and transitions)
as0n B. If B is reached again, reject. If A is reached, accept.

129 Only assemblies up to size 2[A[ can be checked since if any assembly exists larger than s 2[A/, it
would have been built using at least one assembly of size greater than [A/, which «:would have already
been rejected. We can also check if B is terminal using a nondeterministic 2 subroutine by non-
deterministically building a second assembly and checking if it can attach wsto B. Checking if an assembly
is breakable or if it is transitionable can be done in polynomial
ws  time and space. The final step of the algorithm checks for cycles in the production graph.
ws By the definition of unique assembly, B > A, by continuing to perform construction steps s on B

we will eventually reach A. If we ever end up reaching B again we know that there s

exists a cycle in the production graph (cycle checking in a directed graph is in P).

asg This algorithm shows the UAV problem for Affinity-Strengthening Tile Automata is in
as9 coNPSPACE which equals PSPACE. For the case of unique assembly where cycles in the as

production graph are allowed, the last step of the algorithm is skipped. J

s11 Lemma 6.2. The Unique Assembly Verification problem in Affinity-Strengthening Tile 2 Automata is
PSPACE-hard.

s3Proof. We show UAV in Affinity-Strengthening TA is PSPACE-hard by describing how sssto reduce from
any problem L €PSPACE. Consider a Turing Machine M that decides sssL. The construction from Theorem
3.4 can be modified to be an Affinity-Strengthening s system that results in a system capable of
performing bounded space computation (a Linear s, Bounded Automata, which is equivalent to parsing
a context-sensitive grammar and is s PSPACE-complete [17]). The only transition where a state loses
affinity is from the signal «ssaccept and reject state to the final accept and reject state. We remove the
final states from o the system. This will result in two possible terminal assemblies one consisting of a
buffer s« state, then accept states, then another buffer state, and the other being the same with reject
s States. We remove the buffer state from the set of initial assemblies. We change the length s of the
assembly representing the input to be the amount of space used by M.

44 Given a bounded space deterministic Turing machine and its input, construct a Tile «s Automata
system that uniquely produces the assembly with accept states if and only if the 4 Turing machine
accepts. If the Turing Machine rejects, then the reject assembly will be the ;0nly terminal assembly. If
the TM ever enters an infinite loop then there will exist a cycle ssin our system and there will not exist
any terminal assemblies, so the TA system will not

w9 Uniquely produce any assembly regardless of whether there exists a restriction on cycles. J

a0 | Theorem 6.3. The Unique Assembly Verification problem in Affinity-Strengthening Tile n
Automata is PSPACE-complete.

an Proof. Follows from Lemmas 6.1 and 6.2. J

10:13
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= 6.2  Freezing

a2 In this section we show the complexity of Unique Assembly Verification in a freezing Affinityas

Strengthening Tile Automata system. In 2-dimensions, we show UAV is coNP"P-Complete.

s We utilize the same reduction strategy as in [23]. We conclude by showing coNP-hardness

a7 for UAV in one dimension. Note that cycles cannot occur in Freezing Affinity-Strengthening «sTile
Automata, so we only consider one definition of Unique Assembly.

w9 | Definition 6.4 (VF3SAT). Given a 3SAT formula @(x,..., Xk Xk+1,...,Xn), IS it true

w0 that for every assignment to variables x1,...,xx, there exists an assignment to Xk+1,...,Xn as1 such
that @(xa,...,xn) is satisfied?

«2| Lemma 6.5. The Unique Assembly Verification problem in freezing Affinity-Strengthening s Tile

Automata is in coNP"P.

a4 Proof. Take the construction and algorithm from Lemma 6.1, we prove that the running sss

time is polynomial. When building an assembly B, since the system is freezing we know the sss time

to build Bis /2] [B] where [%] is the number of states in the system. Since we reject if 47 one branch

rejects, this is a coNP algorithm.

188 We utilize one subroutine that is in coNP to check if B is terminal. This is done in

289 polynomial time by nondeterministically building a second assembly and checking if they can
attach. If there is an assembly that can attach to B, then the assembly is not terminal. Using s
the coNP algorithm and using the subroutines as oracles, this problem is in coNPN?)

«2| Lemma 6.6. The Unique Assembly Verification problem in freezing Affinity-Strengthening »s  Tile

Automata is coNPP-Hard. c

C
Variable 1 Variable 2 Variable 3 Variable 4
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(a) (b)

> O]

1111000000001111C

Figure 4 Part of the construction for Theorem 6.6. (a) The base assemblies are constructed
nondeterministically. One is constructed for every possible variable assignment. (b) An example of a base
assembly fitting into a frame. C,binds cooperatively to Cy-; and the frame states.

s Proof. Given an instance of F3-SAT, this reduction produces a T = 2 freezing ASTA system
w5 Which uniquely assembles a target assembly if and only if the instance of VF3-SAT is true.
a6 This system has stability threshold 2 to allow for cooperative binding in which two assemblies a7
attach using affinities at two separate points, when one of the affinities alone would not be ssstrong
enough for this attachment to be stable.
499 Overview. We first create an ‘L’-shaped base assembly contained in a larger frame
500 (Figure 4b) that encodes a variable assignment. Rows of this assembly represent clauses and so:
columns represent variables. Each clause is evaluated by cooperatively placing tiles that so
represent the assignment of the variable in its column, and whether the clause of its row is so
currently satisfied. Once the assignments are evaluated, additional tiles fill out the rest of s
the frame. If the assignment evaluates to false, then frame will be filled. If the assignment sos
evaluates to true, then there will be remaining spaces representing the assignment to the s
variables in the first quantifier. We construct a test assembly for every possible assignment so
to thee variables that can attach into that space. Once an assembly has completely filled out
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508 its frame, all states inside transition into a target state and create our target

assembly.

Base Assemblies. We construct a rectangular base assembly for every possible variable

assignment to xu,...,xn, with the rows of this assembly representing clauses and columns su

representing variables. There are two sets of initial states for each variable: one for 0, and one

sfor 1. These sets of states attach to form length-4 line assemblies. The line assemblies have

suaffinities with both the 0 and 1 line assemblies of the next variable. The nondeterministic
nature of the model will ensure the creation of all possible combinations of these 0 and 1
line assemblies (Figure 4a). Given m clauses in our 3SAT formula, the TA system includes sistiles with
initial states Cy,...,Cm. These states cooperatively attach to state A and a frame si7 (Figure 4b). The
frame ensures there is no unbounded growth. Tiles then cooperatively bind s to fill out this
structure. The affinities between these states and the variable line assemblies sisare encoded such
that they evaluate if the variable assignment, represented by the base s assembly, satisfies the
3SAT formula (Figure 5a). The row containing Cievaluates whether s the /" clause is satisfied by the
variable assignment of the base. U and S states cooperatively s:;attach to fill out a row- U indicating
the clause has not yet been satisfied, and S indicating ssthat it has. This is done by “passing” the
assignment of the variable line upwards with a s specific encoding of the affinities. When an S state
attaches, only S states can attach to its s:sright side. This allows a Y state to attach at the end of the
row if a previous clause was not sxalready evaluated to be unsatisfied. If it is not satisfied, the
rightmost state of that row will s2be N, which does not allow a Y state to attach above it.

Once the rectangle is filled out an assembly will be marked as “True” or “False”, rep-

sls[s]s[s[s[s[s[s[s[s[s][s]s[s[s]Y], cl=s|s[s]s[s]s|s[s]s[s[s[s]s]s]s|n],
FEEEEEEEEEEEEEEEN o[ o[ ulul2[u] o[ Ul u]ulu[u[u[u[ O] Y]
. 5 M : il ululullululu]s[s|s[s]s]s[s[Y] me‘uUUsuuws’ssss_Igssv_
B O SISESESISEUINEN ANDEENRRNERRREEEREN Alo[ofofoi[1[1[1[i[1]1[1[o[0[0[C]C]
- [l gg E0N ZEN gyl E A '
& I8 - i
Ofl p EEMNE 0 }
W M O GO ADAD N O

resented by the top right Y /N state in the construction. (Figure 5b, 5c). True assemblies s grow
downward, leaving a space between the base assembly and the frame. The shape of this

s Space is an encoding of this assembly’s original variable assighment of xi,...,x« (Figure 5b). s False

assemblies also grow downward, but entirely fill out the frame of the base construction.

(b) (c)

Figure 5 (a) Initial states needed to evaluate if the variable assignment satisfies the 3SAT formula. Choose
1 from A/B/C for each clause/variable combination. Choose A if 1 assigned to variable y satisfies the xt" clause,
B if 0 satisfies, and C if the variable does not appear in that clause. T is a placeholder for U or S, depending on
which was chosen for each clause/variable combination. (b) Example of a 4-variable, 3-clause base assembly
that is marked as true (top right “Y”). The assembly grows downward, but interacts with the variable tile line
to encode their variable assignment in the assembly’s geometry. (c) Example of a 4-variable 3-clause base
assembly marked as false (top right “N”). The assembly grows to fill out the entire frame.

0 Affinityzl |Co|=] S| S| S|S|S]|S|S]S S|S|S|S|S]Y
Ge=aMGi=s S maAE e R
/ X \I i i iﬂgggl 1[1]1 ‘15 ﬂﬁhlﬁ%
bl
=
/ E
(a) (b) (c)

Figure 6 (a) Test assemblies are nondeterministically built by allowing the possibility for each assignment of
one variable construction to attach to either assighment of the next variable construction. (b) Affinities
between test assemblies and base assemblies. (c) Example of a test assembly binding to a base assembly that
encodes the same variable assignment of x,..., .
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s:3 Test Assemblies. A set of test assemblies are also built using the same nondeterministic s method

used to create the base assemblies’ variable assignments. A test assembly is created s for each

assignment to variables x,...,xk (Figure 6a). The geometry of a test assembly sss encodes this variable

assignment in a complementary fashion to that of a “True” base assembly s:; representing the same

assignment to xu,...,xk. This allows a test assembly to attach to a s “True” base assembly with the same

variable assignment to xs,..., Xk, but not to any other s due to that causing overlapping geometry. The

test assemblies cooperatively bind with two s« strength-1 affinities at two points (Figure 6b). A test

assembly will only be terminal if there sais no base assembly matching its variable assignment that was

marked as “True”.

542 Transition to Uniform Assembly. If the solution to the instance of V73SAT is true,

543 all assemblies eventually grow/transition to one unique target assembly. To achieve this, there

sisare state transitions which allow every “True”/“False” flagged base assembly to grow into one

sis  uniform assembly. For base assemblies marked “True”, to which a test assembly attached,

s6  the states needed to cooperatively bind these test assemblies to base assemblies having a s«
transition rule to transition to state T. For assemblies marked “False”, a transition to state s
T occurs when A and F (Figure 5c) are adjacent. Additional transition rules between state sa
T and all other states (excluding the frame states) allow this state to propagate throughout sso
the entire assembly. The transitions used are shown in Figure 7a. These transitions will ss:
change every state besides the frame states to state T. This is the target assembly for our s
created instance of ASTA UAV (Figure 7b).

ss3 The only terminal assembly possibly produced that is not the target assembly is a sstest assembly

representing a specific assignment to xi,...,xk that could not attach to an

sss - assignment assembly marked “True”, which represents the same variable assignment. Thus,

sss  the system only uniquely assembles the target assembly if the instance of VF3SAT is true. J

For all states X excluding Frame

B-g[ 1 T T pEma
T
& X T
F% TTTX _FI"T' T TTITTITITITTITITITI|T,
Ji S
T
(a) e 7]
Figure 7 (a) Transitions Utilized. All states will take the place of X, excluding those that
are part of the frame. (b)[TT T Target Assembly after the T state has fully propagated through
the assembly. —‘ ’7—‘
ss7| Theorem 6.7. The Unique| | TT Assembly Verification problem in freezing Affinity-
Strengthening 558 Tile Automata is coNPNP-Complete.
sso  Proof. Follows from Lemmas 6.5 and 6.6. J

so | Theorem 6.8. The Unique Assembly Verification problem in freezing Affinity-Strengthening s Tile
Automata is coNP-hard in one dimension.

ss2 Proof. We show Affinity Strengthening Freezing UAV is coNP-hard by describing how to sesreduce from
any problem in coNP. Given a problem L & coNP take a nondeterministic sss Turing Machine M that
decides L. From Theorem 3.5, we construct systems that simulate ss bounded-time Turing Machines.
Since we are considering polynomial-time machines, the se size of this Tile Automata system is also
polynomial. We change the system to be Affinity

se7 Strengthening in the same way as in Lemma 6.2. Further, since the Tile Automata model sssincludes
nondeterminism in selecting possible transitions for an assembly, we can simulate

569 nondeterministic Turing Machines. We simply have transition rules for each possible outcome.
570 Using the method described above we can simulate M on x. If any of the possible
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571 computation paths lead to M accepting, the assembly with the accept states will appear as
572 a terminal assembly. If all possible computations path reject, the only terminal assembly
573 will be the assembly with the reject states.

s Conclusion

s7sIn this paper we looked at a powerful new model of self-assembly that combines properties s of both
cellular automata and hierarchical self-assembly models. We showed that even

577 extremely limited and simple constructions in Tile Automata are powerful and capable of sz
arbitrary computation. We also showed how difficult it is to determine the output of these s»

limited systems. This opens several directions for future work.

ss0One direction is further exploring the assembly of length-n lines in freezing systems. Does s there
exist a bound on buildable length? Is the finite assembly problem in freezing or other ss:restricted system
decidable? Also attempting to construct lines in systems with additional sss restrictions such as limits on
the number of transition rules per state.

ssa For the UAV problem, we show that the general case is undecidable. However, the sss complexity of
the problem in freezing 1-dimensional systems is open. If the problem of asking sss whether a system is
bounded is decidable, then UAV is decidable by first identifying whether sz a system is bounded and
then constructing the production graph and finding the terminal sssassemblies. The problem for freezing
2-dimensional systems with no cycles is also open.

sss Since Tile Automata can be seen as a generalization of 2HAM, our results can be compared swto the
open problem of UAV in that model which is known to be in coNP. The most restricted s« version of Tile
Automata we explore is Affinity Strengthening and freezing, which is only one

592 level of the polynomial hierarchy above other generalizations of 2HAM such as allowing tiles
593 to go into 3-dimensions or allowing a variable temperature. Further limiting Tile Automata so
may provide more insight into the hardness of these problems.
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