
An Interactive, Graphical
CPU Scheduling Simulator

for Teaching Operating Systems∗

Joshua W. Buck and Saverio Perugini
Department of Computer Science

University of Dayton
Dayton, Ohio 45469

joshua.buck993@gmail.com, saverio@udayton.edu

(A comprehensive version of this article, including screen captures for all figures
referenced herein, is available as an arXiv technical report at https://arxiv.
org/abs/1812.05160 [1]).

Abstract

We present a graphical cpu scheduling simulation tool for visually and
interactively exploring the processing of a variety of events handled by
an operating system when running a program. Our graphical simulator
is available for use on the web as well as locally by both instructors
and students for purposes of pedagogy. Instructors can use it for live
demonstrations of course concepts in class, while students can use it
outside of class to explore the concepts. The graphical simulation tool
is implemented using the React library for the fancy ui elements of the
Node.js framework and is available as a web application at https://
cpudemo.azurewebsites.net. The goals of this paper are to showcase
the demonstrative capabilities of the tool for instruction, share student
experiences in developing the engine underlying the simulation, and to
inspire its use by other educators.

∗
Copyright ©2019 by the Consortium for Computing Sciences in Colleges. Permission to

copy without fee all or part of this material is granted provided that the copies are not made

or distributed for direct commercial advantage, the CCSC copyright notice and the title of

the publication and its date appear, and notice is given that copying is by permission of the

Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires

a fee and/or specific permission.

76



1 Introduction

We present a graphical simulation tool for visually and interactively exploring
the processing of a variety of events handled by an operating system when
running a program [2]. Our tool graphically demonstrates a host of concepts
of a preemptive, multi-tasking operating systems (os), including scheduling
algorithms, i/o processing, interrupts, context switches, task structures, and
semaphore processing [3].

Our graphical tool was designed to run on top of a solution to a text-based
course programming project—here after referred to as the underlying simula-
tion engine—in which students design and implement a system that simulates
some of the job and cpu scheduling, and semaphore processing of a time-
shared operating system. The complete project specification for the under-
lying simulation engine is available at http://perugini.cps.udayton.edu/
teaching/courses/Spring2019/cps356/#midterm. The architectural view
of the underling simulation engine, which also serves to convey some of the
project/system requirements, is shown in Figure 1. Students are familiar
with the concepts of job and processing scheduling, non-preemptive and pre-
emptive scheduling algorithms, as well as semaphores prior to working on
this project. See http://perugini.cps.udayton.edu/teaching/courses/
cps346/lecture_notes/scheduling.html (scheduling) and http://perugini.
cps.udayton.edu/teaching/courses/cps346/lecture_notes/semaphores.
html (semaphores) for more information.

While demonstrating os concepts using physical computer hardware and
real operating systems is effective, a software simulation is less expensive to
develop and more easily configurable. For instance, users of our tool have
control over both the time-based events and the parameters of the system (e.g.,
quantum size and main memory constraints) that are less controllable at the
user level in a real computing system. Moreover, a visual simulation graphically
reveals the internal processing of and event handling within an os from which
the user is typically shielded. The ability to step through the handling of
events (e.g., new process creation, process termination, i/o completion, context
switch) enabled by our tool in user-defined steps of cpu time is formative in
students’ conceptualization, comprehension, and visualization of these complex
processes at work within an os.

The graphical simulation tool is implemented using the React library for
the fancy ui elements of the Node.js framework and is available as a web appli-
cation at https://cpudemo.azurewebsites.net/. Our graphical simulator is
available for use on the web as well as locally by both instructors and students
for purposes of pedagogy. Instructors can use it to for live demonstrations of
course concepts in class, while students can use it outside of class to explore
the concepts. Assigning the development of the underling text-based simula-

77



Job Scheduling

I/O Wait Queue

block)

(process control

New Process

Main Memory
(512k)

(FIFO)

Job Scheduling Queue
CPU Finished List

Ready Queue

(level 1) (FIFO)

Ready Queue

(level 2) (FIFO)

Semaphore Wait

Queue 0

Queue 1

Semaphore Wait

Queue 2

Semaphore Wait

Queue 3

Semaphore Wait

Queue 4

Semaphore Wait

Process Scheduling

Figure 1: Architectural view of the underlying simulator depicting the transi-
tions processes can take as they move throughout the various queues and the
cpu of the system.

tion engine, on which the graphical simulator runs, to students as a course
project is also an effective approach to teach students the concepts—more on
this below.

2 Simulation Details

The top of the left-most column of the tool, shown in Figure 2, contains a
list of incoming external events in the current session. Below the incoming
external event list is a list of jobs rejected by the system because each requires
more memory than the total system memory. At the bottom of the left-most
column of the tool is the job scheduling queue, which lists all jobs that are
waiting for main memory to become available before they can be moved to the
ready queue. The middle columns of the tool contains the multi-level, fifo
ready queue, the i/o wait queue, and the semaphore wait queues. The right-
most column of the tool contains a block representing the cpu, and a list of the
completed processes. Above the cpu, the available system memory is shown.

The user can step through events in multiple ways. The top of the tool

78



shows the current simulation time, which the user can modify at any time.
Alternatively, the user can use the slider bar handle to advance or subtract up
to 250 units of simulation time at once. Upon changing the time with the slider
bar, the handle resets to the middle position and the user can again advance
or subtract up to 250 units of time. There are also controls to allow the user to
step forward to the next or backward to the previous simulation event. Finally,
there is a run-until-complete option to fully run the simulator and produce the
output (i.e., a variety of turnaround and wait time statistics) of the underlying
text-based simulation engine in one stroke.

There are seven events in this simulator: four external events (i.e., given in
the incoming external event list) and three internal events. The four external
events are a new job arrival, an i/o request, and a semaphore wait and signal.
The three internal events are process termination, quantum expiration, and
i/o completion. If an external and internal event collide (i.e., occur at the
same time), the internal event is processes first. The events are automatically
processed in the background and the event navigation buttons allow a user to
see every change that occurs in the simulation. At any point, the user may hit
the reset button or return the simulation time to 0.

2.1 Customization: Tuning the Simulation Parameters

There are several ways in which a user can customize the simulation. The
settings button opens a dialog window, shown in Figure 3, with several sim-
ulation variables that can be tuned. The user can set the quantum for each
level of the fifo ready queue. Setting the quantum to of a particular level
of the ready queue to 0, sets the scheduling algorithm to be ‘first come, first
serve’ (fcfs)—a non-preemptive algorithm—for that level. The user can also
select a simulation scenario (i.e., a sequence of incoming external events) from
a drop-down menu of canned event scenarios. Alternatively, a user can upload
their own simulation scenario. Creating and importing such custom sequences
of simulation events is helpful for demonstrating specific scenarios, especially
event collisions. The user can also change the current values of any of the
semaphores and set the maximum memory available to the simulation. Jobs
that require more memory than the system maximum are rejected and placed
in the list of jobs rejected by the system. When a job is rejected by the system
for any reason, an alert is displayed in the tool. There is a toggle available for
disabling or enabling these alerts. Finally, another toggle is available that will
simplify the tool layout by hiding the semaphore queues and making the other
queues larger. The simplified layout is shown in Figure 4.

79



2.2 Example Simulation Scenario

(All of the screen captures referenced in this subsection are available in an
arXiv technical report at https://arxiv.org/abs/1812.05160 [1]).

Figure 2 shows the system before any events occur. In Figure 5 , 100 units
of time have elapsed and the first event occurs—a new job arrival—identified
by the letter ‘A’ in the first column of the incoming external events list (see
Figure 2). Note that the job id, and runtime and memory requirements are also
provided in the incoming external events list. The new job immediately moves
into the job scheduling queue, which triggers the job scheduling algorithm.
Since job 1 requires 20 units of memory and 512 units are available, job 1 is
immediately loaded into the first level of the ready queue. Since the cpu is
idle at this point, the arrival of a process in the ready queue triggers the cpu
scheduling algorithm, which moves process 1 from the ready queue and onto
the cpu with a quantum of 100 units of time. While this simulation does not
currently factor in the time required for the overhead of a cpu context switch,
process 1 does not run until the next clock cycle of the cpu. A summary
of time stamp 100 is: the first job arrived, was instantaneously loaded onto
the cpu (through the job queue and first-level ready queue). At time 101,
shown in Figure 6, process 1 runs for 1 unit of the 78 required units of time
before completion and has a remaining quantum of 99 clock cycles. Since
the remaining quantum for process 1 is 99 units of time, the process could
finish without time-slicing, unless process 1 requires i/o or a semaphore in the
interim. The incoming external events list in Figure 6 shows the next incoming
external event—another new job arrival—occurs at simulation time 120.

Clicking the next event button to the right of the simulation time automat-
ically advances the time to the next event. At this point, the next event is the
next incoming external event as opposed to an internal event. At time 119,
process 1 has run for a total of 19 units of time, and requires 59 additional
units of time until completion. During the next unit of time, shown in Fig-
ure 7, a new job arrives. It is moved into the job queue, which triggers the job
scheduling algorithm. Since job 2 requires 60 units of memory, and there are
492 units available, job 2 is immediately loaded into the first level of the ready
queue. Since the cpu is busy with process 1 at this point in time, process 2
must wait in the ready queue until the cpu is available.

Clicking the next event button twice more brings the simulation to time
130, shown in Figure 8, where two new jobs have been loaded into the ready
queue. At time 131, there is an incoming external event for the arrival of job
5. However, job 5 requires 513 units of memory, which is greater than the
main memory capacity of the system (i.e., 512 units of total memory that the
simulation supports). In this simulation, since there is not enough memory to
accommodate job 5, it can never run and is rejected with the alert message

80



Figure 2: Main window of the simulator at time zero.

81



Figure 3: Simulator configuration settings available to users.

82



Figure 4: A simplified view of the simulator with hidden semaphore queues.

83



shown in Figure 9. This presents an opportunity to mention to students that in
a virtual memory management scheme—a forth-coming topic—this job would
be runnable, even though it exceeds the total amount of system memory. To
disable alerts, a user can toggle the disable alerts button above the incoming
external events list. After closing the alert, the simulation time is 131, shown
in Figure 10, where the rejected job 5 is in the list of jobs rejected by the
system. At time 136, job 6, which requires exactly 512 units of memory, arrives.
While this job enters the job queue (which is in secondary memory), it will not
be permitted to enter the ready queue (which is in main memory) until all
processes in main memory have fully completed (i.e., terminated). At that
point, the full 512 units of memory are free and available for job 6.

In Figure 11, the simulation time is now 177 and process 1 requires only 1
unit of time before its completion. Figure 12 shows the result of running the
simulation for 1 more unit of time or pressing the next event button. Note that
process 1 has moved to the finished process list, and process 2 has been loaded
onto the cpu and requires 90 units of time to complete.

Moving forward to time 779, shown in Figure 13, we see that several pro-
cesses have finished, several are in the first level of the ready queue, and many
jobs are waiting in the job scheduling queue. In the incoming external events
list, we see that the next event occurs at time 780 and is identified with the
symbol ‘i’. An i event is a request for i/o by the process on the cpu—in this
case, process 13. At time 780, shown in Figure 14, process 13 leaves the cpu
and is moved to the i/o wait queue for the specified i/o burst. Once the i/o
burst is complete, the process is moved back to the first level of the ready
queue. Many other additional i/o events occur over the next few time steps.

Up to this point, the allotted quantum of 100 units has been sufficient for
each process to finish before a quantum expiration. Thus, the second level
ready queue is yet used. At time 1,569, shown in Figure 15, process 26 requires
2 units of time before completion, but its remaining quantum is only 1 unit
of time. In Figure 16, process 26 is moved to the second level of the ready
queue at time 1,570, and will not get back on the cpu again until the first
level of the queue is empty since processes on the first level of the ready queue
have priority over processes on the second level of the queue. This process
only requires 1 more unit of time to complete, but must now wait (potentially
indefinitely leading to starvation due to the priority policy between the levels)
for more time on the cpu. Students often raise questions about the efficiency
of such a scheduling scheme. We use this opportunity to discuss the tradeoffs
of scheduling algorithms and address potential solutions to starvation such as
aging.

We now demonstrate the use of the system semaphores. We can toggle the
button labeled ‘Show Semaphore Queues’ to restore the semaphore queues to

84



the display. The first semaphore event is a signal which is identified by the ‘s’
symbol in the incoming external events list. This signal occurs at time 7,068
and signals semaphore 4. The availability of a semaphore is tracked next to the
semaphore labels in the semaphore wait queues. When a semaphore wait event,
identified with a ‘w’ symbol, occurs, it causes the process on the cpu to acquire
or wait on the identified semaphore. If that semaphore is available, its value is
decremented and the process acquire the semaphore and, thus, remains on the
cpu. If is that semaphore is unavailable (i.e., has a value of 0), the process on
the cpu must block and, thus, is moved to the particular semaphore wait queue
until the semaphore is available (through a subsequent signal). At time 7,449,
shown in Figure 17, the simulation is 1 unit of time away from an incoming
external event requiring process 57 on the cpu to acquire semaphore 4. Since
the value of semaphore 4 is 0, process 57 blocks, leaves the cpu and must wait
in the wait queue for semaphore 4 at time 7,450. This is shown in Figure 18.

A YouTube video of a demonstration of this simulation tool is available at
https://youtu.be/eRU8h-5aMOs.

3 Related Tool

A similar, albeit non-graphical, cpu scheduling simulator is available at http:
//classque.cs.utsa.edu/classes/cs3733s2015/notes/ps/index.html as a
Java applet: appletviewer http://classque.cs.utsa.edu/classes/cs3733/
scheduling2/index.html. This tool allows the user to explore a variety of
cpu scheduling algorithms (e.g., fcfs, sjf, psjf, and rr). The user chooses
an algorithm, sets a quantum, and inputs an arrival time, cpu burst time,
and i/o burst time for each process in a set of user-defined processes. The
tool then produces a text-based Gantt chart. When a change is made to any
of these inputs, the Gantt chart is updated. There are some key differences
between this tool and our tool with important implications on students and
learning. While our tool, like this tool, does permit the user to dynamically
tune the quantum, unlike this tool, our tool does not permit the user to select
the scheduling algorithm—the rr scheduling algorithm is fixed in our tool.
However, and more importantly, unlike this tool, our tool i) simulates and dis-
plays the variety of queues involved in cpu scheduling and i/o and semaphore
processing, ii) supports the user in stepping through the simulation at user-
defined increments of time, and iii) allows the user to dynamically tune more
simulation parameters than just quantum. In short, unlike our tool, this re-
lated tool does not capture the transitions from one unit of time to the next.
(It also has an upper bound on how many processes can be simulated before
the textual Gantt chart becomes unreadable. Also, the Java web applet is not
secure and is blocked by most modern web browsers by default.)

85



Our tool allows users to interactively step through the simulation by any
increment of time and observe both the state and location of all processes.
Rather than displaying only the state of processes, our tool also illustrates the
queue in which each process resides throughout its lifecycle. For example, in
our tool, users can monitor a process as it is loaded into memory, inserting
into the ready queue, granted access to the cpu, preempted to a semaphore or
i/o wait queue, time sliced and moved to the second-level ready queue, and
eventually completed and flushed out of the system onto the list of finished
processes. Moreover, our tool supports the dynamic tuning of many of the
simulation parameters. For instance, users can inject or edit incoming events
at any time (e.g., altering the semaphore signals at any increment of time
along the simulation timeline). The ability to step backwards also allows users
a convenient way to explore multiple scenarios from a given point in time. This
level of interaction supported by our tool provides ample scope for students to
explore cpu scheduling in a variety of user-created scenarios. Lastly, unlike
this tool, our tool also involves memory usage and multi-level feedback queues.

4 Student Feedback and Discussion

Students across a wide range of offerings of the os course have found the project
to develop the underlying simulation engine helpful for discerning and gaining
an appreciation of the difficulty in the copious event processing an os must
handle. It also gives them a feel for the operations management nature of
an os. The following is a sample of anonymous student quotes from a course
evaluation.
The project really nailed in the main concepts of operating systems in general.

The project was also an interactive and engaging experience that demonstrated and explained

concepts we were working on in class.

I found that the project really helped me learn how an operating system scheduler worked.

Also I found the project to be really fun, I actually enjoyed working on it.

. . .mostly the project that we did halfway through the semester was very beneficial to my learning

looking back at it.

Another use of this tool is as a aid to students working on conceptual,
pencil and paper process scheduling exercises (such as those in [3][Chapter 5]),
particularly for verifying the correctness of their work. In addition to its use
for exploring the demonstrated concepts, we have discovered an unintended
use of this graphical tool—students use of it as a tool to debug their underly-
ing simulation engine. Observing the operation of their underlying simulation
graphically helps students identify bugs in their implementation more quickly
than wading through pages of textual dumps of their systems queues, e.g., to
identify a process that went awry.

86



Approximately three hundred and twenty students have completed the un-
derlying simulation engine project since the Fall 2009 semester. Students are
permitted to use any programming language of their choice for implementa-
tion. Students have primarily used Java (210) and C++ (95)—the languages
used in our introductory sequence.1 Students have also used Python (12), C]

(2), and Perl (1). Two students re-implemented their projects—one in Scheme
and one in Elixir. (The Elixir program was multi-threaded.)

There are multiple extensions to the underlying simulation engine that can
be assigned to students as follow-on projects. For instance, students can im-
plement a memory management scheme (e.g., paging) to the organization of
the ready queues and/or simulate a multi-core processor.

Acknowledgments

This material is based upon work supported by the National Science Foun-
dation under Grant Numbers 1712406 and 1712404. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science
Foundation. The source of the underlying simulation engine is a course project
designed by John A. Lewis in which students design and implement a program
that simulates some of the job and cpu scheduling, and semaphore processing
of a time-shared operating system.

References

[1] J.W. Buck and S. Perugini. An interactive, graphical CPU scheduling sim-
ulator for teaching operating systems. Technical Report arXiv:1812.05160
[cs.OH], Cornell University Library: Computing Research Repository
(CoRR), 2019. Available at http://arxiv.org/abs/1812.05160.

[2] J.W. Buck and S. Perugini. An interactive, graphical simulator for teaching
operating systems. In Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (SIGCSE), New York, NY, 2019. ACM
Press. Demonstration; DOI: http://doi.acm.org/10.1145/3287324.
3293756.

[3] A. Silberschatz, P.B. Galvin, and G. Gagne. Operating system concepts.
John Wiley and Sons, Inc., Hoboken, NJ, tenth edition, 2018.

1
We switched from C++ to Java in Fall 2014, but C++ was phased out progressively

over the span of a few semesters in the three-course sequence.

87


