
Concurrent Programming with
the Actor Model in Elixir∗

Conference Tutorial

Saverio Perugini1 and David J. Wright2
1Department of Computer Science

2Learning Teaching Center
University of Dayton
Dayton, Ohio 45469

{saverio,dwight1}@udayton.edu

Project Site: http: // sites. udayton. edu/ operatingsystems

1 Tutorial Summary

This tutorial fosters and facilitates discussion and innovation around the topic
of teaching concurrency and synchronization in an undergraduate operating
systems (os) course [2]. In particular, we lead participants through a variety
of active-learning exercises for teaching a ‘concurrent programming and syn-
chronization’ module of an undergraduate os course using the Actor model of
concurrency—a concurrent programming model that is increasing in popular-
ity, especially in the Elixir programming language. The model naturally focus
the programmer’s locus of attention on the interaction between concurrent enti-
ties to collaboratively solve a problem—the primary learning outcome—rather
than the level-low details of language syntax and the minutia of which individ-
ual data to protect/lock and how to protect/lock it. In this tutorial, classical
(e.g., sleeping barber) and modern (e.g., chat server) problems of synchro-
nization are demonstrated through the lens of the Actor model using in-class
laboratory plans that attendees can adopt. Participants are exposed to concur-
rent programming in Elixir1 through asynchronous communication via message

∗
Copyright is held by the author/owner.
1http://elixir-lang.org/

108



passing and mailboxes. Participants should have working knowledge of con-
currency/synchronization in a language such as C or Java and are encouraged
to bring laptop computers, especially to follow the labs demonstrated.

2 Broadening Aspects

This tutorial is part of a three-year NSF-funded IUSE (Improving Under-
graduate STEM Education) project titled “Engaged Student Learning: Re-
conceptualizing and Evaluating a Core Computer Science Course for Active
Learning and STEM Student Success” (2017–20) whose goal is to foster inno-
vation, in both content and delivery, in teaching os through the development
of a contemporary model for an os course that aims to resolve significant issues
of misalignment between existing os courses and employee professional skills
and knowledge requirements.

While an os course is a nexus in a cs program (connecting the introductory
programming sequence to upper-level electives), the typical pedagogical ap-
proach to it has become dated and stale—most of the recent focus has been on
improving the introductory programming sequence primarily for retention—
because it has not been responsive to the transformed landscape of modern
computing platforms (e.g., from desktop to mobile; from single- to multi-core
architectures), the job market, and the concomitant progress in active, student-
centric learning (e.g., from a traditional, content-centric, purely lecture-based
course to an active, learner-centric, hybrid lecture/lab-based format). Address-
ing this issue is the rationale for our NSF-funded project. Thus, a broader ob-
jective of this tutorial is to promote and facilitate use of our re-conceptualized
course model for os content and pedagogy. Specifically, we aim to help faculty
at other institutions adopt this model in a systematic and simplified way.

The course model involves three progressive modules: 1) mobile OSs and
Internet of Things, 2) concurrent programming and synchronization, and 2)
cloud computing and big data processing. This tutorial focuses on the ‘con-
current programming and synchronization’ module of the model, which is the
most easily adoptable of the three modules, because it is not dependent on the
presence of mobile devices or external resources (e.g., Amazon Web Services).
However, participants can also expect an introduction to our re-conceptualized
course model; a demonstration of a set of re-usable, in-class laboratory plans;
discussion of benefits and tradeoffs of employing the model; and an invitation
to participate more actively in the project beyond the tutorial (see below).

2.1 Laboratory Manual

In a 2019 SIGCSE birds-of-a-feather discussion that we lead [2], faculty teach-
ing os found the ability to plug-and-play with the active-learning, laboratory

109



plans attractive and see significant value in making use of them in their courses
and teaching activities, especially since developing real-world lab and project
plans requires substantial effort and time. Tutorial attendees will be granted
access to our Laboratory Manual, which contains these active-learning, exer-
cises, each categorized into one of the three topic modules. Moreover, we intend
to provide stipends from our grant to attendees who both adopt the model, or
parts thereof, in Spring 2020 and collect pre- and post-evaluative data for a
semester.

2.2 Community of Practice

We are also establishing an os teaching community of practice to share
both materials and experiences in the teaching of os. To support the
community in sharing expertise and perspective, we have developed an
open-access, Git repository of items related to teaching os The items col-
lected in the repository are shared and accessed through our GitHub Pages
portal site: https://saverioperugini.github.io/Teaching-Operating-
Systems-Community-of-Practice/). The community includes members who
attended our 2018 CCSC:MW tutorial [1] and 2019 SIGCSE birds-of-a-
feather [2]. We plan to invite 2019 CCSC tutorial attendees to share both
their perspective and materials to this repository.

2.3 Advisory Group

We are also establishing an advisory group of computer science faculty members
for this project for an external perspective on the model and its adoption.
Another goal of this tutorial is to expand the participation of regional faculty
in the advisory group. Members of this group serve as advisors and are asked to
provide an external perspective on both the module content and the laboratory
plans.

3 Schedule of Activities

• Introduce attendees to the course model, the content modules, and the
active-learning exercises in the Laboratory Manual.

• Work through lab plans of the Actor model of concurrency in Elixir.

• Share our experience in teaching the os course using this model.

• How to adopt the course model and use the active-learning labs in the
Laboratory Manual.

110



• Invite participation in our community of os educators.

• Discussion: Questions and Answers.

Acknowledgments

This material is based upon work supported by the National Science Foun-
dation under Grant Numbers 1712406 and 1712404. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science
Foundation.

References

[1] S. Perugini and D.J. Wright. Developing a contemporary operating systems
course. Journal of Computing Sciences in Colleges, 34(1):155–158, 2018.
Conference Tutorial.

[2] S. Perugini and D.J. Wright. Developing a contemporary and innova-
tive operating systems course. In Proceedings of the 50th ACM Tech-
nical Symposium on Computer Science Education (SIGCSE), page 1248,
New York, NY, 2019. ACM Press. Conference Birds-of-a-Feather; DOI:
http://doi.acm.org/10.1145/3287324.3293734.

111


