DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

AN APPLICATION OF THE ACTOR MODEL OF CONCURRENCY IN
PYTHON: A EUCLIDEAN RHYTHM MUSIC SEQUENCER

Daniel P, Prince and Saverio Perugini
Department of Computer Science
University of Dayton
300 College Park
Dayton, Ohio 45469-2160
(937) 229-4079
saverio@udayton.edu

ABSTRACT

We present a real-time sequencer, implementing the Eu-
clidean rhythm algorithm, for creative generation of drum se-
quences by musicians or producers. We use the Actor model
of concurrency to simplify the communication required for
interactivity and musical timing, and generator comprehen-
sions and higher-order functions to simplify the implementa-
tion of the Euclidean rhythm algorithm. The resulting appli-
cation sends Musical Instrument Digital Interface (MIDI) data
interactively to another application for sound generation.

INTRODUCTION

A vast range of music production software has become available
recently due to the increasing power of personal computers and
increasing popularity of audio production among hobbyists and
professionals. While an expanse of robust and effective music
production software is available, musicians and producers desire
more flexible and creative software applications. The Euclidean se-
quencer described here addresses this issue by providing musicians
with an array of simple sequencers that can be controlled in real-
time to create appealing rhythms.

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

The Euclidean rhythm algorithm is a compelling approach to cre-
ating interesting musical sequences with a minimal user interface,
as the possible sequences model many common rhythms in popular
and world music using easily adjustable parameters [14]. The use
of the Euclidean rhythm algorithm to create interactive musical in-
struments is under-explored; more intuitive interfaces for real-time
performance are necessary to support its widespread use for this
purpose. Comparable sequencing approaches such as the common
Roland TR-808 style step sequencers require the user to manually
enter the states of every step in a sequence, which allow the user to
precisely define the sequence that they are configuring. However,
these step sequencing strategies require comparatively more data
entry by the user, and can feel tedious at worst. In this work, the
Euclidean rhythm algorithm is explored for its immediacy and abil-
ity to quickly define complex sequences.

Audio production software necessitates a unique set of technical
demands to facilitate an experience consistent with modern stan-
dards. Software used for music production must not only provide
precise timing for the generation and playback of musical passages
that often involves demanding digital signal processing algorithms,
but it must also provide an interface to a user that allows for real-
time configuration of the model behind the music. This combina-
tion of synchronous and asynchronous work is a demanding task for
synchronization models. Classical approaches to synchronization,
such as semaphores do not scale well to applications with many con-
current tasks. Due to the complex synchronization issues related
to creating an audio production application, the Actor model can
be used to simplify the communication scheme. The fault-tolerant
quality of actors are also helpful for live music performance, where
reliability is important. For instance, it is possible for an applica-
tion using actors to continue playing music even if there is an error
in the actor that manages the GuI thread.

This paper is organized as follows. The [Musical Terminology|
subsection introduces the reader to music vocabulary necessary to

2

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

discuss the work. TheModeling Euclidean Rhythms using |
|Generator Comprehensions| subsection describes the Euclidean
rhythm algorithm and describes how generators are well suited
to its implementation. The [Performance Controls| subsection de-
scribes the features available for a user to interact with the se-
quencer in real time. The |[Synchronized Actors through Message]
section describes how the Actor model is used to facili-
tate communication between concurrent demands in the applica-
tion. The subsection briefly summarizes the results of
the work. Finally, the [CONCLUSION|section summarizes the work
and provides a few remarks on proposed future work.

RELATED WORK

The Actor model is a scaleable and fault-tolerant approach to con-
currency [3,17,[11]. This model of concurrency is especially appli-
cable in functional programming languages such as Elixir and Scala
due to the absence of mutable state [9]. However, libraries support-
ing the use of actors exist for a wide range of languages. We use the
Pykka actor library for Python to support our use of the Actor model
of concurrency within Python [2]. The Pykka library is based on the
design of the Akka library for actors in Java and Scala [1].

The ability to use computers to map any physical sensor to a
computational model and generate interesting musical output has
resulted in a wide range of applications. Several recent examples in-
clude the use of tangible wooden pucks placed on a table read with
rotating optical sensors for real-time sequencing [5], a sequencer
that uses only a user’s specified degree of excitement as input to a
hidden Markov model for selecting techno loops [10], and even the
use of biological organisms for step sequencing [6]]. We built a tradi-
tional Gui for the user to input parameters and real-time commands
through a a mouse and keyboard. The use of other input devices for
more intuitive or creative control is suggested as future work.

Other recent work that uses Euclidean rhythms for music gen-

3

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

eration include XronoMorph—a sequencer that uses geometrical in-
put that uses models related to Euclidean rhythms for composi-
tion as well as education and performance [13]. Another applica-
tion is a multi-robot system that cooperates to generate real-time
algorithmic music based on Euclidean rhythms [4]. Despite this
work, the Euclidean sequencer represents an interesting computa-
tional model that is still under-explored for musical performance
and composition.

TECHNICAL DETAILS
Musical Terminology

We define the following terms for both textual consistency and read-
ers without a working knowledge of music theory and technology.

e Sequencer: a device used to record and transmit musical
notes for the purpose of representing a performance electron-
ically.

¢ Sequence: a series of notes stored in a sequencer that repre-
sents a musical phrase.

e Part: the sequence that corresponds to a single instrument.
In this application, there are six parts.

e Step: the smallest discrete musical unit represented by the
sequencer. In a given sequence, a step either indicates the
presence of a note onset or the lack of a note onset. Here,
one step is assumed to be the duration of a sixteenth note, al-
though it could be reconfigured for any other note division.

e Beat: a musical unit of time perceived by the listener as the
regular occurring pulse of a piece of music (usually repre-
sented by a quarter note).

¢ Beats Per Minute (BPM): a common rate used to describe the
tempo, or speed, of a piece of music.

4

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

Modeling Euclidean Rhythms using
Generator Comprehensions

The two most interesting parameters in the Euclidean rhythm al-
gorithm are k£ and n, where k indicates the number of note onsets
and n indicates the length of the sequence in steps. The Euclidean
rhythm algorithm spaces the & note onsets as evenly as possible into
the n available steps, but some uneven spacing occurs when an even
spacing is not possible over the n discrete divisions.

After the n™ step in a Euclidean rhythm sequence, the next n
steps always have the same step states as first n steps, repeating in-
finitely as long as the sequence is playing. This particular property
of Euclidean rhythms means that the resulting sequences formed by
Euclidean rhythms are well suited to programming constructs such
as generator comprehensions—an application of lazy evaluation to
simulate data structures of infinite size [8]. In the developed Python
application, a list of the native generator class is used to represent
the current sequences for each part. To get the next step from each
partatagiven time, Python’s next function for getting a value from a
generator is mapped across the generator sequence corresponding
to each part.

Figure[d]shows a simple example of a pair of Euclidean rhythms
that are common in many forms of music. Each vertical grid line in-
dicates the musical duration of one sixteenth note, the same amount
of time represented by one step. The top sequence uses the param-
eters £ = 1,n = 3, while the bottom sequence uses the param-
eters k = 1,n = 4. This results in one note being placed in ev-
ery three and four steps, respectively. Interestingly, for any given
combination of part sequences, the resulting rhythm periodically
repeats after a number of steps equal to the least common multiple
of the n values for each part has been reached. In this example, the
combined sequence repeats after 12 steps, or at the “1.4” and “2.3”
marks shown in Figure[T] Figure[2]shows a more musically interest-
ing result, which uses the common eighth note pattern on the closed
hi-hat part using the parameters £ = 1,n = 2 and the equally ubiqg-

5

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

Figure 1: A screen capture from Ableton Live illustrating the rela-
tionship between two simple Euclidean sequences.

11100000 |
NN IN INEEN INN. In

Figure 2: A screen capture from Ableton Live illustrating an exam-

ple of a complex drum machine part created by the Euclidean se-
quencers.

uitous backbeat on beats 2 and 4 on the snare using the parameters
k=1n=28.

Performance Controls

The graphical user interface to this application provides a variety
of performance options for the musician controlling it. Due to the
simple parameters that determine the result of a single Euclidean
rhythm, each sequence can be adjusted in real-time to control the
dynamics and groove of the performance. Figure[3|shows the appli-
cation’s GUI.

Auser can spend as much time as necessary selecting the £ and n
parameters for an individual sequence, and then apply the changes
to the next note using one sequence’s start button. Additionally, a
single sequence can be restarted by clicking the start button again.
This allows the performer to alter a sequence’s relationship to the
period of the other sequences by restarting it before its end, and
also to repeat the beginning of a sequence multiple times in quick
succession, allowing an option for a more manual control of what is
otherwise a mostly automatic rhythm generation.

6

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

d Euclidean sequencer - =
Kick Snare Cl.HiHat | Op. HiHat Clave Cowbell

ke ks 'Y 4 ke ke
Play
n: e n M n: mn:
Start ‘ Start | Start | Start | Start ‘ Start |
Stop

Mute ‘ Mute | Mute | Mute | Mute ‘ Mute |

Figure 3: The Gul of the application in Windows 8.1.

The mute button per part particularly allows the performer a
simple toggle for control of dynamics. This option enables for an
easy use of a technique commonly found in pop and electronic mu-
sic, where a single percussion part drops out for a number of mea-
sures to provide a breakdown of alower dynamic level, or to provide
anticipation of an upcoming change in dynamics in a future mea-
sure.

Synchronized Actors through Message Passing

Figure 4| depicts the overall system architecture of the Euclidean
sequencer application, and its relationship to the audio processing
chain in which it is situated. In particular, the left side of Figure
presents the model of concurrent actors (nodes) and the messages
passed between them (directed edges) in the application, which are
summarized in Table |1} The NoteActor manages the logical state
of the application, including the current sequence parameters and
their mute states. It waits for the periodic tick message from the
TimingActor to determine when it should send MIDI messages on
its output. It also waits for asynchronous configuration messages
from the GuiActor that indicate that the user has interacted with
the GuI and that the state of the application should be updated.
The TimingActor consists mainly of a loop which waits for a set
period of seconds that define the steps of the rhythms in the appli-

7

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

Table 1: Description of actors in the application.

| Actor Name | Action |
TimingActor | Count musical divisions of time.
NoteActor Generate rhythms and send notes.
GuiActor Display status and enable interaction.

Euclidean Sequencer App

N
] MIDI Ableton Live
seq-mute data . .
| NoteActor |——— music production software
S unshow - drum samplers

S show-mute ~ - audio effects

stop Sta\ J{ Audio data
tick Audio hardware

- digital-to-analog
conversion

- ampification

- sent to headphones,
speakers, etc

TimingActor

Figure 4: System architecture of the Euclidean sequencer applica-
tion, and its relationship to the audio processing chain in which it is
situated.

cation. Using the default tempo of 120 BPM, the TimingActor waits
0.125 seconds between each note. The calculation used to reach the
period between ticks is described by the following equation:

-1 -1
<120l)eats> 60 s?c y <4beats) P sec

min min step step

The GuiActor handles the asynchronous interaction with the
user through the Gul. The GuiActor sends the message seq-config
to the NoteActor when the user enters a new combination of se-
quence parameters, and it sends seq-mute when the user presses
the mute button.

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

Evaluation

[t is imperative that any interactive, real-time music software appli-
cation react to input from the user in a consistent and responsive
way. In general, these applications should be responsive on the or-
der of several milliseconds and with low variation of latency to be
considered effective for live music performance [15].

The sequencer application is only responsible for generating
Musical Instrument Digital Interface (MIDI) [12], which is a rela-
tively simple computational operation. After the MIDI events are
generated, they are sent to Ableton Live for generating the corre-
sponding audio signal, which is a more demanding computational
task. The combination of the sequencer application and Ableton Live
result in a musical system that experiences no perceptible latency
when running on an Apple Macbook Pro, Early 2015 model. The
system likely has latency on the order of several milliseconds and
seems to be usable for live performance.

CONCLUSION

We developed a Euclidean rhythm sequencer application for in-
teractive, real-time performance. @We demonstrated that, by
separating asynchronous user interaction, synchronous timing,
and the application’s logical state, the Actor model of concur-
rency is an appropriate approach to the problem of musical syn-
chronization. We also demonstrated that generator comprehen-
sions in Python can be used to model Euclidean rhythms and
other cyclic musical sequences. A Git repository containing the
Python source code of the Euclidean rhythm sequencer application
is available in BitBucket at https://bitbucket.org/sperugin/
euclidean-rhythm-music-sequencer/.

To provide more extensive performance options, MIDI control of
the application could be offered to allow for hardware control of the
Euclidean rhythms instead of control by mouse and keyboard. This
level of hardware control would allow musicians to more quickly

9

https://bitbucket.org/sperugin/euclidean-rhythm-music-sequencer/
https://bitbucket.org/sperugin/euclidean-rhythm-music-sequencer/

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

orient themselves with the application’s controls when they are us-
ing multiple pieces of equipment for a performance. The mouse
and keyboard interface implemented currently provides an effec-
tive proof of concept.

An advantage of the Actor model of concurrency is its ability to
scale to large applications with a comparatively small level of code
complexity. This property supports the rapid evolution of the the
application described here to incorporate many common features
of complete digital audio workstations, including audio recording,
incorporation of digital signal processing based effects, and com-
munication with a more diverse set of MIDI devices.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation under Grant Numbers 1712406 and 1712404. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation.

REFERENCES

[1] Akka documentation. https://akka.io/. retrieved May 27,
2018.

[2] Pykka documentation. https://www.pykka.org. retrieved
May 27,2018.

[3] Agha, G. Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, Cambridge, MA, 1986.

[4] Albin, A., Weinberg, G., and Egerstedt, M. Musical abstrac-
tions in distributed multi-robot systems. In Proceedings of
IEEE/RS] International Conference on Intelligent Robots and
Systems, pages 451-458, 2012.

10

https://akka.io/
https://www.pykka.org

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

[5] Arellano, D. and McPherson, A. Radear: A tangible spinning
music sequencer. In Proceedings of the International Confer-
ence on New Interfaces for Musical Expression, pages 84-85,
2014.

[6] Braund, E. and Miranda, E. Music with unconventional
computing: towards a step sequencer from plasmodium of
Physarum Polycephalum. In Proceedings of Conference on Evo-
lutionary and Biologically Inspired Music, Sound, Art and De-
sign; Lecture Notes in Computer Science, volume 9027, pages
15-26. Springer, Cham, 2015.

[7] Butcher, P. Actors. Pragmatic Bookshelf, Dallas, TX, 2014.

[8] Henderson, P.and Morris Jr,]. A lazy evaluator. In Proceedings
of the 3" ACM SIGACT-SIGPLAN Symposium on Principles on
Programming Languages, pages 95-103, New York, NY, 1976.
ACM Press.

[9] Karmani, R., Shali, A, and Agha, G. Actor frameworks for
the JVM platform: a comparative analysis. In Proceedings of
the 7t" International Conference on Principles and Practice of
Programming in Java, pages 11-20, New York, NY, 2009. ACM
Press.

[10] Kitahara, T, lijima, K., Okada, M., Yamashita, Y., and Tsuruoka,
A. Aloop sequencer that selects music loops based on the de-
gree of excitement. In Proceedings of the 12" Sound and Music
Computing Conference, pages 435-438, 2015.

[11] Li, Z. and Kraemer, E. Programming with concurrency:
Threads, actors, and coroutines. In Proceedings of the IEEE
27" International Symposium on Parallel and Distributed Pro-
cessing Workshops and Ph.D. Forum, pages 1304-1311, Los
Alamitos, CA, 2013. IEEE Computer Society Press.

11

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

[12] MIDI Manufacturers Association. The official MIDI specifica-
tions. https://www.midi.org/specifications. retrieved
May 27,2018.

[13] Milne, A., Herff, S., Bulger, D., Sethares, W.,, and Dean, R.
XronoMorph: algorithmic generation of perfectly balanced
and well-formed rhythms. In Proceedings of the International
Conference on New Interfaces for Musical Expression, 2016.

[14] Toussaint, G. The Euclidean algorithm generates traditional
musical rhythms. In Proceedings of BRIDGES: Mathematical
Connections in Art, Music and Science, pages 47-56, 2005.

[15] Wessel, D. and Wright, M. Problems and prospects for inti-
mate musical control of computers. Computer Music Journal,
26(3):11-22, 2002.

12

https://www.midi.org/specifications

