
AN APPLICATION OF THE ACTORMODEL OF CONCURRENCY IN
PYTHON: A EUCLIDEAN RHYTHMMUSIC SEQUENCER

Daniel P. Prince and Saverio Perugini
Department of Computer Science

University of Dayton
300 College Park

Dayton, Ohio 45469–2160
(937) 229–4079

saverio@udayton.edu

ABSTRACT

We present a real-time sequencer, implementing the Eu-
clidean rhythm algorithm, for creative generation of drum se-
quences by musicians or producers. We use the Actor model
of concurrency to simplify the communication required for
interactivity and musical timing, and generator comprehen-
sions and higher-order functions to simplify the implementa-
tion of the Euclidean rhythm algorithm. The resulting appli-
cation sendsMusical InstrumentDigital Interface (MIDI) data
interactively to another application for sound generation.

INTRODUCTION

A vast range of music production software has become available

recently due to the increasing power of personal computers and

increasing popularity of audio production among hobbyists and

professionals. While an expanse of robust and effective music

production software is available, musicians and producers desire

more ϐlexible and creative software applications. The Euclidean se-

quencer described here addresses this issue byprovidingmusicians

with an array of simple sequencers that can be controlled in real-

time to create appealing rhythms.

TheEuclidean rhythmalgorithm is a compelling approach to cre-

ating interesting musical sequences with a minimal user interface,

as the possible sequencesmodelmany common rhythms in popular

and world music using easily adjustable parameters [14]. The use

of the Euclidean rhythm algorithm to create interactive musical in-

struments is under-explored; more intuitive interfaces for real-time

performance are necessary to support its widespread use for this

purpose. Comparable sequencing approaches such as the common

Roland TR-808 style step sequencers require the user to manually

enter the states of every step in a sequence, which allow the user to

precisely deϐine the sequence that they are conϐiguring. However,

these step sequencing strategies require comparatively more data

entry by the user, and can feel tedious at worst. In this work, the

Euclidean rhythm algorithm is explored for its immediacy and abil-

ity to quickly deϐine complex sequences.

Audio production software necessitates a unique set of technical

demands to facilitate an experience consistent with modern stan-

dards. Software used for music production must not only provide

precise timing for the generation and playback of musical passages

that often involves demanding digital signal processing algorithms,

but it must also provide an interface to a user that allows for real-

time conϐiguration of the model behind the music. This combina-

tion of synchronous and asynchronouswork is a demanding task for

synchronization models. Classical approaches to synchronization,

suchas semaphoresdonot scalewell to applicationswithmany con-

current tasks. Due to the complex synchronization issues related

to creating an audio production application, the Actor model can

be used to simplify the communication scheme. The fault-tolerant

quality of actors are also helpful for live music performance, where

reliability is important. For instance, it is possible for an applica-

tion using actors to continue playing music even if there is an error

in the actor that manages the ČĚĎ thread.

This paper is organized as follows. The Musical Terminology

subsection introduces the reader to music vocabulary necessary to

2

discuss the work. The Modeling Euclidean Rhythms using

Generator Comprehensions subsection describes the Euclidean

rhythm algorithm and describes how generators are well suited

to its implementation. The Performance Controls subsection de-

scribes the features available for a user to interact with the se-

quencer in real time. The Synchronized Actors through Message

Passing section describes how the Actor model is used to facili-

tate communication between concurrent demands in the applica-

tion. The Evaluation subsection brieϐly summarizes the results of

the work. Finally, the CONCLUSION section summarizes the work

and provides a few remarks on proposed future work.

RELATEDWORK

The Actor model is a scaleable and fault-tolerant approach to con-

currency [3, 7, 11]. This model of concurrency is especially appli-

cable in functional programming languages such as Elixir and Scala

due to the absence of mutable state [9]. However, libraries support-

ing the use of actors exist for a wide range of languages. We use the

Pykka actor library for Python to support our use of the Actormodel

of concurrencywithin Python [2]. The Pykka library is based on the

design of the Akka library for actors in Java and Scala [1].

The ability to use computers to map any physical sensor to a

computational model and generate interesting musical output has

resulted in awide range of applications. Several recent examples in-

clude the use of tangible wooden pucks placed on a table read with

rotating optical sensors for real-time sequencing [5], a sequencer

that uses only a user’s speciϐied degree of excitement as input to a

hidden Markov model for selecting techno loops [10], and even the

use of biological organisms for step sequencing [6]. We built a tradi-

tional ČĚĎ for the user to input parameters and real-time commands

through a amouse and keyboard. The use of other input devices for

more intuitive or creative control is suggested as future work.

Other recent work that uses Euclidean rhythms for music gen-

3

eration include XronoMorph—asequencer that uses geometrical in-

put that uses models related to Euclidean rhythms for composi-

tion as well as education and performance [13]. Another applica-

tion is a multi-robot system that cooperates to generate real-time

algorithmic music based on Euclidean rhythms [4]. Despite this

work, the Euclidean sequencer represents an interesting computa-

tional model that is still under-explored for musical performance

and composition.

TECHNICAL DETAILS

Musical Terminology

Wedeϐine the following terms for both textual consistency and read-

ers without a working knowledge of music theory and technology.

• Sequencer: a device used to record and transmit musical

notes for the purpose of representing a performance electron-

ically.

• Sequence: a series of notes stored in a sequencer that repre-

sents a musical phrase.

• Part: the sequence that corresponds to a single instrument.

In this application, there are six parts.

• Step: the smallest discrete musical unit represented by the

sequencer. In a given sequence, a step either indicates the

presence of a note onset or the lack of a note onset. Here,

one step is assumed to be the duration of a sixteenth note, al-

though it could be reconϐigured for any other note division.

• Beat: a musical unit of time perceived by the listener as the

regular occurring pulse of a piece of music (usually repre-

sented by a quarter note).

• Beats PerMinute (ćĕĒ): a common rate used to describe the

tempo, or speed, of a piece of music.

4

Modeling Euclidean Rhythms using
Generator Comprehensions

The two most interesting parameters in the Euclidean rhythm al-

gorithm are k and n, where k indicates the number of note onsets

and n indicates the length of the sequence in steps. The Euclidean

rhythmalgorithmspaces the k note onsets as evenly as possible into
then available steps, but some uneven spacing occurswhen an even

spacing is not possible over the n discrete divisions.

After the nth step in a Euclidean rhythm sequence, the next n
steps always have the same step states as ϐirst n steps, repeating in-

ϐinitely as long as the sequence is playing. This particular property

of Euclidean rhythmsmeans that the resulting sequences formedby

Euclidean rhythms are well suited to programming constructs such

as generator comprehensions—an application of lazy evaluation to

simulate data structures of inϐinite size [8]. In the developedPython

application, a list of the native generator class is used to represent

the current sequences for each part. To get the next step from each

part at a given time, Python’snext function for getting a value froma

generator is mapped across the generator sequence corresponding

to each part.

Figure 1 shows a simple example of a pair of Euclidean rhythms

that are common in many forms of music. Each vertical grid line in-

dicates themusical duration of one sixteenth note, the same amount

of time represented by one step. The top sequence uses the param-

eters k = 1, n = 3, while the bottom sequence uses the param-

eters k = 1, n = 4. This results in one note being placed in ev-

ery three and four steps, respectively. Interestingly, for any given

combination of part sequences, the resulting rhythm periodically

repeats after a number of steps equal to the least commonmultiple

of the n values for each part has been reached. In this example, the

combined sequence repeats after 12 steps, or at the “1.4” and “2.3”

marks shown in Figure 1. Figure 2 shows amoremusically interest-

ing result, which uses the common eighth note pattern on the closed

hi-hat part using the parameters k = 1, n = 2 and the equally ubiq-

5

Figure 1: A screen capture from Ableton Live illustrating the rela-
tionship between two simple Euclidean sequences.

Figure 2: A screen capture from Ableton Live illustrating an exam-
ple of a complex drum machine part created by the Euclidean se-
quencers.

uitous backbeat on beats 2 and 4 on the snare using the parameters

k = 1, n = 8.

Performance Controls

The graphical user interface to this application provides a variety

of performance options for the musician controlling it. Due to the

simple parameters that determine the result of a single Euclidean

rhythm, each sequence can be adjusted in real-time to control the

dynamics and groove of the performance. Figure 3 shows the appli-

cation’s ČĚĎ.

A user can spend asmuch time as necessary selecting the k andn
parameters for an individual sequence, and then apply the changes

to the next note using one sequence’s start button. Additionally, a

single sequence can be restarted by clicking the start button again.

This allows the performer to alter a sequence’s relationship to the

period of the other sequences by restarting it before its end, and

also to repeat the beginning of a sequence multiple times in quick

succession, allowing an option for a moremanual control of what is

otherwise a mostly automatic rhythm generation.

6

Figure 3: The ČĚĎ of the application in Windows 8.1.

The mute button per part particularly allows the performer a

simple toggle for control of dynamics. This option enables for an

easy use of a technique commonly found in pop and electronic mu-

sic, where a single percussion part drops out for a number of mea-

sures to provide a breakdownof a lowerdynamic level, or to provide

anticipation of an upcoming change in dynamics in a future mea-

sure.

Synchronized Actors through Message Passing

Figure 4 depicts the overall system architecture of the Euclidean

sequencer application, and its relationship to the audio processing

chain in which it is situated. In particular, the left side of Figure 4

presents the model of concurrent actors (nodes) and the messages

passed between them (directed edges) in the application, which are

summarized in Table 1. The NoteActor manages the logical state

of the application, including the current sequence parameters and

their mute states. It waits for the periodic tick message from the

TimingActor to determine when it should send ĒĎĉĎ messages on

its output. It also waits for asynchronous conϐiguration messages

from the GuiActor that indicate that the user has interacted with

the ČĚĎ and that the state of the application should be updated.

The TimingActor consists mainly of a loop which waits for a set

period of seconds that deϐine the steps of the rhythms in the appli-

7

Table 1: Description of actors in the application.
Actor Name Action

TimingActor Count musical divisions of time.
NoteActor Generate rhythms and send notes.
GuiActor Display status and enable interaction.

GuiActor NoteActor

TimingActor

tick

seq-con g

seq-mute

show

unshow

show-mute

start

stop

Euclidean Sequencer App

Ableton Live
music production software

- drum samplers

- audio e ects

MIDI

data

Audio data

Audio hardware
- digital-to-analog

 conversion

- ampi cation

- sent to headphones,

 speakers, etc

Figure 4: System architecture of the Euclidean sequencer applica-
tion, and its relationship to the audio processing chain in which it is
situated.

cation. Using the default tempo of 120 BPM, the TimingActorwaits
0.125 seconds between each note. The calculation used to reach the

period between ticks is described by the following equation:

(
120

beats

min

)−1

× 60
sec

min
×

(
4
beats

step

)−1

= 0.125
sec

step

The GuiActor handles the asynchronous interaction with the

user through the ČĚĎ. The GuiActor sends themessage seq-config
to the NoteActor when the user enters a new combination of se-

quence parameters, and it sends seq-mute when the user presses

the mute button.

8

Evaluation

It is imperative that any interactive, real-timemusic software appli-

cation react to input from the user in a consistent and responsive

way. In general, these applications should be responsive on the or-

der of several milliseconds and with low variation of latency to be

considered effective for live music performance [15].

The sequencer application is only responsible for generating

Musical Instrument Digital Interface (MIDI) [12], which is a rela-

tively simple computational operation. After the MIDI events are

generated, they are sent to Ableton Live for generating the corre-

sponding audio signal, which is a more demanding computational

task. The combinationof the sequencer application andAbletonLive

result in a musical system that experiences no perceptible latency

when running on an Apple Macbook Pro, Early 2015 model. The

system likely has latency on the order of several milliseconds and

seems to be usable for live performance.

CONCLUSION

We developed a Euclidean rhythm sequencer application for in-

teractive, real-time performance. We demonstrated that, by

separating asynchronous user interaction, synchronous timing,

and the application’s logical state, the Actor model of concur-

rency is an appropriate approach to the problem of musical syn-

chronization. We also demonstrated that generator comprehen-

sions in Python can be used to model Euclidean rhythms and

other cyclic musical sequences. A Git repository containing the

Python source code of the Euclidean rhythm sequencer application

is available in BitBucket at https://bitbucket.org/sperugin/
euclidean-rhythm-music-sequencer/.

To providemore extensive performance options, ĒĎĉĎ control of

the application could be offered to allow for hardware control of the

Euclidean rhythms instead of control by mouse and keyboard. This

level of hardware control would allow musicians to more quickly

9

https://bitbucket.org/sperugin/euclidean-rhythm-music-sequencer/
https://bitbucket.org/sperugin/euclidean-rhythm-music-sequencer/

orient themselves with the application’s controls when they are us-

ing multiple pieces of equipment for a performance. The mouse

and keyboard interface implemented currently provides an effec-

tive proof of concept.

An advantage of the Actor model of concurrency is its ability to

scale to large applications with a comparatively small level of code

complexity. This property supports the rapid evolution of the the

application described here to incorporate many common features

of complete digital audio workstations, including audio recording,

incorporation of digital signal processing based effects, and com-

munication with a more diverse set of ĒĎĉĎ devices.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-

ence Foundation underGrantNumbers 1712406 and1712404. Any

opinions, ϐindings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily

reϐlect the views of the National Science Foundation.

REFERENCES

[1] Akka documentation. https://akka.io/. retrieved May 27,

2018.

[2] Pykka documentation. https://www.pykka.org. retrieved

May 27, 2018.

[3] Agha, G. Actors: A Model of Concurrent Computation in Dis-

tributed Systems. MIT Press, Cambridge, MA, 1986.

[4] Albin, A., Weinberg, G., and Egerstedt, M. Musical abstrac-

tions in distributed multi-robot systems. In Proceedings of

IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 451–458, 2012.

10

https://akka.io/
https://www.pykka.org

[5] Arellano, D. and McPherson, A. Radear: A tangible spinning

music sequencer. In Proceedings of the International Confer-

ence on New Interfaces for Musical Expression, pages 84–85,

2014.

[6] Braund, E. and Miranda, E. Music with unconventional

computing: towards a step sequencer from plasmodium of

Physarum Polycephalum. In Proceedings of Conference on Evo-

lutionary and Biologically Inspired Music, Sound, Art and De-

sign; Lecture Notes in Computer Science, volume 9027, pages

15–26. Springer, Cham, 2015.

[7] Butcher, P. Actors. Pragmatic Bookshelf, Dallas, TX, 2014.

[8] Henderson, P. and Morris Jr, J. A lazy evaluator. In Proceedings

of the 3rd ACM SIGACT-SIGPLAN Symposium on Principles on

Programming Languages, pages 95–103, New York, NY, 1976.

ACM Press.

[9] Karmani, R., Shali, A., and Agha, G. Actor frameworks for

the JVM platform: a comparative analysis. In Proceedings of

the 7th International Conference on Principles and Practice of

Programming in Java, pages 11–20, New York, NY, 2009. ACM

Press.

[10] Kitahara, T., Iijima, K., Okada, M., Yamashita, Y., and Tsuruoka,

A. A loop sequencer that selects music loops based on the de-

gree of excitement. In Proceedings of the 12th Sound and Music

Computing Conference, pages 435–438, 2015.

[11] Li, Z. and Kraemer, E. Programming with concurrency:

Threads, actors, and coroutines. In Proceedings of the IEEE

27th International Symposium on Parallel and Distributed Pro-

cessing Workshops and Ph.D. Forum, pages 1304–1311, Los

Alamitos, CA, 2013. IEEE Computer Society Press.

11

[12] MIDI Manufacturers Association. The ofϐicial MIDI speciϐica-

tions. https://www.midi.org/specifications. retrieved

May 27, 2018.

[13] Milne, A., Herff, S., Bulger, D., Sethares, W., and Dean, R.

XronoMorph: algorithmic generation of perfectly balanced

and well-formed rhythms. In Proceedings of the International

Conference on New Interfaces for Musical Expression, 2016.

[14] Toussaint, G. The Euclidean algorithm generates traditional

musical rhythms. In Proceedings of BRIDGES: Mathematical

Connections in Art, Music and Science, pages 47–56, 2005.

[15] Wessel, D. and Wright, M. Problems and prospects for inti-

mate musical control of computers. Computer Music Journal,

26(3):11–22, 2002.

12

https://www.midi.org/specifications

