
THE DESIGN OF AN EMERGING/MULTI-PARADIGM

PROGRAMMING LANGUAGES COURSE

Saverio Perugini
Department of Computer Science

University of Dayton
300 College Park

Dayton, Ohio 45469–2160
(937) 229–4079

saverio@udayton.edu

ABSTRACT

We present the design of a new special topics course,
Emerging/Multi-paradigmLanguages, on the recent trend to-
ward more dynamic, multi-paradigm languages. To foster
course adoption, we discuss the design of the course, which
includes language presentations/papers and culminating, ϐi-
nal projects/papers. The goal of this article is to inspire and
facilitate course adoption.

INTRODUCTION

Emerging/Multi-paradigm Languages is a cross-listed undergradu-

ate and graduate, three credit hours, special topics course on the re-

cent trend in programming languages towardmore dynamic, multi-

paradigm languages. It was offered at the University of Dayton in

the Spring 2016 and 2017 semesters. Nine students were enrolled

in the Spring 2016 offering of the course: six in the undergradu-

ate section (all seniors) and three in the graduate section. Seven

students were enrolled in the Spring 2017 offering of the course.

All were in the undergraduate section and all save two were se-

niors. Students were from a variety of majors, including computer

science, computer engineering, and mathematics. The course is an



exploratory odyssey through a variety of emerging languages, in-

cluding Lua, Elm, and Elixir, with a thematic focus on showcasing

and creatively harnessing the niche features in each language to

solve pragmatic programming problems. Topics include new con-

currency models, type systems, and lazy evaluation. The student

learning outcomes include:

• An understanding of fundamental (though largely reserved to

functional languages until recently) language concepts which

are experiencing a rebirth inmulti-paradigm languages.

• Professional acculturation (i.e., formal presentation and

manuscript preparation)

The emerging languages are contextualized through the study of

classical functional programming concepts (e.g., ϐirst-class, higher-

order functions) [9], which are experiencing a revival in multi-

paradigm languages, in which they are perceived as less esoteric,

and more accessible and practical. This motif suggests a natural

syllabus of topics: use foundational languages (e.g., đĎĘĕ) as a ve-

hicle through which to study fundamental language concepts in the

ϐirst third of the course, and focus on how those concepts are re-

emerging in modern, multi-paradigm languages in the ϐinal two

thirds of the course.

To foster adoption, we discuss our design of the course which

includes student presentations/papers of the languages and culmi-

nating, ϐinal projects/papers. The goal of this article is to inspire

and facilitate course adoption.

COURSE DESIGN

The course website (http://perugini.cps.udayton.edu/
teaching/courses/Spring2017/cps499/ for the Spring 2017

offering and http://perugini.cps.udayton.edu/teaching/
courses/Spring2016/cps499/ for the Spring 2016 offering) is an

2

http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/
http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/
http://perugini.cps.udayton.edu/teaching/courses/Spring2016/cps499/
http://perugini.cps.udayton.edu/teaching/courses/Spring2016/cps499/


integral resource for students in the course. It contains a class-by-

class, course outline annotated with links to a set of the instructor’s

course notes (available free online for future instructors) based on

the class dates on which the topics in the notes are presented. The

course site also contains references to the required and recom-

mended books (all of which are available at the University library,

and many in eBook format).

Emerging/Multi-paradigm Languages is a programming inten-

sive course, and students are required to take an active part in class.

For instance, the languages studied emerge as the students, play a

role, through informal surveys and, especially, student-selected lan-

guagepresentations, in decidingwhich languages are covered as the

course organically unfolds. This course also leverages high-impact,

ĘęĊĒ, active-learning practices.

Evaluation Instruments: Homeworks

Homeworks involve analytical and programming exercises. The

programming involved in each homework requires a fair amount

of critical thought and design, and approximately 100–250 lines of

code. Homework assignments involve novel programming prob-

lems and puzzles that explore the use of re-emerging language con-

cepts in application areas such as ĆĎ and numerical methods. Some

assignments involve reading and writing critical analysis essays of

articles in the literature.

The following is a list of assignment synopses, from the Spring

2016 offering of the course, intended to relate the content and form

of assignments thatmight be helpful to instructors inspired to teach

a similar course.

Homework #1 involves writing an introductory course essay, and

building a postϐix arithmetic expression evaluator and ČĚĎ in any

language. Five students used Python, three used Java, two used

JavaScript, two used Racket, one used Ruby, and one used C].

Homework #2 involves functional programming exercises in

3



Racket (e.g., deϐining a variety of sorting, searching, and metapro-

gramming functions).

Homework #3 is an advanced set of Racket functional program-

ming problems, including the construction of a boolean expression

evaluator.

Homework #4 involves the use of the core language concepts of

scoping (e.g., static and dynamic) and binding (e.g., deep, shallow,

ad-hoc) in Racket and JavaScript, including the construction of a

stack object as a vector of ϐirst-class closures.

Homework #5 involves methods of affecting program control

through the use of ϐirst-class continuations and continuation-

passing style (ĈĕĘ). Problems include classical exercises (e.g., com-

puting Fibonacci numbers with only one, tail, recursive call) and

control programming problems providing an opportunity for cre-

ativity (e.g., jumping out of and back into the run-time stack for ex-

ception handling, and building a while loop control construct using
call/cc and ĈĕĘ).

Homework #6 involves implementing and experimenting with a

metacircular interpreter for đĎĘĕ, and writing a critical reϐlection

of [2].

Midterm entails building an interpreter inHaskell orML for the lan-

guage ċĔėęč for control and embedded systems applications. Eight

midterm projects were posted in Spring 2017; students were also

given the option to propose a midterm project.

Homework #7 covers concepts intended to promote effective sys-

tem modularity, including type inference and strong typing, type

systems, currying, and higher-order functions (čĔċs). Students de-

ϐined a string2integer function in one line of code, and solved a

non-trivial problemof their choiceby creativelyusing the aforemen-

tioned building blocks. Students also read and answered critical-

analysis questions on [8], which creatively uses currying to dynam-

ically create shortcuts to frequently-performed tasks in application

software.

4



Homework#8 covers lazy evaluation. Students built a lazy iterator

object from ϐirst principles and used it in a variety of problems. Stu-

dents also implemented a host of numerical methods (e.g., numeri-

cal differentiation) using lazy evaluation and čĔċs, inspired by [3].

Students wrote a critical analysis of [10], which posits the func-

tional paradigm (especially in Erlang) as an approach to the multi-

core problem, and helped transition students to (re-)emerging

models of concurrent programming—the Actor Model of Concur-

rency (in Elixir) and Communicating Sequential Processes (CSP; in

Go)—which use non-traditional approaches to thread communica-

tion and synchronization.

Homework #9 involves a suite of concurrent programming exer-

cises using the ĈĘĕ model of concurrent programming in Go. Prob-

lems included a host of variations on managing n threads (called

goroutines in Go) to cooperatively perform some task.

Homework #10 involves solving the classical Sleeping-Barber

problem from operating systems using the Actor model in Elixir.

Language Presentations and Papers

The Spring 2017 offering of the course involved student presenta-

tions of the emerging languages after the foundationalmaterial was

explored. The approximately ϐive week student presentations of

languages transferred ownership of both the instruction and learn-

ing to the students. Each student presented a language from a list of

ten emerging/multi-paradigm languages. The languages presented

were Elixir, Factor, Lua, Io, Julia, CLIPS, and Elm.

Each student presented one language across two consecutive

50-minute class periods. Presentations involved creative demos

and programming pearls to showcase the particular language. As

part of this component of the course, students were required to

write either a two-pagepaper on the language, in the style of [11], or

develop a one-page language quick reference sheet (akin to https:
//media.pragprog.com/titles/elixir/ElixirCheat.pdf).

5

https://media.pragprog.com/titles/elixir/ElixirCheat.pdf
https://media.pragprog.com/titles/elixir/ElixirCheat.pdf


Students were also required to develop a webpage containing

technical details, syntactic and semantic details, and example

programs in the language, which were linked from the course

webpage. They also developed a set of representative program-

ming exercises to help their fellow students reϐlect on the practical

applications of the language (and included them as a section in

their two-page language paper). The video of all presentations,

save for the ϐirst on Elixir, was recorded and made available on

YouTube. All student language video presentations, papers, and

čęĒđ notes are available at http://perugini.cps.udayton.edu/
teaching/courses/Spring2017/cps499/languages.html.
Source code from these presentations is available as a Git

repository in BitBucket at https://bitbucket.org/sperugin/
emerging-languages-spring-2017.

A main idea behind the language presentations is to showcase

several emerging/multi-paradigm languages to provide a deeper

context for students from which to pursue a ϐinal project. The re-

quirements andevaluation criteria for the ϐinal presentation andpa-

per (Table 1b)was identical to that of the emerging/multi-paradigm

language presentation and paper (Table 1a). Thus, another natu-

ral and desirable effect of the language presentation/paper compo-

nent of the course is that it provides graded preparation for the ϐinal

project presentation/paper.

Final, Culminating Projects

The entire ϐirst two thirds of the course is structured to prepare

students for the ϐinal, culminating project experience, the goals of

which is to inspire students to demonstrate the concepts learned

by putting (an integration of) them into practice.

Approximately one month before the end of the semester, the

instructor posted a list of ideas for possible course projects (e.g.,

building a game in Lua, or an application of ĆĎ using lazy evaluation

to mitigate the size of the search space). Project ideas were inten-

tionally vague and open-ended to provide students ample scope for

6

http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/languages.html
http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/languages.html
https://bitbucket.org/sperugin/emerging-languages-spring-2017
https://bitbucket.org/sperugin/emerging-languages-spring-2017


Table 1: Evaluation criteria and point distribution for (left) lan-

guage papers/presentations and (right) ϐinal projects/papers from

Spring 2017.

(a) Language presentation and papers.

Component Points Percentage

Detailed Presentation Evaluation Criteria:

level of preparation, clarity, creativity, and originality

(2-class, in-class) Language Presentation 50 30%

Detailed HTML Language Notes Evaluation Criteria:

clarity, creativity, originality, grammar;

cleanly working HTML code;

adherence to provided template and style guide;

quality of tables/ϐigures

HTML Language Notes 50 30%

Detailed Language Synopsis or Quick Reference Sheet Evaluation Criteria:

content, structure, clarity, grammar;

cleanly working LATEX code; adherence to ĆĈĒ ĘĎČ style;

quality of tables/ϐigures; & citations/bibliography (BIBTEX)

2-page Language Synopsis or Quick Reference Sheet 50 30%

Detailed Language Programming Exercise Evaluation Criteria:

functionality, creativity, depth, & documentation (e.g., comments)

Programming Exercises 16 10%

Total Language Presentation Points: 166 100%

(b) Final project (paper, presentation, and system).

Component Points Percentage

Abstract (optional, but highly recommended)

Paper draft (optional, but highly recommended)

Detailed Final Paper Evaluation Criteria:

content, structure, clarity, grammar,

cleanly working LATEX code,

adherence to ĆĈĒ ĘĎČ style,

quality of tables/ϐigures, &

citations/bibliography (BIBTEX)

Final project term paper 111 33.33%

Detailed Presentation Evaluation Criteria:

level of preparation, clarity, creativity, and originality

Presentation 111 33.33%

Detailed System Evaluation Criteria:

functionality, creativity,

depth, & documentation (e.g., comments)

Source code/running system 111 33.33%

Total Final Project Points: 333 100%

individual critical thought, design, and creativity. The only pseudo-

requirement of the project was that it creatively applies the con-

cepts and building blocks studied in the course in a practical ap-

plication in an emerging/multi-paradigm language. Students were

also welcome to propose their own project, of which seven did. Stu-

dents were given one month to complete the project, during which

time no other course work, graded or otherwise, was assigned. Fi-

nal projects involved three components: aworking system, a formal

paper discussing it, and an in-class presentation to classmates and

the instructor during the ϐinal exam period (see Table 1b).

Final papers were required to be three pages long and, in keep-

ing with the theme of the course, typeset in LATEX (and BIBTEX),

a document-preparation language, using the ACM SIG Proceed-

ings LATEX Template. Each paper was required to contain one

original ϐigure and one original table, and a minimum of three

references to published ĆĈĒ or ĎĊĊĊ papers. Students were re-

quired to use the LATEX package lstlisting to typeset any (snip-

pets of) source code included in a paper, which did not count to-

ward the total page count. Students were directed to Overleaf,

7



a synchronized, split screen (source⇔ĕĉċ) LATEX IDE, which can

be used through the cloud. Students were advised to follow de-

tailed recommendations for writing a formal paper compiled by

the instructor, and available at http://academic.udayton.edu/
SaverioPerugini/documents/advice.html. They were also pro-

vided a detailed list of writing conventions to follow. Students sub-

mitted an abstract twoweeksbefore thepaper draft deadline, which

was approximately oneweek before the deadline for the ϐinal paper

and presentation, and the delivery of the ϐinal source code/running

system. The ϐinal paper and presentation experience introduced

students to the process of professional dissemination of their work.

Awebsite showcasing (selected) completed ϐinal courseprojects

from Spring 2016 is available at http://perugini.cps.udayton.
edu/teaching/courses/Spring2016/cps499/projects/
selectedprojects.html. The site contains a project abstract,

and links to the ϐinal project paper and presentation (both in PDF

format), for each project. A similar site is available for the Spring

2017 offering at http://perugini.cps.udayton.edu/teaching/
courses/Spring2017/cps499/projects.html. Videos of the

ϐinal presentations from Spring 2017 are available on YouTube

at https://www.youtube.com/watch?v=NtPTRLdz2rE&t=208s
and https://www.youtube.com/watch?v=MtgbeLO6ZM4&t=224s.
These projects enhance and extend the style of projects proposed

in [5].

CONCLUSION

The programming language landscape is ever-evolving to meet the

demands of modern runtime environments and hardware plat-

forms, and new problem domains. As a result, languages such

as Python, C], and C++ now include support for many of the re-

emerging functional building blocks and dynamic bindings covered

in this course. The Emerging/Multi-paradigm Languages course is

a response to this phenomenon. The course was generally well re-

8

http://academic.udayton.edu/SaverioPerugini/documents/advice.html
http://academic.udayton.edu/SaverioPerugini/documents/advice.html
http://perugini.cps.udayton.edu/teaching/courses/Spring2016/cps499/projects/selectedprojects.html
http://perugini.cps.udayton.edu/teaching/courses/Spring2016/cps499/projects/selectedprojects.html
http://perugini.cps.udayton.edu/teaching/courses/Spring2016/cps499/projects/selectedprojects.html
http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/projects.html
http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/projects.html
https://www.youtube.com/watch?v=NtPTRLdz2rE&t=208s
https://www.youtube.com/watch?v=MtgbeLO6ZM4&t=224s


ceived by the students. One student provided the following anony-

mous comment on a course survey:

I personally like this setup of the course with us basically taking

over for the second half better than the original setup. Really made

us integrate all the topics we learned in order to synthesize all the in-

formation of the languages. Was really effective at helping us under-

stand how to choose a language for development regardless of where

we head in the future.

Multiple approaches, which vary in objective and perspective,

have been used for teaching a general course on programming lan-

guages [1, 4, 7]. Lewis et al. [6] explored the use of uncommon lan-

guages (e.g., OCaml, Grace, Jigsaw, Processing, and Scala) for CS1,

but the focus is on purity, simplicity, and ease of the languages with

respect to pedagogy, and Scala is the only emerging language in the

set for non-educational, real-world applications. A host of other

emerging languages can be substituted for those explored in the

two offerings of the course discussed here (e.g., TypeScript, Hack,

Clojure, Scala).

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-

ence Foundation underGrantNumbers 1712406 and1712404. Any

opinions, ϐindings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily re-

ϐlect the views of the National Science Foundation. We thank Nor-

man Bashias in the Department of Computer Science at the Univer-

sity of Dayton for providing comments on a draft of this paper.

REFERENCES

[1] Adams, E., Baldwin, D., Bishop, J., English, J., Lawhead, P., and

Stevenson, D. Approaches to teaching the programming lan-

guages course: A potpourri. In Proceedings of the 11th Annual

9



SIGCSE Conference on Innovation and Technology in Computer

Science Education, pages 299–300, New York, NY, 2006. ACM

Press.

[2] Graham, P. Beating the Averages. O’Reilly, Beijing, 2004.

Available: http://www.paulgraham.com/avg.html [Last ac-

cessed: 19 July 2018].

[3] Hughes, J. Why functional programming matters. The Com-

puter Journal, 32(2):98–107, 1989.

[4] Krishnamurthi, S. Teaching programming languages in a post-

Linnaean age. ACM SIGPLAN Notices, 43(11):81–83, 2008.

[5] Kumar, A. Projects in the programming languages course. In

Proceedings of the 10th Annual SIGCSE Conference on Innova-

tion and Technology in Computer Science Education, page 395,

New York, NY, 2005. ACM Press.

[6] Lewis, M., Blank, D., Bruce, K., and Osera, P.-M. Uncommon

teaching languages. In Proceedings of the 47th ACM Techni-

cal Symposium on Computer Science Education (SIGCSE), pages

492–493, New York, NY, 2016. ACM Press.

[7] Pombrio, J., Krishnamurthi, S., and Fisler, K. Teaching pro-

gramming languages by experimental and adversarial think-

ing. In Lerner, B., Bodík, R., and Krishnamurthi, S., editors, Pro-

ceedings of the 2nd Summit on Advances in Programming Lan-

guages (SNAPL), pages 13:1–13:9, 2017.

[8] Quan, D., Huynh, D., Karger, D., and Miller, R. User interface

continuations. In Proceedings of the 16th Annual ACM Sympo-

sium on User Interface Software and Technology (UIST), pages

145–148, New York, NY, 2003. ACM Press.

[9] Savage, N. Using functions for easier programming. Communi-

cations of the ACM, 61(5):29–30, 2018.

10

http://www.paulgraham.com/avg.html


[10] Swaine, M. It’s time to get good at functional programming: Is

it ϐinally functional programming’s turn? Dr. Dobb’s Journal,

34(1):14–16, 2009.

[11] Wexelblat, R., editor. ACM SIGPLAN Notices, volume 28. ACM

Press, New York, NY, March 1993.

11


