DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

THE DESIGN OF AN EMERGING/MULTI-PARADIGM
PROGRAMMING LANGUAGES COURSE

Saverio Perugini
Department of Computer Science
University of Dayton
300 College Park
Dayton, Ohio 45469-2160
(937) 229-4079
saverio@udayton.edu

ABSTRACT

We present the design of a new special topics course,
Emerging/Multi-paradigm Languages, on the recent trend to-
ward more dynamic, multi-paradigm languages. To foster
course adoption, we discuss the design of the course, which
includes language presentations/papers and culminating, fi-
nal projects/papers. The goal of this article is to inspire and
facilitate course adoption.

INTRODUCTION

Emerging/Multi-paradigm Languages is a cross-listed undergradu-
ate and graduate, three credit hours, special topics course on the re-
cent trend in programming languages toward more dynamic, multi-
paradigm languages. It was offered at the University of Dayton in
the Spring 2016 and 2017 semesters. Nine students were enrolled
in the Spring 2016 offering of the course: six in the undergradu-
ate section (all seniors) and three in the graduate section. Seven
students were enrolled in the Spring 2017 offering of the course.
All were in the undergraduate section and all save two were se-
niors. Students were from a variety of majors, including computer
science, computer engineering, and mathematics. The course is an



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

exploratory odyssey through a variety of emerging languages, in-
cluding Lua, Elm, and Elixir, with a thematic focus on showcasing
and creatively harnessing the niche features in each language to
solve pragmatic programming problems. Topics include new con-
currency models, type systems, and lazy evaluation. The student
learning outcomes include:

¢ Anunderstanding of fundamental (though largely reserved to
functional languages until recently) language concepts which
are experiencing a rebirth in multi-paradigm languages.

e Professional acculturation (i.e., formal presentation and
manuscript preparation)

The emerging languages are contextualized through the study of
classical functional programming concepts (e.g., first-class, higher-
order functions) [9], which are experiencing a revival in multi-
paradigm languages, in which they are perceived as less esoteric,
and more accessible and practical. This motif suggests a natural
syllabus of topics: use foundational languages (e.g., LISP) as a ve-
hicle through which to study fundamental language concepts in the
first third of the course, and focus on how those concepts are re-
emerging in modern, multi-paradigm languages in the final two
thirds of the course.

To foster adoption, we discuss our design of the course which
includes student presentations/papers of the languages and culmi-
nating, final projects/papers. The goal of this article is to inspire
and facilitate course adoption.

COURSE DESIGN

The course website (http://perugini.cps.udayton.edu/
teaching/courses/Spring2017/cps499/ for the Spring 2017
offering and http://perugini.cps.udayton.edu/teaching/
courses/Spring2016/cps499/ for the Spring 2016 offering) is an

2


http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/
http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/
http://perugini.cps.udayton.edu/teaching/courses/Spring2016/cps499/
http://perugini.cps.udayton.edu/teaching/courses/Spring2016/cps499/

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

integral resource for students in the course. It contains a class-by-
class, course outline annotated with links to a set of the instructor’s
course notes (available free online for future instructors) based on
the class dates on which the topics in the notes are presented. The
course site also contains references to the required and recom-
mended books (all of which are available at the University library,
and many in eBook format).

Emerging/Multi-paradigm Languages is a programming inten-
sive course, and students are required to take an active partin class.
For instance, the languages studied emerge as the students, play a
role, through informal surveys and, especially, student-selected lan-
guage presentations, in deciding which languages are covered as the
course organically unfolds. This course also leverages high-impact,
STEM, active-learning practices.

Evaluation Instruments: Homeworks

Homeworks involve analytical and programming exercises. The
programming involved in each homework requires a fair amount
of critical thought and design, and approximately 100-250 lines of
code. Homework assignments involve novel programming prob-
lems and puzzles that explore the use of re-emerging language con-
cepts in application areas such as A1 and numerical methods. Some
assignments involve reading and writing critical analysis essays of
articles in the literature.

The following is a list of assignment synopses, from the Spring
2016 offering of the course, intended to relate the content and form
of assignments that might be helpful to instructors inspired to teach
a similar course.

Homework #1 involves writing an introductory course essay, and
building a postfix arithmetic expression evaluator and GuI in any
language. Five students used Python, three used Java, two used
JavaScript, two used Racket, one used Ruby, and one used C*.

Homework #2 involves functional programming exercises in

3



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

Racket (e.g., defining a variety of sorting, searching, and metapro-
gramming functions).

Homework #3 is an advanced set of Racket functional program-
ming problems, including the construction of a boolean expression
evaluator.

Homework #4 involves the use of the core language concepts of
scoping (e.g., static and dynamic) and binding (e.g., deep, shallow,
ad-hoc) in Racket and JavaScript, including the construction of a
stack object as a vector of first-class closures.

Homework #5 involves methods of affecting program control
through the use of first-class continuations and continuation-
passing style (cps). Problems include classical exercises (e.g., com-
puting Fibonacci numbers with only one, tail, recursive call) and
control programming problems providing an opportunity for cre-
ativity (e.g., jumping out of and back into the run-time stack for ex-
ception handling, and building a while loop control construct using
call/cc and cPS).

Homework #6 involves implementing and experimenting with a
metacircular interpreter for LISP, and writing a critical reflection
of [2].

Midterm entails building an interpreter in Haskell or ML for the lan-
guage FORTH for control and embedded systems applications. Eight
midterm projects were posted in Spring 2017; students were also
given the option to propose a midterm project.

Homework #7 covers concepts intended to promote effective sys-
tem modularity, including type inference and strong typing, type
systems, currying, and higher-order functions (HOFs). Students de-
fined a string2integer function in one line of code, and solved a
non-trivial problem of their choice by creatively using the aforemen-
tioned building blocks. Students also read and answered critical-
analysis questions on [8], which creatively uses currying to dynam-
ically create shortcuts to frequently-performed tasks in application
software.



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

Homework #8 covers lazy evaluation. Students built a lazy iterator
object from first principles and used it in a variety of problems. Stu-
dents also implemented a host of numerical methods (e.g., numeri-
cal differentiation) using lazy evaluation and HOFs, inspired by [3]].
Students wrote a critical analysis of [10], which posits the func-
tional paradigm (especially in Erlang) as an approach to the multi-
core problem, and helped transition students to (re-)emerging
models of concurrent programming—the Actor Model of Concur-
rency (in Elixir) and Communicating Sequential Processes (CSP; in
Go)—which use non-traditional approaches to thread communica-
tion and synchronization.

Homework #9 involves a suite of concurrent programming exer-
cises using the csp model of concurrent programming in Go. Prob-
lems included a host of variations on managing n threads (called
goroutines in Go) to cooperatively perform some task.

Homework #10 involves solving the classical Sleeping-Barber
problem from operating systems using the Actor model in Elixir.

Language Presentations and Papers

The Spring 2017 offering of the course involved student presenta-
tions of the emerging languages after the foundational material was
explored. The approximately five week student presentations of
languages transferred ownership of both the instruction and learn-
ing to the students. Each student presented a language from a list of
ten emerging/multi-paradigm languages. The languages presented
were Elixir, Factor, Lua, lo, Julia, CLIPS, and Elm.

Each student presented one language across two consecutive
50-minute class periods. Presentations involved creative demos
and programming pearls to showcase the particular language. As
part of this component of the course, students were required to
write either a two-page paper on the language, in the style of [11]], or
develop a one-page language quick reference sheet (akin to https:
//media.pragprog.com/titles/elixir/ElixirCheat.pdf).

5


https://media.pragprog.com/titles/elixir/ElixirCheat.pdf
https://media.pragprog.com/titles/elixir/ElixirCheat.pdf

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

Students were also required to develop a webpage containing
technical details, syntactic and semantic details, and example
programs in the language, which were linked from the course
webpage. They also developed a set of representative program-
ming exercises to help their fellow students reflect on the practical
applications of the language (and included them as a section in
their two-page language paper). The video of all presentations,
save for the first on Elixir, was recorded and made available on
YouTube. All student language video presentations, papers, and
HTML notes are available athttp://perugini.cps.udayton.edu/
teaching/courses/Spring2017/cps499/1languages.html.
Source code from these presentations is available as a Git
repository in BitBucket at https://bitbucket.org/sperugin/
emerging-languages—-spring-2017.

A main idea behind the language presentations is to showcase
several emerging/multi-paradigm languages to provide a deeper
context for students from which to pursue a final project. The re-
quirements and evaluation criteria for the final presentation and pa-
per (Table[Ip) was identical to that of the emerging/multi-paradigm
language presentation and paper (Table [Th). Thus, another natu-
ral and desirable effect of the language presentation/paper compo-
nent of the course is that it provides graded preparation for the final
project presentation/paper.

Final, Culminating Projects

The entire first two thirds of the course is structured to prepare
students for the final, culminating project experience, the goals of
which is to inspire students to demonstrate the concepts learned
by putting (an integration of) them into practice.

Approximately one month before the end of the semester, the
instructor posted a list of ideas for possible course projects (e.g.,
building a game in Lua, or an application of Al using lazy evaluation
to mitigate the size of the search space). Project ideas were inten-
tionally vague and open-ended to provide students ample scope for

6


http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/languages.html
http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/languages.html
https://bitbucket.org/sperugin/emerging-languages-spring-2017
https://bitbucket.org/sperugin/emerging-languages-spring-2017

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

Table 1: Evaluation criteria and point distribution for (left) lan-
guage papers/presentations and (right) final projects/papers from
Spring 2017.

(a) Language presentation and papers.

(b) Final project (paper, presentation, and system).

Component [ Points | Percentage

Component [ Points | Percentage

Detailed Presentation Evaluation Criteria:
level of preparation, clarity, creativity, and originality

(2-class, in-class) Language Presentation 50 ‘ 30%

Abstract (optional, but highly recommended)

Paper draft (optional, but highly recommended)

Detailed HTML Language Notes Evaluation Criteria:
clarity, creativity, originality, grammar;

cleanly working HTML code;

adherence to provided template and style guide;
quality of tables/figures

Detailed Final Paper Evaluation Criteria:
content, structure, clarity, grammar,
cleanly working BTgX code,

adherence to ACM SIG style,

quality of tables/figures, &

citations/bibliography (Bis[gX)

Final project term paper ‘ 111 ‘
Detailed Presentation Evaluation Criteria:
level of preparation, clarity, creativity, and originality
Presentation ‘ 111 ‘ 33.33%
Detailed System Evaluation Criteria:

functionality, creativity,

depth, & documentation (e.g.,, comments)

HTML Language Notes | 50 | 30%

Detailed Language Synopsis or Quick Reference Sheet Evaluation Criteria:

content, structure, clarity, grammar;

cleanly working BTEX code; adherence to ACM SIG style;

quality of tables/figures; & citations/bibliography (Big[gX)

2-page Language Synopsis or Quick Reference Sheet | 50 | 30%
Detailed Language Programming Exercise Evaluation Criteria:

33.33%

functionality, creativity, depth, & documentation (e.g., comments) Source code/running system ‘ 111 ‘ 33.33%
Progr Exercises |16 10% | [ Total Final Project Points: 33|  100%
Total L Presentation Points: 166 \ 100%

individual critical thought, design, and creativity. The only pseudo-
requirement of the project was that it creatively applies the con-
cepts and building blocks studied in the course in a practical ap-
plication in an emerging/multi-paradigm language. Students were
also welcome to propose their own project, of which seven did. Stu-
dents were given one month to complete the project, during which
time no other course work, graded or otherwise, was assigned. Fi-
nal projects involved three components: a working system, a formal
paper discussing it, and an in-class presentation to classmates and
the instructor during the final exam period (see Table[Ib).

Final papers were required to be three pages long and, in keep-
ing with the theme of the course, typeset in BIgX (and BigIEX),
a document-preparation language, using the ACM SIG Proceed-
ings KIEX Template. Each paper was required to contain one
original figure and one original table, and a minimum of three
references to published ACM or IEEE papers. Students were re-
quired to use the BIEX package 1stlisting to typeset any (snip-
pets of) source code included in a paper, which did not count to-
ward the total page count. Students were directed to Overleaf,

7



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

a synchronized, split screen (source<PDF) BIEX IDE, which can
be used through the cloud. Students were advised to follow de-
tailed recommendations for writing a formal paper compiled by
the instructor, and available at http://academic.udayton.edu/
SaverioPerugini/documents/advice.html. They were also pro-
vided a detailed list of writing conventions to follow. Students sub-
mitted an abstract two weeks before the paper draft deadline, which
was approximately one week before the deadline for the final paper
and presentation, and the delivery of the final source code/running
system. The final paper and presentation experience introduced
students to the process of professional dissemination of their work.

A website showcasing (selected) completed final course projects
from Spring 2016 is available at http://perugini.cps.udayton.
edu/teaching/courses/Spring2016/cps499/projects/
selectedprojects.html. The site contains a project abstract,
and links to the final project paper and presentation (both in PDF
format), for each project. A similar site is available for the Spring
2017 offering at http://perugini.cps.udayton.edu/teaching/
courses/Spring2017/cps499/projects.html.  Videos of the
final presentations from Spring 2017 are available on YouTube
at https://www.youtube.com/watch?v=NtPTRLdz2rE&t=208s
and https://www.youtube.com/watch?v=MtgbeL06ZM4&t=224s,
These projects enhance and extend the style of projects proposed
in [5].

CONCLUSION

The programming language landscape is ever-evolving to meet the
demands of modern runtime environments and hardware plat-
forms, and new problem domains. As a result, languages such
as Python, C%, and C++ now include support for many of the re-
emerging functional building blocks and dynamic bindings covered
in this course. The Emerging/Multi-paradigm Languages course is
a response to this phenomenon. The course was generally well re-

8


http://academic.udayton.edu/SaverioPerugini/documents/advice.html
http://academic.udayton.edu/SaverioPerugini/documents/advice.html
http://perugini.cps.udayton.edu/teaching/courses/Spring2016/cps499/projects/selectedprojects.html
http://perugini.cps.udayton.edu/teaching/courses/Spring2016/cps499/projects/selectedprojects.html
http://perugini.cps.udayton.edu/teaching/courses/Spring2016/cps499/projects/selectedprojects.html
http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/projects.html
http://perugini.cps.udayton.edu/teaching/courses/Spring2017/cps499/projects.html
https://www.youtube.com/watch?v=NtPTRLdz2rE&t=208s
https://www.youtube.com/watch?v=MtgbeLO6ZM4&t=224s

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

ceived by the students. One student provided the following anony-
mous comment on a course survey:

I personally like this setup of the course with us basically taking
over for the second half better than the original setup. Really made
us integrate all the topics we learned in order to synthesize all the in-
formation of the languages. Was really effective at helping us under-
stand how to choose a language for development regardless of where
we head in the future.

Multiple approaches, which vary in objective and perspective,
have been used for teaching a general course on programming lan-
guages [1,4,17]. Lewis et al. [6] explored the use of uncommon lan-
guages (e.g.,, OCaml, Grace, Jigsaw, Processing, and Scala) for CS1,
but the focus is on purity, simplicity, and ease of the languages with
respect to pedagogy, and Scala is the only emerging language in the
set for non-educational, real-world applications. A host of other
emerging languages can be substituted for those explored in the
two offerings of the course discussed here (e.g., TypeScript, Hack,
Clojure, Scala).

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation under Grant Numbers 1712406 and 1712404. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily re-
flect the views of the National Science Foundation. We thank Nor-
man Bashias in the Department of Computer Science at the Univer-
sity of Dayton for providing comments on a draft of this paper.

REFERENCES
[1] Adams, E., Baldwin, D., Bishop, J., English, J., Lawhead, P., and

Stevenson, D. Approaches to teaching the programming lan-
guages course: A potpourri. In Proceedings of the 11" Annual

9



DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

SIGCSE Conference on Innovation and Technology in Computer
Science Education, pages 299-300, New York, NY, 2006. ACM
Press.

[2] Graham, P. Beating the Averages. O’Reilly, Beijing, 2004.
Available: http://www.paulgraham.com/avg.html [Last ac-
cessed: 19 July 2018].

[3] Hughes, ]. Why functional programming matters. The Com-
puter Journal, 32(2):98-107, 1989.

[4] Krishnamurthi, S. Teaching programming languages in a post-
Linnaean age. ACM SIGPLAN Notices, 43(11):81-83, 2008.

[5] Kumar, A. Projects in the programming languages course. In
Proceedings of the 10" Annual SIGCSE Conference on Innova-
tion and Technology in Computer Science Education, page 395,
New York, NY, 2005. ACM Press.

[6] Lewis, M., Blank, D., Bruce, K., and Osera, P.-M. Uncommon
teaching languages. In Proceedings of the 47" ACM Techni-
cal Symposium on Computer Science Education (SIGCSE), pages
492-493, New York, NY, 2016. ACM Press.

[7] Pombrio, J., Krishnamurthi, S., and Fisler, K. Teaching pro-
gramming languages by experimental and adversarial think-
ing. In Lerner, B., Bodik, R., and Krishnamurthi, S., editors, Pro-
ceedings of the 2 Summit on Advances in Programming Lan-
guages (SNAPL), pages 13:1-13:9, 2017.

[8] Quan, D., Huynh, D., Karger, D., and Miller, R. User interface
continuations. In Proceedings of the 16"* Annual ACM Sympo-
sium on User Interface Software and Technology (UIST), pages
145-148, New York, NY, 2003. ACM Press.

[9] Savage, N. Using functions for easier programming. Communi-
cations of the ACM, 61(5):29-30, 2018.

10


http://www.paulgraham.com/avg.html

DF Studio - PDF Editor for Mac, Windows, Linux. For Evaluation. https://www.qoppa.com/pdfstuc

[10] Swaine, M. It’s time to get good at functional programming: Is
it finally functional programming’s turn? Dr. Dobb’s Journal,
34(1):14-16, 20009.

[11] Wexelblat, R., editor. ACM SIGPLAN Notices, volume 28. ACM
Press, New York, NY, March 1993.

11



