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1 Introduction
In this work, we present conditional extragradient algorithms for solving generally constrained variational
inequality problems by using nonzero normal vectors of the feasible set. Let T : dom(T ) ⊆ Rn → Rn be
an operator and let C ⊂ dom(T ) be a nonempty closed and convex set, the classical variational inequality
problem is formulated as

find x∗ ∈ C such that 〈T (x∗), x− x∗〉 ≥ 0, ∀x ∈ C. (1.1)

This problem unifies a broad range of optimization problems and serves as a useful computational framework
in very diverse applications. Indeed, (1.1) has been well studied and has numerous important applications
in physics, engineering, economics and optimization theory, see, e.g., [22, 27, 20] and the references therein.

It is well-known that (1.1) is closely related with the so-called dual problem of the variational inequalities,
written as

find x∗ ∈ C such that 〈T (x), x− x∗〉 ≥ 0, ∀x ∈ C. (1.2)

We denote the solution set of (1.1) and (1.2) by S∗ and Sdual, respectively. Throughout, our standing
assumptions are the following:

(A1) T is continuous on C.

(A2) Problem (1.1) has at-least one solution and all solutions of (1.1) solve the dual problem (1.2).

Note that assumption (A1) implies Sdual ⊆ S∗ (see Fact 2.12 below). So, the existence of solutions of
(1.2) implies that of (1.1). However, the reverse assertion needs generalized monotonicity assumptions. For
example, if T is pseudomonotone then S∗ ⊆ Sdual (see [30, Lemma 1]). With this results, we note that (A2)
is strictly weaker than pseudomonotonicity of T (see [29, Example 1.1.3] and Example 5.1 below). Moreover,
the assumptions S∗ 6= ∅ and the continuity of T are natural and classical for most of methods that solve
(1.1) in the literature. Assumption (A2) has also been used in various algorithms for solving (1.1) (see, e.g.,
[31, 30]).

1.1 Extragradient Algorithm
Using projection-type algorithms is a popular approach for solving variational inequalities. Excellent surveys
on this topic can be found in [19, 29, 21]. One of the most studied algorithms is the so-called extragradient
algorithm, which was first appeared in [32]. For solving (1.1), projection methods have to perform at least
two projections onto the feasible region at each iteration, because the natural extension of the projected
gradient method (just one projection when T = ∇f) fails in general for monotone operators (see, e.g., [8]).
Thus, an extra projection is necessary in order to establish the convergence. A general extragradient scheme
can be formulated as follows.
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Algorithm 1.1 (Extragradient Algorithm) Given αk, βk, γk > 0.

Step 0 (Initialization): Take x0 ∈ C.

Step 1 (Iterative Step): Compute

zk = xk − βkT (xk), (1.3a)

yk = αkPC(zk) + (1− αk)xk, (1.3b)

and xk+1 = PC
(
xk − γkT (yk)

)
. (1.3c)

Step 2 (Stopping Test): If xk+1 = xk, then stop. Otherwise, set k ← k + 1 and go to Step 1.

Next, we describe some strategies to choose the parameters αk, βk and γk in (1.3) (see, e.g., [19, 29]).

(a) Constant stepsizes: For each k, take βk = γk where 0 < β̌ ≤ βk ≤ β̂ < +∞ and αk = 1.
(b) Armijo-type linesearch on the boundary of the feasible set: Set σ > 0, and δ ∈ (0, 1). For each k, take
αk = 1 and βk = σ2−j(k) where j(k) := min

{
j ∈ N : ‖T (xk)− T (PC(zk,j))‖ ≤

δ

σ2−j
‖xk − PC(zk,j)‖2

}
,

and zk,j = xk − σ2−jT (xk).

(1.4)

In this approach, we take γk = βk.
(c) Armijo-type linesearch along the feasible direction: Set δ ∈ (0, 1). For each k, take 0 < β̌ ≤ βk ≤ β̂ <
+∞, and αk = 2−`(k) where `(k) := min

{
` ∈ N : 〈T (zk,`), xk − PC(zk)〉 ≥

δ

βk
‖xk − PC(zk)‖2

}
,

and zk,` = 2−`PC(zk) + (1− 2−`)xk.

(1.5)

Then, define γk =
〈T (yk), xk − yk〉
‖T (yk)‖2

.

We provide several comments to explain the differences between these strategies.
Strategy (a) was added to the extragradient algorithm in [32] and it is effective if T is monotone and

globally Lipschitz continuous. The main difficulty of this strategy is the necessity of choosing βk in (1.3a)
satisfying 0 < βk ≤ β < 1/L where the possibly unknown L is the Lipschitz constant of T ; therefore, the
stepsizes should be sufficiently small to ensures the convergence.

Strategy (b) was first studied in [28] under monotonicity and Lipschitz continuity of T . The Lipschitz
continuity assumption was removed later in [24] by using feasible lineasearch. Note that this strategy requires
computing the projection onto C inside the inner loop of the Armijo-type linesearch (1.4). Thus, the need
to compute possible many projections at each iteration k makes Strategy (b) inefficient when an explicit
formula for PC is not available.

Strategy (c) was presented in [25] which demands only one projection for each outer step k. This
approach guarantees convergence by assuming only the monotonicity of T and the existence of solutions of
(1.1), but not the Lipschitz continuity of T .

In Strategies (b) and (c), the operator T and the projection PC are evaluated at least twice per iteration.
The resulting algorithm is applicable to the whole class of monotone variational inequalities. It has the
advantage of not requiring exogenous parameters. Furthermore, both strategies occasionally allow long
stepsizes by exploiting the information available at each iteration.

Extragradient-type algorithms is currently a subject of intense research (see, e.g., [1, 36, 38, 15, 8, 7, 4]).
Another variant of Strategy (c) was presented in [31] where the monotonicity was replaced by (A2). The
main difference is that, instead of (1.5), the scheme presented in [31] performs `(k) := min

{
` ∈ N : 〈T (zk,`), xk − PC(zk)〉 ≥ δ〈T (xk), xk − PC(zk)〉

}
,

and zk,` = 2−`PC(zk) + (1− 2−`)xk,
(1.6)

where δ ∈ (0, 1).

1.2 Proposed Schemes
The paper studies two conceptual algorithms, each of which has three variants. Convergence analysis for
both algorithms is established assuming weaker assumptions than previous work [33, 5]. Our scheme was
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inspired by Algorithm 1.1 and the conditional subgradient method which was studied in [17] and further
developed in [33, 18].

Basically, each conceptual algorithm contains a linesearch step and a projection step. First, the linesearch
step allows to find a suitable halfspace separating the current iteration and the solution set. We will consider
two different linesearches: one on the boundary of the feasible set and one along a feasible direction. Second,
the projection step has three variants with different and interesting features on the generated sequence. We
also note that some of the proposed variants are related to [7, 25, 36]. An essential characteristic of the
conceptual algorithms is the convergence under very mild assumptions, like the continuity of the operator
T (see (A1)), the existence of solutions of (1.1), which also solve the dual variational inequality (1.2) (see
(A2)). We would like to emphasize that (A2) is less restrictive than pseudomonotonicity of T and plays a
central role in our convergence analysis.

The remaining of the paper is organized as follows. Section 2 provides notations and preliminary results,
in which we also prove the convergence of a natural extension of Algorithm 1.1 with nonzero normal vectors.
The convergence analysis of our conceptual algorithms together with two linesearches is given in Sections 3
and 4. In Section 5, we present an example showing that our suggested approach may perform better than
previous classical variants. Finally, some concluding remarks are given in Section 6.

2 Preliminaries
We begin with some basic notation and definitions, which are standard and follow [3]. Throughout, we
write p := q to indicate that p is defined by q. The inner product and the induced norm in Rn are
denoted respectively by 〈·, ·〉 and ‖ · ‖. We denote the nonnegative integers by N := {0, 1, 2, . . .} and the
extended-real line by R := R ∪ {+∞}. The closed ball centered at x ∈ Rn with radius ρ > 0 will be
denoted by B[x, ρ] := {y ∈ Rn : ‖y − x‖ ≤ ρ}. The domain of a function f : Rn → R is defined by
dom(f) := {x ∈ Rn : f(x) < +∞} and we say that f is proper if dom(f) 6= ∅. For any set G, cl(G) and
cone(G) respectively denote the topological closure and the conic hull of G. Finally, let T : Rn ⇒ Rn be
an operator. Then, the domain and the graph of T are given by dom(T ) := {x ∈ Rn : T (x) 6= ∅} and
Gph(T ) := {(x, u) ∈ Rn × Rn : u ∈ T (x)}.

Definition 2.1 (normal cone) Let C be a subset of Rn and let x ∈ C. A vector u ∈ Rn is called a normal
to C at x if for all y ∈ C, 〈u, y − x〉 ≤ 0. The collection of all such normal u is called the normal cone of
C at x and is denoted by NC(x). If x /∈ C, we define NC(x) = ∅.

In some special cases, formulas for normal cone can be obtained explicitly, for example, polyhedral sets [33],
closed convex cones [11, Example 2.62], sets defined by smooth functional constraints [35, Theorem 6.14]
(see also [34, Theorem 23.7] and [11, Proposition 2.61]).

The normal cone can be seen as an operator, i.e., NC : C ⊂ Rn ⇒ Rn : x 7→ NC(x). Recall that the
indicator function of C is defined by δC(y) := 0, if y ∈ C and +∞, otherwise, and the classical convex
subdifferential operator for a proper function f : Rn → R is defined by ∂f : Rn ⇒ Rn : x 7→ ∂f(x) :=
{u ∈ Rn : f(y) ≥ f(x) + 〈u, y − x〉, ∀ y ∈ Rn}. Then, it is well-known that the normal cone operator can be
expressed as NC = ∂δC .

Fact 2.2 (See [13, Proposition 4.2.1(ii)]) The normal cone operator for C, NC , is a maximal monotone
operator and its graph, Gph(NC), is closed, i.e., for every sequence (xk, uk)k∈N ⊂ Gph(NC) that converges
to some (x, u), we have (x, u) ∈ Gph(NC).

Next, recall that the orthogonal projection of x onto C, PC(x), is the unique point in C such that
‖PC(x) − x‖ ≤ ‖x − y‖ for all y ∈ C. Some well-known facts about orthogonal projections are presented
below.

Fact 2.3 For all x, y ∈ Rn and all z ∈ C, the following hold:

(i) ‖PC(x)− PC(y)‖2 ≤ ‖x− y‖2 − ‖(x− PC(x))−
(
y − PC(y)

)
‖2 (a.k.a. firm nonexpansiveness).

(ii) 〈x− PC(x), z − PC(x)〉 ≤ 0.

(iii) Let x ∈ C, y ∈ Rn and z = PC(y), then 〈x− y, x− z〉 ≥ ‖x− z‖2.

Proof. (i) & (ii): See [40, Lemmas 1.1 and 1.2].
(iii): Using (ii), we have 〈x− y, x− z〉 = 〈x− z, x− z〉+ 〈x− z, z − y〉 ≥ ‖x− z‖2. �
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Corollary 2.4 For all x, p ∈ Rn and α > 0, we have

x− PC(x− αp)
α

∈ p+NC(PC(x− αp)).

Proof. Let z = x− αp, then the conclusion follows from z − PC(z) ∈ NC(PC(z)). �
Next, we present some lemmas that are useful in the sequel.

Lemma 2.5 Let H ⊆ Rn be a closed halfspace and C ⊆ Rn such that H ∩ C 6= ∅. Then, for every x ∈ C,
we have PH∩C(x) = PH∩C(PH(x)).

Proof. If x ∈ H, then x = PH∩C(x) = PH∩C(PH(x)). Suppose that x /∈ H. Fix any y ∈ C∩H. Since x ∈ C
but x /∈ H, there exists γ ∈ [0, 1), such that x̃ = γx + (1 − γ)y ∈ C ∩ bdH, where bdH is the hyperplane
boundary of H. Hence, (x̃− PH(x))⊥(x− PH(x)) and (PH∩C(x)− PH(x))⊥(x− PH(x)), then

‖x̃− x‖2 = ‖x̃− PH(x)‖2 + ‖x− PH(x)‖2, (2.1)

and
‖PH∩C(x)− x‖2 = ‖PH∩C(x)− PH(x)‖2 + ‖x− PH(x)‖2, (2.2)

respectively. Using (2.1) and (2.2), we get

‖y − PH(x)‖2 ≥ ‖x̃− x‖2 = ‖x̃− PH(x)‖2 + ‖PH(x)− x‖2 ≥ ‖x̃− PH(x)‖2.

= ‖x̃− x‖2 − ‖x− PH(x)‖2 ≥ ‖PH∩C(x)− x‖2 − ‖x− PH(x)‖2 = ‖PH∩C(x)− PH(x)‖2.

So, ‖y − PH(x)‖ ≥ ‖PH∩C(x)− PH(x)‖ for all y ∈ C ∩H. Thus, PH∩C(x) = PC∩H(PH(x)). �

Lemma 2.6 Let S be a nonempty, closed and convex set. Let x0, x ∈ Rn. Assume that x0 /∈ S and
that S ⊆ W (x) = {y ∈ Rn : 〈y − x, x0 − x〉 ≤ 0}. Then, x ∈ B[ 1

2
(x0 + x), 1

2
ρ], where x = PS(x0) and

ρ = dist(x0, S) := ‖x0 − PS(x0)‖.

Proof. Since S is convex and closed, x = PS(x0) and ρ = dist(x0, S) are well-defined. S ⊆ W (x) implies
that x = PS(x0) ∈ W (x). Define v := 1

2
(x0 + x) and r := x0 − v = 1

2
(x0 − x), then x − v = −r and

‖r‖ = 1
2
‖x0 − x‖ = 1

2
ρ. It follows that

0 ≥ 〈x− x, x0 − x〉 =
〈
x− v + v − x, x0 − v + v − x

〉
= 〈−r + (v − x), r + (v − x)〉 = ‖v − x‖2 − ‖r‖2.

So, x ∈ B[v, r] and the proof is complete. �

Definition 2.7 (Fejér convergence) Let S be a nonempty subset of Rn. A sequence (xk)k∈N ⊂ Rn is
said to be Fejér convergent to S if and only if for all x ∈ S there exists k0 ∈ N such that ‖xk+1−x‖ ≤ ‖xk−x‖
for all k ≥ k0.

Fejér convergence was introduced in [12] and has been elaborated further in [26, 2]. The following are useful
properties of Fejér sequences.

Fact 2.8 If (xk)k∈N is Fejér convergent to S, then the following hold

(i) The sequence (xk)k∈N is bounded.

(ii) The sequence
(
‖xk − x‖

)
k∈N converges for all x ∈ S.

(iii) If an accumulation point x∗ belongs to S, then the sequence (xk)k∈N converges to x∗.

Proof. (i) and (ii): See [3, Proposition 5.4]. (iii): See [3, Theorem 5.5]. �
We recall the following well-known characterization of S∗ which will be used repeatedly.

Fact 2.9 (See [19, Proposition 1.5.8]) The following are equivalent:

(i) x ∈ S∗.
(ii) −T (x) ∈ NC(x).

(iii) For all β > 0, we have x = PC(x− βT (x)).

Proposition 2.10 Given T : dom(T ) ⊆ Rn → Rn and α > 0. If x = PC(x − α(T (x) + u)) for some
u ∈ NC(x), then x ∈ S∗, or equivalently, x = PC(x− βT (x)) for all β > 0.
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Proof. It follows from Corollary 2.4 that 0 ∈ T (x) + u +NC(x), which implies that −T (x) ∈ NC(x). The
conclusion is now immediate from Fact 2.9. �

Remark 2.11 It is quite easy to see that the reverse of Proposition 2.10 is not true in general.

The next result will be used to prove that all accumulation points of the sequences generated by the proposed
algorithms belong to the solution set of problem (1.1).

Fact 2.12 (See [10, Lemma 3]) If T : dom(T ) ⊆ Rn → Rn is continuous, then Sdual ⊆ S∗.

Lemma 2.13 For any (z, v) ∈ Gph(NC) define H(z, v) :=
{
y ∈ Rn : 〈T (z) + v, y − z〉 ≤ 0

}
. Then,

S∗ = Sdual ⊆ H(z, v).

Proof. S∗ = Sdual by Assumption (A2) and Fact 2.12. Take x∗ ∈ Sdual, then 〈T (z), x∗−z〉 ≤ 0 for all z ∈ C.
Since (z, v) ∈ Gph(NC), we have 〈v, x∗−z〉 ≤ 0. Summing up these inequalities, we get 〈T (z)+v, x∗−z〉 ≤ 0.
Then, x∗ ∈ H(z, v). �

In view of Lemma 2.13, Assumptions (A1) and (A2) imply that Sdual = S∗. Hence, the next result is
immediate.

Lemma 2.14 If T : dom(T ) ⊆ Rn → Rn is continuous and Assumption (A2) holds, then S∗ is a closed
and convex set.

2.1 Extragradient Algorithm with Normal Vectors
We now show that it is possible to incorporate normal vectors of the feasible sets into the extragradient
algorithm. As we will see below, this approach generalizes Algorithm 1.1 with Strategy (a). To proceed,
we assume that T is Lipschitz with constant L and (A2) holds.

Algorithm 2.15 (Extragradient Algorithm with Normal Vectors) Take (βk)k∈N ⊂ [β̌, β̂] such that

0 < β̌ ≤ β̂ < 1/(L+ 1) and δ ∈ (0, 1).

Step 0 (Initialization): Take x0 ∈ C and set k ← 0.

Step 1 (Stopping Test): If xk = PC(xk − βkT (xk)), then stop. Otherwise:

Step 2 (First Projection): Take uk ∈ NC(xk) such that

‖uk‖ ≤ δ‖xk − PC(xk − βk(T (xk) + uk))‖, (2.3)

zk = PC(xk − βk(T (xk) + uk)). (2.4)

Step 3 (Second Projection): Take vk ∈ NC(zk) such that

‖vk − uk‖ ≤ ‖xk − zk‖. (2.5)

Set
xk+1 = PC(xk − βk(T (zk) + vk)). (2.6)

Set k ← k + 1 and go to Step 1.

Proposition 2.16 Algorithm 2.15 is well-defined.

Proof. It is sufficient to prove that if Step 1 is not satisfied, i.e.,

‖xk − PC(xk − βkT (xk))‖ > 0. (2.7)

then Steps 2 and 3 are attainable.
Step 2 is attainable: Suppose that (2.3) does not hold for every αuk ∈ NC(xk) with α > 0, i.e., ‖αuk‖ >
δ‖xk−PC(xk−βk(T (xk)+αuk))‖ ≥ 0. Taking limit when α goes to 0, we get ‖xk−PC(xk−βkT (xk))‖ = 0,
which contradicts (2.7).
Step 3 is attainable: Suppose that (2.5) does not hold for every αvk ∈ NC(zk) with α > 0, i.e., ‖αvk−uk‖ >
‖xk − zk‖, where zk = PC(xk − βk(T (xk) + uk)) as (2.4) and uk ∈ NC(xk) satisfying (2.3). Letting α goes
to 0 and using (2.3), we get ‖xk − zk‖ ≤ ‖uk‖ ≤ δ‖xk − zk‖. So, xk = zk. Then, Proposition 2.10 implies a
contradiction to (2.7). �

It is immediate from Proposition 2.10 that if the Stopping Test is satisfied for xk, then xk ∈ S∗. So we
investigate the remaining case that the Stopping Test is not satisfied for all xk. In this case, we will prove
that the algorithm generates an infinite sequence (xk)k∈N that converges to S∗.
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Lemma 2.17 Suppose that T is Lipschitz continuous with constant L. Let x∗ ∈ S∗. Suppose also that
Stopping Test is not satisfied for xk. Then Step 4 generates xk+1 and that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− β2
k(L+ 1)2)‖zk − xk‖2.

Proof. Define wk = xk − βk(T (zk) + vk) with vk ∈ NC(zk) taken from Step 3. Then, using (2.6) and
applying Proposition 2.3(i), with x = wk and y = x∗, we get

‖xk+1 − x∗‖2 ≤ ‖wk − x∗‖2 − ‖wk − PC(wk)‖2

≤ ‖xk − x∗ − βk(T (zk) + vk)‖2 − ‖xk − xk+1 − βk(T (zk) + vk)‖2

= ‖xk − x∗‖2 − ‖xk − xk+1‖2 + 2βk〈T (zk) + vk, x∗ − xk+1〉. (2.8)

Since vk ∈ NC(zk) and (A2), we have

〈T (zk) + vk, x∗ − xk+1〉 =〈T (zk) + vk, zk − xk+1〉+ 〈T (zk) + vk, x∗ − zk〉

≤〈T (zk) + vk, zk − xk+1〉+ 〈T (zk), x∗ − zk〉

≤〈T (zk) + vk, zk − xk+1〉.

Substituting into (2.8) yields

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 − ‖xk − xk+1‖2 − 2βk〈T (zk) + vk, xk+1 − zk〉

=‖xk − x∗‖2 − ‖xk − zk‖2 − ‖zk − xk+1‖2

+2〈xk − βk(T (zk) + vk)− zk, xk+1 − zk〉. (2.9)

Define xk = xk − βk(T (xk) + uk) with uk ∈ NC(xk) taken from Step 2 and recall that zk = PC(x̄k) and
that xk+1 = PC(wk) = PC(xk − βk(T (zk) + vk)), we have

2〈xk−βk(T (zk) + vk)− zk, xk+1 − zk〉

= 2〈wk − PC(xk), PC(wk)− PC(xk)〉

= 2〈xk − PC(xk), PC(wk)− PC(xk)〉+ 2〈wk − xk, PC(wk)− PC(xk)〉

≤ 2〈wk − xk, PC(wk)− PC(xk)〉

= 2〈wk − xk, xk+1 − zk〉 = 2βk〈(T (xk) + uk)− (T (zk) + vk), xk+1 − zk〉

≤ 2βk

(
‖T (zk)− T (xk)‖+ ‖vk − uk‖

)
‖xk+1 − zk‖

≤ 2βk(L+ 1)‖zk − xk‖‖xk+1 − zk‖ ≤ β2
k(L+ 1)2‖zk − xk‖2 + ‖xk+1 − zk‖2, (2.10)

using Proposition 2.3(ii), with x = xk − βk(T (xk) + uk) and z = xk+1, in the first inequality, the Cauchy-
Schwarz inequality in the second one and the Lipschitz continuity of T and (2.5) in the third one. Finally,
the conclusion follows from (2.10) and (2.9). �

Corollary 2.18 The sequence (xk)k∈N is Fejér convergent to S∗ and lim
k→∞

‖zk − xk‖ = 0.

Proof. It follows from Lemma 2.17 and βk ≤ β̂ < 1/(L+ 1) that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − (1− β̂2L2)‖zk − xk‖2 ≤ ‖xk − x∗‖2.

So, (xk)k∈N is Fejér convergent to S∗. Now Fact 2.8(ii) together with the above inequality imply lim
k→∞

‖zk−

xk‖ = 0. �

Proposition 2.19 The sequence (xk)k∈N converges to a point in S∗.

Proof. The sequence (xk)k∈N is bounded by Lemma 2.17 and Fact 2.8(i). Let x̃ be an accumulation point
of some subsequence (xik )k∈N. By Corollary 2.18, x̃ is also an accumulation point of (zik )k∈N. Without
loss of generality, we suppose that the corresponding parameters (βik )k∈N and (uik )k∈N converge to β̃ and

ũ, respectively. Since zk = PC(xk − βk(T (xk) + uk)), taking the limit along the subsequence (ik)k∈N, we
obtain x̃ = PC(x̃− β̃(T (x̃) + ũ)). Therefore, Fact 2.2 and Proposition 2.10 imply x̃ ∈ S∗. Finally, we apply
Fact 2.8(iii). �
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3 Conceptual Algorithm with Linesearch B
In this section, we study a conceptual algorithm, in which we use a linesearch along the boundary of the
feasible set to obtain the stepsizes. Indeed, Linesearch B given below generalizes Strategies (b) by involving
normal vectors to feasible sets.

Linesearch B (Linesearch on the boundary)

Input: (x, u, σ, δ,M). Where x ∈ C, u ∈ NC(x), σ > 0, δ ∈ (0, 1), and M > 0.
Set α = σ and θ ∈ (0, 1) and choose u ∈ NC(x). Denote zα = PC(x−α(T (x)+αu)) and choose vα ∈ NC(zα)
with ‖vα‖ ≤M .

While α‖T (zα)− T (x) + αvα − αu‖ > δ‖zα − x‖ do
α← θα and choose any vα ∈ NC(zα) with ‖vα‖ ≤M .

End While

Output: (α, zα, vα).

We now show that Linesearch B is well-defined assuming only (A1), i.e., continuity of T .

Lemma 3.1 If x ∈ C and x /∈ S∗, then Linesearch B stops after finitely many steps.

Proof. Suppose on the contrary that Linesearch B does not stop for all α ∈ P := {σ, σθ, σθ2, . . .} and the
chosen vectors

vα ∈ NC(zα), ‖vα‖ ≤M, zα = PC(x− α(T (x) + αu)). (3.1)

We have
α‖T (zα)− T (x) + αvα − αu‖ > δ‖zα − x‖. (3.2)

Next, divide both sides of (3.2) by α > 0 and let α goes to 0. Due to the boundedness of (vα)α∈P and the
continuity of T , we obtain

0 = lim inf
α→0

‖T (zα)− T (x) + αvα − αu‖ ≥ lim inf
α→0

‖x− zα‖
α

≥ 0.

Using zα in (3.1), we have

lim inf
α→0

‖x− PC(x− α(T (x) + αu))‖
α

= 0. (3.3)

On the other hand, Corollary 2.4 implies

x− PC(x− α(T (x) + αu))

α
∈ T (x) + αu+NC(PC(x− α(T (x) + αu))).

From (3.3), the continuity of the projection and the closedness of Gph(NC) imply 0 ∈ T (x) +NC(x), which
is a contradiction since x /∈ S∗. �

Next, we present the conceptual algorithm, which is related to Algorithm 1.1 with Strategy (b) when
nonzero normal vectors are used. Here, we assume that (A1) and (A2) hold.

Conceptual Algorithm B Given σ > 0, δ ∈ (0, 1), and M > 0.

Step 0 (Initialization): Take x0 ∈ C and set k ← 0.

Step 1 (Stopping Test): If xk = PC(xk − T (xk)), then stop. Otherwise,

Step 2 (Linesearch B): Take uk ∈ NC(xk) with ‖uk‖ ≤M and set

(αk, z
k, vk) = Linesearch B (xk, uk, σ, δ,M),

i.e., (αk, z
k, vk) satisfies

vk ∈ NC(zk) with ‖vk‖ ≤M, αk ≤ σ, (3.4a)

zk = PC(xk − αk(T (xk) + αku
k)), (3.4b)

αk‖T (zk)− T (xk) + αk(vk − uk)‖ ≤ δ‖zk − xk‖. (3.4c)

Step 3 (Projection): Set vk := αkv
k and xk+1 := FB(xk).

Step 4: Set k ← k + 1 and go to Step 1.
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We consider three variants of FB in Step 3:

FB.1(xk) =PC
(
PH(zk,vk)(x

k)
)
, (Variant B.1) (3.5)

FB.2(xk) =PC∩H(zk,vk)(x
k), (Variant B.2) (3.6)

FB.3(xk) =PC∩H(zk,vk)∩W (xk)(x
0), (Variant B.3) (3.7)

where

H(zk, vk) :=
{
y ∈ Rn : 〈T (zk) + vk, y − zk〉 ≤ 0

}
, (3.8a)

and W (xk) :=
{
y ∈ Rn : 〈y − xk, x0 − xk〉 ≤ 0

}
. (3.8b)

These halfspaces have been widely used in the literature, see, e.g., [9, 37, 5] and the references therein.
Our goal is to analyze the convergence of these variants. First, we start by showing that the algorithm is
well-defined.

Proposition 3.2 Assume that FB(xk) is well-defined whenever xk is available. Then, Conceptual Al-
gorithm B is also well-defined.

Proof. If the Stopping Test is not satisfied, then Step 2 is attainable by Lemma 3.1. So the algorithm is
well-defined. �

Proposition 3.3 xk ∈ S∗ if and only if xk ∈ H(zk, vk), where zk and vk are obtained in Steps 2 and 3,
respectively.

Proof. If xk ∈ S∗, then xk ∈ H(zk, vk) by Lemma 2.13. Now suppose that xk /∈ S∗. Define ūk = αku
k ∈

NC(xk) and wk = xk − αk(T (xk) + ūk). Then,

αk〈T (zk) + vk, xk − zk〉 = αk〈T (zk)− T (xk) + vk − ūk, xk − zk〉+ αk〈T (xk) + ūk, xk − zk〉

= αk〈T (zk)− T (xk) + vk − ūk, xk − zk〉+ 〈xk − wk, xk − zk〉

≥ −αk‖T (zk)− T (xk) + vk − ūk‖ · ‖xk − zk‖+ ‖xk − zk‖2

≥ −δ‖xk − zk‖2 + ‖xk − zk‖2 = (1− δ)‖xk − zk‖2 > 0, (3.9)

where we have used Linesearch B and Fact 2.3(iii) in the second inequality. It follows that xk /∈ H(zk, vk)
by the definition of H(zk, vk). �

Let (xk)k∈N, (zk)k∈N and (αk)k∈N be sequences generated by Conceptual Algorithm B and suppose
that xk /∈ S∗. Using (3.9), we obtain a useful algebraic property

∀k ∈ N : 〈T (zk) + vk, xk − zk〉 ≥
(1− δ)
αk

‖xk − zk‖2. (3.10)

Proposition 3.4 If Stopping Test is not satisfied at xk, then Conceptual Algorithm B generates xk+1 6=
xk.

Proof. Suppose on the contrary that xk+1 = xk. Consider three cases.
If Variant B.1 is used, then xk+1 = PC

(
PH(zk,vk)(x

k)
)

= xk. Then Fact 2.3(ii) implies

〈PH(zk,vk)(x
k)− xk, z − xk〉 = 〈PH(zk,vk)(x

k)− xk+1, z − xk+1〉 ≤ 0, (3.11)

for all z ∈ C. Using again Fact 2.3(ii),

∀z ∈ H(zk, vk) : 〈PH(zk,vk)(x
k)− xk, PH(zk,vk)(x

k)− z〉 ≤ 0. (3.12)

Note that zk ∈ C ∩ H(zk, vk) 6= ∅. So, setting z = zk and summing up (3.11) and (3.12), we obtain
‖xk − PH(zk,vk)(x

k)‖2 = 0. Hence, xk = PH(zk,vk)(x
k), i.e., xk ∈ H(zk, vk).

If Variant B.2 is used, then xk+1 = PC∩H(zk,vk)(x
k) = xk. So xk ∈ H(zk, vk).

If Variant B.3 is used, then xk+1 = PC∩H(zk,vk)∩W (xk)(x
0) = xk. So xk ∈ H(zk, vk).

Hence, in all cases, we have showed that xk ∈ H(zk, vk), which implies xk ∈ S∗ by Proposition 3.3. By
Fact 2.9, we get xk = PC(xk − T (xk)), i.e., Stopping Test is satisfied at xk, a contradiction. �

In view of Proposition 3.4, we will only examine the case that Stopping Test is not satisfied for all xk.
In this case, Conceptual Algorithm B generates an infinite sequence (xk)k∈N such that xk /∈ S∗ for all
k ∈ N.
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3.1 Convergence Analysis of Variant B.1
We consider the case Variant B.1 is used and the algorithm generates an infinite sequence (xk)k∈N such
that xk /∈ S∗ for all k ∈ N. Note that by Lemma 2.13, H(zk, vk) is nonempty for all k. Thus, the projection
step (3.5) is well-defined, so is the whole algorithm.

Proposition 3.5 The following hold:

(i) The sequence (xk)k∈N is Fejér convergent to S∗.

(ii) The sequence (xk)k∈N is bounded.

(iii) lim
k→∞

〈T (zk) + vk, xk − zk〉 = 0.

Proof. (i): Take x∗ ∈ S∗. Note that, by definition (zk, vk) ∈ Gph(NC). Using (3.5), Fact 2.3(i) and Lemma
2.13, we have

‖xk+1 − x∗‖2 = ‖PC(PH(zk,vk)(x
k))− PC(PH(zk,vk)(x∗))‖

2

≤ ‖PH(zk,vk)(x
k)− PH(zk,vk)(x∗)‖

2

≤ ‖xk − x∗‖2 − ‖PH(zk,vk)(x
k)− xk‖2 ≤ ‖xk − x∗‖2.

(3.13)

(ii): Follows from (i) and Fact 2.8(i).

(iii): Take x∗ ∈ S∗ and notice that PH(zk,vk)(x
k) = xk −

〈
T (zk) + vk, xk − zk

〉
‖T (zk) + vk‖2

(
T (zk) + vk

)
. Then (3.13)

yields

‖xk+1 − x∗‖2 ≤‖xk − x∗‖2 −

∥∥∥∥∥xk −
〈
T (zk) + vk, xk − zk

〉
‖T (zk) + vk‖2

(
T (zk) + vk

)
− xk

∥∥∥∥∥
2

= ‖xk − x∗‖2 −
(〈T (zk) + vk, xk − zk〉)2

‖T (zk) + vk‖2
.

It follows that
〈T (zk) + vk, xk − zk〉2

‖T (zk) + vk‖2
≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2. (3.14)

Since T and the projection are continuous and (xk)k∈N is bounded, (zk)k∈N is bounded. The boundedness
of
(
‖T (zk) + vk‖

)
k∈N follows from (3.4). Using Fact 2.8(ii), the right hand side of (3.14) goes to 0, when k

goes to ∞. Then, the result follows. �
Next we establish the main convergence result for Variant B.1.

Theorem 3.6 The sequence (xk)k∈N converges to a point in S∗.

Proof. By Fact 2.8(iii), we show that there exists an accumulation point of (xk)k∈N belonging to S∗. First,
(xk)k∈N is bounded due to Proposition 3.5(ii). Let (xik )k∈N be a convergent subsequence such that (uik )k∈N,
(vik )k∈N, and (αik )k∈N also converge. Set lim

k→∞
xik = x̃, lim

k→∞
uik = ũ, lim

k→∞
vik = ṽ and lim

k→∞
αik = α̃.

Using Proposition 3.5(iii), (3.10), and taking the limit as k →∞, we have

0 = lim
k→∞

〈T (zik ) + vik , xik − zik 〉 ≥
(1− δ)
α̃

lim
k→∞

‖zik − xik‖2 ≥ 0.

This implies
lim
k→∞

‖xik − zik‖ = 0. (3.15)

Now we consider two cases:
Case 1: lim

k→∞
αik = α̃ > 0. From (3.4), the continuity of T and the projection, and (3.15), we have

x̃ = lim
k→∞

xik = lim
k→∞

zik = PC
(
x̃− α̃(T (x̃) + α̃ũ)

)
. So x̃ ∈ S∗ due to Proposition 2.10.

Case 2: lim
k→∞

αik = α̃ = 0. Define α̃k := αk
θ

, then lim
k→∞

α̃ik = 0. So we can assume α̃ik does not satisfy

Armijo-type condition in Linesearch B, i.e.,

‖T
(
z̃ik
)
− T (xik ) + α̃ik ṽ

ik − α̃iku
ik‖ >

δ‖z̃ik − xik‖
α̃ik

, (3.16)
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where ṽik ∈ NC(z̃ik ) and z̃ik = PC(xik − α̃ik (T (xik ) + α̃iku
ik )). The left hand side of (3.16) goes to 0 by

the continuity of T and PC . So,

lim
k→∞

‖z̃ik − xik‖
α̃ik

= 0. (3.17)

By Corollary 2.4, with x = xik , α = α̃ik and p = T (xik ) + α̃iku
ik , we have

xik − z̃ik
α̃ik

∈ T (xik ) + α̃iku
ik +NC(z̃ik ).

Taking the limits as k →∞ and using (3.17), the continuity of T and the closedness of Gph(NC), we obtain
0 ∈ T (x̃) +NC(x̃), thus, x̃ ∈ S∗. �

3.2 Convergence Analysis of Variant B.2
We consider the case Variant B.2 is used and the algorithm generates an infinite sequence (xk)k∈N such
that xk /∈ S∗ for all k ∈ N.

Proposition 3.7 The sequence (xk)k∈N is Féjer convergent to S∗. Moreover, it is bounded and lim
k→∞

‖xk+1−

xk‖ = 0.

Proof. Take x∗ ∈ S∗. By Lemma 2.13, x∗ ∈ H(zk, vk), for all k ∈ N. Moreover x∗ ∈ C implies that the
projection step (3.6) is well-defined. Next, using Fact 2.3(i) for two points xk, x∗ and the set C ∩H(zk, vk),
we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2. (3.18)

So, (xk)k∈N is Féjer convergent to S∗. Hence, (xk)k∈N is bounded by Fact 2.8(i). Taking the limit in (3.18)
and using Fact 2.8(ii), we obtain the conclusion. �

The next proposition shows a connection between the projection steps in Variant B.1 and Variant
B.2. This fact has a geometry interpretation: in Variant B.2, xk is projected onto a smaller set, thus, it
may improve the convergence.

Proposition 3.8 The following hold

(i) xk+1 = PC∩H(zk,vk)(PH(zk,vk)(x
k)).

(ii) lim
k→∞

〈T (zk) + vk, xk − zk〉 = 0.

Proof. (i): Since xk ∈ C but xk /∈ H(zk, vk) and C ∩Hk 6= ∅, the result follows from Lemma 2.5.
(ii): Take x∗ ∈ S∗. Notice that xk+1 = PC∩H(zk,vk)(x

k) and that projections onto convex sets are firmly-

nonexpansive (see Fact 2.3(i)), we have

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − ‖xk+1 − xk‖2 ≤ ‖xk − x∗‖2 − ‖PH(zk,vk)(x
k)− xk‖2.

The remainder of the proof is analogous to Proposition 3.5(iii). �
Finally we present the convergence result for Variant B.2.

Proposition 3.9 The sequence (xk)k∈N converges to a point in S∗.

Proof. Similar to the proof of Theorem 3.6. �

3.3 Convergence Analysis of Variant B.3
We consider the case Variant B.3 is used and the algorithm generates an infinite sequence (xk)k∈N such
that xk /∈ S∗ for all k ∈ N. Observe that C ∩H(zk, vk)∩W (xk) is a closed convex set. So, the algorithm is
well-defined if this set C ∩H(zk, vk) ∩W (xk). The following lemma guarantees its non-emptiness.

Lemma 3.10 For all k ∈ N, we have S∗ ⊆ C ∩H(zk, vk) ∩W (xk).
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Proof. We proceed by induction. By definition, ∅ 6= S∗ ⊆ C. By Lemma 2.13, S∗ ⊆ H(zk, vk) for all
k. Since W (x0) = Rn, we have S∗ ⊆ H(z0, v0) ∩W (x0). Assume that S∗ ⊆ H(zk, vk) ∩W (xk). Then,
xk+1 = PC∩H(zk,vk)∩W (xk)(x

0) is well-defined. By Fact 2.3(ii), we obtain 〈x∗ − xk+1 , x0 − xk+1〉 ≤ 0 for

all x∗ ∈ S∗. This implies x∗ ∈ W (xk+1). Hence, S∗ ⊆ H(zk+1, vk+1) ∩W (xk+1). Then, the conclusion
follows by induction principle. �

Before proving the convergence of the sequence (xk)k∈N, we study its boundedness. The next lemma
shows that the sequence remains in a ball determined by the initial point.

Lemma 3.11 Let x = PS∗ (x0) and ρ = dist(x0, S∗). Then (xk)k∈N ⊂ B
[
1
2

(x0 + x), 1
2
ρ
]
∩C, in particular,

(xk)k∈N is bounded.

Proof. By Lemma 3.10, we have S∗ ⊆ H(zk, vk) ∩W (xk) for all k. Using Lemma 2.6, with S = S∗ and
x = xk, we obtain xk ∈ B

[
1
2

(x0 + x), 1
2
ρ
]

for all k ∈ N. Finally, notice that (xk)k∈N ⊂ C. �
Now, we focus on the properties of the accumulation points.

Proposition 3.12 All accumulation points of (xk)k∈N belong to S∗.

Proof. Since W (xk) is a halfspace with normal x0 − xk, we have xk = PW (xk)(x
0). So by the firm non-

expansiveness of PW (xk) (see Fact 2.3(i)) and xk+1 ∈W (xk), we have

‖xk+1 − xk‖2 ≤ ‖xk+1 − x0‖2 − ‖xk − x0‖2.

Thus, (‖xk−x0‖)k∈N is monotone and nondecreasing. Moreover, by Lemma 3.11, (‖xk−x0‖)k∈N is bounded,
thus, converges. It follows that

lim
k→∞

‖xk+1 − xk‖ = 0. (3.19)

Since xk+1 ∈ H(zk, vk), we get 〈T (zk) +vk, xk+1− zk〉 ≤ 0, where zk and vk are obtained in Steps 2 and 3,
respectively. Combining with (3.10), we obtain

0 ≥ 〈T (zk) + vk, xk+1 − xk〉+
〈
T (zk) + vk, xk − zk

〉
≥ −‖T (zk) + vk‖ · ‖xk+1 − xk‖+

1− δ
αk
‖xk − zk‖2.

Using (3.4) and some simple algebra,

‖xk − zk‖2 ≤
σ

1− δ
‖T (zk) + vk‖ · ‖xk+1 − xk‖. (3.20)

By the boundedness of (vk)k∈N and (xk)k∈N, we can choose a subsequence (ik)k∈N such that (αik )k∈N,
(xik )k∈N, and (vik )k∈N converge to α̃, x̃, and ṽ, respectively. Taking the limits in (3.20) and using (3.19),
we get lim

k→∞
‖xik − zik‖2 = 0. Consequently, x̃ = lim

k→∞
zik . Now we consider two cases:

Case 1: lim
k→∞

αik = α̃ > 0. By (3.4) and the continuity of the projection, x̃ = lim
k→∞

zik = PC
(
x̃− α̃(T (x̃) +

α̃ũ)
)

and hence by Proposition 2.10, x̃ ∈ S∗.
Case 2: lim

k→∞
αik = α̃ = 0. This case is similar to the proof of Theorem 3.6. �

Finally, we prove that (xk)k∈N converges to the solution closest to x0.

Theorem 3.13 The sequence (xk)k∈N converges to x = PS∗ (x0).

Proof. First, x̄ is well-defined due to Lemma 2.14. It follows from Lemma 3.11 that (xk)k∈N ⊂ B
[
1
2

(x0 + x), 1
2
ρ
]
∩

C where ρ = dist(x0, S∗), so it is bounded. Let (xik )k∈N be a subsequence of (xk)k∈N that converges to
x̂. Then, x̂ ∈ B

[
1
2

(x0 + x), 1
2
ρ
]
∩ C. Furthermore, x̂ ∈ S∗ due to Proposition 3.12. So, x̂ ∈ S∗ ∩

B
[
1
2

(x0 + x), 1
2
ρ
]

= {x}. Thus, x is the unique accumulation point of (xk)k∈N. Hence, (xk)k∈N converges
to x ∈ S∗. �

4 Conceptual Algorithm with Linesearch F
As mentioned before, the disadvantage of Linesearch B is the necessity to compute the projection onto the
feasible set within the inner loop to find the stepsize α. To overcome this, we propose the second conceptual
algorithm that uses a linesearch along feasible directions.

We further note that in Linesearch F below, if we set u = 0 ∈ NC(x), then the projection step is done
outside the While loop.
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Linesearch F (Linesearch along the feasible direction)

Input: (x, u, β, δ,M). Where x ∈ C, u ∈ NC(x), β > 0, δ ∈ (0, 1), and M > 0.
Set α ← 1 and θ ∈ (0, 1). Define zα = PC(x − β(T (x) + αu)) and choose u ∈ NC(x), v1 ∈ NC(z1) with
‖v1‖ ≤M .

While 〈T
(
αzα + (1− α)x

)
+ vα, x− zα〉 < δ〈T (x) + αu, x− zα〉 do

α← θα and choose any vα ∈ NC(αzα + (1− α)x) with ‖vα‖ ≤M .

End While

Output: (α, zα, vα).

Again, Linesearch F is also well-defined assuming only (A1), i.e., continuity of T .

Lemma 4.1 If x ∈ C and x /∈ S∗, then Linesearch F stops after finitely many steps.

Proof. Suppose on the contrary that Linesearch F does not stop for all α ∈ P := {1, θ, θ2, . . .} and that

vα ∈ NC
(
αzα + (1− α)x

)
, ‖vα‖ ≤M, zα = PC

(
x− β(T (x) + αu)

)
. (4.1)

We have
〈T (αzα + (1− α)x) + vα, x− zα〉 < δ〈T (x) + αu, x− zα〉. (4.2)

By (4.1), the sequence (vα)α∈P is bounded. Thus, without loss of generality, we can assume that it converges
to some v0 ∈ NC(x) (by Fact 2.2). The continuity of the projection operator and the formula of zα in
(4.1) imply that (zα)α∈P converges to z0 = PC(x − βT (x)). Taking the limit in (4.2) as α → 0, we get
〈T (x) + v0, x− z0〉 ≤ δ〈T (x), x− z0〉. It follows that

0 ≥ (1− δ)〈T (x), x− z0〉+ 〈v0, x− z0〉 ≥ (1− δ)〈T (x), x− z0〉 ≥
(1− δ)
β
‖x− z0‖2.

So, x = z0 = PC(x− βT (x)), i.e., x ∈ S∗, a contradiction. �
Next, we present the conceptual algorithm, which is related to Algorithm 1.1 with Strategy (c) when

nonzero normal vectors are used. Here, we assume that (A1) and (A2) hold.

Conceptual Algorithm F Given (βk)k∈N ⊂ [β̌, β̂] 0 < β̌ ≤ β̂ < +∞, δ ∈ (0, 1), and M > 0.

Step 0 (Initialization): Take x0 ∈ C and set k ← 0.

Step 1 (Stopping Test): If xk = PC(xk − T (xk)), then stop. Otherwise,

Step 2 (Linesearch F): Take uk ∈ NC(xk) with ‖uk‖ ≤M and set

(αk, z
k, vk) = Linesearch F (xk, uk, βk, δ,M), (4.3)

i.e., (αk, z
k, v̄k) satisfies

v̄k ∈ NC(αkz
k + (1− αk)xk) with ‖v̄k‖ ≤M, αk ≤ 1, (4.4a)

zk = PC(xk − βk(T (xk) + αku
k)), (4.4b)

〈T (αkz
k + (1− αk)xk) + v̄k, xk − zk〉 ≥ δ〈T (xk) + αku

k, xk − zk〉. (4.4c)

Step 3 (Projection): Set xk := αkz
k + (1− αk)xk and xk+1 := FF (xk).

Step 4: Set k ← k + 1 and go to Step 1.

We also consider three variants of FF in Step 3:

FF.1(xk) =PC
(
PH(xk,vk)(x

k)
)
, (Variant F.1) (4.5)

FF.2(xk) =PC∩H(xk,vk)(x
k), (Variant F.2) (4.6)

FF.3(xk) =PC∩H(xk,vk)∩W (xk)(x
0), (Variant F.3) (4.7)

where, similar to (3.8),

H(xk, vk) :=
{
y ∈ Rn : 〈T (xk) + vk, y − xk〉 ≤ 0

}
, (4.8a)

and W (xk) :=
{
y ∈ Rn : 〈y − xk, x0 − xk〉 ≤ 0

}
. (4.8b)

Now, we analyze some general properties of Conceptual Algorithm F.
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Proposition 4.2 Assuming that FF (xk) is well-defined whenever xk is available. Then, Conceptual
Algorithm F is well-defined.

Proof. If Step 1 is not satisfied, then Step 2 is guaranteed by Lemma 4.1. Thus, the entire algorithm is
well-defined. �

Proposition 4.3 xk ∈ S∗ if and only if xk ∈ H(xk, vk) where vk and xk are given in Steps 2 and 3,
respectively,

Proof. If xk ∈ S∗, then xk ∈ H(xk, vk) by Lemma 2.13. Conversely, suppose xk ∈ H(xk, vk), 〈T (xk) +
vk, xk − xk〉 ≤ 0. Using the definitions of αk and xk in Steps 2 and 3, we have

0 ≥ 〈T (xk) + vk, xk − xk〉 = αk〈T (xk) + vk, xk − zk〉 ≥ αkδ
〈
T (xk) + αku

k, xk − zk
〉
.

From the definition of zk in Step 2, we derive

αkδ
〈
T (xk) + αku

k, xk − zk
〉
≥
αkδ

β̂k
‖xk − zk‖2 ≥

αkδ

β̂
‖xk − zk‖2.

It follows that 0 ≥ ‖xk − zk‖2, i.e., xk = zk. Now from Proposition 2.10, we conclude xk ∈ S∗. �

Let (xk)k∈N and (αk)k∈N be sequences generated by Conceptual Algorithm F and suppose that
xk /∈ S∗. From the proof of Proposition 4.3, we obtaina useful algebraic property

∀k ∈ N : 〈T (xk) + vk, xk − xk〉 ≥
αkδ

β̂
‖xk − zk‖2. (4.9)

Proposition 4.4 If Stopping Test is not satisfied at xk, then Conceptual Algorithm F generates xk+1 6=
xk.

Proof. Suppose on the contrary that xk+1 = xk. Consider three cases.
If Variant F.1 is used, then xk+1 = PC

(
PH(xk,vk)(x

k)
)

= xk. So Fact 2.3(ii) implies

∀z ∈ C : 〈PH(xk,vk)(x
k)− xk, z − xk〉 ≤ 0. (4.10)

Again, using Fact 2.3(ii),

∀z ∈ H(xk, vk) : 〈PH(xk,vk)(x
k)− xk, PH(xk,vk)(x

k)− z〉 ≤ 0. (4.11)

Note that ∅ 6= S∗ ⊆ C ∩H(xk, vk) by Proposition 4.3. So, taking any z ∈ C ∩H(xk, vk), then adding up
(4.10) and (4.11), we derive ‖xk − PH(xk,vk)(x

k)‖2 = 0. Hence, xk = PH(xk,vk)(x
k), i.e., xk ∈ H(xk, vk).

If Variant F.2 is used, then xk+1 = PC∩H(xk,vk)(x
k) = xk. So xk ∈ H(xk, vk).

If Variant F.3 is used, then xk+1 = PC∩H(xk,vk)∩W (xk)(x
0) = xk. So xk ∈ H(xk, vk).

Hence, in all cases, we have showed that xk ∈ H(xk, vk), which means xk ∈ S∗ by Proposition 4.3. By
Fact 2.9, we get xk = PC(xk − T (xk)), i.e., Stopping Test is satisfied at xk, a contradiction. �

In view of Proposition 4.4, we will again examine only the case that Stopping Test is not satisfied for
all xk. In this case, Conceptual Algorithm F generates an infinite sequence (xk)k∈N such that xk /∈ S∗
for all k ∈ N.

4.1 Convergence Analysis of Variant F.1
We consider the case Variant F.1 is used and the algorithm generates an infinite sequence (xk)k∈N such
that xk 6∈ S∗ for all k ∈ N. Note that by Lemma 2.13, H(xk, vk) is nonempty for all k. Then, the projection
step (4.5) is well-defined and so is the entire algorithm.

Proposition 4.5 The following hold:

(i) The sequence (xk)k∈N is Fejér convergent to S∗.

(ii) The sequence (xk)k∈N is bounded.

(iii) lim
k→∞

〈T (xk) + vk, xk − xk〉 = 0.
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Proof. (i): Take x∗ ∈ S∗. Note that, by definition (xk, vk) ∈ Gph(NC). Using (4.5), Fact 2.3(i) and Lemma
2.13, we have

‖xk+1 − x∗‖2 = ‖PC(PH(xk,vk)(x
k))− PC(PH(xk,vk)(x∗))‖

2

≤ ‖PH(xk,vk)(x
k)− PH(xk,vk)(x∗)‖

2 (4.12)

≤ ‖xk − x∗‖2 − ‖PH(xk,vk)(x
k)− xk‖2 ≤ ‖xk − x∗‖2. (4.13)

(ii): Follows immediately from ((i)) and Fact 2.8(i).

(iii): Take x∗ ∈ S∗. Using PH(xk,vk)(x
k) = xk −

〈
T (xk) + vk, xk − xk

〉
‖T (xk) + vk‖2

(
T (xk) + vk

)
, (4.12), and the

definition of xk in Step 3, we derive

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 −

∥∥∥∥∥xk −
〈
T (xk) + vk, xk − xk

〉
‖T (xk) + vk‖2

(
T (xk) + vk

)
− xk

∥∥∥∥∥
2

= ‖xk − x∗‖2 −
〈T (xk) + vk, xk − xk〉2

‖T (xk) + vk‖2
.

It follows that
〈T (xk) + vk, xk − xk〉2

‖T (xk) + vk‖2
≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2 → 0. By Fact 2.8(ii), the right

hand side goes to zero as k → ∞. Since T is continuous and (xk)k∈N, (zk)k∈N and (xk)k∈N are bounded,(
‖T (xk) + vk‖

)
k∈N is also bounded. So the conclusion follows. �

Next, we establish our main convergence result for Variant F.1.

Theorem 4.6 The sequence (xk)k∈N converges to a point in S∗.

Proof. By Fact 2.8(iii), we show that there exists an accumulation point of (xk)k∈N belonging to S∗.
First, (xk)k∈N is bounded due to Proposition 4.5(ii). Let (xik )k∈N be a convergent subsequence of (xk)k∈N
such that, (xik ), (vik ), (uik ), (αik )k∈N, and (βik )k∈N also converge. Set lim

k→∞
xik = x̃, lim

k→∞
uik = ũ,

lim
k→∞

αik = α̃, and lim
k→∞

βik = β̃. Using Proposition 4.5(iii), (4.9), and taking the limit as k →∞, we derive

0 = lim
k→∞

〈T (xik ) + ūik , xik − xik 〉 ≥ lim
k→∞

αik

β̂
δ‖xik − zik‖2 ≥ 0. Therefore,

lim
k→∞

αik‖x
ik − zik‖ = 0. (4.14)

Now we consider two cases.
Case 1: lim

k→∞
αik = α̃ > 0. From (4.14), the continuity of T and the projection, we obtain x̃ = lim

k→∞
xik =

lim
k→∞

zik = PC
(
x̃− β̃(T (x̃) + α̃ũ)

)
. So, x̃ ∈ S∗ by Proposition 2.10.

Case 2: lim
k→∞

αik = α̃ = 0. Define α̃ik =
αik
θ

. Then, lim
k→∞

α̃ik = 0. So we can assume α̃ik does not satisfy

Armijo-type condition in Linesearch F, i.e.,〈
T (ỹik ) + ṽik , xik − z̃ik

〉
< δ〈T (xik ) + α̃iku

ik , xik − z̃ik 〉, (4.15)

where ỹik := α̃ik z̃
ik + (1 − α̃ik )xik , z̃ik = PC(xik − βik (T (xik ) + α̃iku

ik )), and ṽik ∈ NC(ỹik ) with

‖ṽik‖ ≤M . Hence, ỹik → x̃. Next, taking a subsequence without relabeling, we assume that lim
k→∞

ṽik = ṽ.

So ṽ ∈ NC(x̃) by Fact 2.2. Moreover, lim
k→∞

z̃ik = z̃ = PC
(
x̃− β̃T (x̃)

)
by the continuity of T and PC . Thus,

passing to the limit in (4.15), we get 〈T (x̃) + ṽ, x̃− z̃〉 ≤ δ〈T (x̃), x̃− z̃〉. It follows that

0 ≥ 〈T (x̃) + ṽ, x̃− z̃〉 − δ〈T (x̃), x̃− z̃〉
= (1− δ)

〈
T (x̃), x̃− z̃

〉
+
〈
ṽ, x̃− z̃

〉
≥ (1− δ)

〈
T (x̃), x̃− z̃

〉
=

(1− δ)
β̃

〈
x̃− (x̃− β̃T (x̃)), x̃− z̃〉 ≥

(1− δ)
β̃
‖x̃− z̃‖2 ≥

(1− δ)
β̂
‖x̃− z̃‖2 ≥ 0.

This means x̃ = z̃, which implies x̃ ∈ S∗. �
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4.2 Convergence Analysis of Variant F.2
We consider the case Variant F.2 is used and the algorithm generates an infinite sequence (xk)k∈N such
that xk 6∈ S∗ for all k ∈ N.

Proposition 4.7 The sequence (xk)k∈N is Féjer convergent to S∗. Moreover, it is bounded and lim
k→∞

‖xk+1−

xk‖ = 0.

Proof. Take x∗ ∈ S∗ ⊆ C. By Lemma 2.13, x∗ ∈ H(xk, vk) for all k. So, the projection step (4.6) is
well-defined. Then, using Fact 2.3(i) for the projection operator PH(xk,vk), we obtain

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 ≤ ‖xk − x∗‖2. (4.16)

So (xk)k∈N is Féjer convergent to S∗. Thus, by Fact 2.8(i)&(ii), (xk)k∈N is bounded and thus (‖xk−x∗‖)k∈N
is a convergent sequence. By passing to the limit in (4.16) and using Fact 2.8(ii), we get lim

k→∞
‖xk+1−xk‖ = 0.

�

Again, in Variant F.2, xk is projected onto a smaller set than in Variant F.1, the former variant may
improve the convergence.

Proposition 4.8 Let (xk)k∈N be the sequence generated by Variant F.2. Then,

(i) xk+1 = PC∩H(xk,vk)(PH(xk,vk)(x
k)).

(ii) lim
k→∞

〈T (xk) + vk, xk − xk〉 = 0.

Proof. (i): Since xk ∈ C but xk /∈ H(xk, vk) and C ∩Hk 6= ∅, by Lemma 2.5, we have the result.
(ii): Take x∗ ∈ S∗. Notice that xk+1 = PC∩H(zk,vk)(x

k) and that projections onto convex sets are

firmly-nonexpansive (see Fact 2.3(i)), we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 ≤ ‖xk − x∗‖2 − ‖PH(xk,vk)(x
k)− xk‖2.

The rest of the proof is analogous to Proposition 4.5(iii). �

Proposition 4.9 The sequence (xk)k∈N converges to a point in S∗.

Proof. Similar to the proof of Theorem 4.6. �

4.3 Convergence Analysis of Variant F.3
It is easy to check that C∩H(xk, vk)∩W (xk) is a closed convex set for each k. So, if C∩H(xk, vk)∩W (xk)
is nonempty, then the next iterate xk+1 is well-defined. The following lemma, whose proof is similar to
Lemma 3.10, guarantees the non-emptiness.

Lemma 4.10 For all k ∈ N, we have S∗ ⊂ C ∩H(xk, vk) ∩W (xk).

Proof. We proceed by induction. By definition, ∅ 6= S∗ ⊆ C. By Lemma 2.13, S∗ ⊆ H(xk, vk), for all
k. Since W (x0) = Rn, we have S∗ ⊆ H(x0, v0) ∩ W (x0). Assume that S∗ ⊆ H(xk, vk) ∩ W (xk). So
xk+1 = PC∩H(xk,vk)∩W (xk)(x

0) is well-defined. Then, by Fact 2.3(ii), we have 〈x∗ − xk+1, x0 − xk+1〉 ≤ 0

for all x∗ ∈ S∗. This implies x∗ ∈ W (xk+1), and hence, S∗ ⊆ H(xk+1, vk+1) ∩ W (xk+1). Thus, the
conclusion follows by induction principle. �

The next lemma shows that the sequence (xk)k∈N remains in a ball determined by the initial point.

Lemma 4.11 Let x = PS∗ (x0) and ρ = dist(x0, S∗). Then (xk)k∈N ⊂ B
[
1
2

(x0 + x), 1
2
ρ
]
∩C, in particular,

(xk)k∈N is bounded.

Proof. It follows from Lemma 4.10 that S∗ ⊆ H(xk, vk) ∩W (xk), for all k ∈ N. The remaining argument is
similar to the proof of Lemma 3.11. �

Theorem 4.12 All accumulation points of (xk)k∈N belong to S∗.
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Proof. Since W (xk) is a halfspace with normal x0 − xk, we have xk = PW (xk)(x
0). So, by the firm

nonexpansiveness of PW (xk) and xk+1 ∈W (xk), we have ‖xk+1−xk‖2 ≤ ‖xk+1−x0‖2−‖xk−x0‖2. Thus,

(‖xk − x0‖)k∈N is monotone and nondecreasing. Moreover, by Lemma 4.11, (‖xk − x0‖)k∈N is bounded,
thus, converges. It follows that

lim
k→∞

‖xk+1 − xk‖ = 0. (4.17)

Since xk+1 ∈ H(xk, vk), we get 0 ≥ 〈T (xk)+vk, xk+1−xk〉, where vk and xk are obtained in Steps 2 and 3,
respectively. By the formulas of xk in Step 3 and (4.4c), we derive

0 ≥ 〈T (xk) + vk, xk+1 − xk〉+ αk
〈
T (xk) + vk, xk − zk

〉
≥ 〈T (xk) + vk, xk+1 − xk〉+ αkδ〈T (xk) + αku

k, xk − zk〉.
(4.18)

Next, Fact 2.3(iii) implies ‖xk − zk‖2 ≤ βk〈T (xk) + αku
k, xk − zk〉. Thus, combining with (4.18) yields

αkδ

βk
‖xk − zk‖2 ≤ αkδ〈T (xk) + αku

k, xk − zk〉

≤ −〈T (xk) + vk, xk+1 − xk〉 ≤ ‖T (xk) + vk‖ · ‖xk+1 − xk‖.
(4.19)

Choosing a subsequence (ik) such that the subsequences (αik )k∈N, (uik )k∈N, (βik )k∈N, (xik )k∈N and

(vik )k∈N converge to α̃, ũ, β̃, x̃, and ṽ, respectively (this is possible by the boundedness of these sequences).
Using (4.17) and taking the limit in (4.19) along (ik)k∈N, we get

lim
k→∞

αik‖x
ik − zik‖2 = 0. (4.20)

Now we consider two cases,
Case 1: lim

k→∞
αik = α̃ > 0. By (4.20), lim

k→∞
‖xik − zik‖2 = 0. By continuity of the projection, we have

x̃ = PC
(
x̃− β̃(T (x̃) + α̃ũ)

)
. So, x̃ ∈ S∗ by Proposition 2.10.

Case 2: lim
k→∞

αik = 0. Similar to the proof of Theorem 4.6, we also obtain x̃ ∈ S∗.

Thus, all accumulation points of (xk)k∈N are in S∗. �

Finally, by reasoning analogously to the proof of Theorem 3.13, we derive the convergence result.

Theorem 4.13 The sequence (xk)k∈N converges to x = PS∗ (x0).

5 An Example
In this section, we apply the proposed algorithms (with and without normal vectors) to an instance of
problem (1.1). We will see that the use of normal vectors to the feasible set might be beneficial.

Example 5.1 Let B := (b1, b2) ∈ R2 recall that the (clockwise) rotation with angle γ ∈ [−π/2, π/2] around
B is given by

Rγ,B : R2 → R2 : x 7→
[

cos γ sin γ

− sin γ cos γ

]
(x−B) +B,

We consider problem (1.1) in R2 with the operator T := R−π
2
,B
− Id where B := ( 1

2
, 1), and the feasible

set is given as
C :=

{
(x1, x2) ∈ R2 : x21 + x22 ≤ 1, x1 ≤ 0, x2 ≥ 0

}
.

Note that operator T is Lipschitz continuous with constant L = 2, but not monotone. Now we prove that
T satisfies (A2), i.e., Sdual = S∗. Let us split our analysis into two parts.
Part 1: (The primal problem has a unique solution). For x := (x1, x2) ∈ R2, consider the operator

T (x) :=

[
0 −1
1 0

]
(x−B) +B − x =

[
−1 −1
1 −1

]
x+

[
3/2
1/2

]
. (5.1)

We will show that the primal variational inequality problem (1.1), has a unique solution. Indeed, notice that
the solution (if exists); cannot lie in the interior of C (because T (x) 6= 0 for all x ∈ C); and also cannot lie
on the two segment {0} × [0, 1] and [−1, 0] × {0} (by direct computations). Thus, the solution must lie on
the arc Γ := {(x1, x2) ∈ R2 |x21 + x22 = 1, x1 ≤ 0, x2 ≥ 0}. Using polar coordinates, set x = (cos t, sin t) ∈ Γ,
t ∈ (π/2, π). Then,

T (x) =

[
− cos t− sin t+ 3

2
cos t− sin t+ 1

2

]
.

16



Since x∗ ∈ S∗ , the vectors x∗ and T (x∗) must be parallel. Hence,

− cos t∗ − sin t∗ + 3
2

cos t∗
=

cos t∗ − sin t∗ + 1
2

sin t∗

− sin t∗ cos t∗ − sin2 t∗ + 3
2

sin t∗ = cos2 t∗ − cos t∗ sin t∗ + 1
2

cos t∗
3
2

sin t∗ − 1
2

cos t∗ = 1

3√
10

sin t∗ − 1√
10

cos t∗ = 2√
10

sin
(
t∗ − arcsin( 1√

10
)
)

= 2√
10
.

Since t ∈ (π/2, π) for all x ∈ C, we have t∗ = π − arcsin( 2√
10

) + arcsin( 1√
10

) ≈ 2.7786. Then, the unique

solution is x∗ = (cos t∗, sin t∗) ≈ (−0.935, 0.355).
Part 2: (The primal solution is also a solution of the dual problem). Now, we will show that x∗ is a solution
to the dual problem and as consequence of the continuity of T and Fact 2.12 the result follows. If x∗ ∈ Sdual,
〈T (y), y − x∗〉 ≥ 0 for all y ∈ C. First, notice that ‖x∗‖ = 1 and

T (x∗) ≈
[
−1 −1
1 −1

] [
−0.935
0.355

]
+

[
3/2
1/2

]
≈
[

2.08
−0.79

]
≈ −2.22x∗.

So, we can write
T (x∗) = γ(−x∗) where 2 < γ ≈ 2.22. (5.3)

On the other hand, from (5.1), we can check that 〈T (y)− T (x∗), y− x∗〉 = −‖y− x∗‖2, ∀y ∈ R2. (This is
why T is never monotone!). It follows that 〈T (y), y − x∗〉 = 〈T (x∗), y − x∗〉 − ‖y − x∗‖2. Thus, it suffices
to prove

〈T (x∗), y − x∗〉 ≥ ‖y − x∗‖2 for all y ∈ C. (5.4)

Take y ∈ C, so ‖y‖ ≤ 1. we define z =
x∗ + y

2
. Then,

〈z, z − x∗〉 = 1
2
〈y + x∗, z − x∗〉 = 1

4
〈y + x∗, y − x∗〉 = 1

4
(‖y‖2 − ‖x∗‖2) ≤ 0,

implying that 〈z − x∗, z − x∗〉 = 〈z, z − x∗〉+ 〈−x∗, z − x∗〉 ≤ 〈−x∗, z − x∗〉. Combining the last inequality
with the definition of z, we get

0 ≤ ‖y − x∗‖2 = 4‖z − x∗‖2 = 4〈z − x∗, z − x∗〉 ≤ 4〈−x∗, z − x∗〉
= 2〈−x∗, y − x∗〉 < γ〈−x∗, y − x∗〉 = 〈γ(−x∗), y − x∗〉 = 〈T (x∗), y − x∗〉,

where we use (5.3) in the last inequality. This proves (5.4) and thus complete the proof. Consequently, T
satisfies (A2) and the unique solution of the problem is x∗ ≈ (−0.935, 0.355).

We now apply the proposed algorithms (with and without normal vectors) to the above problem. In
Figures 1–6 below, we show the first five iterations of sequences (yk)k∈N (generated without normal vectors)
and (xk)k∈N (generated with nonzero normal vectors). The performance suggests that our approach can

Figure 1: Variant B.1. Figure 2: Variant B.2.

be used in a hybrid scheme that takes advantage of normal vectors in early iterations.
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Figure 3: Variant B.3. Figure 4: Variant F.1.

Figure 5: Variant F.2. Figure 6: Variant F.3.

6 Conclusion
In this paper, we have proposed two conceptual conditional extragradient algorithms that generalize classical
extragradient algorithms for solving constrained variational inequality problems (VIP). The main idea is
to use nonzero normal vectors to the feasible set to improve the convergence. This approach uses two
different linesearches extending several known projection algorithms for VIP. These linesearches allow us to
find suitable halfspaces containing the solution set of the problem by using nonzero normal vectors of the
feasible set. It is well-known in the literature that such procedures are very effective in absence of Lipschitz
continuity exploiting most of the information available at each iteration to produce possibly long steplengths.
Convergence results are also established assuming existence of solutions, continuity and a weaker condition
than pseudomonotonicity on the operator enlarging the class of VIP that we can solve. This is a humble
attempt in targeting more efficient variants which may permit to find the optimal choice of normals on the
feasible set.

Several of the ideas of this paper merit further investigation, some of which would be presented in future
work. In particular, we are working on variants of the projection algorithms proposed in [6] for solving
nonsmooth variational inequalities. The difficulties of extending this previous result to point-to-set operators
are non-trivial, the main obstacle lies in the impossibility to use linesearches or separating techniques.
To the best of our knowledge, variants of the linesearches for variational inequalities require smoothness
of T : even for nonsmooth convex optimization problems (T = ∂f), it is not possible make linesearch
because the negative subgradients are not always descent directions. Actually, a few explicit methods
have been proposed in the literature for solving nonsmooth monotone variational inequality problems (see,
e.g., [14, 23]). Moreover, future work will address further investigation on the modified Forward-Backward
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splitting iteration for inclusion problems [4, 5, 39], exploiting the additive structure of the main operator
and adding dynamic choices of the stepsizes with conditional and deflected techniques [33, 16].
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