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1 Introduction

In this work, we present conditional extragradient algorithms for solving generally constrained variational
inequality problems by using nonzero normal vectors of the feasible set. Let T : dom(7) C R™ — R" be
an operator and let C C dom(7T) be a nonempty closed and convex set, the classical variational inequality
problem is formulated as

find z+« € C such that (T'(z«),z —zx) >0, VzeC. (1.1)

This problem unifies a broad range of optimization problems and serves as a useful computational framework
in very diverse applications. Indeed, (1.1) has been well studied and has numerous important applications
in physics, engineering, economics and optimization theory, see, e.g., [22, 27, 20] and the references therein.
It is well-known that (1.1) is closely related with the so-called dual problem of the variational inequalities,
written as
find z+ € C such that (T'(z),x —z«) >0, VzeC. (1.2)
We denote the solution set of (1.1) and (1.2) by S« and Squal, respectively. Throughout, our standing
assumptions are the following:

(A1) T is continuous on C.
(A2) Problem (1.1) has at-least one solution and all solutions of (1.1) solve the dual problem (1.2).

Note that assumption (A1) implies Squar € S« (see Fact 2.12 below). So, the existence of solutions of
(1.2) implies that of (1.1). However, the reverse assertion needs generalized monotonicity assumptions. For
example, if T is pseudomonotone then Sy C Sqyual (see [30, Lemma 1]). With this results, we note that (A2)
is strictly weaker than pseudomonotonicity of T' (see [29, Example 1.1.3] and Example 5.1 below). Moreover,
the assumptions Six # @ and the continuity of T are natural and classical for most of methods that solve
(1.1) in the literature. Assumption (A2) has also been used in various algorithms for solving (1.1) (see, e.g.,
31, 30]).

1.1 Extragradient Algorithm

Using projection-type algorithms is a popular approach for solving variational inequalities. Excellent surveys
on this topic can be found in [19, 29, 21]. One of the most studied algorithms is the so-called extragradient
algorithm, which was first appeared in [32]. For solving (1.1), projection methods have to perform at least
two projections onto the feasible region at each iteration, because the natural extension of the projected
gradient method (just one projection when 7' = V) fails in general for monotone operators (see, e.g., [8]).
Thus, an extra projection is necessary in order to establish the convergence. A general extragradient scheme
can be formulated as follows.
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Algorithm 1.1 (Extragradient Algorithm) Given ag, Bk, vx > 0.
Step 0 (Initialization): Take 20 € C.
Step 1 (Iterative Step): Compute

2 =2k - B T(ak), (1.3a)
y" = apPo (") + (1 — ax)a, (1.3b)
and ¢t = Pg (mk - 'ykT(yk)). (1.3¢)

Step 2 (Stopping Test): If z¢t! = zF, then stop. Otherwise, set k < k +1 and go to Step 1.

Next, we describe some strategies to choose the parameters ay, B and v in (1.3) (see, e.g., [19, 29]).

(a) Constant stepsizes: For each k, take 8 = v, where 0 < 8 < B < B < 400 and ay, = 1.

(b) Armijo-type linesearch on the boundary of the feasible set: Set ¢ > 0, and § € (0,1). For each k, take
ar =1 and B = 0279*) where

0 = min{ € N5 |T(@H) = T(PeRI) £ 1 ek = Pe)? )

and zM7 =k — 27T (z").

In this approach, we take v, = Sp. . R
(c) Armijo-type linesearch along the feasible direction: Set § € (0,1). For each k, take 0 < 8 < B < 8 <
+o0, and ap = 274 where

— min TR g P Ok p (k2
o) = {EGNwT( )t = o) = et - Po >||}, -

and zP¢=27Po(z) + (1 — 279",

(T(y*), 2% —y*)

17 ()12
We provide several comments to explain the differences between these strategies.

Strategy (a) was added to the extragradient algorithm in [32] and it is effective if T' is monotone and
globally Lipschitz continuous. The main difficulty of this strategy is the necessity of choosing Bi in (1.3a)
satisfying 0 < B < 8 < 1/L where the possibly unknown L is the Lipschitz constant of T'; therefore, the
stepsizes should be sufficiently small to ensures the convergence.

Strategy (b) was first studied in [28] under monotonicity and Lipschitz continuity of 7. The Lipschitz
continuity assumption was removed later in [24] by using feasible lineasearch. Note that this strategy requires
computing the projection onto C inside the inner loop of the Armijo-type linesearch (1.4). Thus, the need
to compute possible many projections at each iteration k makes Strategy (b) inefficient when an explicit
formula for P is not available.

Strategy (c) was presented in [25] which demands only one projection for each outer step k. This
approach guarantees convergence by assuming only the monotonicity of 7" and the existence of solutions of
(1.1), but not the Lipschitz continuity of T'.

In Strategies (b) and (c), the operator T" and the projection P are evaluated at least twice per iteration.
The resulting algorithm is applicable to the whole class of monotone variational inequalities. It has the
advantage of not requiring exogenous parameters. Furthermore, both strategies occasionally allow long
stepsizes by exploiting the information available at each iteration.

Extragradient-type algorithms is currently a subject of intense research (see, e.g., [1, 36, 38, 15, 8, 7, 4]).
Another variant of Strategy (c) was presented in [31] where the monotonicity was replaced by (A2). The
main difference is that, instead of (1.5), the scheme presented in [31] performs

Then, define v, =

£(k) := min {€ eN: <T(zk’z),zk — Pc(zk)> > 5(T(zk),xk — Pc(zk))} , (1.6)
and zFf =27'Po(2F) + (1 — 279",

where § € (0,1).

1.2 Proposed Schemes

The paper studies two conceptual algorithms, each of which has three variants. Convergence analysis for
both algorithms is established assuming weaker assumptions than previous work [33, 5]. Our scheme was



inspired by Algorithm 1.1 and the conditional subgradient method which was studied in [17] and further
developed in [33, 18].

Basically, each conceptual algorithm contains a linesearch step and a projection step. First, the linesearch
step allows to find a suitable halfspace separating the current iteration and the solution set. We will consider
two different linesearches: one on the boundary of the feasible set and one along a feasible direction. Second,
the projection step has three variants with different and interesting features on the generated sequence. We
also note that some of the proposed variants are related to [7, 25, 36]. An essential characteristic of the
conceptual algorithms is the convergence under very mild assumptions, like the continuity of the operator
T (see (A1)), the existence of solutions of (1.1), which also solve the dual variational inequality (1.2) (see
(A2)). We would like to emphasize that (A2) is less restrictive than pseudomonotonicity of 7" and plays a
central role in our convergence analysis.

The remaining of the paper is organized as follows. Section 2 provides notations and preliminary results,
in which we also prove the convergence of a natural extension of Algorithm 1.1 with nonzero normal vectors.
The convergence analysis of our conceptual algorithms together with two linesearches is given in Sections 3
and 4. In Section 5, we present an example showing that our suggested approach may perform better than
previous classical variants. Finally, some concluding remarks are given in Section 6.

2 Preliminaries

We begin with some basic notation and definitions, which are standard and follow [3]. Throughout, we
write p := ¢ to indicate that p is defined by g. The inner product and the induced norm in R™ are
denoted respectively by (-,-) and || - ||. We denote the nonnegative integers by N := {0,1,2,...} and the
extended-real line by R := R U {+co}. The closed ball centered at € R™ with radius p > 0 will be
denoted by Blz,p] := {y € R”: |ly — z|| < p}. The domain of a function f : R® — R is defined by
dom(f) := {x € R" : f(z) < +o0} and we say that f is proper if dom(f) # @. For any set G, cl(G) and
cone(G) respectively denote the topological closure and the conic hull of G. Finally, let T : R® =2 R™ be
an operator. Then, the domain and the graph of T" are given by dom(T) := {x € R™ : T'(z) # @} and
Gph(T) :={(z,u) e R" xR" : u € T'(z)}.

Definition 2.1 (normal cone) Let C be a subset of R™ and let x € C. A vector u € R™ is called a normal
to C at x if for ally € C, (u,y —x) < 0. The collection of all such normal u is called the normal cone of
C at z and is denoted by No(z). If x ¢ C, we define No(z) = @.

In some special cases, formulas for normal cone can be obtained explicitly, for example, polyhedral sets [33],
closed convex cones [11, Example 2.62], sets defined by smooth functional constraints [35, Theorem 6.14]
(see also [34, Theorem 23.7] and [11, Proposition 2.61]).

The normal cone can be seen as an operator, i.e., Ng : C C R® = R" : x — Ng(z). Recall that the
indicator function of C' is defined by ¢ (y) := 0, if y € C and +o00, otherwise, and the classical convex
subdifferential operator for a proper function f : R — R is defined by f : R® = R : = — 9f(z) :=
{ueR™: f(y) > f(z) + (u,y — x), Vy € R™}. Then, it is well-known that the normal cone operator can be
expressed as Ng = 06¢.

Fact 2.2 (See [13, Proposition 4.2.1(ii)]) The normal cone operator for C, N¢, is a mazimal monotone
operator and its graph, Gph(N¢), is closed, i.e., for every sequence (z, u*)pen C Gph(Ng) that converges
to some (x,u), we have (x,u) € Gph(N¢).

Next, recall that the orthogonal projection of z onto C, Pc(z), is the unique point in C' such that
|Pc(z) — z|| < ||z — y|| for all y € C. Some well-known facts about orthogonal projections are presented
below.

Fact 2.3 For all x,y € R"™ and all z € C, the following hold:
i) IPc(z) — PeW)|? < llz —ylI? = ||(z — Po(z)) — (y— Pc(y))||2 (a.k.a. firm nonexpansiveness).
(ii) (z — Po(x),z — Po(z)) < 0.
(i) Let x € C, y € R™ and z = Po(y), then (x —y,x — 2) > ||z — z||2.

Proof. (i) & (ii): See [40, Lemmas 1.1 and 1.2].
(ili): Using (ii), we have (x —y,xz —2) = (x — z,2 — 2) + {x — 2,2 — y) > |lz — z||°. |



Corollary 2.4 For all x,p € R" and o > 0, we have
z— Po(x —ap
z-Pelw=op) p+Nco(Pe(z — ap)).

Proof. Let z = z — ap, then the conclusion follows from z — Pc(z) € No(Pa(z)). |
Next, we present some lemmas that are useful in the sequel.

Lemma 2.5 Let H CR™ be a closed halfspace and C C R™ such that HNC # &. Then, for every x € C,
we have Punc(2) = Panc (P (z))-

Proof. If x € H, then © = Pync () = Punc (P (x)). Suppose that ¢ H. Fix any y € CNH. Since z € C
but = ¢ H, there exists v € [0,1), such that £ = vz + (1 — v)y € C Nbd H, where bd H is the hyperplane
boundary of H. Hence, (z — Py (z))L(z — Py (z)) and (Puync(x) — P (z))L(z — Py (x)), then
& - z||* = |& — Pu(2)|* + | — Pa ()|, (2.1)
and
|Prnc () — 2|* = [|[Punc(z) — Pu(@)|]” + ||z — Pu(2)]?, (2:2)
respectively. Using (2.1) and (2.2), we get
ly = Pu(@)|? > 1|12 — z||* = |2 - Pu(2)| + || Pu(z) - z||* > ||& — Pu(2)]*.
=1z = z||” = lz = Pu(@)|I> > ||Punc (@) — z||* = |z — Pu (@)l = ||Punc(@) — Pu(z)|.

So, |ly — Pu(z)|| > [|Punc(z) — Pg(x)|| for all y € CN H. Thus, Pync(x) = Ponm (P (z)). ]

Lemma 2.6 Let S be a nonempty, closed and convex set. Let z°,z € R™. Assume that z° ¢ S and
that S C W(z) = {y € R* : (y — 2,20 —2) < 0}. Then, z € B[%(a:o +E),%p}, where T = Pg(z%) and
p = dist(2°, ) := ||zo — Ps(x0)]|-

Proof. Since S is convex and closed, T = Pg(2°) and p = dist(z?, S) are well-defined. S C W (z) implies
that 7 = Ps(2%) € W(z). Define v := 3(zo +7) and r := 2¥ —v = 3(2° —7), then T — v = —r and
7l = 3)12° — Z|| = 1p. It follows that

-

0> (i—x,a:o—m):<§—v+v—m,x0—v+v—w>
=(—r+@=-2),r+@w—-2) =v—z|*—|r|*
So, € B[v,r] and the proof is complete. ]

Definition 2.7 (Fejér convergence) Let S be a nonempty subset of R™. A sequence (x*)rey C R™ is
said to be Fejér convergent to S if and only if for allx € S there exists ko € N such that ||zF ! —z| < ||zF—z||
for all k > ko.

Fejér convergence was introduced in [12] and has been elaborated further in [26, 2]. The following are useful
properties of Fejér sequences.

Fact 2.8 If (z*)ycn is Fejér convergent to S, then the following hold
(i) The sequence (xz*) ey is bounded.

(ii) The sequence (||z* — z||) converges for all x € S.

keN
(iii) If an accumulation point x4 belongs to S, then the sequence (xF)ren converges to ..

Proof. (i) and (ii): See [3, Proposition 5.4]. (iii): See [3, Theorem 5.5]. |
We recall the following well-known characterization of Sx which will be used repeatedly.

Fact 2.9 (See [19, Proposition 1.5.8]) The following are equivalent:
(i) = € S«.
(i) —T(z) € No(=).
(iif) For all B > 0, we have x = Po(x — BT (x)).

Proposition 2.10 Given T : dom(T) C R™ — R™ and o« > 0. If ¢ = Pc(x — a(T(z) + u)) for some
u € No(x), then x € Sk, or equivalently, * = Po(x — BT (z)) for all B > 0.



Proof. 1t follows from Corollary 2.4 that 0 € T'(z) + u + N (z), which implies that —T'(z) € N¢(z). The
conclusion is now immediate from Fact 2.9. |

Remark 2.11 It is quite easy to see that the reverse of Proposition 2.10 is not true in general.

The next result will be used to prove that all accumulation points of the sequences generated by the proposed
algorithms belong to the solution set of problem (1.1).

Fact 2.12 (See [10, Lemma 3]) If T : dom(T) C R™ — R" is continuous, then Squal C Sx.

Lemma 2.13 For any (z,v) € Gph(N¢) define H(z,v) := {y € R™ : (T'(z) + v,y — 2) < 0}. Then,
S« = Squal € H(z,v).

Proof. Sx = Squal by Assumption (A2) and Fact 2.12. Take z« € Sqyal, then (T'(z),z+—2z) < 0forall z € C.
Since (z,v) € Gph(N¢), we have (v, z«—2) < 0. Summing up these inequalities, we get (T'(z)+v, T+« —2) < 0.
Then, z« € H(z,v). |

In view of Lemma 2.13, Assumptions (A1) and (A2) imply that Squa = S«. Hence, the next result is
immediate.

Lemma 2.14 If T : dom(T) C R™ — R™ is continuous and Assumption (A2) holds, then Sk is a closed
and convex set.

2.1 Extragradient Algorithm with Normal Vectors

We now show that it is possible to incorporate normal vectors of the feasible sets into the extragradient
algorithm. As we will see below, this approach generalizes Algorithm 1.1 with Strategy (a). To proceed,
we assume that T is Lipschitz with constant L and (A2) holds.

Algorithm 2.15 (Extragradient Algorithm with Normal Vectors) Take (85)ren C [5, /3’] such that
0<B8<B<1/(L+1) and § € (0,1).

Step 0 (Initialization): Take z° € C' and set k < 0.

Step 1 (Stopping Test): If z* = Po(xF — BpT(x%)), then stop. Otherwise:

Step 2 (First Projection): Take u* € No(z¥) such that

k|| < 8llz — Po(a® — B (T (z") +u*))ll, (23)
2 = Po(a® = Be(T(a%) + u)). (2.4)

Step 3 (Second Projection): Take vk € No(2*) such that
[0 — ¥ < [l2* = 2. (2.5)

Set
F T = Po(a® = Bu(T (=) +vb). (2:6)

Set k < k+1 and go to Step 1.

Proposition 2.16 Algorithm 2.15 is well-defined.

Proof. Tt is sufficient to prove that if Step 1 is not satisfied, i.e.,
lz* — Po(z* — BT (z*))]| > 0. (2.7)

then Steps 2 and 3 are attainable.
Step 2 is attainable: Suppose that (2.3) does not hold for every au* € Ng(z¥) with a > 0, i.e., ||au®| >
§||z* — Po(xF — B (T(x*) + auF))|| > 0. Taking limit when « goes to 0, we get ||2* — Po(z* — B T'(z*))|| = 0,
which contradicts (2.7).
Step 8 is attainable: Suppose that (2.5) does not hold for every av® € Ng(2F) with a > 0, i.e., |Jav® —u®| >
lzF — 2||, where 2% = Pc(xF — 81, (T (2*) 4+ u*)) as (2.4) and u¥F € N (xF) satisfying (2.3). Letting o goes
to 0 and using (2.3), we get ||z* — 2F| < ||u*|| < §||z* — 2*||. So, ¥ = 2*. Then, Proposition 2.10 implies a
contradiction to (2.7). |
It is immediate from Proposition 2.10 that if the Stopping Test is satisfied for zj, then ¥ € Si. So we
investigate the remaining case that the Stopping Test is not satisfied for all z*. In this case, we will prove
that the algorithm generates an infinite sequence (z*)gen that converges to Si.



Lemma 2.17 Suppose that T is Lipschitz continuous with constant L. Let x+« € S«. Suppose also that
Stopping Test is not satisfied for ©¥. Then Step 4 generates zF1 and that

2 — 21 < fle® —aall® — (1= BR(L + 1?25 —2*|%.
Proof. Define w* = z¥F — B1,(T(2*) + v¥) with v* € Ng(2F) taken from Step 3. Then, using (2.6) and
applying Proposition 2.3(i), with = w® and y = x., we get
2 — 2 ? < — 24| = " = Po(w?))?
S lla? = 2w = B(T(") +0*)|12 = |la® — 2™+t = (T (2*) +")|1?
= [le* —@ull? = ||z* — 2 + 28T (F) + 0, 20 — 2*F1). (2.8)
Since v* € N¢(2¥) and (A2), we have

(D) + 0%, @s — ab 1) =(T(F) + 0, 2 — ab )

Substituting into (2.8) yields

lz* 4 = 2| Slla® = zal|? = fla® — 22 = 2B (T () + 0F, 21 = 2F)
k 2 k k2 k k+12
=lla® — zu|? — |lz® — 2F||2 — ||2* — 2"

+2(zF — B (T(2%) + vF) — 2F, oF T — 2k, (2.9)

z

Define T° = 2% — B (T(«F) + v*) with u* € Ng(2F) taken from Step 2 and recall that 2¥ = Po(z*) and
that 2Ft! = Po(w®) = Po(a® — B (T(2%) + v¥)), we have

2<mk—ﬁk (T(zk) + vk) — 2k gkl zk)
= 2(w" — Po (@), Po(w") — Po(@))
=2(@" — Po(@"), Po(w*) — Po(@")) + 2(w* — 7%, Po(w*) — Po(@"))
< 2(w* —z*, Po(w*) — Po(@))
= 2(w? — T, Pt — 2F) = 28, (T (&%) + uF) — (T(2F) + vF), 2F L — 2F)
< 28, (IT(F) — T+ lo* — ub])) b+ - )
<28k (L + 1)]|2F — ¥ |[la* T = 2% < BR(L + 1)?||2% — 2¥||? + ]2+ — 2F|12, (2.10)

using Proposition 2.3(ii), with = ¥ — B (T(z*) + ©*) and z = z¥*! in the first inequality, the Cauchy-
Schwarz inequality in the second one and the Lipschitz continuity of 7" and (2.5) in the third one. Finally,
the conclusion follows from (2.10) and (2.9). |

Corollary 2.18 The sequence (z*),en is Fejér convergent to Sx and klim |z% — «*|| = 0.
— 00

Proof. Tt follows from Lemma 2.17 and 8; < 8 < 1/(L + 1) that
2 — 2 )? < fla® — aul|? = (1= B2L2)||2" - a*|? < [l2* — =),
So, (x*)en is Fejér convergent to Si. Now Fact 2.8(ii) together with the above inequality imply klim l|zF —
—00

z*|| = 0. |

Proposition 2.19 The sequence (:Ck)keN converges to a point in Sk.

Proof. The sequence (z¥)ecy is bounded by Lemma 2.17 and Fact 2.8(i). Let # be an accumulation point
of some subsequence (xk)rey. By Corollary 2.18, # is also an accumulation point of (2% )gey. Without
loss of generality, we suppose that the corresponding parameters (8;, )xen and (u'*)en converge to B and
4, respectively. Since 2k = Po(a® — B (T (x*) + u*)), taking the limit along the subsequence (ix)xen, We
obtain & = P (% — B(T(Z) + @)). Therefore, Fact 2.2 and Proposition 2.10 imply & € S«. Finally, we apply
Fact 2.8(iii). |



3 Conceptual Algorithm with Linesearch B

In this section, we study a conceptual algorithm, in which we use a linesearch along the boundary of the
feasible set to obtain the stepsizes. Indeed, Linesearch B given below generalizes Strategies (b) by involving

normal vectors to feasible sets.

Linesearch B (Linesearch on the boundary)

with [va < M.

While a||T(za) — T(x) + ava — aul| > §||za — z|| do
a <+ Oa and choose any va € N (za) with [Jva| < M.
End While

Output: (o, za,va)-

Input: (z,u,0,8, M). Where z € C, u € N¢(x), o0 >0, € (0,1), and M > 0.
Set & = o and 6 € (0, 1) and choose u € N (z). Denote zo = Po(z—a(T(z)+au)) and choose va € No(2a)

We now show that Linesearch B is well-defined assuming only (A1), i.e., continuity of 7'

Lemma 3.1 Ifz € C and x ¢ S«, then Linesearch B stops after finitely many steps.

Proof. Suppose on the contrary that Linesearch B does not stop for all a« € P := {0,060,062,...} and the

chosen vectors

va ENG(2a), vl <M, 2o = Po(z — a(T(z) + au)).

We have
a||T(za) — T(z) + ave — aul| > d||za — ||

(3.1)

(3.2)

Next, divide both sides of (3.2) by a > 0 and let a goes to 0. Due to the boundedness of (vq)qecp and the

continuity of T, we obtain

0 = liminf | T(20) — T(z) + ave — aul > liminf 12—l
a—0 a—0 o
Using zo in (3.1), we have
.= Po(z — a(T(z) + auw)||
lim inf —o.
a—0 a

On the other hand, Corollary 2.4 implies

z — Po(z — o(T(z) + au))
a

> 0.

€ T(z) + au + No(Po(z — (T (z) + auw))).

(3.3)

From (3.3), the continuity of the projection and the closedness of Gph(N¢) imply 0 € T'(x) + N¢(z), which

is a contradiction since x ¢ Si.

Next, we present the conceptual algorithm, which is related to Algorithm 1.1 with Strategy (b) when

nonzero normal vectors are used. Here, we assume that (A1) and (A2) hold.

Conceptual Algorithm B Given o >0, § € (0,1), and M > 0.
Step 0 (Initialization): Take 20 € C and set k < 0.
Step 1 (Stopping Test): If ¥ = Po(zF — T(z*)), then stop. Otherwise,
Step 2 (Linesearch B): Take u* € N¢(zF) with ||u*|| < M and set
(ak,zk,vk) = Linesearch B (xk,uk,a, o, M),
ie., (o, 2%, v*) satisfies
v* € No(2F) with [oF|| < M, ap <o,

2F = Po(aF — ap(T(2%) + aut)),

Step 3 (Projection): Set 7% := agv* and zFt! .= Fp(zF).
Step 4: Set k < k+ 1 and go to Step 1.

akl|T(2*) = T(a*) + ap(v* — u®)|| < 8]z — 2"

(3.4a)
(3.4b)
(3.4¢)




We consider three variants of Fp in Step 3:

Foa(a®) =P (Py .k k) (")), (Variant B.1) (3.5)
Fp.o(z¥) :PCOH(zk,ik)(wk)7 (Variant B.2) (3.6)
TFB.3(2") =Ponu ok ohynw @) (0, (Variant B.3) (3.7)
where
H(z*,5%) = {y € R" : (T (%) + *,y — 2F) <0}, (3.8a)
and W(z*) = {y e R": (y — 2F, 2" — 2*) < 0}. (3.8b)

These halfspaces have been widely used in the literature, see, e.g., [9, 37, 5] and the references therein.
Our goal is to analyze the convergence of these variants. First, we start by showing that the algorithm is
well-defined.

Proposition 3.2 Assume that Fp(z*) is well-defined whenever z*

gorithm B is also well-defined.

is available. Then, Conceptual Al-

Proof. If the Stopping Test is not satisfied, then Step 2 is attainable by Lemma 3.1. So the algorithm is
well-defined. |

Proposition 3.3 z* € S, if and only if x* € H(2*,7*), where zF and T* are obtained in Steps 2 and 3,
respectively.

Proof. If z* € S, then z* € H(
Ne(zF) and wP = 2% — ap (T(2*

) by Lemma 2.13. Now suppose that 2 ¢ S.. Define @* = azu® €
k). Then,

\-/N
ﬁl @\

ap(T(2%) + 7% 2 — 2F) = ak(T(zk) —T(z*) +Ek — P 2k — 2P 4+ o (T(2F) + ¥, zF — 2F)
= ap(T(zF) = T(2*) + T° — @*, 2% — 2F) + (&F — W, 2% — 2F)
> —ay||T(z") - T(«) +5k —aF|| - [|lz* = 2F |+ Jl2* - 2F|J?
e i e e e ] i (3.9)

where we have used Linesearch B and Fact 2.3(iii) in the second inequality. It follows that z* ¢ H(z* w*)
by the definition of H(z*,7*).

Let (2F)pen, (2F)ren and (ag)ren be sequences generated by Conceptual Algorithm B and suppose
that zF ¢ S,. Using (3.9), we obtain a useful algebraic property

1-6
VkeN: (T(z*) +7"° ok — 2F) > !kafzkHQ. (3.10)
ag

Proposition 3.4 If Stopping Test is not satisfied at ¥, then Conceptual Algorithm B generates z*+1 #
k
z.

Proof. Suppose on the contrary that z**1 = z¥. Consider three cases.
If Variant B.1 is used, then zFt! = Pg (PH(ijk)(xk)) = 2*. Then Fact 2.3(ii) implies

(PH(zkjk)(xk) —zk -2k = (PH(Zk’ﬂk)(a}k) — gl 2 — gkt <o, (3.11)
for all z € C. Using again Fact 2.3(ii),
Vz e H(ZF W) 0 (Pyor giny (@) — 2%, Py e gy (@) — 2) <. (3.12)
Note that 2* € C N H(2*,7*) # @. So, setting 2 = 2" and summing up (3.11) and (3.12), we obtain
||z — Pry ok oy (@ E)||?2 = 0. Hence, zF = = Py(k gk (T zF), ie., zF € H(2*,7%).
If Variant B.2 is used, then z* = Porp(:k ’vk)(:ck) =zF. So z¥ € H(ZF,7F).
If Variant B.3 is used, then mk""l = Pan(zkjk)mW(zk)(mO) =2F. So zF € H(2F,7%).
Hence, in all cases, we have showed that z* € H(z*,7*), which implies z* € S, by Proposition 3.3. By
Fact 2.9, we get 2% = Po(z* — T(x*)), i.e., Stopping Test is satisfied at ¥, a contradiction. [ ]
In view of Proposition 3.4, we will only examine the case that Stopping Test is not satisfied for all z*.

In this case, Conceptual Algorithm B generates an infinite sequence (ack)keN such that z* ¢ S, for all
keN.



3.1 Convergence Analysis of Variant B.1

We consider the case Variant B.1 is used and the algorithm generates an infinite sequence (z*)yen such
that x* ¢ S, for all k € N. Note that by Lemma 2.13, H(z*,5*) is nonempty for all k. Thus, the projection
step (3.5) is well-defined, so is the whole algorithm.

Proposition 3.5 The following hold:
(i) The sequence (x*)ren is Fejér convergent to Si.
(i) The sequence (z*)pen is bounded.
(iii) klirr;o(T(zk) +3* 2k — 2Fy = 0.

Proof. (i): Take x« € S«. Note that, by definition (2¥,7%) € Gph(N¢). Using (3.5), Fact 2.3(i) and Lemma
2.13, we have

a5+ — 2|2 = [|Pe (P ok o) (@) = PPy o ooy (@)1
||PH(zk,ik)($k) - PH(zk,ﬁk)(x*)Hz (3.13)
< 2 = zall® = 1Py ok gry (@F) — a® | < fl2® — 22

(ii): Follows from (i) and Fact 2.8(i).

IN

K <T(zk) + ok, 2k — zk> (T(Zk) —‘,—fk). Then (3.13)

(iii): Take xz« € S« and notice that PH(zkﬂTk)(a:k) =

- IT(F) + 02
yields
2
T(zF) + ok, 2k — 2F)
k+1 2 k 2 k < ) ky | —k k
T —x <||z" — x — ||z" — TE°)+0") —x
|| AP < et = TGn Lo (TE )
:ka H2 _ ((T(Zk)“i’akvxk 7Zk>)2
T(z%) +o*||2
It follows that X . oo
T _
LD EDLT =20 ok g2 2541 — g2, (3.14)

[T (=F) + 5% |12

Since T and the projection are continuous and (z*)cy is bounded, (2*)ecn is bounded. The boundedness

of (||T(z*) +ikH)keN follows from (3.4). Using Fact 2.8(ii), the right hand side of (3.14) goes to 0, when k

goes to co. Then, the result follows. ]
Next we establish the main convergence result for Variant B.1.

Theorem 3.6 The sequence (mk)keN converges to a point in Ss.

Proof. By Fact 2.8(iii), we show that there exists an accumulation point of (z k)keN belonging to S«. First,
(z*)ken is bounded due to Proposition 3.5(ii). Let (z°k)gen be a convergent subsequence such that (u’k )keN,

(v ) ken, and (o), )ken also converge. Set hm 'k = T, kli)m ulk = q, klim v = ¥ and klim o'k = a.
o0 oo oo

Using Proposition 3.5(iii), (3.10), and takmg the limit as k — oo, we have

) o 1— )
0= lim (T(2%) + %,z — z%k) > ( z ) m |zt — 2|2 > 0.
k—oo
This implies ) )
lim ||z** — 2*%| = 0. (3.15)
k— o0

Now we consider two cases:
Case 1: lim noaq, = & > 0. From (3.4), the continuity of T and the projection, and (3.15), we have

Z= lim ' = lim 2% = P¢ (z — a(T(z) + a&a)). So & € S« due to Proposition 2.10.

k—oo T koo

Case 2: lim «a;, = & = 0. Define ay, : 0’“‘, then lim &;, = 0. So we can assume &;, does not satisfy
k— o0 k—o0

Armijo-type condition in Linesearch B, i.e.,

8|z *w”cll

IT(z ) — T(a'®) + a;, 0% — &, u'*|| >
Qi

(3.16)



where 7% € N (z%) and 2k = Po(zi* — &;, (T(x'*) + &, u’*)). The left hand side of (3.16) goes to 0 by
the continuity of 7" and Po. So, ‘ )
N |
lim - =
k— o0 Qe

0. (3.17)

By Corollary 2.4, with z = 2%, a = &;, and p = T'(z’*) + &;, u’*, we have
Tk — 3k ) . »
———— € T(z") 4+ as u'* + No(2'F).
G,

Taking the limits as k — oo and using (3.17), the continuity of T and the closedness of Gph(N¢), we obtain
0 € T(&) + N¢(Z), thus, T € S.. |

3.2 Convergence Analysis of Variant B.2
We consider the case Variant B.2 is used and the algorithm generates an infinite sequence (z*)yen such

that =¥ ¢ S for all k& € N.

Proposition 3.7 The sequence (z*)ycn is Féjer convergent to Sx. Moreover, it is bounded and klim [|l*+t—
—00

= = 0.
Proof. Take x4 € S«. By Lemma 2.13, z, € H(z*,7*), for all k € N. Moreover z. € C implies that the

projection step (3.6) is well-defined. Next, using Fact 2.3(i) for two points 2*, x, and the set C'N H(z*,w"),
we have

2 — 2] < fle® — aal® — [l — 2|2 (3.18)
So, (zF) ey is Féjer convergent to Si. Hence, (x)xen is bounded by Fact 2.8(i). Taking the limit in (3.18)
and using Fact 2.8(ii), we obtain the conclusion. |

The next proposition shows a connection between the projection steps in Variant B.1 and Variant
B.2. This fact has a geometry interpretation: in Variant B.2, z* is projected onto a smaller set, thus, it
may improve the convergence.

Proposition 3.8 The following hold
(i) 2 = Ponp ok ohy (Prr ok ooy (29)).
(i) lim (T(z*) 4+ 5%, 2% — 2*) = 0.
k— o0
Proof. (i): Since z* € C but z* ¢ H(2*,7*) and C' N H}, # @, the result follows from Lemma 2.5.

(ii): Take z+ € S«. Notice that z*t! = Ponp(z+ 5;@)(Jc’“) and that projections onto convex sets are firmly-
nonexpansive (see Fact 2.3(1)), we have

o+ = 2|2 = fla* = @al]® = ]2+ = 2FP? < ok = 2al|? = [Py ok gy (@) — 2F]2,

The remainder of the proof is analogous to Proposition 3.5(iii). |
Finally we present the convergence result for Variant B.2.

Proposition 3.9 The sequence (z)yen converges to a point in Si.

Proof. Similar to the proof of Theorem 3.6. ]

3.3 Convergence Analysis of Variant B.3

We consider the case Variant B.3 is used and the algorithm generates an infinite sequence (xk)keN such
that z* ¢ S, for all k € N. Observe that C'N H(2*,5%) N W (2*) is a closed convex set. So, the algorithm is
well-defined if this set C N H(zF,5%) N W (z*). The following lemma guarantees its non-emptiness.

Lemma 3.10 For all k € N, we have Sy C C N H(zF, %) N W (x*).
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Proof. We proceed by induction. By definition, @ # S. C C. By Lemma 2.13, S. C H(z*,3*) for all
k. Since W(z?) = R™, we have S. C H(2°,7°) N W (z®). Assume that S. C H(z*,5*) N W(z*). Then,
zhtl = Pan(zk,Eka(zk)(xo) is well-defined. By Fact 2.3(ii), we obtain (z, — zF+1 20 — xF+1) <0 for
all z. € Sx. This implies z» € W(xzFT1). Hence, Sx. C H(zF*t1,55+t1) N W (xzF*!). Then, the conclusion
follows by induction principle. |

Before proving the convergence of the sequence (:L‘k)keN, we study its boundedness. The next lemma
shows that the sequence remains in a ball determined by the initial point.

Lemma 3.11 LetZ = Pg, (z°) and p = dist(x°, Sx). Then (z*)reny C B [%(zo +7T), %p] NC, in particular,
(xF)pen is bounded.
Proof. By Lemma 3.10, we have S. C H(z*,5*) N W (z*) for all k. Using Lemma 2.6, with S = S, and

x = z*, we obtain z* € B [%(mo + ), %p] for all k& € N. Finally, notice that (z*)zen C C. ]
Now, we focus on the properties of the accumulation points.

Proposition 3.12 All accumulation points of (z*)ren belong to Sx.

k

Proof. Since W (z*) is a halfspace with normal 20 — ¥, we have z¥ = PW(xk)(a:O). So by the firm non-

expansiveness of Py, k) (see Fact 2.3(i)) and k1 € W(x¥), we have
[ N e o AR
Thus, (||2* —2°||)xen is monotone and nondecreasing. Moreover, by Lemma 3.11, (||z* —z°||) ey is bounded,

thus, converges. It follows that
lim ||zt — 2F|| = 0. (3.19)
k—oo

Since zF+1 € H(2%, %), we get (T'(2F) + 5", zF+1 — 2F) < 0, where 2* and T* are obtained in Steps 2 and 3,
respectively. Combining with (3.10), we obtain

0> (T(2F) + 7%, P+t —2F) 4 <T(zk) + 7%, 2k — zk>

1-6
> —|IT(*) + 0| - [|]2* T — ¥ + ——la* - 2F||%.
g
Using (3.4) and some simple algebra,
la* = M7 < 7S ITER) + 70 - b - oF). (3.20)

By the boundedness of (©*)ren and (zF)ren, we can choose a subsequence (ix)ren such that (@, )ken,
(2**)pen, and (T*k )pen converge to &, &, and ¥, respectively. Taking the limits in (3.20) and using (3.19),

we get lim ||z'* — 2°%||2 = 0. Consequently, Z = lim 2%. Now we consider two cases:
k—o0 k—o0

Case 1: lim «;, = & > 0. By (3.4) and the continuity of the projection, & = lim 2 = Po (:E —a(T(@)+
k—oo k—oo

dﬁ)) and hence by Proposition 2.10, & € S..
Case 2: klim ay,, = & = 0. This case is similar to the proof of Theorem 3.6. ]
— o0

Finally, we prove that (z*),cn converges to the solution closest to z9.

Theorem 3.13 The sequence (z¥)en converges to T = Ps, (x0).

Proof. First, # is well-defined due to Lemma 2.14. Tt follows from Lemma 3.11 that (z*)ren C B [% (2% +73), %p] n
C where p = dist(2°, Sx), so it is bounded. Let (z%)icn be a subsequence of (zF)ren that converges to
%. Then, £ € B [%(330 +Z), %p] N C. Furthermore, £ € S, due to Proposition 3.12. So, £ € S N
B [%(mo + ), %p] = {Z}. Thus, T is the unique accumulation point of (z*)ren. Hence, (zF)ren converges
to T € Sk. |

4 Conceptual Algorithm with Linesearch F

As mentioned before, the disadvantage of Linesearch B is the necessity to compute the projection onto the
feasible set within the inner loop to find the stepsize a. To overcome this, we propose the second conceptual
algorithm that uses a linesearch along feasible directions.

We further note that in Linesearch F below, if we set u = 0 € N¢(z), then the projection step is done
outside the While loop.

11



Linesearch F (Linesearch along the feasible direction)

Input: (z,u, 3,6, M). Where z € C, u € N¢(z), B3>0, 6 € (0,1), and M > 0.
Set aw < 1 and 6 € (0,1). Define zo = Po(x — 8(T(x) + au)) and choose u € N¢g(z), v1i € No(z1) with
o] < M.
While (T'(aza + (1 — @)x) + Vo, T — 20) < 8{T'(z) + au, z — 24) do
a < Ba and choose any vo € No(aza + (1 — a)z) with |lva| < M.
End While
Output: (@, za,Va).

Again, Linesearch F is also well-defined assuming only (A1), i.e., continuity of 7.

Lemma 4.1 Ifz € C and x ¢ S, then Linesearch F stops after finitely many steps.

Proof. Suppose on the contrary that Linesearch F does not stop for all o € P := {1,6,62,...} and that
va ENc(aza + (1 —a)z), ||Jvall <M, za=Pc(z—B(T(z)+ ou)). (4.1)
We have
(T(aza + (1 — @)x) + va, T — za) < (T (x) + au,x — za)- (4.2)
By (4.1), the sequence (vq)aep is bounded. Thus, without loss of generality, we can assume that it converges
to some vg € Ng(z) (by Fact 2.2). The continuity of the projection operator and the formula of zo in

(4.1) imply that (za)aep converges to zo = Pc(xz — BT(x)). Taking the limit in (4.2) as o — 0, we get
(T(x) + vo,x — z0) < 6(T(z),x — 2z0). It follows that

1-46
02 (1= )(T(@)a = 50) + (o0, = 50 2 (1= )T (@) = 20) = T o =0l
So, z = 20 = Po(xz — BT (x)), i.e., z € S«, a contradiction. |

Next, we present the conceptual algorithm, which is related to Algorithm 1.1 with Strategy (c) when
nonzero normal vectors are used. Here, we assume that (A1) and (A2) hold.

Conceptual Algorithm F Given (8;)ken C [3,8] 0 < 8 < 8 < 400, § € (0,1), and M > 0.
Step 0 (Initialization): Take z° € C and set k <+ 0.

Step 1 (Stopping Test): If z* = Po(x* — T(2*)), then stop. Otherwise,

Step 2 (Linesearch F): Take u* € No(2*) with ||u”| < M and set

(ag, 2, 7%) = Linesearch F (z*, u”, 8,8, M), (4.3)
i.e., (ag,2”,7*) satisfies
o € No(apz® + (1 — ag)z®) with ||o%]| < M, aj < 1, (4.4a)
2 = Po(a — B(T(a*) + apu®)), (4.4b)
(T(az* + (1 — ag)z®) 4+ 0%, 2% — 2%) > (T (a®) + apu®, =k — 2F). (4.4¢)

Step 3 (Projection): Set T := apz® 4+ (1 — ag)2z® and zF+! .= Fp(zF).
Step 4: Set k <— k+ 1 and go to Step 1.

We also consider three variants of Fr in Step 3:

Fr.1(2%) =Po (Py gk iy (29)), (Variant F.1) (4.5)
Fi.2(2*) =P e oy (2), (Variant F.2) (4.6)
Fr.3(2%) =Ponm e ohynw @k) (°); (Variant F.3) 4.7
where, similar to (3.8),
H(@" o%) = {y e R . (T(@F) + 3",y — T*) <0}, (4.8a)
and W(zF) = {y € R" : {y — 2F, 20 — 2*) < 0}. (4.8Db)

Now, we analyze some general properties of Conceptual Algorithm F'.
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k

Proposition 4.2 Assuming that Fp(z*) is well-defined whenever z* is available. Then, Conceptual

Algorithm F is well-defined.

Proof. If Step 1 is not satisfied, then Step 2 is guaranteed by Lemma 4.1. Thus, the entire algorithm is
well-defined. ]

Proposition 4.3 zF € S. if and only if z* € H(T*,T*) where ©* and T* are given in Steps 2 and 3,
respectively,

Proof. If ¥ € S., then z* € H(z*,7*) by Lemma 2.13. Conversely, suppose z* ¢ H(z*,T%), (T(z*) +

ok zk — Ek) < 0. Using the definitions of o, and T in Steps 2 and 3, we have

0> (T(Z*) + 7%, 2% — 2*) = ap (T(@") + T°, 2 — 2%) > ak5<T(xk) + agpuf, o* — zk>.
From the definition of z* in Step 2, we derive

apd apd
apd(T(z") + apu®, ok — 2%y > %sz —2*|2 > 7?\\1’@ - 2F|12.
k

It follows that 0 > ||z* — 2%|2, i.e., z¥ = 2*. Now from Proposition 2.10, we conclude x* € S.. |

Let (zF)ren and (ax)ren be sequences generated by Conceptual Algorithm F and suppose that
z% ¢ S.. From the proof of Proposition 4.3, we obtaina useful algebraic property

s
VkeN: (T@")+7" " —7%) > ‘%ﬁnxk — 272, (4.9)

Proposition 4.4 If Stopping Test is not satisfied at ¥, then Conceptual Algorithm F generates z*+1 #
k
z®.

Proof. Suppose on the contrary that z**1 = ¥, Consider three cases.
If Variant F.1 is used, then z**1 = Pg (PH(Ek’ik)(xk)) = . So Fact 2.3(ii) implies

Vze C: (PH(jkﬁk)(mk) —zF z—zF) <o. (4.10)

Again, using Fact 2.3(ii),
Vz € H(Z*,o"): (PH(Ekjk)(xk) — xk,PH(Ekﬁk)(xk) —2z) <0. (4.11)

Note that @ # S. C C N H(z*,T") by Proposition 4.3. So, taking any z € C' N H(Z*,7*), then adding up
(4.10) and (4.11), we derive ||z* — PH<Ekjk>(a:k)\|2 = 0. Hence, z* = PH@;@jk)(xk), ie., z* € H(T*®, o*).
If Variant F.2 is used, then zF+! = Por g+ jk)(xk) =z, So ¥ € H(@*,o").
If Variant F.3 is used, then zFt1 = PCQH(Ekjk)mW(Ik)(xO) =2z*. So zF € H(Z*,v").
Hence, in all cases, we have showed that =¥ € H(Z*,*), which means =¥ € S, by Proposition 4.3. By
Fact 2.9, we get 2* = Po(z® — T(x*)), i.e., Stopping Test is satisfied at ¥, a contradiction. ]
In view of Proposition 4.4, we will again examine only the case that Stopping Test is not satisfied for

all zF. In this case, Conceptual Algorithm F generates an infinite sequence (x*)gen such that = ¢ S,
for all k € N.

4.1 Convergence Analysis of Variant F.1

We consider the case Variant F.1 is used and the algorithm generates an infinite sequence (z*)gey such
that 2* & S, for all k € N. Note that by Lemma 2.13, H(Z",T*) is nonempty for all k. Then, the projection
step (4.5) is well-defined and so is the entire algorithm.

Proposition 4.5 The following hold:
(i) The sequence (xF)pen is Fejér convergent to Si.
(ii) The sequence (zF)pen is bounded.
(iii) kgmw(T(zk) +3°, 2k —FF) = 0.
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Proof. (i): Take x € S«. Note that, by definition (z*,7*) € Gph(N¢). Using (4.5), Fact 2.3(i) and Lemma
2.13, we have

[ — 212 = ([P (Pyg gty (25)) — Po(Prg sty (@)1
< ”PH(E’“,F’“)(‘Tk) = Pz ,Fk)(x*)HQ (4.12)
< e® = 2all2 = | Pyt iy () — 5| < [l — a2, (4.13)
(ii): Follows immediately from ((i)) and Fact 2.8(i).

e {T@ "~ ) k) 4 o), (412), and the

(iii): Take z+ € Sx. Using PH(Ek,Ek)(a:k) =z

IT(@*) + 7|2
definition of Z* in Step 3, we derive
2
T(zF) + oF, 2k — zF
1 P < et o~ T T (1t ) e
— ||.’Ek — H2 _ <’T(Ek)4>i ) L 7§k>2
IT(@"*) + 3|2

(T(@) + 7", ok — 72

It follows that < Jl2® — 2o = ||l — 242 = 0. By Fact 2.8(ii), the right

IT@@"*) + 7|2
hand side goes to zero as k — oco. Since T is continuous and (z*)ren, (2¥)ren and (Z¥)ren are bounded,
(1T =*) + vk||) is also bounded. So the conclusion follows. |

Next, we estzﬁahsh our main convergence result for Variant F.1.

Theorem 4.6 The sequence (z¥)ren converges to a point in Sx.

Proof. By Fact 2.8(iii), we show that there exists an accumulation point of (z*)zen belonging to S..
First, (z*)ren is bounded due to Proposition 4.5(ii). Let (2% )ren be a convergent subsequence of (x k)keN

such that, (%), (W), (u'*), (o, )ken, and (B, )ken also converge. Set hm = 7, hm u't = 4,
—00 k— o0

khm aj, = &, and hm sz B. Using Proposition 4.5(iii), (4.9), and takmg the limit as k — oo, we derive
— 00

0= lim (T(z') +u"”k,ac”€ —Z'%) > lim %6\\‘%% — 2% |2 > 0. Therefore,
k— o0 k— o0 ﬁ
lim oy, ||z — 2% = 0. (4.14)
k— o0

Now we consider two cases.

Case 1: lim aik =& > 0. From (4.14), the continuity of 7" and the projection, we obtain & = klim z'k =
— 00

lim z% = PC (& — B(T(&) + &u)). So, & € S« by Proposition 2.10.

k— o0
. ~ ~ [e%3 . ~ ~ .
Case 2: lim «;, = @ = 0. Define &;, = —&. Then, lim &;, = 0. So we can assume &;, does not satisfy
k—oo F k o T koo K k

Armijo-type condition in Linesearch F, i.e.,
<T(gik) 1ok, gk 2%> < (T (2'%) + duy u'e, 'k — 5ik), (4.15)

where gt = G;, 2% + (1 — &y, )z, 2k = Po(a® — B;, (T(a'*) + &;, u'*)), and 9% € N¢(g'*) with

|5% || < M. Hence, §°* — %. Next, taking a subsequence without relabeling, we assume that khm ok = 3.
— 00

So ¥ € N¢ (%) by Fact 2.2. Moreover, klggo P =z = Po (% — BT( %)) by the continuity of T’ and Pc. Thus,
passing to the limit in (4.15), we get (T(Z) + 9,% — 2) < 6(T(Z), % — Z). It follows that
0> (T(z)+9v,2— %) —6T(%),z— %)
=1 -6T(&),&—2)+ (8,8 —2) > (1 - 0)}(T(&),% — %)

=00 G- pra)E-5> “‘%‘”nisfzuz > “%ch*sn? >0,

This means & = Z, which implies & € S,. |
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4.2 Convergence Analysis of Variant F.2

We consider the case Variant F.2 is used and the algorithm generates an infinite sequence (z*),ecn such
that z* ¢ S, for all k € N.

Proposition 4.7 The sequence (z*) ey is Féjer convergent to S«. Moreover, it is bounded and klim ||xk+1f
—00

=k = 0.

Proof. Take x« € Sx C C. By Lemma 2.13, z. € H(z®,o*) for all k. So, the projection step (4.6) is
well-defined. Then, using Fact 2.3(i) for the projection operator PH(E’C k), We obtain

k+1 2 k 2 k+1 k)2 k 2
27t — 2 |? < fla® = za)l? = (]2 = 2®? < fla® — 2.2 (4.16)

So (x*)en is Féjer convergent to Si. Thus, by Fact 2.8(1)&(ii), (z*)ren is bounded and thus (Uzk —Z4||)ken
is a convergent sequence. By passing to the limit in (4.16) and using Fact 2.8(ii), we get klim |zt —*|| = 0.
—00

|
Again, in Variant F.2, z* is projected onto a smaller set than in Variant F.1, the former variant may
improve the convergence.
Proposition 4.8 Let (mk)keN be the sequence generated by Variant F.2. Then,
(i) 2 = Pon g ok (P e o0y (@)
(i) lim (T(@*) + 7%, 2% —7*) = 0.
k— o0

Proof. (i): Since z* € C but z* ¢ H(Z*,v*) and C N Hy # @, by Lemma 2.5, we have the result.
(ii): Take x. € S«. Notice that x*+1 = Ponp(z 5k>(a:k) and that projections onto convex sets are

firmly-nonexpansive (see Fact 2.3(i)), we have
k+1 2 k 2 k+1 k|2 k 2 k k12
28 — 2|2 < fla® = 2|2 = (|28 = 282 < la® = 2|2 = 1Py g gry () — 212

The rest of the proof is analogous to Proposition 4.5(iii). |

Proposition 4.9 The sequence (zF)en converges to a point in Si.

Proof. Similar to the proof of Theorem 4.6. ]

4.3 Convergence Analysis of Variant F.3

It is easy to check that C'NH(Z*,5*)NW (z¥) is a closed convex set for each k. So, if CNH(Z*,5%) W (z*)
is nonempty, then the next iterate *t1 is well-defined. The following lemma, whose proof is similar to
Lemma 3.10, guarantees the non-emptiness.

Lemma 4.10 For all k € N, we have Si C C' N H(ZT*,7%) N W (zF).

Proof. We proceed by induction. By definition, & # S. C C. By Lemma 2.13, S, C H(zZ*,w*), for all
k. Since W(z%) = R”, we have Sx C H(@°,7°) N W(z0). Assume that S. C H(Z*,v*) N W(z*). So
zhtl = PCmH(Ek,?k)nW(zk)(‘TO) is well-defined. Then, by Fact 2.3(ii), we have (x, — zFt1 20 — zF+1) <0
for all . € Si. This implies . € W (z**1), and hence, S, C H(zFt!,5F+t1) N W(zk+1). Thus, the
conclusion follows by induction principle. ]
The next lemma shows that the sequence (z*)jcy remains in a ball determined by the initial point.

Lemma 4.11 LetZ = Pg, (z°) and p = dist(x°, Sx). Then (z*)ren C B [%(zo +7), %p] NC, in particular,
(x*)ken is bounded.

Proof. Tt follows from Lemma 4.10 that S« C H(Z*,7*) N W (2*), for all k € N. The remaining argument is
similar to the proof of Lemma 3.11. ]

Theorem 4.12 All accumulation points of (x*)gen belong to Si.
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Proof. Since W (z¥) is a halfspace with normal z0 — z*

, we have zF = PW(xk)(mO). So, by the firm
nonexpansiveness of Py, (k) and 2kt € W(a®), we have ||zFT1 —2#||2 < ||a*+1 — 292 — ||z* — z0||2. Thus,
(|z* — 2°|))gen is monotone and nondecreasing. Moreover, by Lemma 4.11, (||z* — 2°||)rey is bounded,
thus, converges. It follows that
lim ||zt — 2F|| = 0. (4.17)
k—oo

Since zF+1 € H(z*,T%), we get 0 > (T'(Z*) +v", 2*+1 —FF), where 7* and T are obtained in Steps 2 and 3,
respectively. By the formulas of Z* in Step 3 and (4.4c), we derive

0 > (T(@*) + 7%, 2"+ — %) + g (T(FF) + 7%, 2% — 2F)

(4.18)
>(T@E") + 7%, zF ! — 2P) + 0 8(T (=) + apu, z* — 2).

Next, Fact 2.3(iii) implies ||z* — 2|2 < Bp(T(2*) + agu®, 2 — 2*). Thus, combining with (4.18) yields

)
ai”ack — zkHz < ock5<T(a:k) + apuP, b — zk)

B (4.19)
< —(T@) + 0,2 —2F) <|IT(@*) + 3% - ]2 — ¥

Choosing a subsequence (i) such that the subsequences (a;, )ken, (u'* ) ken, (Biy ) ken, (z** ey and
(9% )en converge to &, @, B8, #, and ¥, respectively (this is possible by the boundedness of these sequences).
Using (4.17) and taking the limit in (4.19) along (ig)ken, we get

lim a, [lz' — 2% % = 0. (4.20)
k— o0

Now we consider two cases, ) )
Case 1: lim «o; = & > 0. By (4.20), lim [z'F — 2'F |2 = 0. By continuity of the projection, we have
k—oo k—o0

& = Po(& — B(T(2) + &a)). So, # € S« by Proposition 2.10.
Case 2: klim ay,, = 0. Similar to the proof of Theorem 4.6, we also obtain Z € S..
— 00

Thus, all accumulation points of (z*)xecn are in S.. ]

Finally, by reasoning analogously to the proof of Theorem 3.13, we derive the convergence result.

Theorem 4.13 The sequence (z¥)en converges to T = Ps, (x0).

5 An Example

In this section, we apply the proposed algorithms (with and without normal vectors) to an instance of
problem (1.1). We will see that the use of normal vectors to the feasible set might be beneficial.

Example 5.1 Let B := (b1, b2) € R? recall that the (clockwise) rotation with angle v € [—m/2,7/2] around
B is given by

cosy sinvy

Rop:R2S Rz z — B) + B,
Y

—siny cosvy
We consider problem (1.1) in R? with the operator T := R_x p —Id where B := (%, 1), and the feasible
5

set is given as
C = {(:vl,xz)E]R2: w%-{—x%ﬁl, z1 <0, xQZO}.

Note that operator T is Lipschitz continuous with constant L = 2, but not monotone. Now we prove that
T satisfies (A2), i.e., Squal = Sx. Let us split our analysis into two parts.
Part 1: (The primal problem has a unique solution). For x := (x1,22) € R2?, consider the operator

T(z) = {(1) _01} (¢—B)+B—a— {‘11 :ﬂ o+ ﬁg} . (5.1)

We will show that the primal variational inequality problem (1.1), has a unique solution. Indeed, notice that
the solution (if exists); cannot lie in the interior of C' (because T'(z) # 0 for all € C); and also cannot lie
on the two segment {0} x [0,1] and [—1,0] x {0} (by direct computations). Thus, the solution must lie on
the arc T':= {(z1,22) € R? |22 + 23 = 1,21 < 0,22 > 0}. Using polar coordinates, set z = (cost,sint) € T,
t € (n/2,7). Then,

—cost —sint + %
cost —sint + % :|

T(z) = [
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Since z« € S , the vectors z, and T'(z«) must be parallel. Hence,

—costy —sints + %

COS b sin ty

costy —sintyx + %

— sinty costs — sin® s + % sint. = cos? ty — cos ts sints + % coS tx

%sint* — %COSt* =1
3 o 1 2
——=sinty — —= costy = ——
V10 V10 * T V10
. . 1 _ 2
sin (t* arcsm(m)) VT

Since t € (n/2,7) for all z € C, we have t, = m — arcsin(—2=) + arcsin(\/#ro) ~ 2.7786. Then, the unique

V10
solution is zx = (cost«,sints) ~ (—0.935,0.355).
Part 2: (The primal solution is also a solution of the dual problem). Now, we will show that z, is a solution
to the dual problem and as consequence of the continuity of 7" and Fact 2.12 the result follows. If zx € Squal,
(T'(y),y — x«) > 0 for all y € C. First, notice that ||z«|| = 1 and

-1 —1][-0.935]  [3/2] _[208] _
Tl@.)~ {1 71} [0.355} + {1/2} ~ {70.79} N 222

So, we can write
T(x+) =y(—x«) where 2<~yr2.22. (5.3)
On the other hand, from (5.1), we can check that (T'(y) — T(x+),y — z+) = —|ly — x«||?, Vy € R2. (This is
why T is never monotone!). It follows that (T'(y),y — x+) = (T'(x«),y — T«) — ||y — x«||?>. Thus, it suffices
to prove
(T(xx),y —x:) > |ly —z«||? forall yeC. (5.4)

Take y € C, so ||y|| < 1. we define z = MTW Then,

(72 —ws) = 5y + 2,2 — ) = 1+ za,y — ) = 1 (lyl° — Iz« [?) <0,
implying that (z — z«, 2z — x«) = (2,2 — Ts) + (—Tx, 2 — T+) < (—T«, 2 — T+). Combining the last inequality
with the definition of z, we get
0 < lly = 2l = dllz — 2 |? = 4(s — 27, 2 — 22) < 422, 2 — 22)
=2(=2",y — Tx) < Y(—2a, Y — Tx) = (V(—=24), Y — ) = (T(T4),y — T4),
where we use (5.3) in the last inequality. This proves (5.4) and thus complete the proof. Consequently, T'
satisfies (A2) and the unique solution of the problem is . ~ (—0.935,0.355).
We now apply the proposed algorithms (with and without normal vectors) to the above problem. In

Figures 1-6 below, we show the first five iterations of sequences (y*)ren (generated without normal vectors)
and (z*)ren (generated with nonzero normal vectors). The performance suggests that our approach can

LHL

! Hy Hy b,
o Hy i,
H, s i, )

iz

i b mo
<'-'j!i)fl?n:’!lu . To = Yo .

. "”:'1 Ui B B
S
2 AL 081

0l oT(z)
C 02 ,‘ C 02
Figure 1: Variant B.1. Figure 2: Variant B.2.

be used in a hybrid scheme that takes advantage of normal vectors in early iterations.
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Wo=R?

To = Yo

To = Yo

04 —aT(z)

Figure 5: Variant F.2. Figure 6: Variant F.3.

6 Conclusion

In this paper, we have proposed two conceptual conditional extragradient algorithms that generalize classical
extragradient algorithms for solving constrained variational inequality problems (VIP). The main idea is
to use nonzero normal vectors to the feasible set to improve the convergence. This approach uses two
different linesearches extending several known projection algorithms for VIP. These linesearches allow us to
find suitable halfspaces containing the solution set of the problem by using nonzero normal vectors of the
feasible set. It is well-known in the literature that such procedures are very effective in absence of Lipschitz
continuity exploiting most of the information available at each iteration to produce possibly long steplengths.
Convergence results are also established assuming existence of solutions, continuity and a weaker condition
than pseudomonotonicity on the operator enlarging the class of VIP that we can solve. This is a humble
attempt in targeting more efficient variants which may permit to find the optimal choice of normals on the
feasible set.

Several of the ideas of this paper merit further investigation, some of which would be presented in future
work. In particular, we are working on variants of the projection algorithms proposed in [6] for solving
nonsmooth variational inequalities. The difficulties of extending this previous result to point-to-set operators
are non-trivial, the main obstacle lies in the impossibility to use linesearches or separating techniques.
To the best of our knowledge, variants of the linesearches for variational inequalities require smoothness
of T: even for nonsmooth convex optimization problems (7" = 9f), it is not possible make linesearch
because the negative subgradients are not always descent directions. Actually, a few explicit methods
have been proposed in the literature for solving nonsmooth monotone variational inequality problems (see,
e.g., [14, 23]). Moreover, future work will address further investigation on the modified Forward-Backward
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splitting iteration for inclusion problems [4, 5, 39], exploiting the additive structure of the main operator
and adding dynamic choices of the stepsizes with conditional and deflected techniques [33, 16].
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