
Straggler Mitigation in Distributed Matrix Multiplication:

Fundamental Limits and Optimal Coding

Qian Yu∗, Mohammad Ali Maddah-Ali†, and A. Salman Avestimehr∗

∗ EE Department, University of Southern California † Nokia Bell Labs

Abstract—Consider massive matrix multiplication, a problem
that underlies many data analytic applications, in a large-scale
distributed system comprising a group of workers. We target the
stragglers’ delay performance bottleneck, which is due to the
unpredictable latency in waiting for slowest nodes (or stragglers)
to finish their tasks. We propose a novel coding strategy, named
entangled polynomial code, designing intermediate computations
at the workers in order to minimize the recovery threshold (i.e.,
the number of workers that we need to wait for in order to
compute the final output). We prove the optimality of entangled
polynomial code in several cases, and show that it provides order-
wise improvement over the conventional schemes for straggler
mitigation. Furthermore, we characterize the optimal recovery
threshold among all linear coding strategies within a factor of 2
using bilinear complexity, by developing an improved version of
the entangled polynomial code.

I. INTRODUCTION

Matrix multiplication is one of the key operations underlying

many data analytics applications in various fields such as

machine learning, scientific computing, and graph processing.

Many such applications require processing terabytes or even

petabytes of data, which needs massive computation and storage

resources that can not be provided by a single machine. Hence,

deploying matrix computation tasks on large-scale distributed

systems has received wide interests [1]–[4].

There is, however, a major performance bottleneck that arises

as we scale out computations across many distributed nodes:

stragglers’ delay bottleneck, which is due to the unpredictable

latency in waiting for slowest nodes (or stragglers) to finish their

tasks [5]. The conventional approach for mitigating stragglers

involves injecting some form of “computation redundancy" such

as repetition (e.g., [6]). Interestingly, it has been shown recently

that coding theoretic concepts can also play a transformational

role in this problem, by efficiently creating “computational

redundancy” to mitigate the stragglers [7]–[11].

. . .

Fig. 1: Overview of the distributed matrix multiplication problem. Each
worker computes the product of the two stored encoded submatrices

(Ãi’s and B̃i’s) and returns the result to the master. By carefully
designing the coding strategy, the master can decode the multiplication
result of input matrices from a subset of workers, without having to
wait for stragglers (worker 1 in this example).

In this paper, we consider a general formulation of distributed

matrix multiplication, and study information-theoretic limits

and optimal coding designs for straggler mitigation. We

consider the canonical master-worker distributed setting, where

a group of N workers aim to collaboratively compute the

product of two large matrices A and B, and return the result

C = AᵀB to the master. As shown in Fig. 1, the two input

matrices are partitioned (arbitrarily) into p-by-m and p-by-

n blocks of submatrices respectively, where all submatrices

within each input are of equal size. Each worker has local

memory that can be used to store any coded function of each

matrix, denoted by Ãi’s and B̃i’s, each with a size equal to

that of the corresponding submatrices. The workers multiply

their two stored (coded) submatrices and return the results to

the master. By carefully designing the coding functions, the

master can decode the final result without having to wait for

the slowest workers, providing robustness against stragglers.

Note that by selecting different values of parameters p, m,

and n, we allow flexible partitioning of input matrices, which

in return enables different utilization of system resources (i.e.,

the required amount of storage at each worker and the amount

of communication from worker to master). Hence, considering

the system constraints on available storage and communication

resources, one can choose desired values for p, m, and n. Thus,

we aim to find optimal coding and computation designs for

any choice of parameters p, m and n, to provide optimum

straggler effect mitigation for various situations.

With a careful design of the coded submatrices Ãi and B̃i

at each worker, the master only needs results from the fastest

workers before it can recover the final output, which effectively

mitigates straggler issues. To measure the robustness against

straggler effects of a given coding strategy, we use the metric

recovery threshold, defined previously in [9], which is equal to

the minimum number of workers that the master needs to wait

for in order to compute the output C. Given this terminology,

our main problem is as follows: What is the minimum possible

recovery threshold and the corresponding coding scheme, for

any choice of parameters p, m, n, and N?

We propose a novel coding technique, referred to as entan-

gled polynomial code, which achieves the recovery threshold of

pmn+p−1 for all possible parameter values. The construction

of the entangled polynomial code is based on the observation

that when multiplying an m-by-p matrix and a p-by-n matrix,

we essentially evaluate a subspace of bilinear functions, spanned

by the pairwise product of the elements from the two matrices.

Although potentially there are a total of p2mn pairs of elements,

at most pmn pairs are directly related to the matrix product,

2018 IEEE International Symposium on Information Theory (ISIT)

978-1-5386-4780-6/18/$31.00©2018 IEEE 2022
Authorized licensed use limited to: University of Southern California. Downloaded on October 18,2024 at 22:41:13 UTC from IEEE Xplore. Restrictions apply.

which is an order of p less. The particular structure of the

proposal entangles the input matrices to the output such that the

system almost avoids unnecessary multiplications and achieves

a recovery threshold in the order of pmn. This allows orderwise

improvement upon conventional uncoded approaches and MDS-

coding type approaches for straggler mitigation [7], [8].

Entangled polynomial code generalizes the previously pro-

posed polynomial code for distributed matrix multiplication [9],

which was designed for the special case of p = 1 (i.e., allowing

only column-wise partitioning of matrices A and B). However,

as we move to arbitrary partitioning of input matrices (i.e.,

arbitrary values of m, n, and p), a key challenge is to design

the coding strategy at each worker such that its computation

best aligns with the final computation C. In particular, to

recover the product C, the master needs mn components that

each involve the summation of the product of p submatrices

of A and B. Entangled polynomial code effectively aligns the

computation of the workers with master’s need, which is its

key distinguishing feature from polynomial code.

We show that entangled polynomial code achieves the

optimal recovery threshold among all linear coding strategies,

in the cases of m = 1 or n = 1. It also achieves the optimal

recovery threshold among all possible schemes within a factor

of 2 when m = 1 or n = 1.

Furthermore, for all input matrix partitionings (i.e., all values

of p, m, n, and N), we characterize the optimal recovery

threshold among all linear coding strategies within a factor of

2 of R(p,m, n), which is the bilinear complexity of multiplying

an m-by-p matrix to a p-by-n matrix (see Definition 3). This is

achieved by developing an improved version of the entangled

polynomial code. While evaluating bilinear complexity is

a well-known challenging problem [12], we show that the

optimal recovery threshold for linear coding strategies can be

approximated within a factor of 2 of this fundamental quantity.

We note that recently, another computation design named

PolyDot was also proposed for this problem, achieving a

recovery threshold of m2(2p − 1) for m = n [13], [14].

Both entangled polynomial code and PolyDot are developed

by extending the polynomial codes proposed in [9] to allow

arbitrary partitioning of input matrices. Compared with Poly-

Dot, entangled polynomial code achieves a smaller recovery

threshold by a factor of 2. More importantly, in this paper we

have developed a converse bounding technique that proves the

optimality of the entangled polynomial code in several cases.

Furthermore, We have also proposed an improved version of

the entangled polynomial code and characterized the optimum

recovery threshold within a factor of 2 for all parameter values.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a problem of matrix multiplication with two

input matrices A ∈ F
s×r and B ∈ F

s×t, for some integers

r, s, t and a sufficiently large field F.1 We are interested in

computing the product C , AᵀB in a distributed computing

1Here we consider the general class of fields, which includes finite fields,
the field of real numbers, and the field of complex numbers.

environment with a master node and N worker nodes, where

each worker can store 1
pm

fraction of A and 1
pn

fraction of B,

based on some integer parameters p, m, and n (see Fig. 1).

Specifically, each worker i can store two coded matrices

Ãi ∈ F
s
p
× r

m and B̃i ∈ F
s
p
× t

n , computed based on A and B

respectively. Each worker can compute the product C̃i , Ã
ᵀ

i B̃i,

and return it to the master. The master waits only for the results

from a subset of workers before proceeding to recover the final

output C using certain decoding functions.

Given the above system model, we formulate the distributed

matrix multiplication problem based on the following termi-

nology: We define the computation strategy as a collection of

2N encoding functions, denoted by

f = (f0, f1, ..., fN−1), g = (g0, g1, ..., gN−1), (1)

that are used by the workers to compute each Ãi and B̃i, and

a class of decoding functions, denoted by

d = {dK}K⊆{0,1,...,N−1}, (2)

that are used by the master to recover C given results from

any subset K of the workers. Specifically, each worker i stores

matrices Ãi = fi(A) and B̃i = gi(B), and the master can

compute an estimate Ĉ of matrix C using results from a subset

K of the workers by computing Ĉ = dK({C̃i}i∈K).
For any integer k, we say a computation strategy is k-

recoverable if the master can recover C given the computing

results from any k workers. Specifically, a computation strategy

is k-recoverable if for any subset K of k users, the final output

Ĉ from the master equals C for all possible input values.

We define the recovery threshold of a computation strategy,

denoted by K(f , g,d), as the minimum integer k such that

computation strategy (f , g,d) is k-recoverable.

We aim to find a computation strategy that requires the

minimum possible recovery threshold and allows efficient

decoding at the master. Among all possible computation

strategies, we are particularly interested in a certain class of

designs, referred to as the linear codes and defined as follows:

Definition 1. For a distributed matrix multiplication problem

of computing AᵀB using N workers, we say a computation

strategy is a linear code given parameters p, m, and n, if there

is a partitioning of the input matrices A and B where each

matrix is divided into the following submatrices of equal size

A =







A0,0 · · · A0,m−1

...
. . .

...

Ap−1,0 · · · Ap−1,m−1






, B =







B0,0 · · · B0,n−1

...
. . .

...

Bp−1,0 · · · Bp−1,n−1






,

(3)

such that the encoding functions of each worker i can be

written as Ãi =
∑

j,k Aj,kaijk and B̃i =
∑

j,k Bj,kbijk for

some tensors a and b, and the decoding function given each

subset K can be written as Ĉj,k =
∑

i∈K C̃icijk for some

tensor c.2 For brevity, we denote the set of linear codes as L.

2Here Ĉj,k denotes the master’s estimate of the subblock of C that
corresponds to

∑
` A`,jB`,k .

2018 IEEE International Symposium on Information Theory (ISIT)

2023
Authorized licensed use limited to: University of Southern California. Downloaded on October 18,2024 at 22:41:13 UTC from IEEE Xplore. Restrictions apply.

The major advantage of linear codes is that they guarantee

both the encoding and the decoding complexities scale linearly

with respect to the size of the input matrices. Furthermore,

as we have proved in [9], linear codes are optimal for p = 1.

Given the above terminology, we define the following concept.

Definition 2. For a distributed matrix multiplication problem of

computing AᵀB using N workers, we define the optimum lin-

ear recovery threshold as a function of the problem parameters

p, m, n, and N , denoted by K∗
linear, as the minimum achievable

recovery threshold among all linear codes. Specifically,

K∗
linear , min

(f ,g,d)∈L
K(f , g,d). (4)

Our goal is to characterize the optimum linear recovery

threshold K∗
linear, and to find computation strategies to achieve

such optimum threshold. Note that if the number of workers

N is too small, obviously no valid computation strategy exists

even without requiring straggler tolerance. Hence, in the rest

of the paper, we only consider the meaningful case where N is

large enough to support at least one valid computation strategy.

Equivalently, N has to be at least the bilinear complexity of

multiplying an m-by-p matrix and a p-by-n matrix.

We are also interested in characterizing the minimum

recovery threshold achievable using general coding strategies

(including non-linear codes). Similar to [9], we define this

value as the optimum recovery threshold and denote it by K∗.

III. MAIN RESULTS

We state our main results in the following 3 theorems.

Theorem 1. For a distributed matrix multiplication problem

of computing AᵀB using N workers, with parameters p, m,

and n, the following recovery threshold can be achieved by a

linear code, referred to as the entangled polynomial code.3

Kentangled-poly , pmn+ p− 1. (5)

Furthermore, the entangled polynomial code can be decoded

at the master node with at most the complexity of polynomial

interpolation given pmn+ p− 1 points.

Remark 1. Compared to possible alternatives, our proposed

entangled polynomial code provides orderwise improvement

in the recovery threshold (see Fig. 2). One conventional

approach (referred to as the uncoded repetition scheme) is

to let each worker store and multiply uncoded submatrices.

The scheme tolerates stragglers by adding redundancy through

repetition, but its recovery threshold grows linearly with N .

Another approach is to let each worker store two random

linear combinations of input submatrices (referred to as the

random linear code). With high probability, this achieves

recovery threshold KRL , p2mn, which does not scale with

N . However, to calculate C, we need at most pmn submatrix

multiplication results. Indeed, the lack of structure in the

random coding forces the system to wait for p times more

than what is essentially needed. Perhaps one surprising aspect

of the proposed entangled polynomial code is that, due to its

3For N < pmn+ p− 1, we define Kentangled-poly , N .

particular structure which aligns the computation of the workers

with master’s need, it avoids unnecessary multiplications of

submatrices. As a result, it achieves a recovery threshold that

does not scale with N , and is orderwise smaller than that of the

random linear code. Furthermore, it allows efficient decoding at

the master, which requires at most an almost linear complexity.

0 10 20 30 40 50 60 70 80
Number of Workers N

0

10

20

30

40

50

60

R
ec

ov
er

y
Th

re
sh

ol
d

Uncoded Repitition
Short MDS
Random Linear Code
Entangled Polynomial Code (Optimal)

 bilinear
 complexity

Fig. 2: Comparison of the recovery thresholds achieved by the uncoded
repetition scheme, the random linear code, the short-MDS (or short-
dot) [7], [8] and our proposed entangled polynomial code, given
problem parameters p = m = 3, n = 1. The entangled polynomial
code orderwise improves upon all other approaches.

Remark 2. There have been several works in prior literature

investigating the p = 1 case [7], [9], [15]. For this special case,

entangled polynomial code reduces to our previously proposed

polynomial code, achieving the optimum recovery threshold

mn and orderwise improvement upon other designs. On the

other hand, there has been some investigation on matrix-by-

vector type multiplication [7], [8], which can be viewed as the

special case of m = 1 or n = 1 in our proposed problem. The

short-MDS code (or short-dot) has been proposed, achieving

a recovery threshold of N − bN
p
c+m, which scales linearly

with N . Our proposed entangled polynomial code also strictly

and orderwise improves upon that (see Fig 2).

Our second result is the optimality of the entangled polyno-

mial code for m = 1 or n = 1.

Theorem 2. For a distributed matrix multiplication problem

of computing AᵀB using N workers, with parameters p, m,

and n, if m = 1 or n = 1, we have

K∗
linear = Kentangled-poly. (6)

Moreover, if the base field F is finite,

1

2
Kentangled-poly <K∗ ≤ Kentangled-poly. (7)

Remark 3. We omit the proof of Theorem 2 for brevity, which

can be found in the long version [16]. The key proof idea is to

first exploit the algebraic structure of matrix multiplication and

develop a linear algebraic converse, which proves equation (6).

Then we construct an information theoretic converse which

also holds for non-linear codes, to prove inequality (7).

Our final result is characterizing the optimum linear recovery

threshold K∗
linear within a factor of 2 for all possible p,

m, n, and N , by developing an improved version of the

entangled polynomial code. This characterization involves the

fundamental concept of bilinear complexity [12]:

2018 IEEE International Symposium on Information Theory (ISIT)

2024
Authorized licensed use limited to: University of Southern California. Downloaded on October 18,2024 at 22:41:13 UTC from IEEE Xplore. Restrictions apply.

Definition 3. The bilinear complexity of multiplying an m-by-

p matrix and a p-by-n matrix, denoted by R(p,m, n), is the

minimum number of element-wise multiplications required to

complete such an operation. Rigorously, R(p,m, n) denotes the

minimum integer R, such that we can find tensors a ∈ F
R×p×m,

b ∈ F
R×p×n, and c ∈ F

R×m×n, satisfying
∑

i

cijk(
∑

j′,k′

Aj′k′aij′k′)(
∑

j′′,k′′

Bj′′k′′bij′′k′′) =
∑

i

AijBik

for any input matrices A ∈ F
p×m, B ∈ F

p×n.

Using this concept, we state our result as follows.

Theorem 3. For a distributed matrix multiplication problem of

computing AᵀB using N workers with parameters p, m, and

n, the optimum linear recovery threshold is characterized by

R(p,m, n) ≤ K∗
linear ≤ 2R(p,m, n)− 1, (8)

where R(p,m, n) denotes the bilinear complexity of multiplying

an m-by-p matrix and a p-by-n matrix.

In this paper, we provide proof sketches for Theorems 1 and

3. Other proofs and extensions (e.g., coded convolution, fault

tolerance computing) can be found in the long version [16].

IV. ENTANGLED POLYNOMIAL CODE

We prove Theorem 1 by describing the entangled polynomial

code and its decoding procedure, starting with an example.

A. Illustrating Example

Consider a distributed matrix multiplication task of comput-

ing AᵀB using N = 5 workers that can each store half of the

rows (i.e., p = 2 and m = n = 1). We evenly divide each

input matrix along the row side into 2 submatrices:

A =

[

A0

A1

]

, B =

[

B0

B1

]

, (9)

Given this notation, we essentially want to compute

C = AᵀB =
[

A
ᵀ

0B0 +A
ᵀ

1B1

]

. (10)

A naive computation strategy is to let the 5 workers compute

each A
ᵀ

i Bi uncodedly with repetition. Specifically we can

let 3 workers compute A
ᵀ

0B0 and 2 workers compute A
ᵀ

1B1.

However, this approach can only robustly tolerate 1 straggler,

achieving a recovery threshold of 4. Another naive approach is

to use random linear codes, i.e., let each worker store a random

linear combination of A0, A1, and a combination of B0, B1.

However, the resulting computation result of each worker is a

random linear combination of 4 variables A
ᵀ

0B0, A
ᵀ

0B1, A
ᵀ

1B0,

and A
ᵀ

1B1, which also results in a recovery threshold of 4.

Surprisingly, a simple computation strategy achieves the

optimum linear recovery threshold of 3, by injecting structured

redundancy tailored to matrix multiplication operations:

Suppose elements of A,B are in R. Let each worker i ∈
{0, 1, ..., 4} store the following two coded submatrices:

Ãi = A0 + iA1, B̃i = iB0 +B1. (11)

To prove that this design gives a recovery threshold of 3, we

need to find a valid decoding function for any subset of 3

Fig. 3: Example using entangled polynomial code, with 5 workers that
can each store half of each input matrix. (a) Computation strategy:
each worker i stores A0 + iA1 and iB0 + B1, and computes their
product. (b) Decoding: master waits for results from any 3 workers,
and decodes the output using polynomial interpolation.

workers. We demonstrate this decodability through an example

scenario, where the master receives the computation results

from workers 1, 2, and 4, as shown in Figure 3. The decodability

for the other 9 possible scenarios can be proved similarly.

According to the designed computation strategy, we have




C̃1

C̃2

C̃4



 =





10 11 12

20 21 22

40 41 42









A
ᵀ

0B1

A
ᵀ

0B0 +A
ᵀ

1B1

A
ᵀ

1B0



 . (12)

The coefficient matrix in the above equation is a Vandermonde

matrix, which is invertible because its parameters 1, 2, 4 are

distinct in R. So one decoding approach is to directly invert

equation (12), of which the returned result includes the needed

matrix C = A
ᵀ

0B0 +A
ᵀ

1B1. This proves the decodability.

B. General Coding Design

Now we present the entangled polynomial code, which

achieves a recovery threshold pmn+ p− 1 for any p, m, n,

and N as stated in Theorem 1.4 First of all, we evenly divide

each input matrix into pm and pn submatrices according to

equation (3). We then assign each worker i ∈ {0, 1, ..., N − 1}
a distinct element in F, denoted by xi. Under this setting, we

define the following class of computation strategies.

Definition 4. Given parameters α, β, θ ∈ N, we define the

(α, β, θ)-polynomial code as

Ãi =

p−1
∑

j=0

m−1
∑

k=0

Aj,kx
jα+kβ
i , (13)

B̃i =

p−1
∑

j=0

n−1
∑

k=0

Bj,kx
(p−1−j)α+kθ

i . (14)

In an (α, β, θ)-polynomial code, each worker essentially

evaluates a polynomial whose coefficients are fixed linear

combinations of the products A
ᵀ

j,kBj′,k′ . Specifically, each

worker i returns

C̃i = Ã
ᵀ

i B̃i =
∑

j,k,j′,k′

A
ᵀ

j,kBj′,k′x
(p−1+j−j′)α+kβ+k′θ

i . (15)

4For N < pmn + p − 1, a recovery threshold of N is achievable by
definition. Hence we focus on the case where N ≥ pmn+ p− 1.

2018 IEEE International Symposium on Information Theory (ISIT)

2025
Authorized licensed use limited to: University of Southern California. Downloaded on October 18,2024 at 22:41:13 UTC from IEEE Xplore. Restrictions apply.

Consequently, when the master receives results from enough

workers, it can recover all these linear combinations using

polynomial interpolation.

Recall that we aim to recover Ck,k′ ,
∑p−1

j=0 A
ᵀ

j,kBj,k′ ,

which are also fixed linear combinations of these products.

We design parameters (α, β, θ) such that all these linear

combinations appear in (15) as coefficients of terms of different

degrees. Furthermore, we want to minimize the degree of

polynomial C̃i, in order to reduce the recovery threshold.

One design satisfying these properties is (α, β, θ) =
(1, p, pm). Hence, each worker returns the value of the

following degree pmn+ p− 2 polynomial at point x = xi:

hi(x) , C̃i =
∑

j,k,j′,k′

A
ᵀ

j,kBj′,k′x
(p−1+j−j′)+kp+k′pm

i , (16)

where each Ck,k′ is exactly the coefficient of the (p−1+kp+
k′pm)-th degree term. Since all xi’s are selected to be distinct,

recovering C given results from any pmn + p − 1 workers

is essentially interpolating h(x) using pmn + p − 1 distinct

points. Because the degree of h(x) is pmn+ p− 2, the output

C can always be uniquely decoded.

As of complexity, the decoding can be viewed as interpolat-

ing a degree pmn+p−2 polynomial for rt
mn

times, requiring at

most a complexity of O(prt log2(pmn) log log(pmn)), which

is almost linear to the input size of the decoder. This complexity

can be further improved, as discussed in the long version [16].

V. FACTOR OF 2 CHARACTERIZATION OF K∗
linear

We now provide a proof sketch for the upper bound in

Theorem 3. The achievability can be proved in 2 steps.

First, we show that any matrix multiplication is essentially

computing the element-wise product of two vectors of length

R(p,m, n). Recall the definition of bilinear complexity in

Section III; we can always find tensors a ∈ F
R(p,m,n)×p×m,

b ∈ F
R(p,m,n)×p×n, and c ∈ F

R(p,m,n)×m×n such that any

block of the final output C can be computed as

Cj,k =
∑

i

cijkÃ
ᵀ

i,vecB̃i,vec, (17)

where Ãi,vec and B̃i,vec are linear combinations of the blocks

of A and B defined as

Ãi,vec ,
∑

j,k

Aj,kaijk, B̃i,vec ,
∑

j,k

Bj,kbijk. (18)

This essentially converts matrix multiplication to a problem of

computing the element-wise product of two “vectors” Ãi,vec

and B̃i,vec, each of length R(p,m, n). Specifically, the master

only needs Ã
ᵀ

i,vecB̃i,vec for decoding the final output.

Secondly, we solve this augmented problem by developing

an improved version of the entangled polynomial code. This

computation strategy encodes any given pair of vectors of

length R(p,m, n) for N workers, such that from the computing

results of any subset of 2R(p,m, n)− 1 workers, the master

can recover all R(p,m, n) element-wise products.

The main idea is to first view the elements in each vector

as values of a degree R(p,m, n)− 1 polynomial at R(p,m, n)

different points. Specifically, given R(p,m, n) distinct elements

in the field F, denoted by x0, x1, . . . , xR(p,m,n)−1, we find

polynomials f̃ and g̃ of degree R(p,m, n) − 1, such that

f̃(xi) = Ãi,vec, and g̃(xi) = B̃i,vec. We want to recover the

values of polynomial h̃ , f̃ᵀg̃ at these R(p,m, n) points.

Recall that in the entangled polynomial code, we have devel-

oped a coding structure that allows us to recover polynomials

of this form while achieving a recovery threshold that equals

the degree plus one. We now reuse the idea in this construction.

Let y0, y1, ..., yN−1 be distinct elements of F. We make

each worker i store Ãi = f̃(yi) and B̃i = g̃(yi). By computing

the product, each worker essentially evaluates h̃(yi). Hence,

from the results of any 2R(p,m, n)− 1 workers, the master

can recover h̃ of degree 2R(p,m, n)−2 and decode the output

matrix C. This construction achieves a recovery threshold of

2R(p,m, n)− 1, proving the upper bound in Theorem 3.

VI. ACKNOWLEDGEMENT

This material is based upon work supported by Defense

Advanced Research Projects Agency (DARPA) under Contract

No. HR001117C0053. The views, opinions, and/or findings

expressed are those of the author(s) and should not be

interpreted as representing the official views or policies of

the Department of Defense or the U.S. Government. This work

is also in part supported by ONR award N000141612189 and

NSF Grants CCF-1703575 and NeTS-1419632.

REFERENCES

[1] L. E. Cannon, A Cellular Computer to Implement the Kalman Filter

Algorithm. PhD thesis, Bozeman, MT, USA, 1969.
[2] J. Choi, D. W. Walker, and J. J. Dongarra, “Pumma: Parallel universal

matrix multiplication algorithms on distributed memory concurrent
computers,” Concurrency: Practice and Experience, 1994.

[3] R. A. Van De Geijn and J. Watts, “Summa: scalable universal matrix
multiplication algorithm,” Concurrency: Practice and Experience, 1997.

[4] E. Solomonik and J. Demmel, “Communication-optimal parallel 2.5d
matrix multiplication and lu factorization algorithms,” in ICPP, 2011.

[5] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, 2013.
[6] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,

“Improving MapReduce performance in heterogeneous environments,”
OSDI, 2008.

[7] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” e-print

arXiv:1512.02673, 2015.
[8] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear

transforms distributedly using coded short dot products,” in NIPS, 2016.
[9] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal

design for high-dimensional coded matrix multiplication,” in NIPS, 2017.
[10] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding

framework for distributed computing with straggling servers,” arXiv

preprint arXiv:1609.01690, 2016.
[11] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coding for distributed

fog computing,” IEEE Commun. Mag., vol. 55, pp. 34–40, April 2017.
[12] M. Bläser, Fast Matrix Multiplication. No. 5 in Graduate Surveys, Theory

of Computing Library, 2013.
[13] M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and P. Grover,

“On the optimal recovery threshold of coded matrix multiplication,” in
Allerton, 2017.

[14] S. Dutta, Z. Bai, P. Grover, and T. M. Low, “Coded training of model
parallel deep neural networks under soft-errors,” Submitted to ISIT 2018.

[15] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in IEEE ISIT, 2017.

[16] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in
distributed matrix multiplication: Fundamental limits and optimal coding,”
arXiv preprint arXiv:1801.07487, 2018.

2018 IEEE International Symposium on Information Theory (ISIT)

2026
Authorized licensed use limited to: University of Southern California. Downloaded on October 18,2024 at 22:41:13 UTC from IEEE Xplore. Restrictions apply.

