2018 IEEE International Symposium on Information Theory (ISIT)

Straggler Mitigation in Distributed Matrix Multiplication:
Fundamental Limits and Optimal Coding

Qian Yu*, Mohammad Ali Maddah-Alif, and A. Salman Avestimehr*

* EE Department, University of Southern California

Abstract—Consider massive matrix multiplication, a problem
that underlies many data analytic applications, in a large-scale
distributed system comprising a group of workers. We target the
stragglers’ delay performance bottleneck, which is due to the
unpredictable latency in waiting for slowest nodes (or stragglers)
to finish their tasks. We propose a novel coding strategy, named
entangled polynomial code, designing intermediate computations
at the workers in order to minimize the recovery threshold (i.e.,
the number of workers that we need to wait for in order to
compute the final output). We prove the optimality of entangled
polynomial code in several cases, and show that it provides order-
wise improvement over the conventional schemes for straggler
mitigation. Furthermore, we characterize the optimal recovery
threshold among all linear coding strategies within a factor of 2
using bilinear complexity, by developing an improved version of
the entangled polynomial code.

I. INTRODUCTION

Matrix multiplication is one of the key operations underlying
many data analytics applications in various fields such as
machine learning, scientific computing, and graph processing.
Many such applications require processing terabytes or even
petabytes of data, which needs massive computation and storage
resources that can not be provided by a single machine. Hence,
deploying matrix computation tasks on large-scale distributed
systems has received wide interests [1]-[4].

There is, however, a major performance bottleneck that arises
as we scale out computations across many distributed nodes:
stragglers’ delay bottleneck, which is due to the unpredictable
latency in waiting for slowest nodes (or stragglers) to finish their
tasks [5]. The conventional approach for mitigating stragglers
involves injecting some form of “computation redundancy" such
as repetition (e.g., [6]). Interestingly, it has been shown recently
that coding theoretic concepts can also play a transformational
role in this problem, by efficiently creating “computational
redundancy” to mitigate the stragglers [7]-[11].

data assignment
inputs

Waorker N - 1

Fig. 1: Overview of the distributed matrix multiplication problem. Each
worker computes the product of the two stored encoded submatrices
(A;’s and B;’s) and returns the result to the master. By carefully
designing the coding strategy, the master can decode the multiplication
result of input matrices from a subset of workers, without having to
wait for stragglers (worker 1 in this example).

978-1-5386-4780-6/18/$31.00©2018 |EEE

T Nokia Bell Labs

In this paper, we consider a general formulation of distributed
matrix multiplication, and study information-theoretic limits
and optimal coding designs for straggler mitigation. We
consider the canonical master-worker distributed setting, where
a group of N workers aim to collaboratively compute the
product of two large matrices A and B, and return the result
C = ATB to the master. As shown in Fig. 1, the two input
matrices are partitioned (arbitrarily) into p-by-m and p-by-
n blocks of submatrices respectively, where all submatrices
within each input are of equal size. Each worker has local
memory that can be used to store any coded function of each
matrix, denoted by A;’s and B;’s, each with a size equal to
that of the corresponding submatrices. The workers multiply
their two stored (coded) submatrices and return the results to
the master. By carefully designing the coding functions, the
master can decode the final result without having to wait for
the slowest workers, providing robustness against stragglers.

Note that by selecting different values of parameters p, m,
and n, we allow flexible partitioning of input matrices, which
in return enables different utilization of system resources (i.e.,
the required amount of storage at each worker and the amount
of communication from worker to master). Hence, considering
the system constraints on available storage and communication
resources, one can choose desired values for p, m, and n. Thus,
we aim to find optimal coding and computation designs for
any choice of parameters p, m and n, to provide optimum
straggler effect mitigation for various situations.

With a careful design of the coded submatrices /L; and Bi
at each worker, the master only needs results from the fastest
workers before it can recover the final output, which effectively
mitigates straggler issues. To measure the robustness against
straggler effects of a given coding strategy, we use the metric
recovery threshold, defined previously in [9], which is equal to
the minimum number of workers that the master needs to wait
for in order to compute the output C'. Given this terminology,
our main problem is as follows: What is the minimum possible
recovery threshold and the corresponding coding scheme, for
any choice of parameters p, m, n, and N?

We propose a novel coding technique, referred to as entan-
gled polynomial code, which achieves the recovery threshold of
pmn+p—1 for all possible parameter values. The construction
of the entangled polynomial code is based on the observation
that when multiplying an m-by-p matrix and a p-by-n matrix,
we essentially evaluate a subspace of bilinear functions, spanned
by the pairwise product of the elements from the two matrices.
Although potentially there are a total of p?mn pairs of elements,
at most pmn pairs are directly related to the matrix product,

2022
Authorized licensed use limited to: University of Southern California. Downloaded on October 18,2024 at 22:41:13 UTC from IEEE Xplore. Restrictions apply.



2018 IEEE International Symposium on Information Theory (ISIT)

which is an order of p less. The particular structure of the
proposal entangles the input matrices to the output such that the
system almost avoids unnecessary multiplications and achieves
a recovery threshold in the order of pmn. This allows orderwise
improvement upon conventional uncoded approaches and MDS-
coding type approaches for straggler mitigation [7], [8].

Entangled polynomial code generalizes the previously pro-
posed polynomial code for distributed matrix multiplication [9],
which was designed for the special case of p = 1 (i.e., allowing
only column-wise partitioning of matrices A and B). However,
as we move to arbitrary partitioning of input matrices (i.e.,
arbitrary values of m, n, and p), a key challenge is to design
the coding strategy at each worker such that its computation
best aligns with the final computation C. In particular, to
recover the product C, the master needs mn components that
each involve the summation of the product of p submatrices
of A and B. Entangled polynomial code effectively aligns the
computation of the workers with master’s need, which is its
key distinguishing feature from polynomial code.

We show that entangled polynomial code achieves the
optimal recovery threshold among all linear coding strategies,
in the cases of m =1 or n = 1. It also achieves the optimal
recovery threshold among all possible schemes within a factor
of2whenm=1orn=1

Furthermore, for all input matrix partitionings (i.e., all values
of p, m, n, and N), we characterize the optimal recovery
threshold among all linear coding strategies within a factor of
2 of R(p, m,n), which is the bilinear complexity of multiplying
an m-by-p matrix to a p-by-n matrix (see Definition 3). This is
achieved by developing an improved version of the entangled
polynomial code. While evaluating bilinear complexity is
a well-known challenging problem [12], we show that the
optimal recovery threshold for linear coding strategies can be
approximated within a factor of 2 of this fundamental quantity.

We note that recently, another computation design named
PolyDot was also proposed for this problem, achieving a
recovery threshold of m?(2p — 1) for m = n [13], [14].
Both entangled polynomial code and PolyDot are developed
by extending the polynomial codes proposed in [9] to allow
arbitrary partitioning of input matrices. Compared with Poly-
Dot, entangled polynomial code achieves a smaller recovery
threshold by a factor of 2. More importantly, in this paper we
have developed a converse bounding technique that proves the
optimality of the entangled polynomial code in several cases.
Furthermore, We have also proposed an improved version of
the entangled polynomial code and characterized the optimum
recovery threshold within a factor of 2 for all parameter values.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a problem of matrix multiplication with two
input matrices A € F**" and B € F**!, for some integers
r, s, t and a sufficiently large field F.! We are interested in
computing the product C' £ ATB in a distributed computing

I'Here we consider the general class of fields, which includes finite fields,
the field of real numbers, and the field of complex numbers.

environment with a master node and N worker nodes, where
each worker can store me fraction of A and in fraction of B,
based on some integer parameters p, m, and n (see Fig. 1).

Spemﬁcally, each worker z can store two coded matrices
A; e F»*% and B; € F»*n, computed based on A and B
respectively. Each worker can compute the product C; & A,L-T B,
and return it to the master. The master waits only for the results
from a subset of workers before proceeding to recover the final
output C' using certain decoding functions.

Given the above system model, we formulate the distributed
matrix multiplication problem based on the following termi-
nology: We define the computation strategy as a collection of
2N encoding functions, denoted by

I =(fo, fr, -, In-1), (D

that are used by the workers to compute each A; and B;, and
a class of decoding functions, denoted by

9= (90,91, 9N-1),

2

that are used by the master to recover C' given results from
any subset IC of the workers. Specifically, each worker 4 stores
matrices A; = f;(A) and B; = ¢;(B), and the master can
compute an estimate C' of matrix C using results from a subset
K of the workers by computing C' = dic({C; }iex)-

For any integer k, we say a computation strategy is k-
recoverable if the master can recover C' given the computing
results from any k workers. Specifically, a computation strategy
is k-recoverable if for any subset /C of k users, the final output
C from the master equals C for all possible input values.
We define the recovery threshold of a computation strategy,
denoted by K(f,g,d), as the minimum integer k£ such that
computation strategy (f,g,d) is k-recoverable.

We aim to find a computation strategy that requires the
minimum possible recovery threshold and allows efficient
decoding at the master. Among all possible computation
strategies, we are particularly interested in a certain class of
designs, referred to as the linear codes and defined as follows:

d= {d/C}ICg{O,l,.A.,N—l}a

Definition 1. For a distributed matrix multiplication problem
of computing AT B using N workers, we say a computation
strategy is a linear code given parameters p, m, and n, if there
is a partitioning of the input matrices A and B where each
matrix is divided into the following submatrices of equal size

Ao Boo

A07m,1 BO,nfl

A= :
B,

Ap_10 - Ap_im—1 p—1,0 **° Bp—1n—1

3)

such that the encoding functions of each worker ¢ can be
written as A; = >k Ajraije and B, = > ik Bjrbiji for
some tensors a and b, and the decoding function given each
subset IC can be written as CJ = Ele,c C; iCiji; for some
tensor c.2 For brevity, we denote the set of linear codes as L.

2Here éj,k denotes the master’s estimate of the subblock of C' that
corresponds to >, Ay ;B .

2023
Authorized licensed use limited to: University of Southern California. Downloaded on October 18,2024 at 22:41:13 UTC from IEEE Xplore. Restrictions apply.



2018 IEEE International Symposium on Information Theory (ISIT)

The major advantage of linear codes is that they guarantee
both the encoding and the decoding complexities scale linearly
with respect to the size of the input matrices. Furthermore,
as we have proved in [9], linear codes are optimal for p = 1.
Given the above terminology, we define the following concept.

Definition 2. For a distributed matrix multiplication problem of
computing AT B using N workers, we define the optimum lin-
ear recovery threshold as a function of the problem parameters
p, m, n, and N, denoted by K} ..., as the minimum achievable
recovery threshold among all linear codes. Specifically,

K(f,g.d).

* 2 min
linear
(f.g.d)eL

“4)

Our goal is to characterize the optimum linear recovery
threshold K ... and to find computation strategies to achieve
such optimum threshold. Note that if the number of workers
N is too small, obviously no valid computation strategy exists
even without requiring straggler tolerance. Hence, in the rest
of the paper, we only consider the meaningful case where N is
large enough to support at least one valid computation strategy.
Equivalently, N has to be at least the bilinear complexity of
multiplying an m-by-p matrix and a p-by-n matrix.

We are also interested in characterizing the minimum
recovery threshold achievable using general coding strategies
(including non-linear codes). Similar to [9], we define this
value as the optimum recovery threshold and denote it by K*.

IIT. MAIN RESULTS

We state our main results in the following 3 theorems.

Theorem 1. For a distributed matrix multiplication problem
of computing ATB using N workers, with parameters p, m,
and n, the following recovery threshold can be achieved by a
linear code, referred to as the entangled polynomial code.’

®)

Furthermore, the entangled polynomial code can be decoded
at the master node with at most the complexity of polynomial
interpolation given pmn + p — 1 points.

A
Kemangled»po]y =pmn+p—1.

Remark 1. Compared to possible alternatives, our proposed
entangled polynomial code provides orderwise improvement
in the recovery threshold (see Fig. 2). One conventional
approach (referred to as the uncoded repetition scheme) is
to let each worker store and multiply uncoded submatrices.
The scheme tolerates stragglers by adding redundancy through
repetition, but its recovery threshold grows linearly with V.
Another approach is to let each worker store two random
linear combinations of input submatrices (referred to as the
random linear code). With high probability, this achieves
recovery threshold Kg; £ p?mn, which does not scale with
N. However, to calculate C, we need at most pmn submatrix
multiplication results. Indeed, the lack of structure in the
random coding forces the system to wait for p times more
than what is essentially needed. Perhaps one surprising aspect
of the proposed entangled polynomial code is that, due to its

3For N < pmn + p — 1, we define Kentangled-poly AN.

particular structure which aligns the computation of the workers
with master’s need, it avoids unnecessary multiplications of
submatrices. As a result, it achieves a recovery threshold that
does not scale with NV, and is orderwise smaller than that of the
random linear code. Furthermore, it allows efficient decoding at
the master, which requires at most an almost linear complexity.

60 o
—— Uncoded Repitition

Short MDS

50 Random Linear Code

Entangled Polynomial Code (Optimal)

IS
S

bilinear
| complexity

Recovery Threshold
w
g

n
3

>

|
|
|
|
|
|
|
v
|

|

|

n
1

0

0 20 30 40 50 60 70 80
Number of Workers N

0

Fig. 2: Comparison of the recovery thresholds achieved by the uncoded
repetition scheme, the random linear code, the short-MDS (or short-
dot) [7], [8] and our proposed entangled polynomial code, given
problem parameters p = m = 3, n = 1. The entangled polynomial
code orderwise improves upon all other approaches.

Remark 2. There have been several works in prior literature
investigating the p = 1 case [7], [9], [15]. For this special case,
entangled polynomial code reduces to our previously proposed
polynomial code, achieving the optimum recovery threshold
mn and orderwise improvement upon other designs. On the
other hand, there has been some investigation on matrix-by-
vector type multiplication [7], [8], which can be viewed as the
special case of m =1 or n = 1 in our proposed problem. The
short-MDS code (or short-dot) has been proposed, achieving
a recovery threshold of N — L%J + m, which scales linearly
with N. Our proposed entangled polynomial code also strictly
and orderwise improves upon that (see Fig 2).

Our second result is the optimality of the entangled polyno-
mial code for m =1 orn =1.
Theorem 2. For a distributed matrix multiplication problem
of computing ATB using N workers, with parameters p, m,
and n, if m=1orn =1, we have

K]Tnem. = A entangled-poly - (6)
Moreover, if the base field T is finite,
1
7Kentangled—poly <K* < Kentangled-poly~ (7)

2
Remark 3. We omit the proof of Theorem 2 for brevity, which
can be found in the long version [16]. The key proof idea is to
first exploit the algebraic structure of matrix multiplication and
develop a linear algebraic converse, which proves equation (6).
Then we construct an information theoretic converse which
also holds for non-linear codes, to prove inequality (7).

Our final result is characterizing the optimum linear recovery
threshold K., within a factor of 2 for all possible p,
m, n, and N, by developing an improved version of the
entangled polynomial code. This characterization involves the

fundamental concept of bilinear complexity [12]:

2024
Authorized licensed use limited to: University of Southern California. Downloaded on October 18,2024 at 22:41:13 UTC from IEEE Xplore. Restrictions apply.



2018 IEEE International Symposium on Information Theory (ISIT)

Definition 3. The bilinear complexity of multiplying an m-by-
p matrix and a p-by-n matrix, denoted by R(p, m,n), is the
minimum number of element-wise multiplications required to
complete such an operation. Rigorously, R(p, m, n) denotes the
minimum integer R, such that we can find tensors a € FRxpxm
b e FExpxn gnd ¢ € FRxmxn satisfying

Zcijk(z Aj’k'aij’k')( Z Bj”k’”bij”k”) = ZAljB’Lk
Z‘ jl’k)/ j/l’k// 1/

for any input matrices A € FP*™ B ¢ [FP*™,
Using this concept, we state our result as follows.

Theorem 3. For a distributed matrix multiplication problem of
computing AT B using N workers with parameters p, m, and
n, the optimum linear recovery threshold is characterized by

R(pamvn) < Kl);near < 2R(p7ma n) - 13 (8)
where R(p, m,n) denotes the bilinear complexity of multiplying
an m-by-p matrix and a p-by-n matrix.

In this paper, we provide proof sketches for Theorems 1 and

3. Other proofs and extensions (e.g., coded convolution, fault
tolerance computing) can be found in the long version [16].

IV. ENTANGLED POLYNOMIAL CODE
We prove Theorem 1 by describing the entangled polynomial
code and its decoding procedure, starting with an example.
A. Ilustrating Example

Consider a distributed matrix multiplication task of comput-
ing ATB using N = 5 workers that can each store half of the
rows (i.e., p = 2 and m = n = 1). We evenly divide each
input matrix along the row side into 2 submatrices:

o AO 7 B()
a=lrl =) ©)
Given this notation, we essentially want to compute
C=ATB=[AlBy+ A]B]. (10)

A naive computation strategy is to let the 5 workers compute
each ATB; uncodedly with repetition. Specifically we can
let 3 workers compute A By and 2 workers compute A] By .
However, this approach can only robustly tolerate 1 straggler,
achieving a recovery threshold of 4. Another naive approach is
to use random linear codes, i.e., let each worker store a random
linear combination of Ay, A;, and a combination of By, Bj.
However, the resulting computation result of each worker is a
random linear combination of 4 variables Al By, Al By, A] By,
and AIBl, which also results in a recovery threshold of 4.

Surprisingly, a simple computation strategy achieves the
optimum linear recovery threshold of 3, by injecting structured
redundancy tailored to matrix multiplication operations:

Suppose elements of A, B are in R. Let each worker i €
{0,1,...,4} store the following two coded submatrices:

A; = Ao +iA;, B, =iBy+ B. (11)

To prove that this design gives a recovery threshold of 3, we
need to find a valid decoding function for any subset of 3

data assignment computation

ATB, +0- (ATEDEATB,) + 07 - 4

Worker 0 [ |
:

Master

Worker 1| 17 decoding

| compute !
{C2AIBy+ AlBy
L rom &, C5.Cy

i using polynomial |

Worker 2 [ 177
i

| interpolation

Worker 3 i

Worker 4 | 17

Fig. 3: Example using entangled polynomial code, with 5 workers that
can each store half of each input matrix. (a) Computation strategy:
each worker ¢ stores Ao + ©A; and iBo + Bi, and computes their
product. (b) Decoding: master waits for results from any 3 workers,
and decodes the output using polynomial interpolation.

workers. We demonstrate this decodability through an example
scenario, where the master receives the computation results
from workers 1, 2, and 4, as shown in Figure 3. The decodability
for the other 9 possible scenarios can be proved similarly.
According to the designed computation strategy, we have

@] 10 1t 12 Al By
Cy| = {20 2! 22| |ATBy+ ABy (12)
o) 40 41 42 AT B,

The coefficient matrix in the above equation is a Vandermonde
matrix, which is invertible because its parameters 1,2, 4 are
distinct in R. So one decoding approach is to directly invert
equation (12), of which the returned result includes the needed
matrix C' = Al By + A] By. This proves the decodability.

B. General Coding Design

Now we present the entangled polynomial code, which
achieves a recovery threshold pmn + p — 1 for any p, m, n,
and N as stated in Theorem 1. First of all, we evenly divide
each input matrix into pm and pn submatrices according to
equation (3). We then assign each worker ¢ € {0,1,...,N —1}
a distinct element in [, denoted by z;. Under this setting, we
define the following class of computation strategies.
Definition 4. Given parameters «, 3,0 € N, we define the
(a, 8, 0)-polynomial code as

p—1m—1
/L' = Aj kl'ja+kﬂ,

) 7

3

13)

Il
= O
S
Iy

SR
|

7 (p—1—j)a+ko
Bi = Bj,kxi .
0

(14)

I
<
£
I

J
In an (o, 3,6)-polynomial code, each worker essentially
evaluates a polynomial whose coefficients are fixed linear
combinations of the products A;’kngk/. Specifically, each
worker ¢ returns
Com AT = Y AL By el i)
Jsk,g' k!

4For N < pmn + p — 1, a recovery threshold of N is achievable by
definition. Hence we focus on the case where N > pmn +p — 1.

2025
Authorized licensed use limited to: University of Southern California. Downloaded on October 18,2024 at 22:41:13 UTC from IEEE Xplore. Restrictions apply.



2018 IEEE International Symposium on Information Theory (ISIT)

Consequently, when the master receives results from enough
workers, it can recover all these linear combinations using
polynomial interpolation.

Recall that we aim to recover Cj j = Z;’;é Al Bk,
which are also fixed linear combinations of these pfoducts.
We design parameters («,3,6) such that all these linear
combinations appear in (15) as coefficients of terms of different
degrees. Furthermore, we want to minimize the degree of
polynomial C;, in order to reduce the recovery threshold.

One design satisfying these properties is («,3,0) =
(1,p,pm). Hence, each worker returns the value of the
following degree pmn + p — 2 polynomial at point x = x;:

hi(@) 2 Co= 3 AT, B el IR (1)

Jik,g’ k!

where each CY, ;- is exactly the coefficient of the (p— 1+ kp+
k'pm)-th degree term. Since all z;’s are selected to be distinct,
recovering C' given results from any pmn + p — 1 workers
is essentially interpolating h(z) using pmn + p — 1 distinct
points. Because the degree of h(z) is pmn + p — 2, the output
C can always be uniquely decoded.

As of complexity, the decoding can be viewed as interpolat-
ing a degree pmn+p—2 polynomial for % times, requiring at
most a complexity of O(prtlog®(pmn) loglog(pmn)), which
is almost linear to the input size of the decoder. This complexity
can be further improved, as discussed in the long version [16].

V. FACTOR OF 2 CHARACTERIZATION OF K/ .

We now provide a proof sketch for the upper bound in
Theorem 3. The achievability can be proved in 2 steps.

First, we show that any matrix multiplication is essentially
computing the element-wise product of two vectors of length
R(p,m,n). Recall the definition of bilinear complexity in
Section III; we can always find tensors q € FE®mn)xpxm
b € FRIe:mn)xpxn and ¢ ¢ FREmn)xmxn guch that any
block of the final output C' can be computed as

Cjk= Z Cijkle;‘l:vecéi,vec; (17)

where flmec and Bi,m are linear combinations of the blocks
of A and B defined as

/L',vec £ ZAj,kaijlm Bi,vec £ ZBj,kbijk~ (18)
J.k g,k

This essentially converts matrix multiplication to a problem of
computing the element-wise product of two “vectors” fli,vec
and Bi,vec, each of length R(p, m,n). Specifically, the master
only needs fl;vecBmeC for decoding the final output.

Secondly, we solve this augmented problem by developing
an improved version of the entangled polynomial code. This
computation strategy encodes any given pair of vectors of
length R(p, m,n) for N workers, such that from the computing
results of any subset of 2R(p, m,n) — 1 workers, the master
can recover all R(p, m,n) element-wise products.

The main idea is to first view the elements in each vector

as values of a degree R(p, m,n) — 1 polynomial at R(p, m,n)

different points. Specifically, given R(p, m, n) distinct elements
in the field F, denoted by xg,71,. .., Tr(p,m,n)—1, We find
polynomials f and § of degree R(p,m,n) — 1, such that
f(xl) = flmec, and §(z;) = BZ-,VCC. We want to recover the
values of polynomial £ fT§ at these R(p, m,n) points.
Recall that in the entangled polynomial code, we have devel-
oped a coding structure that allows us to recover polynomials
of this form while achieving a recovery threshold that equals
the degree plus one. We now reuse the idea in this construction.
Let yo, y1, s YN—1 be distinct elements of IF. We make

each worker i store A; = f(y;) and B; = §(y;). By computing
the product, each worker essentially evaluates iz(yz) Hence,
from the results of any 2R(p, m,n) — 1 workers, the master
can recover h of degree 2R(p,m, n) —2 and decode the output
matrix C. This construction achieves a recovery threshold of
2R(p, m,n) — 1, proving the upper bound in Theorem 3.

VI. ACKNOWLEDGEMENT

This material is based upon work supported by Defense
Advanced Research Projects Agency (DARPA) under Contract
No. HR001117C0053. The views, opinions, and/or findings
expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of
the Department of Defense or the U.S. Government. This work
is also in part supported by ONR award N000141612189 and
NSF Grants CCF-1703575 and NeTS-1419632.

REFERENCES

[11 L. E. Cannon, A Cellular Computer to Implement the Kalman Filter
Algorithm. PhD thesis, Bozeman, MT, USA, 1969.

[2] J. Choi, D. W. Walker, and J. J. Dongarra, “Pumma: Parallel universal
matrix multiplication algorithms on distributed memory concurrent
computers,” Concurrency: Practice and Experience, 1994.

[3] R. A. Van De Geijn and J. Watts, “Summa: scalable universal matrix
multiplication algorithm,” Concurrency: Practice and Experience, 1997.

[4] E. Solomonik and J. Demmel, “Communication-optimal parallel 2.5d
matrix multiplication and lu factorization algorithms,” in /CPP, 2011.

[5] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, 2013.

[6] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce performance in heterogeneous environments,”
0SDI, 2008.

[71 K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-

dran, “Speeding up distributed machine learning using codes,” e-print

arXiv:1512.02673, 2015.

S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear

transforms distributedly using coded short dot products,” in NIPS, 2016.

[91 Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal

design for high-dimensional coded matrix multiplication,” in NIPS, 2017.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “A unified coding

framework for distributed computing with straggling servers,” arXiv

preprint arXiv:1609.01690, 2016.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coding for distributed

fog computing,” IEEE Commun. Mag., vol. 55, pp. 34-40, April 2017.

M. Blaser, Fast Matrix Multiplication. No. 5 in Graduate Surveys, Theory

of Computing Library, 2013.

M. Fahim, H. Jeong, F. Haddadpour, S. Dutta, V. Cadambe, and P. Grover,

“On the optimal recovery threshold of coded matrix multiplication,” in

Allerton, 2017.

S. Dutta, Z. Bai, P. Grover, and T. M. Low, “Coded training of model

parallel deep neural networks under soft-errors,” Submitted to ISIT 2018.

K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix

multiplication,” in /EEE ISIT, 2017.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in

distributed matrix multiplication: Fundamental limits and optimal coding,”

arXiv preprint arXiv:1801.07487, 2018.

[8

[

[10]

[11]
[12]

[13]

[14]
[15]

[16]

2026
Authorized licensed use limited to: University of Southern California. Downloaded on October 18,2024 at 22:41:13 UTC from IEEE Xplore. Restrictions apply.



