Fast Noise Removal for k-Means Clustering

Sungjin Im

Xiaorui Sun
University of Illinois at Chicago

Abstract

This paper considers k-means clustering in the
presence of noise. It is known that k-means
clustering is highly sensitive to noise, and thus
noise should be removed to obtain a quality
solution. A popular formulation of this prob-
lem is called k-means clustering with outliers.
The goal of k-means clustering with outliers is
to discard up to a specified number z of points
as noise/outliers and then find a k-means so-
lution on the remaining data. The problem
has received significant attention, yet current
algorithms with theoretical guarantees suffer
from either high running time or inherent loss
in the solution quality. The main contribution
of this paper is two-fold. Firstly, we develop
a simple greedy algorithm that has provably
strong worst case guarantees. The greedy al-
gorithm adds a simple preprocessing step to
remove noise, which can be combined with
any k-means clustering algorithm. This algo-
rithm gives the first pseudo-approximation-
preserving reduction from k-means with out-
liers to k-means without outliers. Secondly,
we show how to construct a coreset of size
O(klogn). When combined with our greedy
algorithm, we obtain a scalable, near linear
time algorithm. The theoretical contributions
are verified experimentally by demonstrating
that the algorithm quickly removes noise and
obtains a high-quality clustering.

Proceedings of the 23" International Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

Mahshid Montazer Qaem
University of California at Merced University of California at Merced

Benjamin Moseley
Carnegie Mellon University

Rudy Zhou
Carnegie Mellon University

1 Introduction

Clustering is a fundamental unsupervised learning
method that offers a compact view of data sets by
grouping similar input points. Among various cluster-
ing methods, k-means clustering is one of the most
popular clustering methods used in practice, which is
defined as follows: given a set X of n points in Eu-
clidean space! R? and a target number of clusters k,
the goal is to choose a set C' of k points from R? as
centers, so as to minimize the f5-loss, i.e., the sum
of the squared distances of every point = € X to its
closest center in C.

Due to its popularity, k-means clustering has been ex-
tensively studied for decades both theoretically and
empirically, and as a result, various novel algorithms
and powerful underlying theories have been developed.
In particular, because the clustering problem is NP-
hard, several constant-factor approximation algorithms
have been developed (Charikar and Guha, 1999; Ka-
nungo et al., 2004; Kumar et al., 2004; Feldman et al.,
2007), meaning that their output is always within an
O(1) factor of the optimum. One of the most success-
ful algorithms used in practice is k-means++ (Arthur
and Vassilvitskii, 2007). The algorithm k-means-+-+
is a preprocessing step used to set the initial centers
when using Lloyd’s algorithm (Lloyd, 1982). Lloyd’s
algorithm is a simple local search heuristic that alter-
nates between updating the center of every cluster and
reassigning points to their closest centers. k-means+-+
has a provable approximation guarantee of O(log k) by
carefully choosing the initial centers.

k-means clustering is highly sensitive to noise, which
is present in many data sets. Indeed, it is not difficult
to see that the k-means clustering objective can vary
significantly even with the addition of a single point
that is far away from the true clusters. In general, it is

!The input space can be extended to an arbitrary metric
space.

Fast Noise Removal for k-Means Clustering

a non-trivial task to filter out noise; without knowing
the true clusters, we cannot identify noise, and vice
versa. While there are other clustering methods, such
as density-based clustering (Ester et al., 1996), that
attempt to remove noise, they do not replace k-means
clustering because they are fundamentally different
than k-means.

Consequently, there have been attempts to study k-
means clustering in the presence of noise. The following
problem formulation is the most popular formulation
in the theory (Chen, 2008; Charikar et al., 2001; Mc-
Cutchen and Khuller, 2008; Guha et al., 2017), machine
learning (Malkomes et al., 2015; Chawla and Gionis,
2013; Li and Guo, 2018) and database communities
(Gupta et al., 2017). Note that traditional k-means
clustering is a special case of this problem when z = 0.
Throughout, for z,y € R?, we let d(z,y) denote the /5
distance between x and y. For a subset of points Y, let
d(z,Y) := mingey d(z,y).

Definition 1 (k-Means with Outliers). In this prob-
lem we are given as input a subset X of n points in
R?, a parameter k € N (number of centers), and a
parameter z € N (number of outliers). The goal is to
choose a collection of k centers, C C R%, to minimize:
Y rex.(C) d*(z,C) , where X,(C) C X is the subset
of n — z input points with the smallest distances to C.

Because this problem generalizes k-means clustering,
it is NP-hard, and in fact, turns out to be significantly
more challenging. The only known constant approxi-
mations (Chen, 2008; Krishnaswamy et al., 2018) are
highly sophisticated and are based on complicated local
search or linear program rounding. They are unlikely
to be implemented in practice due to their runtime and
complexity. Therefore, there have been strong efforts to
develop simpler algorithms that offer good approxima-
tion guarantees when allowed to discard more than z
points as outliers (Charikar et al., 2001; Meyerson et al.,
2004; Gupta et al., 2017), or heuristics (Chawla and
Gionis, 2013). Unfortunately, all existing algorithms
with theoretical guarantees suffer from either high run-
ning time or inherent loss in solution quality.

1.1 Our Results and Contributions

The algorithmic contribution of this paper is two-fold,
and further these contributions are validated by ex-
periments. In this section, we state our contribu-
tion and discuss it in detail compared to the previous
work.

Simple Preprocessing Step for Removing Out-
liers with Provable Guarantees: In this paper we
develop a simple preprocessing step, which we term
NK-MEANS, to effectively filter out outliers. NK-

MEANS stands for noise removal for k-means. Our
proposed preprocessing step can be combined with any
algorithm for k-means clustering. Despite the large
amount of work on this problem, we give the first
reduction to the standard k-means problem. In partic-
ular, NK-MEANS can be combined with the popular
k-means-++. The algorithm is the fastest known al-
gorithm for the k-means with outliers problem. Its
speed and simplicity gives it the potential to be used
in practice. Formally, given an a-approximation for
k-means clustering, we give an algorithm for k-means
with outliers that is guaranteed to discard up to O(kz)
points such that the cost of remaining points is at most
O(«) times the optimum that discards up to exactly z
points. While the theoretical guarantee on the number
of outliers is larger than z on worst-case inputs, we
show that NK-MEANS removes at most O(z) outliers
under the assumption that every cluster in an optimal
solution has at least 3z points. We believe that this
assumption captures most practical cases since oth-
erwise significant portions of the true clusters can be
discarded as outliers. In actual implementation, we can
guarantee discarding exactly z points by discarding the
farthest z points from the centers we have chosen. It is
worth keeping in mind that all (practical) algorithms
for the problem discard more than z points to have
theoretical guarantees (Charikar et al., 2001; Meyerson
et al., 2004; Gupta et al., 2017).

New Coreset Construction: When the data set
is large, a dominant way to speed up clustering is to
first construct a coreset and then use the clustering
result of the coreset as a solution to the original input.
Informally, a set of (weighted) points Y is called a
coreset of X if a good clustering of Y is also a good
clustering of X (see Section 4.1 for the formal definition
of coreset.)

The idea is that if we can efficiently construct such
Y, which is significantly smaller than X, then we can
speed up any clustering algorithm with little loss of
accuracy. In this paper, we give an algorithm to con-
struct a coreset of size O(klogn) for k-means with
outliers. Importantly, the coreset size is independent
of z and d - the number of outliers and dimension,
respectively.

Experimental Validation: Our new coreset en-
ables the implementation and comparison of all poten-
tially practical algorithms, which are based on primal-
dual (Charikar et al., 2001), uniform sampling (Meyer-
son et al., 2004), or local search (Chawla and Gionis,
2013; Gupta et al., 2017). It is worth noting that, to
the best of our knowledge, this is the first paper to
implement the primal-dual based algorithm (Charikar
et al., 2001) and test it for large data sets. We also

Sungjin Im, Mahshid Montazer Qaem, Benjamin Moseley, Xiaorui Sun, Rudy Zhou

implemented natural extensions of k-means-++ and our
algorithm NK-MEANS. We note that for fair compari-
son, once each algorithm chose the k centers, we consid-
ered all points and discarded the farthest z points. Our
experiments show that our NK-MEANS consistently
outperforms other algorithms for both synthetic and
real-world data sets with little running time overhead
as compared to k-means-+-+.

1.2 Comparison to the Previous Work

Algorithms for k-Means with Outliers: To un-
derstand the contribution of our work, it is important to
contrast the algorithm with previous work. We believe
a significant contribution of our work is the algorithmic
simplicity and speed as well as the theoretical bounds
that our approach guarantees. In particular, we will
discuss why the previous algorithms are difficult to use
in practice.

The first potentially practical algorithm developed is
based on primal-dual (Charikar et al., 2001). Instead
of solving a linear program (LP) and converting the so-
lution to an integer solution, the primal-dual approach
only uses the LP and its dual to guide the algorithm.
However, the algorithm does not scale well and is not
easy to implement. In particular, it involves increasing
variables uniformly, which requires Q(n?) running time
and extra care to handle precision issues of fractional
values. As mentioned before, this algorithm was never
implemented prior to this paper. Our experiments
show that this algorithm considerably under-performs
compared to other algorithms.

The second potentially practical algorithm is based on
uniform sampling (Meyerson et al., 2004). The main
observation of Meyerson et al. (2004) is that if every
cluster is large enough, then a small uniform sample
can serve as a coreset. This observation leads to two
algorithms for k-means clustering with outliers: (i) (im-
plicit) reduction to k-means clustering via conservative
uniform sampling and (ii) (explicit) aggressive uniform
sampling plus primal-dual (Charikar et al., 2001). In
(i) it can be shown that a constant approximate k-
means clustering of a uniform sample of size n/(2z) is
a constant approximation for k-means clustering with
outliers, under the assumption that every cluster has
size Q(zlogk). Here, the main idea is to avoid any
noise by sampling conservatively. Although this as-
sumption is reasonable as discussed before, the real
issue is that conservative uniform sampling doesn’t give
a sufficiently accurate sketch to be adopted in practice.
For example, if there are 1% noise points, then the
conservative uniform sample has only 50 points. In
(ii), a more aggressive uniform sampling is used and
followed by the primal dual (Charikar et al., 2001). It
first obtains a uniform sample of size ©(k(n/z)logn);

then the (expected) number of outliers in the sample
becomes O (klogn). This aggressive uniform sampling
turns out to have very little loss in terms of accuracy.
However, as mentioned before, the primal-dual algo-
rithm under-performs compared to other algorithms in
speed and accuracy.

Another line of algorithmic development has been based
on local search (Chawla and Gionis, 2013; Gupta et al.,
2017). The algorithm in Chawla and Gionis (2013)
guarantees the convergence to a local optimum, but
has no approximation guarantees. The other algorithm
(Gupta et al., 2017) is an O(1)-approximation but the-
oretically it may end up with discarding O(kzlogn)
outliers. These local search algorithms are considerably
slower than our method and the theoretical guarantees
require discarding many more points.

To summarize, there is a need for a fast and effective
algorithm for k-means clustering with outliers.

Coresets for k-Means with Outliers: The other
main contribution of our work is a coreset for k-means
with outliers of size O(klogn) - independent of the
number of outliers z and dimension d.

The notion of coreset we consider is related to the
concept of a weak coreset in the literature - see e.g.
Feldman and Langberg (2011) for discussion of weak
coresets and other types of coresets. Previous coreset
constructions (some for stronger notions of coreset)
have polynomial dependence on the number of outliers
z (Gupta et al., 2017), inverse polynomial dependence
on the fraction of outliers = (Meyerson et al., 2004;
Huang et al., 2018), or polynomial dependence on the
dimension d (Huang et al., 2018). Thus, all coresets
constructed in the previous work can have large size
for some value of z, e.g. z = ©(y/n), or for large values
of d. In contrast, our construction is efficient for all
values of z € [0,n] and yields coresets of size with no
dependence on d or z.

1.3 Overview of Our Algorithms:
NK-MEANS and SAMPLECORESET

Our preprocessing step, NK-MEANS, is reminiscent of
density-based clustering. Our algorithm tags an input
point as light if it has relatively few points around it.
Formally, a point is declared as light if it has less than
2z points within a certain distance threshold r, which
can be set by binary search. Then a point is discarded
if it only has light points within distance r. We empha-
size that the threshold is chosen by the algorithm, not
by the algorithm user, unlike in density-based cluster-
ing. While our preprocessing step looks similar to the
algorithm for k-center clustering (Charikar et al., 2001),

Fast Noise Removal for k-Means Clustering

which optimizes the £,.-loss, we find it surprising that a
similar idea can be used for k-means clustering.

It can take considerable time to label each point light
or not. To speed up our algorithm, we develop a new
corest construction for k-means with outliers. The idea
is relatively simple. We first use aggressive sampling
as in Meyerson et al. (2004). The resulting sample
has size O(2 logn) and includes O(klogn) outliers
with high probability. Then we use k-means++ to
obtain O(klogn) centers. As a result, we obtain a
high-quality coreset of size O(klogn). Interestingly,
to our best knowledge, combining aggressive sampling
with another coreset for k-means with outliers has not
been considered in the literature.

1.4 Other Related Work

Due to the vast literature on clustering, we refer the
reader to Aggarwal and Reddy (2013); Kogan et al.
(2006); Jain et al. (1999) for an overview and survey
of the literature. k-means clustering can be gener-
alized by considering other norms of loss, and such
extensions have been studied under different names.
When the objective is ¢1-norm loss, the problem is
called k-medians. The k-median and k-mean cluster-
ing problems are closely related, and in general the
algorithm and analysis for one can be readily trans-
lated into one for the other with an O(1) factor loss
in the approximation ratio. Constant approximations
are known for k-medians and k-means based on lin-
ear programming, primal-dual, and local search (Arya
et al., 2004; Charikar et al., 2002; Charikar and Guha,
1999). While its approximation ratio is O(log k), the
k-means—++ algorithm is widely used in practice for
k-means clustering due to its practical performance
and simplicity. When the loss function is ¢, the prob-
lem is known as k-centers and a 3-approximation is
known for k-centers clustering with outliers (Charikar
et al., 2001). For recent work on these outlier prob-
lems in distributed settings, see Malkomes et al. (2015);
Li and Guo (2018); Guha et al. (2017); Chen et al.
(2018).

2 Preliminaries

In this paper we will consider the Euclidean k-means
with outliers problem as defined in the introduction.
Note that the ¢>-distance satisfies the triangle inequal-
ity, so for all z,y,z € R, d(z,2) < d(x,y) + d(y, 2).
Further, the approxzimate triangle inequality will be
useful to our analyses (this follows from the triangle
inequality): d?(z,z2) < 2d?(x,y) +2d*(y,2) Va,y,z €
R?. Given a set of centers C C R?, we say that the
assignment cost of x € X to C'is d*(z,C). For k-means

with outliers, a set, C, of k centers naturally defines a
clustering of the input points X as follows:

Definition 2 (Clustering). Let C = {cy,...,c} C R?
be a set of k centers. A clustering of X defined by C' is
a partition C1U- - -UCY, of X, (C) satisfying: For all x €
X, andc, € C, x € C; <= d(z,C) =d(x,¢;), where
ties between c;’s are broken arbitrarily but consistently.

In summary, for the k-means with outliers problem,
given a set C of k centers, we assign each point in X to
its closest center in C'. Then we exclude the z points of
X with the highest assignment cost from the objective
function (these points are our outliers.) This procedure
defines a clustering of X with outliers.

Notations: For n € N, we define [n] := {1,...,n}.
Recall that as in the introduction, for any finite
Y C R4,z € R, we define: d(x,Y) := mingey d(z,y).
For any z € R X C R%r > 0, we define the
X-ball centered at x with radius r by B(z,r) :=
{y € X | d(z,y) < r}. For a set of k centers,
C C RY and z € N, we define the z-cost of C by
fX(0) = Y rex.(C) d*(z,C). Recall that we define
X.(C) C X to be the subset of points of X excluding
the z points with highest assignment costs. Thus the
z-cost of C' is the cost of clustering X with C' while
excluding the z points with highest assignment costs.
As shorthand, when z = 0 — so when we consider the
k-means problem without outliers — we will denote the
0-cost of clustering X with C by fX(C) := f(C).
Further, we say a set of k centers C* is an optimal
z-solution if it minimizes f.X(C) over all choices of k
centers, C. Then we define Opt(X, k, 2) := fX(C*) to
be the optimal objective value of the k-means with
outliers instance (X,k,z). Analogously, for the k-
means without outliers problem, we denote the op-
timal objective value of the k-means instance (X, k) by
Opt(X, k).

3 NK-MEANS Algorithm

In this section, we will describe our algorithm,
NK-MEANS, which turns a k-means algorithm with-
out outliers to an algorithm for k-means with outliers
in a black box fashion. We note that the algorithm
naturally extends to k-medians with outliers and gen-
eral metric spaces. For the remainder of this section,
let X = {z1,...,2,} CR% k€N, and z € N define
an instance of k-means with outliers.

Algorithm Intuition: The guiding intuition behind
our algorithm is as follows: We consider a ball of radius
r > 0 around each point z € X. If this ball contains
many points, then x is likely not to be an outlier in
the optimal solution.

More concretely, if there are more than 2z points in z’s

Sungjin Im, Mahshid Montazer Qaem, Benjamin Moseley, Xiaorui Sun, Rudy Zhou

ball, then at most z of these points can be outliers in
the optimal solution. This means that the majority of
2’s neighbourhood is real points in the optimal solution,
so we can bound the assignment cost of x to the optimal
centers. We call such points heavy.

There are 2 main steps to our algorithm. First, we
use the concept of heavy points to decide which points
are real points and those that are outliers. Then we
run a k-means approximation algorithm on the real
points.

Formal Algorithm: Now we formally describe our
algorithm NK-MEANS. As input, NK-MEANS takes a
k-means with outliers instance (X, k, z) and an algo-
rithm for k-mean without outliers, A, where A takes
an instance of k-means as input.

We will prove that if A4 is an O(1)-approximation for
k-means and the optimal clusters are sufficiently large
with respect to z, then NK-MEANS outputs a good clus-
tering that discards O(z) outliers. More precisely, we
will prove the following theorem about the performance
of NK-MEANS:

Theorem 1. Let C be the output of
NK-MEANS(X, k, 2, A). Suppose that A is an «-
approximation for k-means. If every cluster in the
clustering defined by C* has size at least 3z, then
f55(C) < 9a- Opt(X, k, 2).

Corollary 1. Let C be the output of
NK-MEANS(X, k, 2, A). Suppose that A is an «-
approximation. Then f{)‘)iz—Q—QZ(C) < 9a-Opt(X,k,z).

In other words, NK-MEANS gives a pseudo-
approximation-preserving reduction from k-means with
outliers to k-means, where any « approximation for k-
means implies a 9 pseudo-approximation for k-means
with outliers that throws away 3kz + 2z points as out-
liers.

3.1 Implementation Details

Here we describe a simple implementation of
NK-MEANS that achieves runtime O(n%d) + T'(n) as-
suming we know the optimal objective value, Opt,
where T'(n) is the runtime of the algorithm A on inputs
of size n. This assumption can be removed by running
that algorithm for many guesses of Opt, say by trying
all powers of 2 to obtain a 2-approximation of Opt for
the correct guess.

For our experiments, we implement the loop in Line 3 by
enumerating over all pairs of points and computing their
distance. This step takes time O(n%d). We implement
the loop in Line 9 by enumerating over all elements
in B(x,r) and checking if it is heavy for each z € X.
This step takes O(n?). Running A on (X \ Y, k) takes

Algorithm 1 for k-means with outliers
NK-MEANS(X, k, z, A)
1: Suppose we know the optimal objective value
Opt := Opt(X, k, z)
Initialize r < 2(Opt/2)Y/2, Y + 0
for each x € X do
Compute B(x,r)
if |B(z,r)| > 2z then
Mark z as heavy
end if
end for
for each x € X do
if B(z,r) contains no heavy points then
Update Y + Y U {z}
end if
: end for
: Output C + A(X \ Y, k)

— = s e
=W o

T'(n) time. We summarize the result of this section in
the following lemma:

Lemma 1. Assuming that we know Opt and that A
takes time T'(n) on inputs of size n, then NK-MEANS
can be implemented to run in time O(n?d) + T(n).

4 Coreset of Near Linear Size in
k

In this section we develop a general framework to speed
up any k-means with outliers algorithm, and we apply
this framework to NK-MEANS to show that we can
achieve near-linear runtime. In particular, we achieve
this by constructing what is called a coreset for the
k-means with outliers problem of size O(klogn), which
is independent of the number of outliers, z.

4.1 Coresets for k-Means with Outliers

Our coreset construction will leverage existing construc-
tions of coresets for k-means with outliers. A coreset
gives a good summary of the input instance in the
following sense:

Definition 3 (Coreset for k-Means with Outliers). 2
Let (X, k,z) be an instance of k-means with outliers
and Y be a (possibly weighted) subset of R%. We say the
k-means with outliers instance (Y, k,z') is an (o, B)-
coreset for X if for any set C C R? of k-centers sat-

?Note that our definition of coreset is parameterized by
the number of outliers, z, in contrast to previous work such
as Meyerson et al. (2004) and Huang et al. (2018), whose
constructions are parametereized by the fraction of outliers,

Fast Noise Removal for k-Means Clustering

isfying fY ./(C) < koOpt(Y, k, 2') for some k1,9 >0,
X 2(C) < BroOpt(X k. 2).

aK1z
In words, if (Y, k,2') is an («, 8) coreset for (X, k, z),
then running any (k1, ke)-approximate k-means with
outliers algorithm on (Y, k, z’) (meaning the algorithm
throws away k12’ outliers and outputs a solution
with cost at most koOpt(Y, k, 2’)) gives a (aki, fK2)-
approximate solution to (X, k, z).

we have

Note that if Y is a weighted set with weights w: Y —
R, then the k-means with outliers problem is analo-
gously defined, where the objective is a weighted sum of
assignment costs: min Yyev. (o) W(y)d:(y, C). Further,

note that NK-MEANS generalizes naturally to weighted
k-means with outliers with the same guarantees.

The two coresets we will utilize for our construction
are K-MEANS-++ (Aggarwal et al., 2009) and Meyer-
son’s sampling coreset (Meyerson et al., 2004). The
guarantees of these coresets are as follows:

Theorem 2 (K-MEANS—++). Let K-MEANS++(X, k)
denote running K-MEANS++ on input points X to ob-
tain a set Y C X of size k. Further, let Y1,...Y} be
the clustering of X with centers yi,...,yx € Y, re-
spectively. We define a weight function w :' Y — Ry
by w(y;)) = |Yi| for all y; € Y. Suppose Y =
K-MEANS++(X,32(k + 2)). Then with probability at
least 0.03, the instance (Y, k,z) where Y has weights
w is an (1,124)-coreset for the k-means with outliers
instance (X, k, z).

Theorem 3 (Sampling). Let S be a sample from X,
where every x € X is included in S independently with
probability p = max (28 log(@)7 36% log(2k?)). Then
with probability at least 1 — k%, the instance (S, k,2.5pz)
is a (16,29)-coreset for (X, k, z).

Observe that K-MEANS-+- gives a coreset of size
O(k + z), and uniform sampling gives a coreset of
size O(%”log n) in expectation. If z is small, then
K-MEANS-++ gives a very compact coreset for k-means
with outliers, but if z is large — say z = Q(n) — then
K-MEANS++ gives a coreset of linear size. However,
the case where z is large is exactly when uniform sam-
pling gives a small coreset.

In the next section, we show how we can combine these
two coresets to construct a small coreset that works
for all z.

4.2 Our Coreset Construction:
SAMPLECORESET

Using the above results, our strategy is as follows: Let
(X, k,z) be an instance of k-means with outliers. If
p > 1, then we can show that z = O(klogn), so we
can simply run K-MEANS-+-+ on the input instance
to get a good coreset. Otherwise, z is large, so we

Algorithm 2 Coreset Constuction for k-Means with
Outliers
SAMPLECORESET (X, k, 2)
1: Let p = max(28 log(‘lnzk2), 36% log(2k3)).
2: if p > 1 then
3: Output Y < K-MEANS++(X, 32(k + 2)).
4: else
5 Let S be a sample drawn from X, where each x €
X isincluded in S independently with probability
p.
Output Y + K-MEANS-++(S, 32(k 4 2.5pz))
7: end if

2

first subsample approximately %” points from X. Let
S denote the resulting sample. Then we compute a
coreset on S of size 32(k + 2.5pz), where we scale down
the number of outliers from X proportionally.

Algorithm 2 formally describes our coreset construc-
tion. We will prove that SAMPLECORESET outputs
with constant probability a good coreset for the k-
means with outliers instance (X, k, z) of size O(klogn).
In particular, we will show:
Theorem 4. With constant probability,
SAMPLECORESET outputs an (O(1),0(1))-coreset for
the k-means with outliers instance (X,k,z) of size

O(klogn) in expectation.

4.3 A Near Linear Time Algorithm for
k-Means With Outliers

Using SAMPLECORESET, we show how to speed up
NK-MEANS to run in near linear time: Let Y be the
result of SAMPLECORESET(X, k, z). Then, to choose
k centers we run NK-MEANS(Y, k, z, A) if p > 1; oth-
erwise, run NK-MEANS(Y, k, 2.5pz, A), where A is any
O(1)-approximate k-means algorithm with runtime
T'(n) on inputs of size n.

Theorem 5. There exists an algorithm that outputs
with a constant probability an O(1)-approzimate solu-
tion to k-means with outliers while discarding O(kz)
outliers in expected time O(kdnlog®n) + T(klogn).

5 Experiment Results

This section presents our experimental results. The
main conclusions are:

e Our algorithm NK-MEANS almost always has the
best performance and finds the largest proportion
of ground truth outliers. In the cases where NK-
MEANS is not the best, it is competitive within

5%.

Sungjin Im, Mahshid Montazer Qaem, Benjamin Moseley, Xiaorui Sun, Rudy Zhou

e Our algorithm results in a stable solution. Algo-
rithms without theoretical guarantees have unsta-
ble objectives on some experiments.

e Qur coreset construction SAMPLECORESET allows
us to run slower, more sophisticated, algorithms
with theoretical guarantees on large inputs. De-
spite their theoretical guarantees, their practical
performance is not competitive.

The experiments shows that for a modest overhead for
preprocessing, NK-MEANS makes k-means clustering
more robust to noise.

Algorithms Implemented: Our new coreset con-
struction makes it feasible to compare many algorithms
for large data sets. Without this, most known algo-
rithms for k-means with outliers become prohibitively
slow even on modestly sized data sets. In our ex-
periments, the coreset construction we utilize is SAM-
PLECORESET. More precisely, we first obtain a uni-
form sample by sampling each point independently
with probability p = min{%, 1}. Then, we run
k-means—++ on the sample to choose k 4 pz centers —
the resulting coreset is of size k + pz.

Next we describe the algorithms tested. Besides the
coreset construction, we use k-means+-+ to mean run-
ning k-means++ and then Lloyd’s algorithm for brevity.
For more details, see Supplementary Material E. In
the following, “on coreset” refers to running the algo-
rithm on the coreset as opposed to the entire input.
For fair comparison, we ensure each algorithm discards
evactly z outliers regardless of the theoretical guar-
antee. At the end of each algorithm’s execution, we
discard the z farthest points from the chosen k centers
as outliers.

Algorithms Tested:

1. NK-MEANS (plus k-means+-+ on core-
set): We use NK-MEANS with k-means++
as the input A. The algorithm requires
a bound on the objective Opt. For this,
we considered powers of 2 in the range of
[nminy, ,ex d*(u,v), nmax, yex d*(u,v)].

2. k-means++ (on the original input): Note
this algorithm is not designed to handle outliers.

3. k-means+-+ (on coreset): Same note as the
above.

4. Primal-dual algorithm of Charikar et al.
(2001) (on coreset): A sophisticated algorithm
based on constructing an approximate linear pro-
gram solution.

5. Uniform Sample (conservative uniform
sampling plus k-means++): We run k-
means++ on a uniform sample consisting of points
sampled with probability 1/(2z).

6. k-means— (Chawla and Gionis, 2013) on

coreset: This algorithm is a variant of the Lloyd’s
algorithm that executes each iteration of Lloyd’s
excluding the farthest z points.

7. Local search of Gupta et al. (2017) (on core-
set) : This is an extension of the well-known
k-means local search algorithm.

Experiments: We now describe our experiments
which were done on both synthetic and real data
sets.

Synthetic Data Experiments We first conducted
experiments with synthetic data sets of various param-
eters. Every data set has n equal one million points
and k,d € {10,20} and z € {10000,50000}. Then we
generated k random Gaussian balls. For the ith Gaus-
sian we choose a center ¢; from [—1/2,1/2]¢ uniformly
at random. These are the true centers. Then, we
add n/k points drawn from N (¢;, 1) for the ith Gaus-
sian. Next, we add noise. Points that are noise were
sampled uniformly at random either from the same
range [—1/2,1/2]¢ or from a larger range [—5/2,5/2]¢
depending on the experiment. We tagged the farthest
z points from the centers {ci,..., ¢} as ground truth
outliers. We consider all possible 16 combinations of
k,d, z values and the noise range.

Each experiment was conducted 3 times, and we chose
the result with the minimum objective and measured
the total running time over all 3 runs. We aborted the
execution if the algorithm failed to terminate within
4 hours. All experiments were performed on a cluster
using a single node with 20 cores at 2301MHz and
RAM size 128GB. Table 1 shows the number of times
each algorithm aborted due to high run time. Also
we measured the recall, which is defined as number
of ground truth outliers reported by the algorithm,
divided by z, the number of points discarded. The
recall was the same as the precision in all cases, so we
use precision in the remaining text. We choose 0.8 as
the threshold for the acceptable precision and counted
the number of inputs for which each algorithm had
precision lower than 0.8. Our algorithm NK-MEANS,
k-means+-+ on coreset, and k-means++ on the original
input all had precision greater than 0.99 for all data sets
and always terminated within 4 hours. The k-means-++
results are excluded from the table. Details of the
quality and runtime are deferred to the Supplementary
Material E.

Real Data Experiments For further experiments,
we used real data sets. We used the same normalization,
noise addition method and the same value of k = 10 in
all experiments. The data sets are SKIN-A, SUSY-A,
and POWER-A. We normalized the data such that
the mean and standard deviation are 0 and 1 on each

Fast Noise Removal for k-Means Clustering

Primal-Dual | k-means— | Local Search | Uniform Sample | NK-MEANS
run time > 4hrs 9/16 1/16 8/16 0/16 0/16
precision < 0.8 2/16 0/16 0/16 4/16 0/16
total failure 11/16 1/16 8/16 4/16 0/16
Table 1: Failure rates due to high run time or low precision.
SKIN-5 | SKIN-10 | Susy-5 | Susy-10 | POWER-5 | POWER-10 | KDDFULL
1 1 1 1 1 1 1
NK-MEANS | 0.8065 | 0.9424 | 0.8518 0.9774 0.6720 0.9679 0.6187
56 56 1136 1144 363 350 1027
0.9740 1.5082 1.2096 1.1414 1.0587 1.0625 2.0259
k-means— 0.7632 0.9044 0.8151 0.9753 0.6857 0.9673 0.6436
86 89 672 697 291 251 122
k-means+-+ | 1.0641 1.4417 1.0150 1.0091 1.0815 1.0876 1.5825
coreset 0.7653 0.9012 | 0.8622 | 0.9865 0.7247 0.9681 0.3088
39 37 462 465 177 142 124
k-means++ | 0.9525 | 1.6676 1.0017 1.0351 1.0278 1.0535 1.5756
original 0.7775 0.8975 0.8478 0.9814 0.7116 0.9649 0.3259
34 43 6900 6054 689 943 652

Table 2: Experiment results on real data sets with A = 5,10. The top, middle, bottom in each entry are the
objective (normalized relative to NK-MEANS), precision, and run time (sec.), resp. Bold indicates the best in the

category.

dimension, respectively. Then we randomly sampled
z = 0.01n points uniformly at random from [—A, A]¢
and added them as noise. We discarded data points
with missing entries.

Real Data Sets:

1. SKIN-A (ski). n = 245057, d = 3, k = 10, z =
0.01n. Only the first 3 features were used.

2. Susy-A (sus). n =5M,d =18, k = 10, z =
0.01n.

3. POWER-A (pow). n = 2049280, d = 7, k =
10, z = 0.0ln. Out of 9 features, we dropped
the first 2, date and time, that denote when the
measurements were made.

4. KppFuLL (kdd). n = 4898431, d = 34, k = 3,
z = 45747. Each instance has 41 features and we
excluded 7 non-numeric features. This data set
has 23 classes and 3 classes account for 98.3% of
the data points. We considered the other 45747
data points as ground truth outliers.

Table 2 shows our experiment results for the above
real data sets. Due to their high failure rate observed
in Table 1 and space constraints, we excluded the
primal-dual, local search, and conservative uniform
sampling algorithms from Table 2; all results can be
found in Supplementary Material E. As before, we
executed each algorithm 3 times. It is worth noting that
NK-MEANS is the only algorithm with the worst case
guarantees shown in Table 2. This gives a candidate

explanation for the stability of our algorithm’s solution
quality across all data sets in comparison to the other
algorithms considered.

The result shows that our algorithm NK-MEANS has
the best objective for all data sets, except within 5%
for SKIN-5. Our algorithm is always competitive with
the best precision. For KDDFULL where we didn’t add
artificial noise, NK-MEANS significantly outperformed
other algorithms in terms of objective. We can see
that NK-MEANS pays extra in the run time to remove
outliers, but this preprocessing enables stability, and
competitive performance.

6 Conclusion

This paper presents a near linear time algorithm for
removing noise from data before applying a k-means
clustering. We show that the algorithm has provably
strong guarantees on the number of outliers discarded
and approximation ratio. Further, NK-MEANS gives
the first pseudo-approximation-preserving reduction
from k-means with outliers to k-means without out-
liers. Our experiments show that the algorithm is the
fastest among algorithms with provable guarantees and
is more accurate than state-of-the-art algorithms. It is
of interest to determine if the algorithm achieves better
guarantees if data has more structure such as being in
low dimensional Euclidean space or being assumed to
be well-clusterable (Braverman et al., 2011).

Sungjin Im, Mahshid Montazer Qaem, Benjamin Moseley, Xiaorui Sun, Rudy Zhou

7 Acknowledgments

S. Im and M. Montazer Qaem were supported in part
by NSF grants CCF-1617653 and 1844939. B. Moseley
and R. Zhou were supported in part by NSF grants
CCF-1725543, 1733873, 1845146, a Google Research
Award, a Bosch junior faculty chair and an Infor faculty
award.

References

Kdd cup 1999 data. http://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html.

Individual household electric power consumption
data set. https://archive.ics.uci.edu/ml/
datasets/Individual+household+electric+
power+consumption.

Skin segmentation data set. https://archive.ics.
uci.edu/ml/datasets/Skin+Segmentation.

SUSY data set. https://archive.ics.uci.edu/ml/
datasets/SUSY.

Ankit Aggarwal, Amit Deshpande, and Ravi Kannan.
Adaptive sampling for k-means clustering. In RAN-
DOM, pages 1528, 2009.

Charu C. Aggarwal and Chandan K. Reddy. Data
Clustering: Algorithms and Applications. Chapman
and Hall/CRC, 2013.

David Arthur and Sergei Vassilvitskii. k-means+-+:
the advantages of careful seeding. In SODA, pages
1027-1035, 2007.

Vijay Arya, Naveen Garg, Rohit Khandekar, Adam
Meyerson, Kamesh Munagala, and Vinayaka Pandit.
Local search heuristics for k-median and facility lo-

cation problems. SIAM Journal on computing, 33
(3):544-562, 2004.

Vladimir Braverman, Adam Meyerson, Rafail Ostro-
vsky, Alan Roytman, Michael Shindler, and Brian
Tagiku. Streaming k-means on well-clusterable data.
In Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA
2011, San Francisco, California, USA, January 25-
25, 2011, pages 2640, 2011.

Moses Charikar and Sudipto Guha. Improved com-
binatorial algorithms for the facility location and
k-median problems. In 40th Annual Symposium
on Foundations of Computer Science (Cat. No.
99CB37039), pages 378-388. IEEE, 1999.

Moses Charikar, Samir Khuller, David M. Mount, and
Giri Narasimhan. Algorithms for facility location
problems with outliers. In SODA, pages 642651,
2001.

Moses Charikar, Sudipto Guha, Eva Tardos, and
David B Shmoys. A constant-factor approximation
algorithm for the k-median problem. Journal of
Computer and System Sciences, 65(1):129-149, 2002.

Sanjay Chawla and Aristides Gionis. k-means-: A
unified approach to clustering and outlier detection.
In ICDM, pages 189-197, 2013.

Jiecao Chen, Erfan Sadeqi Azer, and Qin Zhang. A
practical algorithm for distributed clustering and
outlier detection. In Advances in Neural Information
Processing Systems, pages 2248-2256, 2018.

Ke Chen. A constant factor approximation algorithm
for k-median clustering with outliers. In SODA,
pages 826-835, 2008.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and
Xiaowei Xu. A density-based algorithm for discover-
ing clusters in large spatial databases with noise. In
AAAIL pages 226-231, 1996.

Dan Feldman and Michael Langberg. A unified frame-
work for approximating and clustering data. In
Lance Fortnow and Salil P. Vadhan, editors, Pro-
ceedings of the 48rd ACM Symposium on Theory
of Computing, STOC 2011, San Jose, CA, USA,
0-8 June 2011, pages 569-578. ACM, 2011. doi:
10.1145/1993636.1993712. URL https://doi.org/
10.1145/1993636.1993712.

Dan Feldman, Morteza Monemizadeh, and Christian
Sohler. A ptas for k-means clustering based on weak
coresets. In Proceedings of the twenty-third annual
symposium on Computational geometry, pages 11-18.
ACM, 2007.

Sudipto Guha, Yi Li, and Qin Zhang. Distributed
partial clustering. In Proceedings of the 29th ACM
Symposium on Parallelism in Algorithms and Archi-
tectures, pages 143-152. ACM, 2017.

Shalmoli Gupta, Ravi Kumar, Kefu Lu, Ben-
jamin Moseley, and Sergei Vassilvitskii. Lo-
cal search methods for k-means with outliers.
PVLDB, 10(7):757-768, 2017. doi: 10.14778/
3067421.3067425. URL http://www.vldb.org/
pvldb/vol10/p757-Lu.pdf.

Lingxiao Huang, Shaofeng H.-C. Jiang, Jian Li, and
Xuan Wu. Epsilon-coresets for clustering (with out-
liers) in doubling metrics. In Mikkel Thorup, edi-
tor, 59th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2018, Paris, France,
October 7-9, 2018, pages 814-825. IEEE Computer
Society, 2018. doi: 10.1109/FOCS.2018.00082. URL
https://doi.org/10.1109/F0CS.2018.00082.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data
clustering: A review. ACM Computing Surveys, 31:
264-323, 1999.

Fast Noise Removal for k-Means Clustering

Tapas Kanungo, David M. Mount, Nathan S. Ne-
tanyahu, Christine D. Piatko, Ruth Silverman, and
Angela Y. Wu. A local search approximation algo-

rithm for k-means clustering. Comput. Geom., 28
(2-3):89-112, 2004.

Jacob Kogan, Charles Nicholas, Marc Teboulle, et al.
Grouping multidimensional data. Springer, 2006.

Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep.
Constant approximation for k-median and k-means
with outliers via iterative rounding. In Proceedings
of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA,
USA, June 25-29, 2018, pages 646—659, 2018. doi:
10.1145/3188745.3188882. URL https://doi.org/
10.1145/3188745.3188882.

Amit Kumar, Yogish Sabharwal, and Sandeep Sen. A
simple linear time (1+ &) -approximation algorithm
for k-means clustering in any dimensions. In Proceed-
ings of the 45th Annual IEEE Symposium on Founda-
tions of Computer Science, FOCS *04, pages 454-462,
Washington, DC, USA, 2004. IEEE Computer Soci-
ety. ISBN 0-7695-2228-9. doi: 10.1109/FOCS.2004.7.
URL http://dx.doi.org/10.1109/F0CS.2004.7.

Shi Li and Xiangyu Guo. Distributed k-clustering
for data with heavy noise. In Advances in Neural
Information Processing Systems, pages 7838-7846,
2018.

Stuart P. Lloyd. Least squares quantization in PCM.
IEEE Transactions on Information Theory, 28(2):
129-136, 1982.

Gustavo Malkomes, Matt Kusner, Wenlin Chen, Kilian
Weinberger, and Benjamin Moseley. Fast distributed
k-center clustering with outliers on massive data. In
NIPS, pages 1063-1071, 2015.

Richard Matthew McCutchen and Samir Khuller.
Streaming algorithms for k-center clustering with
outliers and with anonymity. In APPROX, pages
165-178, 2008.

Adam Meyerson, Liadan O’callaghan, and Serge
Plotkin. A k-median algorithm with running time
independent of data size. Machine Learning, 56(1-3):
61-87, 2004.

