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Abstract. In this paper, we propose a novel fault-tolerant parallel matrix
multiplication algorithm called 3D Coded SUMMA that is communica-
tion efficient and achieves higher failure-tolerance than replication-based
schemes for the same amount of redundancy. This work bridges the gap
between recent developments in coded computing and fault-tolerance in
high-performance computing (HPC). The core idea of coded computing
is the same as algorithm-based fault-tolerance (ABFT), which is weaving
redundancy in the computation using error-correcting codes. In partic-
ular, we show that MatDot codes, an innovative code construction for
parallel matrix multiplications, can be integrated into three-dimensional
SUMMA (Scalable Universal Matrix Multiplication Algorithm [29]) in
a communication-avoiding manner. To tolerate any two node failures,
the proposed 3D Coded SUMMA requires ∼50 % less redundancy than
replication, while the overhead in execution time is only about 5-10 %.

Keywords: Parallel Matrix Multiplication · Fault-tolerant algorithms
· Algorithm-based fault tolerance · Coded computing · Communication-
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1 Introduction

Upcoming exascale computing systems are expected to bring about new challenges
in building resilience against failures and faults [25,4,15,3]. To see how the scale
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affects reliability, let us consider the Japanese supercomputer, the Fugaku system
that is now being built to be available in 2021. The Fugaku system will have
150,000 physical nodes with a total of 8 million cores [21]. To build a system with
mean-time-between-failure (MTBF) of 24-48 hours, the MTBF of each node must
be 411-822 years. This can create a huge burden on component manufacturers
and the system vendor and provides little-to-no room for unexpected reliability
issues that have been experienced in the past, such as bad solder, dirty power,
unexpected early wear-out, and so on [16].

The most widely used method for fault tolerance in high-performance comput-
ing (HPC) is checkpoint-restart, which saves the state of computation at specific
intervals and can recover from detected faults by rolling back to a check-pointed
state. While the checkpoint-restart approach is universal, it generates a significant
amount of I/O overhead and its efficiency decreases with the increasing system
size. The deployment of node-local nonvolatile memory, such as solid state disks,
has eased the I/O pressure for checkpoint/restart, but it will not be sufficient in
the long run. Another method considered is replication, where the application is
executed either in parallel or sequentially multiple times such as triple modular
redundancy (TMR) [15,22,14]. Despite the high resource overhead of replication,
it has been shown that process replication strategies can outperform traditional
checkpoint-restart approaches for a certain range of system parameters [3].

In this paper, we study a different approach called coded computing [20,12,32],
more widely known as algorithm-based fault-tolerance (ABFT) [10,11] in the HPC
community. This approach reduces the overhead of checkpointing or replication
by sacrificing universality and designing the redundancy tailored to a specific
numerical algorithm. For designing low-overhead redundancy, both ABFT and
coded computing utilize error-correcting codes (in short, coding or codes), a
tool extensively used in communication or storage systems. While ABFT uses
off-the-shelf classical codes and adapts them to practical problems in HPC, coded
computing literature studies devising a new code tailor-made for computation
by assuming a simple theoretical computing model. These endeavors in coded
computing have shown remarkable improvements in the failure tolerance ver-
sus memory/computation trade-off, improving over classical codes designed for
communication/storage systems. However, due to the simplified models in coded
computing that can be unrealistic in practical HPC systems, it is unclear if the
new code constructions can be applied in the HPC context. This paper bridges
this gap and demonstrates that the new advances in coded computing can be
mapped to HPC systems with a careful choice of architecture.

We propose a novel algorithm for robust and communication-efficient parallel
matrix multiplication called 3D Coded SUMMA. In 3D Coded SUMMA, we
incorporate MatDot codes (storage-optimal matrix-multiplication codes) [12]
with 3D SUMMA (communication-efficient matrix multiplication algorithm) [26].
Applying ABFT to a three-dimensional matrix multiplication algorithm was stud-
ied before [23]. Their goal was to apply ABFT within each node to detect/correct
soft errors locally. On the other hand, our aim is to construct a coding strategy
that can be applied across distributed nodes to recover from node failures, where
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we cannot recover any partial result from the failed node. We show that MatDot
codes can be integrated into 3D SUMMA seamlessly with small communica-
tion overhead. The amount of redundancy required in 3D Coded SUMMA is
considerably smaller than replication for cases where more than one failure, or
where node corruptions (nodes affected by soft errors) are to be tolerated. For
instance, to provide resilience against any two node failures, or against a single
corruption, 3D Coded SUMMA requires ∼50 % fewer nodes than the baseline
replication strategy. To provide resilience against any two node corruptions, 3D
Coded SUMMA requires ∼100 % fewer nodes compared to replication. Finally,
we show through theoretical and experimental analysis that 3D Coded SUMMA
achieves higher failure resilience with small overhead in execution time: 5-7 %
more execution time compared to replication on an 8× 8× 4 grid of nodes.

2 Background

2.1 3D SUMMA

We introduce 3-dimensional matrix multiplication algorithm, 3D SUMMA. Three-
dimensional algorithms for matrix multiplication in which nodes are placed on a
3D grid were proposed [1,24,26] and proved to achieve the optimal communication
time in scaling sense [26] under some constraints. 3D SUMMA we present here
is an adaptation of 2.5D matrix multiplication algorithm [26]: instead of using
Cannon’s algorithm on each layer, we use SUMMA on each layer. In this work,
for simplicity, we assume that nodes are placed on layers of square grids, i.e., on
a n× n×m grid where m is the number of layers and n is the layer size. The
goal is to compute matrix product:

C = AB. (1)

We assume matrices A,B,C all have dimension N × N .5 We use P (i, j, l) to
denote the node on the (i, j, l)-th coordinate on the 3D grid.

We summarize 3D SUMMA algorithm below.
1. Matrix product in (1) is split into outer-products as follows:

A =
[
A1 · · · Am

]
,B =

B1

...
Bm

 ,C = A1B1 + · · ·+AmBm, (2)

where Ai,Bi (i = 1, . . . ,m) are N ×N/m and N/m×N dimensional sub-
matrices, respectively.

2. Initially, all Ai’s and Bi’s are stored at the nodes on the first layer of the 3D
grid. The first layer scatters Ai and Bi to the i-th layer.

3. Each layer performs 2D SUMMA6 to compute Ci = AiBi in parallel.
5 Throughout the paper, we will assume that m and n divide N for simplicity. In
practice, when N is not divisible by m,n, the matrix can be zero-padded to make N
divisible by m and n. Also, the assumption that they are square matrices is only for
simplicity, and the algorithm can be used for rectangular matrices as well.

6 For more details on 2D SUMMA, please see [29].
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4. All layers reduce to the first layer and the first layer obtains:

C = C1 + · · ·+Cm.

2.2 MatDot Codes

MatDot codes [12] are one of the latest advances in coded computing and proven
to be optimal in terms of recovery threshold7 for parallel matrix multiplication
under certain constraints [32]. Classical error-correcting codes such as Reed-
Solomon codes encode data through polynomial evaluations where the coefficients
of the polynomial are the raw data. These algorithms use polynomial interpolation
for decoding to recover the polynomial coefficients, i.e., the raw data, when the
number of evaluations that survive after failures is larger than the degree of the
polynomial. The construction of MatDot codes is inspired by this approach, but
the polynomials are carefully constructed so that the matrix product can be
extracted from the polynomial coefficients at the end of computation. A main
innovation is the construction of encoding polynomials pA(x) and pB(x) that
exploit the sum of outer-product structure in (2):

pA(x) =

m∑
i=1

Aix
i−1, pB(x) =

m∑
j=1

Bjx
m−j . (3)

Note that the co-efficients are placed in reverse order in pB(x). Then, in 3D
SUMMA, the i-th layer will receive encoded versions of matrices:

Ãi = pA(αi) = A1 + αiA2 + · · ·+ αm−1
i Am,

B̃i = pB(αi) = Bm + αiBm−1 + · · ·+ αm−1
i B1,

and then compute matrix multiplication on the encoded matrices:

C̃i = ÃiB̃i = pA(αi)pB(αi) = pC(αi).

The polynomial pC(x) has degree 2m− 2 and has the following form:

pC(x) =

m∑
i=1

m∑
j=1

AiBjx
m−1+(i−j). (4)

Because of our careful choice of pA(x) and pB(x), the coefficient of xm−1 in
pC(x) is C =

∑m
i=1AiBi. Since pC(x) is a polynomial of degree 2m − 2, its

coefficients can be recovered as long as we have evaluations of pC(x) at any
2m − 1 distinct points. Hence the recovery threshold is K = 2m − 1. In the
context of 3D SUMMA, we need m layers for the uncoded strategy. The recovery
threshold K = 2m− 1 implies that when we have M = 2m− 1 + r layers, it is
7 Recovery threshold is one metric to measure the performance of a code, which is the
minimum number of workers required to recover the computation output.
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guaranteed to tolerate any r failed layers. On the other hand, to tolerate any r
failures with replication, we need M = rm layers. This will be further discussed
in Section 4.1.

Systematic MatDot codes: A code is called systematic if, for the first m
layers, the output of the r-th layer is the product ArBr. We refer to the first m
layers as systematic layers. Having systematic layers is useful because if all the
systematic layers complete their computation successfully, there is no need for
decoding. Systematic MatDot codes are achieved by using Lagrange polynomials
for encoding. Let

pA(x) =

m∑
i=1

AiLi(x), pB(x) =

m∑
i=1

BiLi(x), (5)

where Li(x) is defined as: Li(x) =
∏

j∈{1,...,m}\{i}

x− xj
xi − xj

for i ∈ {1, . . . ,m}.

Using these polynomials, the worst-case recovery threshold remains the same as
non-systematic MatDot codes [12].

2.3 Related Work in ABFT

Algorithm-based fault tolerance (ABFT) was first proposed by Huang and Abra-
ham to detect and correct errors on circuits during linear algebra operations.
Recently, Chen and Dongarra discovered that a similar technique could be used
for parallel matrix algorithms for HPC systems [10]. A follow-up work [6] experi-
mentally showed that the overhead of ABFT is less than 12% with respect to
the fastest failure-free implementation of PDGEMM (Parallel General Matrix
Multiplication). Numerical stability of the ABFT technique was also examined
in [8] and applied to soft error detection [9]. The ABFT technique is extended
to matrix factorization algorithms such as Cholesky factorization [17] and LU
factorization [11,31].

Our work goes beyond existing works in ABFT for HPC as we employ the
novel MatDot codes which go beyond traditional error-correcting codes. MatDot
codes are designed specifically for distributed matrix multiplication where the
matrix product is split into the sum of outer products.

3 3D Coded SUMMA

We propose a failure-resilient and communication-efficient parallel-matrix multi-
plication algorithm, 3D Coded SUMMA, by integrating MatDot codes into 3D
SUMMA. Since 3D SUMMA partitions matrix multiplication into outer products
across layers, we can weave MatDot codes into the third dimension (l-axis) of
the algorithm.

Recall that the recovery threshold of MatDot codes is K = 2m−1. This means
that if we have any K successful (non-failed) nodes, we can recover the matrix
product C, and thus to tolerate one failure, we need K + 1 = 2m nodes. For
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failure resilience, we need at least m redundant layers and use a total of M ≥ 2m
layers. This redundancy is the same as replication for a single failure. A thorough
comparison between 3D Coded SUMMA and replication for an arbitrary number
of failures will be provided in the next section. In this section, we focus on the
algorithm design of 3D Coded SUMMA and demonstrate a simple example of
(n = 2,m = 2,M = 4). The full algorithm is given in Algorithm 1.

Example 1 (3D Coded SUMMA for (n = 4,m = 2,M = 4) ).
Initial Data Distribution: The node P (i, j, 1) initially has Ai,j and Bi,j

for i, j = 1 · · · 4 where Ai,j ’S and Bi,j ’s are N/m×N/m sub-blocks as follows:

A =

A1,1 · · · A1,4

...
. . .

...
A4,1 · · · A4,4

 ,B =

B1,1 · · · B1,4

...
. . .

...
B4,1 · · · B4,4

 (6)

Encoding: To encode MatDot codes, we begin with splitting Ai,j into two
equal-sized column blocks and Bi,j into two equal-sized row blocks as follows:

Ai,j =
[
A

(1)
i,j A

(2)
i,j

]
,Bi,j =

[
B

(1)
i,j

B
(2)
i,j

]
. (7)

Then, the node P (i, j, 1) locally computes four encoded column-blocks and row-
blocks as follows:

Ãi,j,1 = A
(1)
i,j + α1A

(2)
i,j , B̃i,j,1 = α1B

(1)
i,j +B

(2)
i,j ,

Ãi,j,2 = A
(1)
i,j + α2A

(2)
i,j , B̃i,j,2 = α2B

(1)
i,j +B

(2)
i,j ,

Ãi,j,3 = A
(1)
i,j + α3A

(2)
i,j , B̃i,j,3 = α3B

(1)
i,j +B

(2)
i,j ,

Ãi,j,4 = A
(1)
i,j + α4A

(2)
i,j , B̃i,j,4 = α4B

(1)
i,j +B

(2)
i,j ,

where α1, · · · , α4 are four distinct real numbers.8 Then P (i, j, 1) sends Ai,j,k to
P (i, j, k) for k = 2, 3, 4 using MPI Scatter operation.

After MatDot encoding step, the node P (i, j, k) will have Ai,j,k and Bi,j,k

for all i, j, k = 1, . . . , 4.
Computation: Perform 2D SUMMA [29] on each layer in parallel.
Decoding: Any K = 2m − 1 = 3 layers out of M = 4 layers are sufficient

to decode the final output. Instead of performing MPI Reduce on the raw
output, each node will scale their output with the decoding coefficients and
then perform MPI Reduce. E.g., if P (i, j, 4) fails, P (i, j, 1), P (i, j, 2), P (i, j, 3)
will send d1C̃i,j,1, d2C̃i,j,2, and d3C̃i,j,3, then the first layer will have the final
output Ci,j = d1C̃i,j,1 + d2C̃i,j,2 + d3C̃i,j,3.9 �

8 We can also use systematic MatDot codes where Ai,j,1 = A
(1)
i,j and Ai,j,2 = A

(2)
i,j

by using the polynomials given in (5). However, for simplicity, we only discuss the
non-systematic formulation.

9 The decoding coefficients, d1, . . . , d4 are determined by the choice of α1, . . . , α4. For
more information on how to compute d1, . . . , d4, see [12].
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Algorithm 1 3D Coded SUMMA
1: Initial Data Distribution: P (i, j, 1) has Ai,j and Bi,j .
2: /* Encoding A, B and Scattering encoded data */
3: for i = 1 to n do
4: for j = 1 to n do
5: for l = 1 to M do
6: P (i, j, 1) computes: /* All P (i, j, 1) in parallel */

Ãi,j,l = A
(1)
i,j + αlA

(2)
i,j + · · ·+ αm−1

l A
(m)
i,j (8)

B̃i,j,l = αm−1
l B

(1)
i,j + αm−2

l B
(2)
i,j + · · ·+B

(m)
i,j (9)

7: end for
8: P (i, j, 1) scatters Ãi,j,l and B̃i,j,l to P (i, j, l)’s (l = 1, . . . ,M)
9: end for
10: end for
11: /* 2D SUMMA Computation */
12: for l = 1 to m do
13: All l-th layers in parallel, perform 2D SUMMA to compute: Ãcol

l · B̃row
l .

14: end for
15: /* Decoding and Reduce to recover C */
16: for i = 1 to n do
17: for j = 1 to n do
18: for l = 1 to M do
19: /* All i, j, l in parallel */
20: P (i, j, l) knows which nodes failed among P (i, j, k)’s (k = 1, . . . ,M).
21: P (i, j, l) computes dlC̃i,j,l and reduce to P (i, j, 1)
22: end for
23: end for
24: end for

Notice that the encoding of MatDot codes does not require any communication
as encoding computation is performed at each local node. There is no additional
communication required for MatDot decoding either as the decoding process is
embedded in the final reduce step. The only communication cost increase comes
from the initial MPI Scatter and the final MPI Reduce with the bigger size, i.e.,
scatter/reduce over 4 layers instead of 2.

We want to make a remark that we can apply the ABFT technique [18,10]
(rediscovered as Product codes in [20]) at each layer of 2D SUMMA for fault
tolerance. Although in terms of additional nodes required, ABFT can be more
efficient than MatDot codes, for higher failure tolerance, MatDot codes are a
more communication-efficient solution. In the encoding of the ABFT strategy, one
has to compute linear combinations of the column (row) blocks of A (B), which
requires column (row) shuffling, or multiple reduce operations to parity nodes.
Furthermore, for decoding, for recovering from more than one failure, nodes have
to perform peeling decoding (see [20]) which can potentially require many rounds
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Fig. 1: (a) Summary of 3D Coded SUMMA algorithm. (b) Number of redundant nodes
required to be resilient to f failures in the node/layer failure scenario for n = 16,m = 4.

of communication. However, depending on which resource (communication delay
or the number of compute nodes) is more expensive in the system, one can choose
between ABFT on each layer and MatDot codes across layers as proposed in the
first version of this work [19].

4 Performance Analysis

In this section, we will show how 3D Coded SUMMA can provide higher resilience
for the same number of nodes compared to replication. Then, we analyze the
overhead of the MatDot-coded strategy in terms of communication and computa-
tion time, and prove that the total overhead is negligible when m = o(n). Finally,
we demonstrate through experimental evaluations that the total execution time
of 3D Coded SUMMA is only about 5-7% more compared to replication.

4.1 Node Overhead vs. Failure Resilience

To analyze the failure resilience, we will consider three different failure scenarios:

1. Node failure: This corresponds to a fail-stop error where a node fails and
the entire data or intermediate result on the failed node is lost.

2. Layer failure: All nodes on one layer fail at once. This can be relevant when
one layer is placed under the same rack and a rack failure occurs.

3. Node corruption: A node is corrupted by a soft error (a bit flip), and an arbi-
trary amount of data is affected beyond the capability of correction/detection
at the local node. This can be due to error propagation during computation.

We say that a strategy is resilient to f failures in a certain failure scenario if
we can recover the entire output C as long as the number of failures is at most
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f . We now compare replication and 3D Coded SUMMA for each failure scenario.
To be resilient to any f failures in the node failure or the layer failure scenario,
the total number of nodes required are the following:

– Replication: p = (f + 1) ·mn2.
– 3D Coded SUMMA: p = (2m− 1 + f) · n2.

To be resilient to any s failures (i.e., corrupted nodes) in the node corruption
scenario, the total number of nodes required are10:

– Replication: p = (2s+ 1) ·mn2.
– 3D Coded SUMMA: p = (2m− 1 + 2s) · n2.

Let us make this more concrete by considering an example of n = 16 and m = 4.
To be resilient to any single failure, both replication and 3D Coded SUMMA
require 2048 nodes, which is twice more than the uncoded algorithm without any
resilience. To be resilient to any two node failures (or any one node corruption),
replication requires 3072 nodes while 3D Coded SUMMA requires 2304 nodes. To
be resilient to any two node corruptions, replication requires 5120 nodes while 3D
Coded SUMMA requires 2816 nodes. Because the recovery threshold of MatDot
codes is K = 2m−1, there is an upfront cost of 2x node redundancy in 3D Coded
SUMMA. However, increasing resilience from one failure to more failures only
requires incremental overhead compared to the replication strategy (Fig. 1b).

4.2 Execution Time Analysis

We now analyze the overhead of MatDot coding in terms of its execution time:
communication + computation. For communication time, we use the simple α-β
model [7]:

Tcomm = C1α+ C2β, (10)

where C1 is the number of communication rounds and C2 is the number of
bytes communicated on the critical path. The α term is latency cost and the
β term is per-byte bandwidth cost. For computation time, we count number
of floating-point operations (flops). For 3D Coded SUMMA that encodes an
n × n ×m grid into an n × n ×M grid using MatDot codes and computes a
matrix product of dimension N ×N , the communication overhead of MatDot
coding is summarized in the following theorem.

Theorem 1. Suppose we use a MatDot code with a constant rate, i.e., M =
Θ(m). Then, the total communication time of 3D Coded SUMMA is:

T total
comm =

[
αΘ (logn) + βΘ

(
N2/n2)] · n

m
, (11)

and the communication time overhead of MatDot encoding and decoding is:

TMatDot
comm = αΘ(logn) + βΘ(N2/n2). (12)

10 Using the recently proposed collaborative decoding [27] might further reduce the
number of nodes required for 3D Coded SUMMA, but we use a conservative estimate.



10 H. Jeong et al.

The theorem implies that both the latency and the bandwidth of MatDot
encoding/decoding is negligible if m = o(n). Note that this is the same condition
for the 3D SUMMA to outperform the 2D version of SUMMA [26].

Proof of Theorem 1. We will analyze the time complexity of each step.
Encoding MatDot codes and scattering the encoded matrices: The

first layer has n× n nodes. Each node has a square matrix of size N2/n2. Each
local square matrix is partitioned into m small blocks and encoded into M blocks.
The M encoded blocks are scattered to M layers (across the l-axis). Both A and
B need encoding and scattering.

– Local encoding cost: Cenc = 2N2/n2 ·M .
– Communication cost (scatter using recursive-halving [28]): Tscatter = 2α logM+

2βN2

n2 · Mm .

Matrix multiplication with 2D SUMMA: The data on each layer is
gathered into n2/m nodes, i.e., the nodes in each row and column are partitioned
into groups of size m and a local data gathering is carried out. Then, SUMMA
proceeds in n/m rounds. In each round, one node in each row broadcasts data of
size N2

n2m ·m = N2

n2 to the entire row, and similarly for each column. Then, local
computation is carried out, which multiplies two matrices of size N/n×N/n.

– Local gathering using recursive-doubling [28]: Tgather = 2α logm+ 2N2

n2 β.
– Broadcast in SUMMA (scatter using recursive-halving followed by all-gather

using recursive-doubling): Tbcast = (4α log n+ 4N2

n2 β) · (n/m).
– Local matrix-matrix multiplication: CMxM = (N3/n3) · (n/m) = N3

n2m .

Decoding and reduction: The decoding of MatDot codes only requires a
reduce across layers. The data size at each node in the reduction phase is still
N2/n2, and the number of layers required in the reduce is 2m− 1 (for MatDot
codes).

– Decoding MatDot codes (reduce using recursive-halving followed by tree-
gather [28]): Treduce = 2α log(2m− 1) + (2N2/n2)β.

Note that this communication cost analysis is the worst-case analysis because
if we use systematic codes, we only need to reduce the first m systematic layers.

Putting this altogether, we obtain the total communication time as follows:

T total
comm =Tscatter + Tgather + Tbcast + Treduce

=2α logM + 2β
N2

n2
· M
m

+ 2α logm+
2N2

n2
β

+ (4α logn+
4N2

n2
β) · (n/m) + 2α log(2m− 1) + (2N2/n2)β

(a)
=
[
αΘ (logn) + βΘ

(
N2/n2)] · n

M
,
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where in step (a), we use the fact that M = Θ(m), i.e., the code has a constant
rate. Finally, total communication overhead of using MatDot codes only come
from the increased size of gather and reduce operations:

TMatDot
comm =Tscatter + Treduce

=2α logm+
2N2

n2
β + 2α log(2m− 1) + (2N2/n2)β

=αΘ(logM) + βΘ(N2/n2).

Computation time overhead of MatDot coding is summarized below.

Theorem 2. Suppose we use a MatDot code with a constant rate, i.e., M =
Θ(m). Then,

T total
comp = Θ

(
N3

n2m

)
+Θ

(
mN2

n2

)
+Θ

(
m2
)
, (13)

TMatDot
comp = Θ

(
mN2

n2

)
+Θ

(
m2
)
. (14)

Notice that the computation time overhead of MatDot coding is negligible
when m = o(

√
N), which is often the case since the matrix dimension N is orders

of magnitude bigger than the number of layers m.

Proof of Theorem 2. The number of flops required at each local node for each
step is given below:

– MatDot encoding: Each node generates M encoded blocks of dimension
N/n×N/mn (or N/mn×N/n), each of which is a linear combinations of
m small sub-blocks of the same dimension. Hence,

Tenc = 2M ·m · N
2

mn2
= Θ

(
mN2

n2

)
.

– Matrix multiplication: TMxM = Θ
(

N3

n2m

)
– MatDot decoding: Each node has to obtain decoding coefficient depending

on which nodes have failed through polynomial interpolation, which has
computation complexity of at most Θ(m2). Then, it scales its output matrix
by the decoding coefficient. Thus,

Tdec = Θ(m2) +Θ(N2/n2).
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4.3 Experimental Evaluation

In this section, we evaluate the performance of 3D Coded SUMMA through
experiments. In our experimental setup, we used a cluster with 40 compute nodes,
each of which has two 12-Core AMD Opteron (tm) Processor 6164 HE, 64 GB
DRAM, and 500 GB hard disk. Nodes are connected through Gigabit Ethernet
under a single switch. We used each core as one MPI process, i.e., one core
was one logical node P (i, j, l). To ensure that there is no MPI communication
within the same compute node, we used cyclic distribution of compute nodes. We
injected a layer failure by artificially ignoring the result from one layer in the
reduce phase. We assumed that the information about the failed node will be
made available at all surviving nodes. We recorded execution time of: memory
allocation, MatDot Encoding (line 6 in Algorithm 1), MPI Scatter (line 8 in
Algorithm 1), 2D SUMMA (line 12-14 in Algorithm 1), and Decoding + MPI
Reduce (line 16-24 in Algorithm 1).

Table 1: Execution time comparison of (n = 8,m = 2,M = 4) 3D Coded SUMMA
and replication. We used systematic MatDot codes and 8 cores per node.

N Strategy

Memory
Allocation

(s)
Encoding

(s)
Scatter
(s)

2D
SUMMA

(s)

Decoding
+ Reduce

(s)
Total
(s)

10000
Replication 0.1 0 1.505 19.583 0.926 22.245
MatDot 0.105 0.124 2.25 18.621 1.384 22.486

20000
Replication 0.369 0 6.574 87.792 3.626 98.681
MatDot 0.362 0.402 9.075 88.371 5.502 103.357

30000
Replication 0.75 0 14.993 214.798 7.859 239.035
MatDot 0.752 0.864 19.773 224.232 12.316 257.883

40000
Replication 1.317 0 25.613 438.356 13.941 480.464
MatDot 1.325 1.418 39.496 440.872 21.853 505.41

Since the cluster we used for experiments had total of 960 cores, the most
extensive experiments were run on an 8× 8× 4 grid with total of 256 cores11. We
first compare our proposed MatDot-coded approach and replication. Execution
time comparison of the two is summarized in Table 1. First notice that almost
90 % of the total execution time is used in 2D SUMMA operations. Then, the next
significant portion of the execution time is MPI Scatter and Reduce. Computation
time for MatDot encoding and decoding makes up less than 1% of the total
time. When we compare the total execution time, the overhead of MatDot coding
is about 5-7 % compared to replication. This is mainly due to the increased
communication cost in the scatter and reduce communication as predicted in the
previous section. We further compare the total execution time of replication and
11 Bigger grids with the dimensions of non-power-of-two numbers are not included as

they showed worse performance.
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Fig. 2: Comparison of the total execution time between uncoded 3D SUMMA (no
resilience), replication, and 3D Coded SUMMA for (n = 8,m = 2,M = 2). We used 16
cores per node.
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Fig. 3: (a) Comparison of decoding+reduce time using Systematic MatDot codes. When
the failed node is a parity node, systematic code is ∼3x faster. (b) Comparison of total
execution time for using non-systematic MatDot codes and systematic MatDot codes.
For systematic failures, non-systematic and systematic codes share similar performance.
For parity failures, systematic codes show a clear advantage.

MatDot against the uncoded counterpart that does not provide any resilience
(See Fig. 2). Compared to the uncoded strategy, the execution time of replication
is 5-9% higher and 3D Coded SUMMA is about 10-18% higher.

Fig. 3 shows the difference between using systematic and non-systematic codes.
In Fig. 3a, systematic failure means a node failure in a systematic layer (the
first m layers with the original data) and parity failure means a node failure in a
parity layer (the last m layers with encoded data). The biggest benefit of using
systematic codes is that when there is no failure in systematic nodes, there is no
need for decoding, and the final steps would be no different from the uncoded
strategy. The results in Fig. 3a show that this is indeed true in experiments and
the last reduce step (including decoding) is about 3x times faster when we have
only parity failures, and no systematic failure. Because of this effect, we can see
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that using systematic codes is about 3-5 % faster than non-systematic codes
when there is no systematic failure in Fig. 3b.

5 Discussion and Future Work

In this paper, we examined a new fault-tolerant parallel matrix multiplication
algorithm that integrates MatDot codes and 3D SUMMA. In our experiments,
we assumed that failure information would be provided to every node. Although
the current MPI implementation does not provide such functionality, there have
been various research works to incorporate fault mitigation into MPI library [5,2]
which include failure reporting and rearranging MPI communicator after the
failure. Implementing 3D Coded SUMMA on these prototype fault-tolerant MPI
libraries would be interesting future work.

Our work is a first step towards introducing coded computing to HPC appli-
cations and showing the feasibility through experiments. We believe that there is
an abundance of possibilities in developing practical fault-tolerant algorithms by
marrying new developments in coding theory and systems research (see [13] for
the recent review in this direction). For instance, our work focuses only on dense
matrix multiplication. Extending it to sparse matrix multiplication (e.g., sparse
SUMMA) is not a straightforward question since the encoding process would
reduce the sparsity of matrices. For linear system solving or eigendecomposition
problems, one can consider using the substitute decoding technique for sparse
matrices [30].
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