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Abstract

We consider the construction of a polygon P with n vertices whose
turning angles at the vertices are given by a sequence A = (o, ..., @n-1),
a; € (—m,m), for ¢ € {0,...,n — 1}. The problem of realizing A by a
polygon can be seen as that of constructing a straight-line drawing of a
graph with prescribed angles at vertices, and hence, it is a special case of
the well studied problem of constructing an angle graph.

In 2D, we characterize sequences A for which every generic polygon
P C R? realizing A has at least ¢ crossings, and describe an efficient
algorithm that constructs, for a given sequence A, a generic polygon P C
R? that realizes A with the minimum number of crossings. In 3D, we
describe an efficient algorithm that tests whether a given sequence A can
be realized by a (not necessarily generic) polygon P C R3, and for every
realizable sequence finds a realization.

1 Introduction

Straight-line realizations of graphs with given metric properties have been one
of the earliest applications of graph theory. Rigidity theory, for example, studies
realizations of graphs with prescribed edge lengths, but also considers a mixed
model where the edges have prescribed lengths or directions [4}, 13}, 14}, [15] 21].
In this paper, we extend research on the so-called angle graphs, introduced by in
the 1980s, which are geometric graphs with prescribed angles between adjacent
edges. Angle graphs found applications in mesh flattening [29], and computation
of conformal transformations [8] [22] with applications in the theory of minimal
surfaces and fluid dynamics.

Viyajan [27] characterized planar angle graphs under various constraints,
including the case when the graph is a cycle [27, Theorem 2] and when the
graph is 2-connected [27, Theorem 3]. In both cases, the characterization leads
to an efficient algorithm to find a planar straight-line drawing or report that none
exists. Di Battista and Vismara [6] showed that for 3-connected angle graphs
(e.g., a triangulation), planarity testing reduces to solving a system of linear
equations and inequalities in linear time. Garg [10] proved that planarity testing
for angle graphs is NP-hard, disproving a conjecture by Viyajan. Bekos et al. [2]
showed that the problem remains NP-hard even if all angles are multiples of 7 /4.

The problem of computing (straight-line) realizations of angle graphs can
be seen as the problem of reconstructing a drawing of a graph from the given



partial information. The research problems to decide if the given data uniquely
determine the realization or its parameters of interest is already interesting for
cycles, where it found applications in the area of conformal transformations [22],
and visibility graphs [7].

In 2D, we are concerned with realizations of angle cycles as polygons min-
imizing the number of crossings which, as we will see, depends only on the
sum of the turning angles. It follows from the seminal work of Tutte [26] and
Thomassen [25] that every positive instance of a 3-connected planar angle graph
admits a crossing-free realization if the prescription of the angles implies the
convexity for the faces. The convexity will also play the crucial role in our
proofs.

In 3D, we test whether a given angle cycle can be realized by a (not neces-
sarily generic) polygon. Somewhat counter-intuitively, self-intersections cannot
be always avoided in a polygon realizing the given angle cycle in 3D. Di Battista
et al. [5] characterized oriented polygons that can be realized in R? without self-
intersections with axis-parallel edges of given directions. Patrignani [20] showed
that recognizing crossing-free realizibility is NP-hard for graphs of maximum
degree 6 in this setting.

Throughout the paper we assume modulo n arithmetic on the indices.

Angle sequences in 2-space. In the plane, an angle sequence A is a sequence
(a0, ..., an—1) of real numbers such that a; € (—m,7) for all ¢ € {0,...,n—1}.
Let P C R? be an oriented polygon with n vertices vy, ..., v,_1 that appear in
the given order along P, which is consistent with the given orientation of P.
The turning angle of P at v; is the angle in (—m, m) between the vector v; —v;_1
and v; 1 —v;. The sign of the angle is positive if in the plane containing v;_1, v;
and v;41, in which the vector v; — v;_1 points in the positive direction of the
x-axis, the y-coordinate of v; 11 — v; is positive, and non-positive otherwise, see
Figure [T}

Figure 1: A negative (left) and a positive (right) turning angle «; at the vertex
v; of an oriented polygon.

The oriented polygon P realizes the angle sequence A if the turning angle
of P at v; is equal to «;, for i = 0,...,n — 1. A polygon P is generic if all
its self-intersections are transversal (that is, proper crossings), vertices of P are
distinct points, and no vertex of P is contained in a relative interior of an edge
of P. Following the terminology of Viyajan [27], an angle sequence is consistent



if there exists a generic closed polygon P with n vertices realizing A. For a
polygon P that realizes an angle sequence A = (ay,...,a,—1) in the plane, the
total curvature of P is TC(P) = Z?;ol a;, and the turning number (also known
as rotation number) of P is tn(P) = TC(P)/(2n); it is known that tn(P) € Z
in the plane [24].

The crossing number, denoted by cr(P), of a generic polygon is the number
of self-crossings of P. The crossing number of a consistent angle sequence A
is the minimum integer k, denoted by cr(A), such that there exists a generic
polygon P € R? realizing A with cr(P) = k. Our first main results is the
following theorem.

Theorem 1. For a consistent angle sequence A = (o, ..., an—1) in the plane,

we have )
1 f Sy o =0,
CI‘(A) — . Zf Z;:_Ol (07 . .
Gl =1 i S ai = 2jm and j #0.

Angle sequences in 3-space and spherical polygonal linkages. In R?,
d > 3, the sign of a turning angle no longer plays a role: The turning angle of an
oriented polygon P at v; is in (0,7), and an angle sequence A = (ag, ..., ¥p—1)
is in (0,7)™. The unit-length direction vectors of the edges of P determine
a spherical polygon P’. Note that the turning angles of P correspond to the
spherical lengths of the segments of P’. Tt is not hard to see that this observation
reduces the problem of realizability of A by a polygon in R? to the problem of
realizability of A by a spherical polygon, in the sense as defined next, that
additionally contains the origin 0 = (0,0,0) in its convex hull.

Let S? C R? denote the unit 2-sphere. A great circle C C S? is an intersection
of S? with a 2-dimensional hyperplane in R3 containing 0. A spherical line
segment is a connected subset of a great circle that does not contain a pair of
antipodal points of S2. The length of a spherical line segment ab equals the
measure of the central angle subtended by ab. A spherical polygon P C S?
is a closed simple curve consisting of finitely many spherical segments; and
a spherical polygon P = (ug,...,u,_1), u; € S?, realizes an angle sequence
A = (ag,...,an,_1) if the spherical segment (u;_1,u;) has (spherical) length «;,
for every i. As usual, the turning angle of P at u; is the angle in [0, 7] between
the tangents to S? at u; that are co-planar with the great circles containing
(u;,u;11) and (u;,u;_1). Unlike for polygons in R? and R? we do not put any
constraints on turning angles of spherical polygons in our results.

Regarding realizations of A by spherical polygons, we prove the following.

Theorem 2. Let A = (ag,...,an_1), n > 3, be an angle sequence. There
exists a generic polygon P C R3 realizing A if and only if E?:_Ol o; > 2w and
there exists a spherical polygon P’ C S? realizing A. Furthermore, P can be
constructed efficiently if P’ is given.

Theorem 3. There exists a constructive weakly polynomial-time algorithm to
test whether a given angle sequence A = (ag,...,an—1) can be realized by a
spherical polygon P’ C S2.



A simple exponential time algorithm for realizability of angles sequences
by spherical polygons follows from a known characterization [3, Theorem 2.5],
which also implies that the order of angles in A does not matter for the spherical
realizability. The topology of the configuration spaces of spherical polygonal
linkages have also been studied [16]. Independently, Streinu et al. [19] 23] showed
that the configuration space of noncrossing spherical linkages is connected if
Z?:_Ol a; < 2mw. However, these results do not seem to help prove Theorem

The combination of Theorems [3| and [2] yields our second main result.

Theorem 4. There exists a constructive weakly polynomial-time algorithm to
test whether a given angle sequence A = («g,...,0n—1) can be realized by a
polygon P C R3.

Organization. We prove Theorem [I]in Section [2] and Theorems and
in Section [3] We finish with concluding remarks in Section

2 Crossing Minimization in the Plane

The first part of the following lemma gives a folklore necessary condition for
the consistency of a sequence A. The condition is also sufficient except when
j = 0. The second part follows from a result of Griitnbaum and Shepard [IT]
Theorem 6], using a decomposition due to Wiener [28]. We provide a proof for
the sake of completeness.

P/I

Figure 2: Splitting an oriented closed polygon P at a self-crossing point into 2
oriented closed polygons P’ and P” such that tn(P) = tn(P’) + tn(P").
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Lemma 1. If an angle sequence A = (v, . . ., 0n—1) is consistent, then Y . o; =

247 for some j € Z. Furthermore, if j # 0 then cr(A) > |j| — 1.

Proof. Let P be a polygon such that cr(A) = cr(P). First, we prove that
cr(A) > |j| — 1 = |tn(P)| — 1, by induction on cr(P).

We consider the base case when cr(P) = 0. By Jordan-Schonflies curve
theorem, P bounds a compact region homeomorphic to a disk. By a well-
known fact, the internal angles at vertices of P sum up to (n — 2)w. Since A

n—1

is consistent, Z?;OI a; = 2jm, and thus, (n —2)m =) (7 — ay) = (n — 2j)7
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Figure 3: Constructing a polygon P with [tn(P)| — 1 crossings.

or (n—2) = Zzlz_ol(ﬁ + a;) = (n + 2j)m, depending on the orientation of the
polygon. The claim follows since [tn(P)| = j = 1 in this case.

Refer to Fig.[2| In the inductive step, we have cr(P) > 1. By splitting P into
two closed parts P’ and P’ at a self-crossing, we obtain a pair of closed polygons
such that tn(P) = tn(P’) + tn(P”). We have cr(P) > 1+ cr(P’) + cr(P") >
14 tn(P")| =1+ [tn(P")] —1 > |tn(P)| — 1. Thus, the induction goes through,
since both cr(P’) and cr(P”) are smaller than cr(P). O

The following lemma shows that the lower bound in Lemma [T]is tight when
a; >0 forallie{0,...,n—1}.
Lemma 2. If A = («g,...,qn—1) is an angle sequence such that Z;L:_Ol o =
247, § £ 0, and a; > 0, for all i, then cr(A) < |j] — 1.

Proof. Refer to Figure[3] In three steps, we construct a polygon P realizing A
with [tn(P)| — 1 self-crossings thereby proving cr(A4) < |j| — 1 = [tn(P)]| — 1.
In the first step, we construct an oriented self-crossing-free polygonal line P’
with n + 2 vertices, whose first and last (directed) edges are parallel to the
positive z-axis, and whose internal vertices have turning angles «p,...,@,_1
in this order. We construct P’ incrementally: The first edge has unit length
starting from the origin; and every successive edge lies on a ray emanating
from the endpoint of the previous edge. If the ray intersects neither the z-axis
nor previous edges, then the next edge has unit length, otherwise its length is
chosen to avoid any such intersection. In the second step, we prolong the last
edge of P’ until it creates the last self-intersection/crossing ¢ and denote by
P the resulting closed polygon composed of the part of P’ from ¢ to ¢ via the
prolonged part. By making the differences between the lengths of the edges
of P’ sufficiently large a prolongation of the last edge of P’ has to eventually
create at least one desired self-intersection. Hence, P” is well-defined. Finally,
we construct P realizing A from P” by an appropriate modification of P” in a
small neighborhood of ¢ without creating additional self-crossings. The number
of self-crossings of P follows by the winding number of P w.r.t. to the point just
a bit north from the end vertex of P’, which is j or —j. O

To prove the upper bound in Theorem |1} it remains to consider the case
that A = (ag, ..., a,—1) contains both positive and negative angles. The crucial
notion in the proof is that of an (essential) sign change of A which we define

next. Let A = (ag,...,n-1). Let §; = Z;:o a; mod 27. Let v; € R2 denote



the unit vector (cos f3;,sin 8;). Hence, v; is the direction vector of the (i 4+ 1)-st
edge of an oriented polygon P realizing A if the direction vector of the first edge
of Pis (1,0) € R2. As observed by Garg [10, Section 6], the consistency of A
implies that 0 is a strictly positive convex combination of vectors v;, that is,
there exists Ao, ..., An—1 > 0 such that Z;:Ol Av; =0 and Z;:Ol X =1.

The sign change of A is an index 7 such that a; < 0 and «a;41 > 0, or vice
versa, o; > 0 and a1 < 0. Let sc(A) denote the number of sign changes of
A. The number of sign changes of A is even. A sign change i of a consistent
angle sequence A is essential if 0 is not a strictly positive convex combination
Of{VOP..,VFJ,VH4,”.,Vn_1}

Lemma 3. If A = (aog,...,an—1) is a consistent angle sequence such that
Z?:_ol a; = 2jm, j € Z, and all sign changes are essential, then cr(A) < Hj\ — 1|.

Proof. We distinguish between two cases depending on whether Z?;OI a; =0.

Case 1: 7' a; = 0. Since 321" a; = 0, we have sc(A) > 2. Since all sign
changes are essential, for any two distinct sign changes i # j, we have v; # v;,
therefore counting different vectors v;, where 7 is a sign change, is equivalent to
counting sign changes. We show next that sc(A) = 2.

Suppose, to the contrary, that sc(A) > 2. Since sc(A) is even, we have
sc(A) > 4. Note that if v; corresponds to an essential sign change i, then there
is an open halfplane bounded by a line through the origin that contain only v;
in {vo,...,vp—1}. Thus, if i and ¢’ are distinct essential sign changes, for any
other essential sign change j we have that v; is contained in a closed convex
cone bounded by —v; and —v; unless —v; = v;. Hence, the only possibility
for having 4 essential sign changes 4, ¢/, j', and j’ is if they satisfy v; = —vy,
v; = —vj and v; # £v;. Since all 4, ¢/, j, and j’ are sign changes, there
exists a fifth vector v, which implies that one of 7, 7, j, and j’ is not essential
(contradiction).

Assume w.l.o.g. that j and n —1 are the only two essential sign changes. We
have that v; # —v,_1: For otherwise, all the other v;’s different from v; and
vp—1 must be orthogonal to v; and v,_1, since the sign changes j and n —1
are essential. Then due to the consistency of A, there exists a pair ¢ and 7’ such
that v; = —v;. However, j and n — 1 are the only sign changes, and thus, there
exists k such that vj # +v; (contradiction).

An—2vn—2

Aj+1Vj+1 An—1Vn1

Figure 4: The case of exactly 2 sign changes n — 1 and j, both of which are
essential, when Z;L_:Ol a; = 0. Both missing parts of the polygon on the left are

convex chains.



It follows that v; and v,_; are not collinear, and we have that the remaining
v;’s belong to the closed convex cone bounded by —v; and —v,_;. Refer to
Figure [4] Thus, we may assume that (i) 8,—1 = 0, (ii) the sign changes of A
aren —1and j, and (iii) 0 < Bp < ... < B and B > Bjt1 > ... > Br_1 = 0.
Now, realizing A by a generic polygon with exactly 1 crossing between the line
segments in the direction of v; and v, is a simple exercise.

Case 2: 22:01 a; # 0. We show that, unlike in the first case, none of the sign
changes of A can be essential. Indeed, suppose j is an essential sign change,

and as in Ca_se 1L let A" = (ag,...,00_9) = (@0, .. 051,05 + g1, .., 00 1)
and B = >%_aj mod 2m.
Furthermore, let v{,...,v) _o, where vi = (cos/,sin3;). Since j is an

essential sign change there exists v # 0 such that <v, Vj> > 0 and <v, v;> <0,
for all i. Hence, by symmetry we assume that 0 < g/ < m, for all . Then due to
—m < aj <, we must have 8} = 331 jo; mod 2w = }7_ aj, which in turn
implies, by Lemma that 0= 8,_, = Y12 o} = Y1 a; (contradiction).
We have shown that A has no sign changes. By Lemma we have cr(A4) <
|7] — 1, which concludes the proof. O

Proof of Theorem [T The claimed lower bound cr(A) > ||j| — 1| on the crossing
number of A follows by Lemma [T in the case when j # 0, and the result of
Viyajan [27, Theorem 2] in the case when j = 0. It remains to prove the upper
bound cr(A) < |[j] — 1].

We proceed by induction on n. In the base case, we have n = 3. Then P is
a triangle, Z?:o a; = £27, and cr(A) = 0, as required. In the inductive step,
assume n > 4, and that the claim holds for all shorter angle sequences. Let
A= (ap,...,an—1) be an angle sequence with Z;:Ol o; = 25,

If A has no sign changes or if all sign changes are essential, then Lemma
or Lemma [3] completes the proof. Otherwise, we have at least one nonessential
sign change s. Let A" = (af,...,al,_o) = (Qpy. -y Q51,05 + Qsi1y- -y Qp_1).
Note that 22:02 o) = 2jm. Since the sign change s is nqnessential, 0 is a strictly
positive convex combination of the }’s, where 3/ = Y"; o). mod 27. Indeed,
this follows from S = §;, for i < k, and 8 = Bi41, for i > k.

@

Aj+1Vit1

Zaj+1

Figure 5: Re-introducing the j-th vertex to a polygon realizing A’ in order to
obtain a polygon realizing A.

Refer to Fig. [f] Hence, by applying the induction hypothesis we obtain
a realization of A’ as a generic polygon P’ with ||j| — 1| crossing. A generic



polygon realizing A is then obtained by modifying P in a small neighborhood
of one of its vertices without introducing any additional crossing, similarly as
in the paper by Guibas et al. [12]. O

3 Realizing Angle Sequences in 3-Space

In this section, we describe a polynomial-time algorithm to decide whether an
angle sequence A = (ay,...a,_1) can be realized as a polygon in R3.

We remark that our problem can be expressed as solving a system of poly-
nomial equations, where 3n variables describe the coordinates of the n vertices
of P, and each of n equations is obtained by the cosine theorem applied for a
vertex and two incident edges of P. However, it is not clear to us how to solve
this system efficiently.

By Fenchel’s theorem in differential geometry [9], the total curvature of any
smooth curve in R? is at least 2w. Fenchel’s theorem has been adapted to
closed polygons [24, Theorem 2.4], and it gives a necessary condition for an
angle sequence A to have a realization in R?, for all d > 2.

Zai > 2m. (1)

We show that a slightly stronger condition is both necessary and sufficient,
hence it characterizes realizable angle sequences in R3.

Lemma 4. Let A = (ag,...,an—1), n > 3, be an angle sequence. There exists
a polygon P C R3 realizing A if and only if there exists a spherical polygon P’ C
S? realizing A such that 0 € relint(conv(P')) (relative interior of conv(P')).
Furthermore, P can be constructed efficiently if P’ is given.

Proof. Assume that an oriented polygon P = (po,...,pn_1) realizes A in R3.
Let u; = (vi41—v;)/||vis1 —vil| € S? be the unit direction vectors of the edges of
P according to its orientation. Then P’ = (ug,...,u,_1) is a spherical polygon
that realizes A. Suppose, for the sake of contradiction, that 0 is not in the
relative interior of conv(P’). Then there is a plane H that separates 0 and P,
that is, if n is the normal vector of H, then <n, u1v> >0forallie{0,...,n—1}.
This implies (n, (vi4+1 —v;)) > 0 for all ¢, hence (n, Z?:_ll(vi_i'_l —v;)) > 0, which
contradicts the fact that Z?;ll (Vit1 —v;) =0, and (n,0) = 0.

Conversely, assume that there is a spherical polygon P’ that realizes A,
with edge lengths aq,...,a,_1. If all vertices of P’ lie in a great circle, then
0 € relint(conv(P’)) implies Z?:_Ol a; > 2w, and Theoremcompletes the proof.

Otherwise we may assume that 0 € int(conv(P’)). By Carathéodory’s the-
orem [I7, Thereom 1.2.3], P’ has 4 vertices whose convex combination is the
origin 0. Then we can express 0 as a strictly positive convex combination of all
vertices of P’. The coefficients in the convex combination encode the lengths of
the edges of a polygon P realizing A, which concludes the proof in this case.



We now show how to compute strictly positive coefficients in strongly poly-
nomial time. Let ¢ = + E?:_Ol u; be the centroid of the vertices of P’. If ¢ = 0,
we are done. Otherwise, we can find a tetrahedron T' = conv{u;,, . .., u;, } such
that 0 € T and such that the ray from 0 in the direction —c intersects int(T),
by solving an LP feasibility problem in R3. By computing the intersection of
the ray with the faces of T, we find the maximum g > 0 such that —uc € 0T
(the boundary of T'). We have —uc = Z?:o Ajug; and E?:o A;j = 1 for suitable
coefficients A; > 0. Now 0 = uc — pc = %Z?:_()l u; + E?:o Ajug; is a strictly
positive convex combination of the vertices of P’. O

It is easy to find an angle sequence A that satisfies but does not corre-
spond to a spherical polygon P’. Consider, for example, A = (1—e, 7—¢, 7—¢, €),
for some small € > 0. Points in S? at (spherical) distance ™ — & are nearly an-
tipodal. Hence, the endpoints of a polygonal chain (7 —e, 7 —e, 7 —¢) are nearly
antipodal, as well, and cannot be connected by an edge of (spherical) length e.
Thus a spherical polygon cannot realize A.

Algorithms. In the remainder of this section, we show how to find a realiza-
tion P C R? or report that none exists, in polynomial time. Our first concern
is to decide whether an angle sequence is realizable by a spherical polygon.

Theorem 3. There exists a constructive weakly polynomial-time algorithm to
test whether a given angle sequence A = (ag,...,Qn—1) can be realized by a
spherical polygon P’ C S2.

Proof of Theorem[3 Let A = (ag,...,an—1) € (0,m)" be a given angle se-
quence. Let n = (0,0,1) € S? (the north pole). For i € {0,1,...,n — 1} let
U; € S? be the locus of the end vertices u; of all (spherical) polygonal lines

P! = (n,uy,...,u;) with edge lengths ag,...,a;—1. It is clear that A is realiz-
able by an spherical polygon P’ iff n € U,,_;.
Note that for all ¢ € {0,...,n — 1}, the set U; is invariant under rotations

about the z-axis, since n is a fixed point and rotations are isometries. We show
how to compute the sets U;, ¢ € {0,...,n — 1}, efficiently.

We define a spherical zone as a subset of S? between two horizontal planes
(possibly, a circle, a spherical cap, or a pole). Recall the parameterization
of S? using spherical coordinates (cf. Figure |§| (left)): for every v € S2
v(1), ) = (sint sin p, cos ¥ sin ¢, cos @), with longitude ¢ € [0,27) and polar
angle ¢ € [0, 7], where the polar angle ¢ is the angle between v and n. Using
this parameterization, a spherical zone is a Cartesian product [0,27) x I for
some circular arc I C [0,7]. In the remainder of the proof, we associate each
spherical zone with such a circular arc I.

We define additions and subtraction on polar angles a, 5 € [0, 7] by

a®f=min{a+ 5,21 — (a+B)}, a©f=max{a— 5,5 —ak;

see Figure |§| (right). (This may be interpreted as addition mod 2, restricted
to the quotient space defined by the equivalence relation ¢ ~ 27 — ¢.)
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Figure 6: Parametrization of the unit vectors (left). Circular arc C;41(y) (right).

We show that U; is a spherical zone for all i € {0,...,n — 1}, and show how
to compute the intervals I; C [0, ] efficiently. First note that Uy is a circle at
(spherical) distance «g from n, hence Uy is a spherical zone with Iy = [y, avo].

Assume that U; is a spherical zone associated with I; C [0, 7]. Let u; € U,
where u; = v(¢, ) with ¢ € [0,27) and ¢ € I;. By the definition U;, there
exists a polygonal line (n,uy, ..., u;) with edge lengths ay, ..., ;. The locus of
points in S? at distance ;41 from wu; is a circle; the polar angles of the points in
the circle form an interval Cj41(p). Specifically (see Figure [f] (right)), we have

Cit1(p) = min{p © aip1, 90 @ a1}, max{Y © aip1, 9 G aiq1}]-

By rotational symmetry, U;y; = [0,27) x I;11, where [, = Utpeli Cit1(p).
Consequently, I;11 C [0, 7] is connected, and hence, I;;1 is an interval. There-
fore U;y1 is a spherical zone. As ¢ @ a;41 and ¢ © ay41 are piecewise linear
functions of ¢, we can compute I;y; using O(1) arithmetic operations.

We can construct the intervals Iy, ..., I,—1 C [0,7] as described above. If
0¢I,_1,then n ¢ U,_1 and A is not realizable. Otherwise, we can compute
the vertices of a spherical realization P’ C S? by backtracking. Put u,_; =
n = (0,0,1). Given u; = v(¢, ), we choose u;_1 as follows. Let u;_; be
v(, p® ;) or v(1,p © ) if either of them is in U;_; (break ties arbitrarily).
Else the spherical circle of radius «; centered at u; intersects the boundary of
U;_1, and then we choose u; to be an arbitrary such intersection point. The
decision algorithm (whether 0 € I,,_1) and the backtracking both use O(n)
arithmetic operations. O

Enclosing the Origin. Theorem [3| provides an efficient algorithm to test
whether an angle sequence can be realized by a spherical polygon, however,
Lemma [4| requires a spherical polygon P’ whose convex hull contains the origin.
We show that this is always possible if a realization exists and Z;ZOI «; > 2m.
The general strategy in the inductive proof of this claim is to gradually modify
P’ by changing the turning angle at one of its vertices to 0. This allows us to
reduce the number of vertices of P’ and apply induction.

10



Lemma 5. Given a spherical polygon P’ realizing an angle sequence A =
(g, -y 1), n > 3, with Z?:_Ol a > 2w, we can compute in polynomial time
a spherical polygon P" realizing A such that 0 € relint(conv(P")).

n
i~ R T
=L () plu) €
u; Uo, B ——o .
= p(uo) = Io
Uy =U By

Figure 7: The spherical zone Uy (or U127) containing uy corresponding to I;.

We introduce some terminology for spherical polygonal linkages with one
fixed endpoint. Let P’ = (ug,...,u,_1) be a polygon in S? that realizes an
angle sequence A = (ag,...,a,—1); we do not assume Z?:_ll a; > 2m. De-
note by UL] ~ the locus of the endpoints u; € S? of all (spherical) polygonal
lines (w;—j,u}_j,...,u}), where the first vertex is fixed at u;_;, and the edge
lengths are o;_j,..., ;. Similarly, denote by UZ-H' the locus of the endpoints
u; € S? of all (spherical) polygonal lines (w4 j,uj, ; i,...,u;) with edge lengths
Qlitjt1,---,041. Due to rotational symmetry about the line passing through
w,;_; and 0, both U7~ and U/" are a spherical zone (a subset of S? bounded by
two parallel circles), possibly just a circle, or a cap, or a point. In particular,
the distance between u; and any boundary component (circle) of U/~ or U +
is the same; see Figure [7}

If Ui2+ is bounded by two circles, let Ter and BZ-QJr denote the two boundary
circles such that u; is closer to Ti2+ than to Bf+. If UZ-2+ is a cap, let Ti2+ denote
the boundary of U?T, and let B} denote the center of U?". We define T}~
and Biz_ analogously.

The vertex u; of P’ is a spur of P’ if the segments u;u; 1 and u;u;_; overlap
(equivalently, the turning angle of P’ at u; is 7). We use the following simple
but crucial observation.

Observation 1. Assume that n > 4 and Ui2+ is neither a circle nor a point.
The turning angle of P’ at u;11 is 0 iff u; € Bi2+; and w;y1 s a spur of P iff
u; € EQJF.

A crucial technical tool in the proof of Lemma [5|is the following lemma
based on Observation [Il
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Lemma 6. Let P’ be a spherical polygon (ug,...,un_1), n > 4, that realizes
an angle sequence A = (ap,...,an_1). Then there exists a spherical polygon
P" = (ug,...,ui_1,0j, 0 1, Wit2,...,U,_1) that also realizes A such that the
turning angle at w;—1 is 0, or the turning angle at w;y1 s 0 or 7.

Proof. If n > 4, Observation |I| allows us to move vertices u; and u;41 so that
the turning angle at u;_; drops to 0, or the turning angle at u;; changes to 0 or
m, while all other vertices of P’ remain fixed. Indeed, one of the following three
options holds: U}~ C U, U™ N B #0, or U™ nT* #0. f U~ C U,
then by Observation [1] there exists u} € U™ N B> N U". Since u; € U**
there exists uj,, € U; [} such that P" = (ug, ..., 01, u;, Ui, 1, Wito,..., Up_1)
realizes A and the turning angle at u;_; equals 0. Similarly, if there exists
u, € U" N BT oruj € U™ NT/T, then there exists uj,; € U} such
that P” as above realizes A with the turning angle at u;y; equal to 0 or 7
respectively. O

Proof of Lemma[5 We proceed by induction on the number of vertices of P’. In
the basis step, we have either n = 3. In this case, P’ is a spherical triangle. The
length of every spherical triangle is at most 27, contradicting the assumption
that Z;:Ol a; > 2m. Hence the claim vacuously holds.

In the induction step, assume that n > 4 and the claim holds for smaller
values of n. Assume 0 ¢ relint(conv(P’)), otherwise the proof is complete. We
distinguish between several cases.

Case 1: a path of consecutive edges lying in a great circle contains
a half-circle. We may assume w.l.o.g. that at least one endpoint of the half-
circle is a vertex of P’. Since the length of each edge is less than 7, the path
that contains a half-circle has at least 2 edges.

Case 1.1: both endpoints of the half-circle are vertices of P’. Assume
w.l.o.g., that the two endpoints of the half-circle are u; and u;, for some 7 < j.
These vertices decompose P’ into two polylines, P and Pj. We rotate Py about
the line through u;u; so that the turning angle at u; is a suitable value in
[—&, +e] as follows. First, set the turning angle at u; to be 0. If the resulting
polygon P” is contained in a great circle or 0 € int(conv(P")) we are done.
Else, P” is contained in a hemisphere H bounded by the great circle through
u;_1u;u;41. In this case, we perturb the turning angle at u; so that u; 1 is not
contained in H thereby achieving 0 € int(conv(P")).

Case 1.2: only one endpoint of the half-circle is a vertex of P’. Let
P] = (uj,...,u;) be the longest path in P’ that contains a half-circle, and lies
in a great circle. Since 0 ¢ relint(conv(P’)), the polygon P’ is contained in a
hemisphere H bounded by the great circle 9H that contains P], but P’ is not
contained in 0H. By construction, u;11 ¢ 0H. In order to make the proof
in this case easier, we introduce the following assumption. If a part Py of P’
between two antipodal/identical end vertices that belong OH is contained in a
great circle, w.l.o.g. we assume that P, is contained in 0H.

W.lo.g. j =0, and we let j° be the smallest value such that u; € 90H.
By 0 ¢ relint(conv(P’)), ug,...uyy € H. We can perturb the polygon P’
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into a new polygon P = (up,...,u}_;,u;,...,u,_1) realizing A so that
0 < int(conv(P”)). Indeed, by Observation |1, uy ¢ OUZT. Therefore since
(ug,...u;s) is not contained in a great circle by our assumption, by (a mul-
tiple use) of Observation [I} we choose uj,...,u_1, so that uy ¢ H, and
u,...,uj_, €relint(H), thereby achieving 0 € int(conv(P")).

Case 2: the turning angle of P’ is 0 at some vertex u;. By supressing
the vertex u;, we obtain a spherical polygon ' on n — 1 vertices that realizes
the sequence (ag, ..., Q_g2,Q;—1 + Q;, @iy 1, ..., ap_1) unless a;_1 +a; > m, but
then we are in Case 1. By induction, this sequence has a realization Q" such
that 0 € relint(conv(Q")). Subdivision of the edge of length ;1 +; producers
a realization P” of A such that 0 € relint(conv(Q")) = relint(conv(P")).

Case 3: there is no path of consecutive edges lying in a great circle
and containing a half-circle, and no turning angle is 0.

Case 3.1: n = 4. We claim that Ug+ N Ug_ contains Bg_ or Bg"‘. By
Observation [ this immediately implies that we can change one turning angle
to 0 and proceed to Case 1.

To prove the claim, note that U§+0U0* # () and —2 = 2 (mod 4), and hence
the circles T 02_, T02+, Bg_, and Bg+ are all parallel since they are all orthogonal
to ug. Thus, by symmetry there are two cases to consider depending on whether
Ug+ - Ug_. If Ug"‘ - Ug_, then B§+ C U3+ N Ug_. Else Ug’L N Ug_ contains
B3t or Bi~, whichever is closer to uy, which concludes the proof of this case.
Case 3.2: n > 5. Choose i € {0,...,n — 1} so that a;;2 is a minimum angle
in A. Note that UZ-QJr is neither a circle nor a point since that would mean that
u;42 and u;41, or u; and u,41 are antipodal, which is impossible.

We apply Lemma [6] and obtain a spherical polygon

1/ / li
P - (u()v"'7ui717ui7ui+17ui+27"‘7un71)~

If the turning angle of P” at u;_; or uj,,; equals to 0, we proceed to Case 2.
Otherwise, the turning angle of P” at uj,; equals m. In other words, we
introduce a spur at u;H. If aj41 = a2 we can make the turning angle
of P at u;;2 equal to 0 by rotating the overlapping segments (uj ;,w;12)
and (uj,;,u;j) around u;1» = u; and proceed to Case 2. Otherwise, we have
ayo < ayy1 by the choice of i. Let Q' denote an auxiliary polygon realizing
(0, -y Uy Qg1 — @2, Q43 .., ap—1). We construct @’ from P” by cutting
off the overlapping segments (uj_ |, u;42) and (uj,;,uj). We apply Lemma@ to
Q' thereby obtaining another realization

2 " 12
Q = (u07 .- °7u’i717ui;ui+17ui+37 . ~7un71)~

We re-introduce the cut off part to Q" at uj’,; as an extension of length a2 of

the segment ujuy, ;, whose length in Q" is aj11 — @2 > 0, in order to recover

a realization of A by the following polygon
/ " 11 "
R' = (ug,...,w_q,uj, w0y o, Wig3, ..., Up_1).

If the turning angle of Q" at u;_; equals 0, the same holds for R’ and we proceed
to Case 2. If the turning angle of Q" at uj,_; equals 7, then the turning angle of
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R’ at uj, | equals 0 and we proceed to Case 2. Finally, if the turning angle of Q"
at uy,; equals 0, then R’ has a pair of consecutive spurs at uj, ; and uy,,, that is,
a so-called “crimp.” We may assume w.l.0.g. that ;13 < a41. Also we assume
that the part (uj,uy,;,uf,5,u;y3) of R’ does not contain a pair of antipodal
points, since otherwise we proceed to Case 1. Since (uj,uj, |, uj,,, u;13) does
not contain a pair of antipodal points, [(u}, u;+3)] = @it1 + Qiys — qga. It
follows that

[(af, wips)| + [(w, wf )]+ [(w) g u o)) + (w0, wigs)| =
Qi1 F Qg3 — Qipo + Qg1 + Qi + i3 = 2(i1 + ay3)

If 013+ ;41 < 7, then the 3 angles a1, ajt2 + @43, and |(u), u;43)| are
all less than w. Moreover, their sum, which is equal to 2(q;43 + @;11), is less
than 27, and they satisfy the triangle inequalities. Therefore we can turn the
angle at uy’,, to 0, by replacing the path (uj,uj,,u}, 5, u;y3) on R’ by a pair
of segments of lengths ;11 and a9 + a;43.

Otherwise, ;43 + ;41 > 7, and thus,

(', wips) |+ | (uf, wfyy)| + (0 ufo) |+ [(ufyg, wigs)| > 2
In this case, we can apply the induction hypothesis to the closed spherical
polygon (uy,uy, ;,uf 5, u;43). In the resulting realization S’, that is w.lo.g.
fixing uf and u;43, we replace the segment (uf,u;4+3) by the remaining part of
R’ between u and u;;3. Let R” denote the resulting realization of A. If S’
is not contained in a great circle then 0 € int(conv(S’)) C int(conv(R")), and
we are done. Otherwise, S’ \ (u;43,u;) contains a pair of antipodal points on a
half-circle. The same holds for R”, and we proceed to Case 1, which concludes
the proof. O

The combination of Theorem [3] with Lemmas yields Theorems [2] and
The inductive proof of Lemma [6] can be turned into an algorithm with a poly-
nomial running time in n if every arithmetic operation is assumed to be carried
out in O(1) time. Nevertheless, we get only a weakly polynomial running time,
since we are unable to guarantee a polynomial size encoding of the numerical
values that are computed in the process of constructing a spherical polygon
realizing A that contains 0 in its convex hull in the proof of Lemma [6}

4 Conclusion

We devised efficient algorithms to realize a consistent angle cycle with the min-
imum number of crossings in 2D. In 3D, we can test efficiently whether a given
angle sequence is realizable, and find a realization if one exists. However, it
remains an open problem to find an efficient algorithms that computes the min-
imum number of crossings in generic realizations. There exist sequences that
are realizable, but every generic realization has crossings. It is not difficult to
see that crossings are unavoidable only if every 3D realization of A is contained
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in a plane, which is the case, for example, when A = (1 —¢,..., 7 —¢,(n— 1))
for n > 5 odd. Thus, an efficient algorithm for this problem would follow by
Theorem [T} once one can test efficiently whether A admits a fully 3D realization.

Can our results in R? or R? be extended to broader interesting classes of
graphs? A natural analog of our problem in R?® would be a construction of
triangulated spheres with prescribed dihedral angles, discussed in a recent paper
by Amenta and Rojas [I]. For convex polyhedra, Mazzeo and Montcouquiol [18]
proved, settling Stokers’ conjecture, that dihedral angles determine face angles.

Theorem [3] gave an efficient algorithm to test whether a given angle sequence
A can be realized by a spherical polygon P’ C S2. We wonder whether every
realizable sequence A has a noncrossing realization, or possibly a noncrossing
realization whose convex hull contains the origin (when Z:’;Ol a; > 2m). If the
answer is positive, can such realizations be computed efficiently? We do not
know whether a realization P C R® corresponding to a spherical realization
P’ C §? (according to the method in the proof of Lemma has any interesting
properties when P’ is has no self-intersections.
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