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Abstract

We introduce the isoperimetric loss as a regularization crite-
rion for learning the map from a visual representation to a
semantic embedding, to be used to transfer knowledge to un-
known classes in a zero-shot learning setting. We use a pre-
trained deep neural network model as a visual representation
of image data, a Word2Vec embedding of class labels, and lin-
ear maps between the visual and semantic embedding spaces.
However, the spaces themselves are not linear, and we postu-
late the sample embedding to be populated by noisy samples
near otherwise smooth manifolds. We exploit the graph struc-
ture defined by the sample points to regularize the estimates
of the manifolds by inferring the graph connectivity using
a generalization of the isoperimetric inequalities from Rie-
mannian geometry to graphs. Surprisingly, this regularization
alone, paired with the simplest baseline model, outperforms
the state-of-the-art among fully automated methods in zero-
shot learning benchmarks such as AwA and CUB. This im-
provement is achieved solely by learning the structure of the
underlying spaces by imposing regularity.

Introduction

Motivating example. A pottopod is a pot with limbs. Not
even a single example image of a pottopod is needed to find
one in Fig. 1. However, one has surely seen plenty of ex-
amples of animals with limbs, as well as pots. In zero-shot
learning (ZSL) one aims to exploit models trained with su-
pervision, together with maps to some kind of attribute or
“semantic” space, to then recognize objects as belonging to
classes for which no previous examples have ever been seen.

The ingredients of a ZSL method are illustrated in Fig.
2. Seen samples X, and their corresponding labels Y; are
used to train a model ¢, typically a deep neural network
(DNN), in a supervised fashion, to yield a vector in a high-
dimensional (visual embedding) space Z. At the same time,
a function s maps semantic attributes such as “has legs,” “is
short,” or simply a word embedding of the ground truth (seen
and unseen) labels of interest Y = {Y}, Y}, }, to some metric
space. The name of the game in ZSL is to learn a map 1), pos-
sibly along with other components of the diagram, from the
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Figure 1: Find the Pottopod (Courtesy of P. Perona).

visual embedding space Z to the semantic space .S, that can
serve to transfer knowledge from the seen labels (reflected in
Z) to the unseen ones. Alternatively, one can try to cluster
samples with unseen labels in the visual embedding space
Z, and then associate clusters to unseen labels.

Focus on regularization. Transfer of knowledge hinges on
some kind of regularity of the maps involved in ZSL. In
practice, the visual embedding space Z and the semantic
embedding S are only known through discrete samples, and
the maps are learned restricted to these finite samples. One
crucial theme in ZSL is, interpreting sample embeddings as
“noisy points” on the otherwise differentiable manifolds Z
and S, to attempt to regularize the spaces Z, .S, and/or the
map between them.

Key contribution. Of all the various components of a ZSL
method, we choose the simplest possible (Romera-Paredes
and Torr 2015), except for the regularization of the semantic
map. There, we introduce a sophisticated model, based on
an extension of the isoperimetric inequalities from Rieman-
nian geometry to discrete structures (graphs). We treat sam-
ple visual embeddings as vertices in a graph, with affinities
as edges, and the visual-to-embedding map @ interpreted
as a linear function on the graph. We then introduce the
isoperimetric loss (IPL) to enforce regularity on the domain
Z based on the flow of the function defined on it through
the boundary of sets of a given volume. The resulting reg-
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Figure 2: Illustration of the components of a ZSL algorithm:
For images in the set with seen labels X, the labels can be
estimated by maximum a-posterior over labels in the seen set
Y on the visual representation ¢(X). For the unseen labels,
there is no direct connection to the data because they are
not seen during training. Inference is then indirect: A visual
representation is inferred, and from there a semantic repre-
sentation, which is compared to the semantic representation
of unseen labels, minimizing some distance in the semantic
space, over all possible unseen labels Y,.

ularized graph is informed by both the visual and semantic
maps. We use it to perform clustering and map clusters to
labels. Therefore, we take a very simple visual-to-semantic
embedding function, namely a linear transformation, and in-
directly regularize it by regularizing its domain and range
spaces.

We expected our regularization to improve the baseline
(Romera-Paredes and Torr 2015) on which our ZSL model
is based. We did not expect it to surpass the (far more sophis-
ticated) state-of-the-art in the two most common benchmark
datasets used in ZSL, namely AwA (Lampert, Nickisch, and
Harmeling 2009) and CUB (Welinder et al. 2010). Yet, the
experiments indicate so. In some cases, it even outperformed
methods that used human annotation for the unseen labels.

At heart, we solve a topology estimation problem. We de-
termine the connectivity between nodes of the visual embed-
ding graph, which defines a topology in that space informed
by the semantic representation of seen attributes. Much of
the literature in this area focuses on what kind of graph
signal (embedding, or descriptor) to attribute to the nodes,
whereas the connectivity of the graph is decided a-priori.
We focus on the complementary problem, which is to de-
termine the graph connectivity and learn the graph weights.
Unlike other approaches, the connectivity in our method is
informed both by the value of the visual descriptors at the
vertices, and the values of the semantic descriptors in the
range space. Our framework allows us to use automated se-
mantic representation to perform ZSL, resulting in a frame-
work which is entirely free of human annotation.

Preliminaries

We first describe a general formalization of ZSL that helps
place our contribution in context. Every ZSL includes a su-
pervised component, which results in a visual embedding, a
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collection of unseen labels or attributes, a map from these
attributes to a vector (semantic) space, and a map from vi-
sual to semantic spaces. It is important to understand the as-
sumptions underlying the transfer of information from seen
to unseen attributes, which translates in regularity assump-
tions on the visual-to-semantic map.

Supervised component. In standard supervised classifica-
tion, a dataset D, is given where both the input data z and
the output labels vy, are seen:

D, = {2’ yl}, (1)

where the set of seen labels, for instance 1 = “cat” and 2 =
“dog,” is indicated by Y5, with cardinality |Y;| = ns. The
data belong to X, for instance the set of natural images.
The goal of supervised learning is to infer the parameters
w of a function ¢, : X — Rf that approximates the (log)-
posterior probability over Yy,

dw(z); ~log P(ys = jlz). 2)

where the subscript 5 denotes the j-th component of the vec-
tor ¢, (). At test time, given an unseen image x, one can
infer the unknown label 7 associated with it as the maximum
a-posteriori estimate

() = argmax gy (¢),. 3)

yEY;

We indicate with Z the (latent, or representation) space
where the data X are mapped,

2t = ¢ (2") € Z. 4)

Visual embedding. Although z? can be interpreted as log-
probabilities, one can simply consider them as an element
of a vector space of dimension at least K, Z C RX, called
“visual embedding.” It is also customary to use intermedi-
ate layers of a deep network, rather than the last one that is
used for classification, as a visual embedding, so in general
K # ng. A general classifier, rather than a linear one, can
then be used to determine the class, based on the latent rep-
resentation z. We want the formalism to be flexible, so we
do not constrain the dimension of the embedding to be the
same of the dimension of the seen classes, and we consider
2z = ¢y () to be any (pre-trained) visual feature.

Unseen labels. In ZSL there is a second set of “unseen”
labels' Y, disjoint from the first Y, N'Y, = (. We call
Y =Y, UY,. At training time we do not have any sam-
ple images with labels in Y,,. However, we do at test time.
Zero-shot learning. The goal of ZSL is to classify test im-
ages as belonging to the unseen classes. That is, to learn a
map from X to Y. Absent any assumption on how the un-
seen labels are related to the seen labels, ZSL makes little
sense.

Assumptions. In ZSL one assumes there is a “semantic”
metric vector space S C RM | to which all labels — seen and
unseen — can be mapped via a function s : Y — S. If the

“A misnomer, since one knows ahead of time what these labels
are, for instance 3 = “sailboat”, 4 = “car.” However, one is not given
images with those labels during training. So, while the labels are
seen, image samples with those labels are not seen during training.



metric is Euclidean, a distance between two labels, y?, y7,
can be induced via d4(y*,y") = ||s(y*) — s(y?)]||. Other-
wise, any other distance d(s(y"), s(y’)) on S can be used to
find the label associated to an element o € S of the seman-
tic space (embedding), for instance using a nearest-neighbor
rule

(&)

Note that the minimum could be any label, seen or unseen.
This is just a metric representation of the set of labels, inde-
pendent of the ZSL problem.

The second assumption is that there exists amap ¢ : Z —
S from the visual to the semantic embedding, which can be
learned to map embeddings of seen classes z to semantic
vectors o = t(z) in such a way that they land close to the
semantic embedding s(ys) of the seen labels:

(o) = arg min d(s(y) — o).

N
argmin 3 d(s(y;) =¥ 0 gu(@})). 6)

i=1

One could learn both the visual embedding ¢,, and the
visual-to-semantic map ¢ simultaneously, or fix the former
and just learn the latter. In some cases, even the latter is
fixed.
Validation. The merit of any ZSL approach is usually eval-
uated empirically, since the assumptions cannot be validated
absent samples in the unseen label class or knowledge of the
transfer between the seen and unseen tasks. Once training
has terminated and we have embeddings ¢, and v, given
test data z*, we can compare the imputed labels obtained via
() = arg min d(4 o g (u), y) ©)
yeY,y
with labels v, in the validation set. The construction of this
loss function (6) is illustrated in Fig. 2.
Baseline. ZSL methods differ by whether they learn both the
visual and semantic embedding, only one, or none; by the
method and the criterion used for learning. Since the unseen
labels are never seen during training, the transfer of informa-
tion from seen to unseen labels hinges on the regularity of
the learned maps. For this reason, much of the recent work in
ZSL aims to explore different regularization methods for the
learned maps. The simplest case, which requires no regular-
ization, is to assume that all the maps are linear: ¢(z) = Fx
and s(z) = Vz for suitable matrices F, V' (Romera-Paredes
and Torr 2015). The results are not state-of-the-art (see Sect.
), but we nevertheless adopt this baseline and focus on regu-
larizing, rather than the map v directly, the spaces Z and S,
which is our key contribution.

Related Work

There are many variants for zero-shot learning (ZSL). The
general formalism developed, along with the diagram in Fig.
2, helps understanding the various approaches in relation to
one another.

The problem of zero-shot learning dates back to the
early days of visual recognition when the desire to trans-
fer knowledge from painfully learned model to more gen-
eral classes emerged (Li, Fergus, and Perona 2006; Bart and
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Ullman 2005). Early modern methods consistent with our
approach include (Lampert, Nickisch, and Harmeling 2009;
Norouzi et al. 2013) which can be described by a choice
of fixed visual embedding ¢, semantic embedding s, and
an imposed structure of the visual-semantic map (eq. (2) of
(Norouzi et al. 2013) in our notation)

T
Y(z) = Zzis(ﬁ(zi))

where the sum is truncated at the 7' largest elements of z,
so nothing is learned. A particularly simple approach, which
we adopt as baseline, is (Romera-Paredes and Torr 2015),
who assume that all the maps of interest are linear. In partic-
ular, they postulate

P(z) =Vz.

Although the map is linear, the domain and range where it
is defined are not linear spaces (although their embedding
space is). We adopt this choice and focus on smoothing the
domain and range of the map.

Roughly speaking, zero shot learning methods can be
classified into two main categories: inductive and transduc-
tive. In the inductive settings (Zhang and Saligrama 2016;
Akata et al. 2013; Lampert and Hannes Nickisch 2014;
Akata et al. 2015) which has dominated zero shot learning,
the unseen classes are introduced one by one and decision
about each unseen instance is made instantly once it is intro-
duced. In the transductive setting (Li et al. 2017; Kodirov et
al. 2015; Gopalan, Li, and Chellappa 2014; Changpinyo et
al. 2016; Deutsch et al. 2017; Song et al. 2018) typically all
unseen instances are processed simultaneously by construct-
ing a graph where one exploits the underlying manifold
structure, for example using the graph-based label propaga-
tion approach (Gopalan, Li, and Chellappa 2014). The prob-
lem of learning the graph Laplacian or the graph weights
directly from given input data has been recently addressed
in a number of works (Kalofolias 2016; Dong et al. 2016;
Egilmez, Pavez, and Ortega 2017a; Pavez and Ortega 2016;
Lake and Tenenbaum 2010). In the most general case, both
the graph connectivity and the graph weights are unknown,
in which case a common way to enforce smoothness is
to use a regularizer which controls some level of spar-
sity. Perhaps the most widely used criterion is that the en-
ergy of the graph Laplacian computed from the graph sig-
nal at the vertices be small. Our approach is inspired from
the isoperimetric problem, which is a classic problem in
geometry. In Euclidean spaces the study of isoperimetric
inequalities provides exact measures for general domains,
while in Riemannian manifolds they provide some qualita-
tive understanding of the geometry. Isoperimetric inequal-
ities on manifolds were extended to graphs (Chung 1997;
Chung, Grigor’yan, and Yau 1999) where the analysis shares
some similarities and intuition from the continuous settings.

Description of our approach

We select a fixed visual embedding ¢ consisting of a
ResNetl01 architecture trained on ImageNet using all



classes, to map images x onto a 2048-dimensional embed-
ding z = ¢(x). We assume y’ € Y is a subset of ny = 40
to 150 classes depending on the dataset: In AwA (Lam-
pert, Nickisch, and Harmeling 2009) there are 50 classes,
of which we consider 40 as seen and sequester n,, = 10
as unseen. In CUB (Welinder et al. 2010) there are 200
classes, of which we consider 150 as seen and the rest un-
seen. We exploit a fixed semantic map s from text attributes,
namely labels, onto a vector space S = R with dimen-
sion M 100 (AwA) to 300 (CUB), using Word2Vec
(Mikolov et al. 2013): The map ¢ : Z — S is assumed
linear, ¥ (z) = V z, where V' is an M X 2048 matrix, learned
as in (Romera-Paredes and Torr 2015) using the seen dataset
D;. To facilitate comparison to some algorithms we also use
a VGGverydeep-19 on CUB rather than ResNet101.

At test time, given data xz with unseen labels, we com-
pute the visual representation 2! = ¢(z?) € RX and then
semantic embeddings s/, = Vz! foralli =1,..., N,. We
construct a graph G = (Z, W) with vertices® z!, € Z and
edges {w;;} = W that measure the affinities between em-
beddings w;; = (z{,27). G is a discrete representation of
the smooth manifold ¢(X) C Z. The function v, restricted
to G, yields s!, with range ¥(Z) C S, which we also as-
sume to be a smooth manifold. In practice, because of the
finite sampling and the nuisance variability in the descrip-
tors, both the domain and range of v are far from smooth.
Key idea. Rather than smoothing the map ¢ : G — S,
we assume it is linear in the embedding space, and instead
smooth both its domain and range. We seek a non-parametric
deformation represented by changes in the connectivity ma-
trix W of the underlying graph, that minimizes the isoperi-
metric loss (IPL). This is a form of regularization which we
introduce in the field of ZSL. The IPL measures the flow
through a closed neighborhood relative to the area of its
boundary. For two-dimensional (2-D) surfaces in 3-D, it is
minimized when the neighborhood is a sphere. The IPL ex-
tends this intuition to higher dimensions.

Application to ZSL. The result of our regularization is a
new graph G’, informed by the domain, range and map of
the function ). We perform spectral clustering on G’ to ob-
tain a set of n,, = |Y,,| clusters {c1, ..., c,, }. Each of these
clusters can then be associated with a label in the unseen
set Y,,. We do not need to know the association explicitly to
evaluate our method. However, one could align the clusters
to the semantic representation of the unknown labels if so
desired. *

Results. In general, there is no “right” regularizer, so we

2We abuse the notation to indicate with Z the visual embed-
ding space, the range of the function ¢(X), which we assume to
be a differentiable manifold, and the vertices of a discrete graph
sampled from Z.

3For instance, by finding a transformation U that solves

min d
U>0
YjE€Yu

1 i
Us(vs): 1 > s ®)
J

i .
z3,€c5

If so desired, one could also add to the regularization procedure
a term to align the clusters to the semantic representations of the
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validate our approach empirically on the two most common
datasets for ZSL, namely AwA and CUB. Compared to the
current best methods that do not use any manual annota-
tion, Zero-IPL reduces errors by 3.06% on AwA1 (increased
precision from 73.7% to 76.03%), and by 6.91% (increased
precision from 36.9% to 39.45%) on CUB. Next, we de-
scribe the specific contribution, which is the smoothing of
the graph-representation of 1, in detail.

Regularization

In this section we describe in more detail our graph smooth-
ing based on the isoperimetric loss (IPL).

Our baseline gives us a graph G with weights w;; that we
want to modify. We can think of these weights as “noisy,”
and seek a way to regularize them, by exploiting also the
function 1) defined on G that yields semantic embeddings.
Our regularization criterion is to achieve some level of com-
pactness of bounded subsets: For a collection of subsets of
the vertices with fixed size (corresponding to the volume of
a subset) we want to find the subsets with the smallest size
boundary. Why this might be a good criterion rests on clas-
sical differential geometry of Riemannian manifolds, where
in the most basic case, the most compact manifold that en-
closes a fixed area with minimum size boundary is a circle.
However, tools and concepts from classical differential ge-
ometry do not translate easily to graphs. Thus, we seek a
technique that uses a key invariant, the isoperimetric dimen-
sion. It is transferred to the discrete setting, and we introduce
the IPL as a way to control smoothness in the graph. Our cri-
terion, quantified by the isoperimetric gap, generalizes this
bias towards compactness to more general sets.

Isoperimetric loss

Let B,.(§) be the ball around £ € Z of radius r, that is the
set of nodes within a distance dg less than r. Let

>

invg, dg(4,8)<dg (i,€)

) = (10)

wij

be the flow from ¢ towards &, that is, the sum of weights
of edges connecting 5 with points closer to &. The geodesic

flows uﬁf)
p = 3" ud.
dg(i?&):r

are

(1)

Note that ugﬁ) equals (0B, (€)) - the sum of all the edges

that connect vertices in B,.(§) and its complement in 7,
where p is a measure on the edges in the boundary 9B,.(§).
Next we define the isoprimetric inequality.

unseen labels:

> d(Vzi, Us(yy)). ©)

zi€cy

We, however, skip this as the alignment issue is beyond our fo-
cus in this paper. In practice, we use the clustering of the regular-
ized semantic attributes and the mapping found by using the Kuhn-
Munkres algorithm, similar to (Trigeorgis et al. ). This does not
have any impact on our method.



Definition 1 (Chung, Grigor’yan, and Yau 1999) We say
that a graph G has an isoperimetric dimension 6 with a con-
stant cs, if, for every bounded subset B,.(§) of Z, the num-
ber of edges between B,.(§) and the complement of B,.(§),
Z \ B,(§) satisfies

OB (€)) > es(u(B(€))) 5 (12)

where OB,.(§) denotes the boundary of B,.(§).

In our notation, we have that 9B,.(§) = ugﬁ).

Next, we define the isoperimetric gap using the isoperi-
metric inequality above, which is the quantity to be mini-
mized in the isoperiemtric loss:

Definition 2 The isoperimetric gap is defined as

1
1-3

dYoowy | —pO a3

i,jEB(E)

B&6,W) = cs

To minimize the gap we propose solving the following opti-
mization problem:

min >, > fo g wig+ A& 6W)

W>0
N 21,24 € B, (€) (14)
s.t. 0 S ws, 5 S ].Vl,j
where f is a function of the embedding distance

s%,,87%,
between s, and s/, (Specifically, f : S — R, where S is
the semantic embedding, and f is the Euclidean distance;
other choices are also possible) and A is a positive scalar
tuning parameter. Note that the gap § depends on 0, the
isoperimetric dimension, which is unknown, and will have
to be approximated.

Approximating the IPL To approximate the IPL loss, we
elaborate on a spectral reduction of the isoperimetric loss,
which provides a fast alternative to solving (14) directly in
the vertex domain. Approximating the IPL loss using a di-
rect method to solve (14) would entail approximating the
isoperimetric dimension of the graph, which is challenging
in general and even more for graphs constructed from noisy
high dimensional data. Therefore, we choose to focus on a
spectral reduction method.

Spectral Reduction We introduce a spectral reduction
method for the isoperimetric inequalities, which reduces the
isoperimteric gap directly in the spectral domain by using
the vertex localization of Spectral Graph Wavelets (SGW)
(Hammond, Vandergheynst, and Gribonval 2011). Specifi-
cally, we use the Spectral Graph Wavelet Transform of the
semantic embedding space s,, for each of the semantic di-
mensions e of s,,.

Let s! () be a component of s’, in a fixed dimension e

T

N N
= sl(e)Y ax Y Nouli)euli) =
j=1

k=0 =1 (15)

Algorithm 1: Learning the Graph Connectivity
Structure
Process 1: Initialization: Embedding visual -
semantic domainsN N
Input: 2z, = {z;}l:”l Sy = {831}1:1 k nearest
neighbor parameter, r radius of the ball around z?,
Step 1: Construct k nearest neighbor graph

G =(Z,W) from {z} } (using cosine similarity).

Step 2 Assign semantic attnbutes st toits
corresponding node 7.

Output: G = (Z, W)

Process 2: IPL Regularization

Input: graph G = (Z, W), s, = {s}, } .

Step 1: Construct the unnormahzed Lapla01an
L =D — W using G = (Z,W). Take the SGW
transform (Eq. 15) for each dimension 1 of of s,,.
Step 2 Apply regularization using the spectral
reduction of the IPL loss.

Step 3 Construct a new graph using the regularized

S
Output: A new Semantic embedding graph
g/ = (Sv W‘:)

a filtered signal of a fixed dimension e of s’, where ¢; is
the corresponding eigenvector of the unnormalized Lapla-
cian L associated with eigenvalue ;. The coefficients ay, are
constants of a polynomial function and for a specific choice
correspond to spectral graph wavelet (SGW) coefficients.
Note that the terms >, _, ax(L¥); ; can be interpreted as
the localized spectral transform of the graph around the ball
B,.(2%(4)), which vanishes for all zJ ¢ B,(z!). With the
SGW transform, we employ a redundant representation with
7 polynomials fi ) (A), 1 < k < 7, each is approximating
a kernel function localized in a frequency bands with cor-
responding scaling t(k). Let d; be the impulse unit vector
for the vertex 4. Fixing a scale t(k), the SGW coefficients

! ®) can be realized by ¢!") = Z;\Ll ey an(LF); 56
and wt(k) S ey ar(L*); ;6;, where wffjk) is a scalar in-
dlcatmg the amount of diffusion propagated from vertex i
to j in B,.(2!). Note that positive values Ui %) indicate that
j is informative about 7, where small negatlve or zero val-
ues indicate insignificant influence with respect to the scale

t(k). Next choose the smallest 79, 1 < ro < r where we
have wt(f o) < 0 for all j, with the corresponding poly-
nomial £,(,,)(A). Then, for all SGW coefficients s/, (e) in
bands k > rg, we annihilate all terms s;(e), which has the
effect of shrinking the boundaries of each ball around each
vertex ¢ and thus reducing the isoperimetric loss directly in
the spectral domain. Take the inverse transform to obtain the
denoised signal and construct the new graph from the regu-
larized semantic embedding space §,,.

The algorithm is summarized in pseudo code in Algo-
rithm 1.



Clustering and validation in ZSL. We employ a standard
procedure for spectral clustering as follows: the input is the
graph G’ = (S, W) obtained from applying the IPL algo-
rithm, and the number of clusters, n,,. Construct the Lapla-
cian matrix Lg using W, and compute the first n,, eigenvec-
tors of L. Letting ® € R™«*"« correspond to the first n,
eigenvectors of L, stacked in a matrix form, we cluster the
vectors ¢; € R™= 4 1,..N,, corresponding to the rows
of ® into n, classes, using the k-means algorithm. Once
n, clusters are found, we can associate each of them to a
different unseen label. While it is not required that the se-
mantic embedding of the unseen labels s(y, ) correspond to
the clusters in the same space, mapped from the visual em-
beddings, this alignment can be performed post-hoc. For the
purpose of comparison, however, it is sufficient to perform
the assignment by searching over permutations of the un-
known labels. Since we have at most 50 unseen labels in our
experiments, this is not a bottleneck. More in general, one
may consider introducing the alignment as part of the regu-
larization, but this is beyond our scope in this paper.

Experimental Results

Experimental Settings. In the first set of experiments, we
restrict our comparisons to approaches that are fully auto-
mated beyond the definition of the visual embedding (best
performance is marked in boldface). In addition, we also re-
port the evaluation of the state of the art methods that have
access to embeddings of ground-truth semantic attributes.

Using our approach we choose each component of our
ZSL pipeline to be the simplest possible one, correspond-
ing to the baseline (Romera-Paredes and Torr 2015). A san-
ity check is whether our proposed regularization scheme
improves over this baseline. Ideally, however, our method
would take the baseline beyond the state-of-the-art.

To test this hypothesis, we use the two most common
benchmarks for ZSL, AwWA and CUB. AwA (Animals with
Attributes) consists of 30,745 images of 50 classes of ani-
mals and has a source/target split of 40 and 10 classes, re-
spectively. In addition we test on the new released dataset
AWA?2 which consists of 37,322 images of 50 classes which
is an extension of AwA (which will be refereed from now
and on AwA1). AwWA?2 also has source/target of 40 and 10
classes respectively with a number of 7913 unseen testing
classes. We used the proposed new splits for AwAl and
AwA?2 (Xian, Schiele, and Akata 2018).

The CUB dataset contains 200 different bird classes,
with 11,788 images in total. We use the standard split
(Changpinyo et al. 2016) with 150 classes for training and
50 disjoint classes for testing (Xian, Schiele, and Akata
2018) which is employed in most automated based methods
we compare to, while (Xian, Schiele, and Akata 2018) also
suggested a new split for the CUB dataset. Note that the
CUB dataset is considered fine-grained, hence more chal-
lenging with both of the input features (visual and semantic)
being very noisy. We present the evaluations in Tables 1,
3 and 4 using methods which are either representative or
competitive for ZSL using automated attributes including
(Deutsch et al. 2017; Kodirov et al. 2015; Xian et al. 2016;
Frome et al. 2013; Rahman, Khan, and Porikli 2018;
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Method/Data AWATAWA?2,
IEZSL (Romera-Paredes and Torr 2015) | 58.2 | 58.6
SJE (Akata et al. 2015) 65.6 | 61.9
IALE (Akata et al. 2016b) 59.9 1 62.5
LatEm (Xian et al. 2016) 508 | -
DEVISE (Frome et al. 2013) 504 | -
SynC (Changpinyo et al. 2016) 58.6 | -

CAPD (Rahman, Khan, and Porikli 2018)64.73| -
Kernel ZSL (Zhang and Koniusz 2018) | 71.0 |70.51
DEM (Zhang, Xiang, and Gong 2017) 68.4 | 67.1
RELATION NET (Sung et al. 2018) 68.2 | 64.2
QFSL (Song et al. 2018) - 79
LisGAN (Li et al. 2019) 70.6 | -
GMN (Sariyildiz and Cinbis 2019) 825 -
MSMR (Deutsch et al. 2017) 737 72
Proposed 76.03|73.46

Table 1: Mean average precision accuracy (top-1 in %) re-
sults using our method compared to the state of the art in
ZSL on the AwAl and AwA2 datasets. Best performance
using automated semantic representation is marked in bold-
face. The evaluation for the state of the art methods which
are using human semantic annotation is also presented.

Method/Data AwA1AwA2/CUB
(Kalofolias 2016) 58.8 | 55.2 [33.45
(Egilmez, Pavez, and Ortega 2017b)| 66.6 | 66.7 |39.6
Proposed 76.03(73.46 | 39.4

Table 2: Mean average precision accuracy (top-1 in %) re-
sults using our method compared to the state of the art graph
learning methods on the AwA1l, AwA2 and CUB datasets.
Best performance using automated semantic representation
is marked in boldface.

Changpinyo et al. 2016) as well as ones that
used human annotation (Zhang and Koniusz 2018;
Song et al. 2018; Zhang, Xiang, and Gong 2017;
Sung et al. 2018) for a more general overview.

Implementation details: For all the splits of AwA
and CUB datasets, we fix k = 15, r = 3,and k = 8,r = 3
for the k nearest neighbor graph parameter and radius r
of the ball around each point, respectively. The edges w;;
are chosen using the cosine similarity between the visual
observations.

Experimental results on the AwA1 and AwA?2 datasets
using the new proposed splits (Xian, Schiele, and Akata
2018) are shown in Table 1. Note that the new proposed
AWA? data-set is more challenging, as evident from the sig-
nificant drop in performance compare to AwA for most of
the state of the art methods. We also compare to state of the
art methods which are employing human attributes (85 di-
mensional attribute vectors provided for each class in (Lam-
pert, Nickisch, and Harmeling 2009)). A “-” indicates that
the performance of the method was not reported in the lit-



(a) 2D t-SNE Embedding of the AWA1
noisy attributes

(b) 2D t-SNE Embedding of the AWA1 regularized
attributes using the IPL regularization

Figure 3: An illustration using t-SNE embedding fot the AWA1 dataset comparing (a) noisy 2D embedding of the semantic
attributes and (b) 2D embedding of the regularized semantic attributes using the proposed IPL regularization. Nodes with the
same color correspond to the same class. The effect of the IPL regularization is clearly observed in (b), such that comparing to
(a) the boundary of subsets, most in the same class, is typically shrinking and more compact

erature for the corresponding dataset. Mean average preci-
sion of the baseline is 58.6%. We improve it to 76.03% and
73.46% on the AwA1 and AwA?2 datasets, respectively, by
using our regularizer, taking the baseline past the state of
the art, which is 73.7 % and 72% using (Deutsch et al. 2017)
on AwA1 and AwA?2 respectively, reducing the error by 3.06
percentage points on AwA 1. Note that among the most com-
petitive state of the art methods which is also using auto-
mated attributes, (Deutsch et al. 2017) is using a much more
complex and computationally heavy method. Furthermore,
for both AwA1 and AwA?2, our method outperforms the state
of the art methods which are using human attributes. Fig.
3 shows a comparison between the t-sne embedding of the
noisy embedded semantic representation and the regularized
semantic representation using IPL.

Experimental results on the CUB dataset is the next

benchmark we consider. The baseline achieves a disappoint-
ing 23.8% precision on CUB. Surprisingly, our regularizer
takes it past the state-of-the-art automatic method (36.9%),
to 39.45%, corresponding to an error decrease of over 6.9%.
The experimental results comparison on the CUB dataset is
shown in Table 3.
Influence of the % nearest neighbor graph parameter We
also provide additional experiments which test the influence
of the k nearest neighbor graph parameter. Changing the k
nearest neighbor graph parameter by 50% for the AWAI,
AWAZ2, and CUB datasets, results in a performance drop of
less than 2.6, 8.77, and 2.02%, respectively.

10710

Comparison to Learning Graph Methods

In addition to direct comparison to ZSL methods, since
our approach uses a graph-based smoothing approach, one
may wonder whether applying state-of-the-art graph learn-
ing methods one might also improve performance of ZSL.

We focused on the state-or-the-art graph learning method
(Egilmez, Pavez, and Ortega 2017b) and also (Kalofolias
2016) as representative of graph based learning. We use
the same method and protocol to arrive at a graph, but re-
place our approach with (Egilmez, Pavez, and Ortega 2017b)
(Kalofolias 2016) for evaluation in AwA 1, AwA2, and CUB.
This experiment is comparable to the one reported in Ta-
ble 1. While performance in CUB is comparable, our ap-
proach outperforms (Egilmez, Pavez, and Ortega 2017b;
Kalofolias 2016) on the AWA benchmarks.

Experimental results on generalized ZSL (GZSL) We
also compare our performance in the generalized zero shot
learning setting. We follow the standard protocol of the gen-
eralized ZSL (GZSL) (Schiele and Akata 2017) settings
where the search space at evaluation time includes both the
target and the source classes while the evaluation metric use
the harmonic mean between while source and test data as the
evaluation metrics. Thus, letting Accs, Ace, the mean class
accuracy achieved for the source and target classes, respec-
tively, the harmonic mean H is given by:

2% Accs * Acey
T Aceg + Acer
The settings of the GZSL is more challenging, as can be

(16)



Method/Data CUB
EZSL (Romera-Paredes and Torr 2015) 23.8
SJE (Akata et al. 2015) 28.4
LatEm (Xian et al. 2016) 33.1
Less Is more (Qiao et al. 2016) 29.2
ALE (Akata et al. 2016b) 54.9
Kernel ZSL (Zhang and Koniusz 2018) 57.1
DEM (Zhang, Xiang, and Gong 2017) 51.7
RELATION NET (Sung et al. 2018) 55.6
QFSL (Song et al. 2018) 72.1
LisGAN (Li et al. 2019) 58.8
GMN (Sariyildiz and Cinbis 2019) -
CAPD (Rahman, Khan, and Porikli 2018) | 32.08
Multi-Cue ZSL (Akata et al. 2016a) 32.1
DMaP(Li et al. 2017) 30.34
MSMR (Deutsch et al. 2017) 36.9
Proposed 39.45

Table 3: Mean average precision accuracy (top-1 in %) re-
sults using our method compared to the state of the art
methods in zero shot learning on the CUB dataset us-
ing Word2Vec or other automated semantic representa-
tion. Methods using automated semantic representation are
marked in boldface. The evaluation for the state of the art
methods which are using human semantic annotation is also
presented.

seen in the evaluation comparison (Table 4, for most meth-
ods the performance degrades significantly in comparison
to the standard ZSL. We compare to the recent automated
methods tested in the GZSL settings on the AwA1l, AwA?2
and CUB datasets (those which are available on GZSL and
can scale to generalized ZSL settings). The experimental
results summarized in Table 4 show not only improvement
over method using automatic attributes (error decrease of
over 9.8% and 44% for the AWA1 and CUB datasets), but
is also outperforming many of the recent state of the art
methods which are using human annotation.

Computational complexity: The IPL with spectral reduc-
tion has a computational cost of O(N, K log(N,,)), which
includes fast computation of the k nearest neighbor graph
using k — d tree, the SGW transform which is O(NV,,) for
each dimension of the manifold for sparse graphs (Ham-
mond, Vandergheynst, and Gribonval 2011), thus total com-
plexity of O(N, K log(N,,)) for N,, samples in K dimen-
sional space. Limitations includes processing very large
graphs which consists more than millions of points. The ex-
ecution time of our code implementation using Intel Core i7
7700 Quad-Core 3.6GHz with 64B Memory on the AWAI
dataset with 5685 points using & = 10 nearest neighbor
graph takes ~ 21.9 seconds for the initialization of the
visual-semantic embedding space, and ~ 44.8 seconds for
our IPL regularization.
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Method/Data AWA 1 AWA2CUB
IEZSL (Romera-Paredes and Torr 2015) 12.1 | 11.0 |21.0
SJE (Akata et al. 2015) 19.6 | 14.4 {33.6
LatEm (Xian et al. 2016) 13.3120.0 {24.0
IALE (Akata et al. 2016b) 27.5123.9 344
DEVISE (Frome et al. 2013) 22.4127.8(32.8
SynC (Changpinyo et al. 2016) 16.2 | 18.0 (19.8
IDMaP (Li et al. 2017) 6.44 | - |2.07
CAPD (Rahman, Khan, and Porikli 2018)43.70| - |[31.6
Kernel ZSL (Zhang and Koniusz 2018) | 29.8 | 30.8 |35.1
IDEM (Zhang, Xiang, and Gong 2017) 473 145.1 [13.6
RELATION NET (Sung et al. 2018) 46.7 1453 147.0
LisGAN (Li et al. 2019) 623 | - |51.6
GMN (Sariyildiz and Cinbis 2019) 748 | - 1650
QFSL (Song et al. 2018) - | 77.4173.2
Proposed 48.0 | 49.2 |45.6

Table 4: Comparison results in generalized ZSL on the
AwA1l, AwA2, and CUB data-sets. The harmonic mean is
measured using the Mean average precision top-1% accu-
racy using the unseen and seen classes. Methods using auto-
mated semantic representation are marked in boldface.

Discussion

We have introduced the use of isoperimetric inequalities,
known for centuries, into clustering in general, and zero-shot
learning in particular. We use the isoperimetric loss to indi-
rectly regularize a learned map from visual representations
of data to their semantic embedding. Regularization is done
by representing the domain of the map as a graph, the map as
a graph signal, and regularizing the graph, obtaining another
“denoised” graph where clustering is performed to reveal
the unseen labels, once cluster-to-label association is per-
formed. This regularization appears to be so effective as to
take the simplest possible ZSL approach, where all maps are
assumed linear, and improve it to beyond the current state-
of-the-art for fully automatic ZSL approaches. Typical fail-
ure modes of our regularization and clustering algorithms
are when the compactness values of the geodesic flows lie
within a very wide range of different intervals corresponding
to the bounded sets of the different input classes, which will
result in incorrect estimation and detection of the geodesic
flows and therefore ineffective regularization.

Since our model is general, it could be used in conjunction
with more sophisticated ZSL components, including those
where the various maps are not linear, and learned jointly
with regularization.
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